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Abstract: Targeted therapeutic agents such as poly (ADP-ribose) polymerases (PARP) inhibitors have emerged in 
treating cancers associated with germline BRCA mutations. Recently studies demonstrated the effectiveness of 
PARP inhibitors in treating patients with somatic BRCA mutations. Somatic mutations in 122 Chinese breast or ovar-
ian cancer patients without BRCA, PTEN and TP53 mutations were screened using multigene sequencing panel. The 
five most frequent pathogenic or likely pathogenic mutated genes identified in breast cancer patients were PIK3CA 
(28.6%), TP53 (16.9%), MAP3K1 (14.3%), GATA3 (14.3%) and PTEN (5.2%). The five most frequently mutated genes 
identified in ovarian patients were TP53 (52.9%), KRAS (23.5%) and PIK3CA (11.8%), BRCA1 (5.9%) and RB1 
(5.9%). Somatic PIK3CA and TP53 mutations were common events in both germline BRCA-negative breast and 
ovarian cancer patients. In contrast, somatic screening of BRCA mutations in BRCA-negative breast cancer patients 
has limited value. The results highlight the benefit of somatic testing to guide future research directions on other 
targeted therapies for breast and ovarian malignancies.
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Introduction

The link between genetic mutations and cancer 
pathogenesis has long been extensively stud-
ied, and genetic testing is taking on an increas-
ingly important role to reduce the disease bur-
den of breast cancer. The discoveries of BRCA 
germline mutations, which are associated with 
an estimated 20% of hereditary breast can-
cers, fueled the excitement for potential breast 
cancer treatment target [1-4]. Targeted thera-
peutic agents such as poly(ADP-ribose) poly-
merases (PARP) inhibitors have emerged with 
better outcomes in treating cancers with BRCA 
mutations and those with other homologous 
recombination (HR) deficiencies [5, 6]. 

The first PARP inhibitor was FDA-approved ini-
tially for ovarian cancer patients with germline 
BRCA mutations. Subsequent studies demon-

strated their effective in those with somatic 
BRCA mutations and other HR deficiencies, 
which are present in up to 20% of serous ovari-
an cancers [7]. Olaparib and talazoparib are 
FDA-approved PARP inhibitors for metastatic 
breast cancer patients with germline BRCA 
mutations [8, 9] and metastatic triple negative 
breast cancer patient with somatic BRCA1 
mutation [10]. Therefore, it is postulated that 
somatic BRCA-mutated tumors might also 
respond to this new class of therapeutics simi-
lar to that in ovarian cancer setting. A phase II 
clinical trial is currently investigating the effec-
tiveness of olaparib in both germline and 
somatic BRCA-positive breast cancer patients 
[11]. Other than PARP inhibitors, phosphati-
dylinositol-4,5-bisphosphate 3-kinase, catalyt-
ic subunit alpha (PIK3CA) inhibitor, alpelisib, 
has been used to treat patients with PIK3CA-
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mutated, hormonal receptor-positive, HER2-
negative advanced breast cancer [12]. Several 
phase I and II clinical trials are conducted  
to investigate the efficacy of PIK3CA and AKT 
inhibitors on breast cancer patients with so- 
matic mutations in the PI3K/AKT/mTOR pa- 
thway. 

Somatic mutation analysis of 173 genes using 
in 2,433 breast tumors identified 13,084 
somatic mutations which were predicted to 
affect protein sequence [13]. Another study 
identified mutations in 93 protein-coding can-
cer genes in 560 paired breast tumors and nor-
mal tissues by whole genome sequencing [14]. 
PIK3CA and TP53 were the most frequently 
mutated genes found in breast tumors among 
these studies [13, 14]. Notably, the rate of 
somatic BRCA mutations in breast malignancy 
is rather low, implying that other mechanisms, 
such as epigenetics, might be a more impor-
tant event in somatic breast cancers with 
BRCAness [14-18]. On the other hand, large-
scale genetic mutation analysis from The 
Cancer Genome Atlas (TCGA) revealed TP53 
mutation was also found in 96% of high-grade 
serous ovarian cancer tissue samples [19] and 
commonly seen in different populations [20, 
21]. Therefore, the presence of somatic BRCA 
mutations or other mutated genes must be 
ascertained so as to offer appropriate targeted 
therapies to improve treatment outcome in 
breast or ovarian cancers.

The objective of our study is to uncover the 
landscape of somatic mutations in germline 
(BRCA, PTEN and TP53) mutation-negative 
breast and ovarian cancer patients and identity 
the common somatic mutations which can 
potentially be targeted for therapeutic pur- 
poses. 

Methods

Ethics statement

All human tissue samples in this study were 
used according to the Declaration of Helsinki. 
Written informed consent was obtained from 
all participants recruited in this study. This 
study was approved by the Institutional Review 
Board of the University of Hong Kong/Hospital 
Authority West Cluster and other contributing 
hospitals in Hong Kong.

Samples and selection criteria

122 tumor tissues of breast or ovarian cancer 
tested negative for germline BRCA1, BRCA2, 
TP53, and PTEN mutations were retrieved for 
this study. They were recruited by the Hong 
Kong Hereditary and High Risk Breast Cancer 
Program from March 2007 to October 2017. 
The selection criteria were described previous-
ly with modification [4]. High-risk patients who 
were germline BRCA/TP53/PTEN negative and 
had not received any neoadjuvant chemothera-
py were included.

DNA extraction & multigene panel sequencing

Genomic DNA was extracted from tissues with 
DNeasy Blood and Tissue Kit (Qiagen, Hilden, 
Germany). Extracted tumor DNA was subjected 
to Human Breast Cancer Panel from QIAseq 
Targeted DNA Panel (DHS-001Z, Qiagen) with 
93 breast cancer predisposition genes. 
Sequencing libraries were prepared according 
the manufacturer’s instructions. The quality 
and quantity of the re-purified DNA were 
assessed by Qubit Fluorometer (Thermo Fisher 
Scientific, Massachusetts, US). DNA was enzy-
matically fragmented and ligated with molecu-
lar barcodes and sample indexing adaptor. 
Ligated DNA was further enriched by PCR with 
a universal forward primer and the specific tar-
geting primers from above panel which allows 
the targets and barcodes to enrich sufficiently. 
Another round of universal PCR amplification 
was carried out with platform specific adaptor 
sequences added for final completion of the 
library construct. The amplicon products of 
each sample were subjected to quality check 
with the use of Agilent DNA 1000 Kit on a 2100 
Bioanalyzer system (Agilent Technologies, San- 
ta Clara, CA). The libraries were sequenced on 
MiSeq or NextSeq (Illumina, San Diego, CA) 
with QIAseq A Read 1 Primer I and the minimum 
sequencing depth was 50-fold and average 
depth of 500. 

Data analysis

The bioinformatics analysis was performed on 
a Cray XC30 supercomputer (Cray, Seattle, WA). 
Paired sequencing reads were mapped to 
human reference genome sequence GRCh37/
hg19 using BWA-MEM v0.7.7 [22] and default 
parameters. Post-alignment primer clipping 
and unique molecular identifier (UMI) extrac-
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Table 1A. Clinicopathologic data of the breast cohort patients 
(N=108)
Sex
    Female 108 (100%)
Age (Mean/Range) 54.05 (25-86)
Diagnosis Age
    <35 5 (4.63%)
    35-44 35 (32.41%)
    45-54 25 (23.15%)
    55-64 14 (12.96%)
    ≥65 29 (26.85%)
Bilateral Breast 18 (16.67%)
Personal cancers
    Breast Cancer only 90 (83.33%)
    Both Breast & Ovarian or GYN cancers 3 (2.78%)
    Breast cancer with multiple other cancers 15 (13.89%)
Menopause
    Yes 54 (50.00%)
Family History (1st or 2nd degree)
    Breast Cancer 37 (34.26%)
    Ovarian Cancer 4 (3.70%)
    BRCA Related Cancer (other than Breast & Ovarian) 43 (39.81%)
Histology of Breast tumors
    Ductal 82 (75.93%)
    Ductal + Lobular/Medullary 3 (2.78%)
    In situ carcinoma 7 (6.48%)
    Lobular 6 (5.56%)
    Medullary 1 (0.93%)
    Others/Unclassified 9 (8.33%)
Molecular Subtypes of Breast tumors
    Hormonal + 75 (69.44%)
    TNBC 19 (17.59%)
    Her2 14 (12.96%)
Stage
    Stage 0 7 (6.48%)
    Stage I 34 (31.48%)
    Stage II 51 (47.22%)
    Stage III 16 (14.81%)
Invasive Grade
    Grade 1 15 (15.46%)
    Grade 2 49 (50.52%)
    Grade 3 33 (34.02%)
    Not stated 4
DCIS only 7

tion were performed using BAMClipper [23] 
adapted for single primer extension dataset. 
Samples having at least 75% of gene-specific 
primers with at least 100 detected UMI per 

primer were considered to pass 
quality control and subjected to 
variant calling by FreeBayes 
v1.0.2-15 [24]. Called variants 
with variant allelic fraction (VAF) 
at least 10% and sequencing 
depth at least 500× were anno-
tated by Ensembl Variant Effect 
Predictor v75 [25]. A high strin-
gency is adopted in order to eli- 
minate the heterogeneity within 
tumors and also noise parame- 
ters.

Variant interpretation

With reference to the public  
databases including gnomAD 
(https://gnomad.broadinstitute.
org/), dbSNP (http://www.ncbi.
nlm.nih.gov/SNP) and ClinVar 
(https://www.ncbi.nlm.nih.gov/
clinvar/), variants were interpret-
ed and assigned classifications 
according to the four-tier termi-
nology system of the joint guide-
lines from Association for Mole- 
cular Pathology, American Socie- 
ty of Clinical Oncology, and Co- 
llege of American Pathologists 
[26]: Tier I (variants with strong 
clinical significance); Tier II (vari-
ants with potential clinical signifi-
cance); Tier III (variants of un- 
known significance) and Tier IV 
(benign or likely benign). Mutati- 
on variants that present in 1,000 
Genomes resource or causing in-
frame consequences were not 
analyzed. In addition, SNPs were 
excluded if the allele frequency ≥ 
0.01% in East Asian population  
in the gnomAD database. Pass- 
enger mutations or mutations 
with high mutation background 
(e.g. MUC16 and KMT2C) were 
omitted as they were seen in 
almost 99% of our samples. 

Statistical analysis

Clinicopathological variables from pathogenic/
likely pathogenic mutation carriers and non-
carriers were tabulated in contingency tables. 
Statistical tests suitable for categorical data 
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Table 1B. Clinicopathologic data of the ovarian cohort patients 
(N=14)
Sex
    Female 14 (100%)
Age (Mean/Range) 45.29 (16-78)
Diagnosis Age
    <35 3 (21.43%)
    35-44 2 (14.29%)
    45-54 6 (42.86%)
    55-64 2 (14.29%)
    ≥65 1 (7.14%)
Personal cancers
    Ovarian Cancer 14 (100%)
Menopause
    Yes 9 (64.29%)
Family History (1st or 2nd degree)
    Breast Cancer 2 (14.29%)
    Ovarian Cancer 0 (0%)
    BRCA Related Cancer (other than Breast & Ovarian) 2 (14.29%)
Histology of Ovarian tumors
    Serous 5 (35.71%)
    Mucinous 2 (14.29%)
    Endometrioid 6 (42.86%)
    Metastatic adenocarcinoma 1 (7.14%)
FIGO Stage
    I 4 (30.77%)
    II 1 (7.69%)
    III 7 (53.85%)
    IV 1 (7.69%)
    Not stated 1
Grade
    1 1 (7.69%)
    2 4 (30.77%)
    3 8 (61.54%)
    Not stated 1 

were then considered. Since some variables 
had expected values less than 5 in some cells, 
and most of the variable did not have natural 
ordering, Fisher’s exact test was finally adopt-
ed. Significance level was set at 5%. A p-value 
less than 0.05 would then indicate the rejec-
tion of null hypothesis of independence of vari-
ables. The computation was performed using R 
(version 3.4.2, Foundation for Statistical Com- 
puting, Vienna, Austria).

Results

Study population

Of 108 breast cancer patients, the mean age of 
diagnosis was 54.1 years (range, 25-86 years). 

Most of the patients were diag-
nosed at stage I (31.5%) and II 
(47.2%), and 14.8% of the pati- 
ents had stage III. Majority of the 
tumors were invasive ductal carci-
noma (82/108, 75.9%) and were 
grade 2 tumors (49/108, 50.5%). 
In particular, 43 (39.8%) had at 
least one first- or second-degree 
relative with BRCA-related cancer 
(other than breast or ovarian can-
cer) and 37 (34.3%) had family 
history of breast cancer. Clinico- 
pathological characteristics of the 
breast cancer patients were listed 
in Table 1A. 

Among 14 patients with ovarian 
tumors, the mean age of diagno-
sis was 45.3 years (range, 16-78 
years). Most of the tumors are  
at high grade (8/14, 61.5%), 6 
(42.9%) had endometrioid and 5 
(35.7%) had serous cancer. Ma- 
jority of the patients were diag-
nosed with stage I (4/14, 30.8%) 
and III (7/14, 53.9%). The pati- 
ents’ characteristics are summa-
rized in Table 1B. 

Mutation landscapes in breast 
tumors

With our customized bioinformat-
ics pipeline for variant calling, 369 
somatic mutations in 67 cancer 
predisposition genes were pre-
dicted to affect protein sequenc- 
es in Tier I-IV. Among these muta-
tions, there were 9 small inser-

tions or deletions, 38 caused frameshift termi-
nation or early termination, and 19 were splice 
site variants. Each tumor had an average of 3.4 
coding mutations and 25 of them harbored at 
least 5 coding mutations. Six of them were 
devoid of any mutation. PIK3CA (29.6%) and 
TP53 (25.9%) mutations dominated the somat-
ic mutation landscape of breast tumors. Five 
other common genes were SYNE1 (20.4%), 
BRCA2 (16.7%), MSH2 (13.0%), BRCA1 (11.1%) 
and MLH1 (11.1%) (Figure 1).

Altogether 77 Tier I/II variants corresponding  
to 15 cancer predisposition genes were identi-
fied (Table 2), in which 49.1% of the breast 
tumors had at least one Tier I or Tier II variants. 
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Figure 1. Heatmap of mutation identified in breast tumor tissues. Heatmap of most frequent somatic mutations 
identified in this study according to subtype. Mutation types are color-coded according to the legend. Top panel: 
the number of mutations found in each tumor is shown. Right Panel: The number of mutations identified in each 
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gene is shown. Left Panel: Different types of gene mutations carried by each tumors indicated. Abbreviation: IHC: 
Immunohistochemistry; YBR: Young Breast Cancer; FHB: Family history of breast cancer; FHO: Family history of 
ovarian cancer. 

Table 2. Tier I and Tier II mutation variants called in Breast cohort
Gene HVGS Frequency
AKT1 c.49G>A; p.Glu17Lys 3
BRIP1 c.1936-1G>C 1
CBFB c.133C>T; p.Gln45Ter 1
CBFB c.165+2_165+3insT 1
CBFB c.79-1G>T 1
CDH1 c.1345C>T; p.Gln449Ter 1
CDH1 c.2173delC; p.Leu725CysfsTer45 1
CSMD1 c.10039+1G>C 1
GATA3 c.1085delT; p.Ile362ThrfsTer43 1
GATA3 c.1103_1104delAA; p.Lys368AsnfsTer3 1
GATA3 c.1223_1224insT; p.Pro409AlafsTer99 1
GATA3 c.1278delA; p.Ser427ProfsTer49 1
GATA3 c.1299_1318delACACCACCCCTCCAGCATGG; p.His435ArgfsTer66 1
GATA3 c.925-3_925-2delCA 6
GEN1 c.562_563delAA; p.Lys188GlufsTer2 1
MAP2K4 c.219-2A>G 1
MAP2K4 c.274G>T; p.Glu92Ter 1
MAP3K1 c.1080_1081insC; p.Val361ArgfsTer24 1
MAP3K1 c.1152+1G>A 1
MAP3K1 c.1594C>T; p.Arg532Ter 1
MAP3K1 c.1624_1625insA; p.Thr542AsnfsTer17 1
MAP3K1 c.2262delT; p.Gly756AlafsTer6 1
MAP3K1 c.2479_2488delGTTACTACAG; p.Val827TyrfsTer9 1
MAP3K1 c.2867_2870delTTCA; p.Val956GlufsTer11 1
MAP3K1 c.3315_3316insCA; p.Ile1106GlnfsTer12 1
MAP3K1 c.3387_3396delCTCCAGTATT; p.Asn1129LysfsTer16 1
MAP3K1 c.3814_3817delAAAC; p.Lys1272ArgfsTer2 1
MAP3K1 c.3982+1_3982+2insG 1
MSH6 c.2194C>T; p.Arg732Ter 1
NEK2 c.952C>T; p.Arg318Ter 1
PALB2 c.3113G>A; p.Trp1038Ter 1
PIK3CA c.1624G>A; p.Glu542Lys 1
PIK3CA c.1633G>A; p.Glu545Lys 5
PIK3CA c.3140A>G; p.His1047Arg 12
PIK3CA c.3140A>T; p.His1047Leu 3
PIK3CA c.353G>A; p.Gly118Asp 1
PTEN c.127_149delGAAGGCGTATACAGGAACAATAT; p.Glu43Ter 1
PTEN c.238A>T; p.Lys80Ter 1
PTEN c.396delT; p.Val133Ter 1
PTEN c.405_406insA; p.Cys136MetfsTer44 1
TP53 c.216_217insC; p.Val73ArgfsTer76 1
TP53 c.321C>G; p.Tyr107Ter 1
TP53 c.488A>G; p.Tyr163Cys 1
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TP53 c.493delC; p.Gln165SerfsTer5 1
TP53 c.559+2T>C 1
TP53 c.635_636delTT; p.Phe212SerfsTer3 1
TP53 c.723delC; p.Cys242AlafsTer5 2
TP53 c.734G>A; p.Gly245Asp 2
TP53 c.817C>T; p.Arg273Cys 1
TP53 c.916C>T; p.Arg306Ter 2

Figure 2. Identification of 15 mutated gene function. 
Genes carried mutations were classified according 
to functions: transcription regulation; MAPK signal-
ing; genome instability; cell cycle regulation and AKT 
signaling.

The most frequent mutated genes were PIK- 
3CA (28.6%), TP53 (16.9%), MAP3K1 (14.3%), 
GATA3 (14.3%) and PTEN (5.2%). PIK3CA 
c.3140A>G (11.1%), GATA3 c.925-3_925-2del-
CA (5.6%) and PIK3CA c.1633G>A (4.6%) were 
common in breast tumors. Also, the major 
mutations were the cancer driver genes in- 
volved in AKT signaling (37.7%), genome integ-
rity (20.8%), transcription regulation (18.2%) 
and MAPK signaling pathways (18.2%) (Figure 
2). Apart from Tier I/II mutations, a total of 144 
variants of Tier III in 55 cancer susceptibility 
genes from 66 breast tumors were identified 
(Table S1). 

A total of 221 mutation variants (Tier I/II: 77; 
Tier III: 144) from 108 tumors were identified 
(Table 3). Surprisingly, 6 of the tumors had no 
somatic mutation found and the rest carried an 
average of 2.2 mutations. Among these 221 
mutation variants, 13 dominant recurrence 
mutation variants were seen in 46.2% of the 
tumors (50/108) and none of them have been 
reported in gnomAD within the East Asian pop-
ulation (Table S2). Of note, there were 6 BRCA 
mutations in Tier III (BRCA1:2; BRCA2:4) but 
none was in Tier I/II, in which 4 of the BRCA 
mutations were confirmed to be germline. In- 
terestingly, there was only one case with both 
Tier III somatic BRCA1 and BRCA2 mutations. 

Clinical and pathological association

Association of clinical and pathological param-
eters and dominant gene mutations from 77 
Tier I/II mutation variants were analyzed by 
Fisher Exact test. PIK3CA mutations were com-
mon in Luminal A tumors (P=0.0294). Mutations 
in GATA3 (P=0.0172) were significantly associ-
ated with ER positivity. For other mutations, 
there were no significant association between 
the mutation and young onset age, patient sta-
tus, staging and menopausal status.

Somatic single nucleotide variants (SNVs)

566 SNVs were detected, of which 340 of th- 
em were unique variants. The median SNV was 
5.29 and ranged from 1-18 SNVs per tumor, 
where five patients got >10 SNVs and three 
patients got one SNV only. Early-onset and 
HER2+ tumors often acquired a G to T trans- 
version while tumors from menopause pati- 
ents yielded mostly a T to G transversion (Fi- 
gure 3 and Table 4). The identified SNVs in- 
clude 21 nonsense mutation variants in 15 
genes. Recurrent mutations were seen in BM- 
PR1A, MAP3K1, PALB2 and TP53 genes. For 
missense mutations, 322 mutations were fo- 
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Table 3. Mutation frequency (N=221) of different genes in 
breast cohort
Gene (s) Tier I/II (N=77) Tier III (N=144) Total (N=221)
AKT1 3 (3.9%) - 3 (1.36%)
APC - 1 (0.69%) 1 (0.45%)
AR - 4 (2.78%) 4 (1.81%)
ATM - 4 (2.78%) 4 (1.81%)
ATR - 4 (2.78%) 4 (1.81%)
BAP1 - 1 (0.69%) 1 (0.45%)
BMPR1A - 1 (0.69%) 1 (0.45%)
BRCA1 - 2 (1.39%) 2 (0.9%)
BRCA2 - 4 (2.78%) 4 (1.81%)
BRIP1 1 (1.3%) 1 (0.69%) 2 (0.9%)
CASP8 - 3 (2.08%) 3 (1.36%)
CBFB 3 (3.9%) 2 (1.39%) 5 (2.26%)
CCND1 - 1 (0.69%) 1 (0.45%)
CDH1 2 (2.6%) 6 (4.17%) 8 (3.62%)
CSMD1 1 (1.3%) 5 (3.47%) 6 (2.71%)
EGFR - 2 (1.39%) 2 (0.9%)
EP300 - 2 (1.39%) 2 (0.9%)
EPCAM - 2 (1.39%) 2 (0.9%)
ERBB2 - 2 (1.39%) 2 (0.9%)
ERBB3 - 5 (3.47%) 5 (2.26%)
ESR1 - 2 (1.39%) 2 (0.9%)
EXOC2 - 2 (1.39%) 2 (0.9%)
EXT2 - 1 (0.69%) 1 (0.45%)
FGFR1 - 1 (0.69%) 1 (0.45%)
FGFR2 - 1 (0.69%) 1 (0.45%)
GATA3 11 (14.29%) - 11 (4.98%)
GEN1 1 (1.3%) 1 (0.69%) 2 (0.9%)
HERC1 - 3 (2.08%) 3 (1.36%)
MAP2K4 2 (2.6%) 1 (0.69%) 3 (1.36%)
MAP3K1 11 (14.29%) 4 (2.78%) 15 (6.79%)
MED12 - 1 (0.69%) 1 (0.45%)
MEN1 - 2 (1.39%) 2 (0.9%)
MLH1 - 2 (1.39%) 2 (0.9%)
MSH2 - 5 (3.47%) 5 (2.26%)
MSH6 1 (1.3%) - 1 (0.45%)
MUTYH - 1 (0.69%) 1 (0.45%)
NBN - 4 (2.78%) 4 (1.81%)
NCOR1 - 1 (0.69%) 1 (0.45%)
NEK2 1 (1.3%) 1 (0.69%) 2 (0.9%)
NF1 - 2 (1.39%) 2 (0.9%)
PALB2 1 (1.3%) 1 (0.69%) 2 (0.9%)
PALLD - 2 (1.39%) 2 (0.9%)
PBRM1 - 1 (0.69%) 1 (0.45%)
PIK3CA 22 (28.57%) 10 (6.94%) 32 (14.48%)
PIK3R1 - 1 (0.69%) 1 (0.45%)
PMS2 - 1 (0.69%) 1 (0.45%)

und in 69 different genes, in which 
SYNE1 (n=24) and TP53 (n=24) were 
common. Among them, 72 of these 
SNVs were listed in the “Candidate 
Cancer Gene Database” category A 
potential cancer drivers [27] and 471 
of the SNVs from 49 genes which were 
actively relevant to cancer according  
to “Cancer Gene Census” database 
[28]. 

Mutation spectrum of breast tumors 
versus ovarian tumors

Analysis revealed 17 Tier I/II mutation 
variants in all 14 tumors, and each 
tumor carried an average of 1.21 mu- 
tations. The mutation signature of ov- 
arian tumors was different from breast 
tumors (Table 5), the most frequently 
mutated genes were TP53 (52.9%), 
KRAS (23.5%), PIK3CA (11.8%), BRCA1 
(5.9%) and RB1 (5.9%). Of note, Tier I/
II BRCA1 somatic mutation was seen 
in ovarian tumor (1/14, 7.1%) but not  
in breast tumor. The complete list of 
Tier I-III variants of ovarian cancers 
was shown in Table S3.

Discussion

In Hong Kong, approximately 10% of 
the breast cancer cases are inherited 
with BRCA mutations [4] and these 
patients are offered risk reduction sur-
gery or targeted therapy such as PARP 
inhibitors. However, limited study has 
investigated the prevalence of soma- 
tic mutation in germline BRCA muta-
tion-negative breast and ovarian can-
cer patients, who may potentially ben-
efit from other targeted therapies. In- 
terpretation of somatic variants are li- 
kely to impact clinical managements 
including estimation of the sensitivity 
and resistance of specific drug treat-
ments. With the increase demand of 
genetic information, screening of germ-
line and somatic mutations have been 
incorporated into the routine clinical 
practice for treatment decision mak- 
ing in different cancer types including 
breast cancer [29]. 
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PTEN 4 (5.19%) 3 (2.08%) 7 (3.17%)
RAD51 - 1 (0.69%) 1 (0.45%)
RAD51C - 1 (0.69%) 1 (0.45%)
RAD51D - 1 (0.69%) 1 (0.45%)
RET - 3 (2.08%) 3 (1.36%)
SEPT9 - 2 (1.39%) 2 (0.9%)
SMARCA4 - 2 (1.39%) 2 (0.9%)
SYNE1 - 6 (4.17%) 6 (2.71%)
TP53 13 (16.88%) 16 (11.11%) 29 (13.12%)
TRAF5 - 1 (0.69%) 1 (0.45%)
WEE1 - 3 (2.08%) 3 (1.36%)
ZBED4 - 2 (1.39%) 2 (0.9%)

Somatic PIK3CA and TP53 mutations were fo- 
und in 27-40% and 23-34% of breast cancer 
respectively [30-32]. In a large cohort study 
(n=1,794), somatic TP53 mutation rate was 
lowered in older age groups (>59 years) [33], 
similar as in our cohort, TP53 mutations were 
seen in 40% young breast patient’s (≤ 45 years) 
tumor, while 18% were age >45 years. On the 
contrary, there was one study reported that 
20% of the tumors had no association with ear-
ly-onset breast cancer [31]. Patients with so- 
matic TP53 mutations had a poor overall sur-
vival in ER-positive than in ER-negative pati- 
ents [33]. Docetaxel has been suggested as a 
better therapeutic option than anthracyclines 
in treating TP53-mutated breast cancer pati- 
ents than the wild-type patients. 

Somatic PIK3CA mutations, another common 
mutated gene, was identified in 20.4% of our 
breast tumors. Studies showed that 25-46.5% 
of breast cancer patients had PI3K mutations 
were significantly associated with ER-positive 
tumors [34-39]. Similarly, mutation hotspots 
E542K, E545K and H1047R mutations were 
also observed in our cohort [38]. Furthermore, 
several retrospective and prospective studies 
had contradictory conclusions on prognostic 
and predictive values of PIK3CA mutations  
in breast cancer tumors [40-43]. PIK3CA mu- 
tations can co-exist with other PI3K-enhanc- 
ing mechanisms, such as HER2 amplification. 
HER2-targeted therapy is suggested in PIK3CA-
mutated patients [44]. However, some studies 
indicated that PIK3CA mutations may predict 
resistance to trastuzumab [45, 46]. The antitu-
mor activity of combining BKM120 and trastu-
zumab were promising in patients with HER2-
positive advanced or metastatic breast cancer 

developed resistant to trastuzumab 
[47]. To develop PI3K inhibitors as 
novel therapeutics for HER2-positive 
advanced or metastatic breast can- 
cer, we still need to overcome chal-
lenge of maximizing efficacy of these 
agents with minimum side effects. 

TP53 and KRAS are the most domi- 
nated somatic mutations in our ovari-
an cancer cohort. TP53 mutations we- 
re seen in 90-96% of high-grade ovar-
ian tumors [19, 48]. Several on-going 
phase I/II clinical trials are conducted 
to assess the efficacy of TP53 activa-

tors (APR-246 and MK-1775-004) in treating 
platinum-sensitive ovarian cancer and plati-
num-resistant high-grade serous ovarian can-
cer [49, 50]. Also, the use of AMG 510 in treat-
ing KRAS c.34G>T mutation, a common muta-
tion in solid tumors, showed promising results 
in patients with non-small-cell lung carcinoma 
[51, 52]. Also, a mRNA-derived KRAS-targeted 
vaccine, mRNA-5671, targeting both KRAS 
c.35G>A and c.34G>T mutations is undergoing 
Phase I trial [51]. Herein, somatic mutation sc- 
reening is likely beneficial for ovarian patients 
without germline mutations to provide better 
treatment strategies in the future. 

Several clinical trials of olaparib revealed prom-
ising results on high-grade serous ovarian can-
cer patients with germline or somatic BRCA 
mutation, the median PFS was improved in 
olaparib group than placebo (11.2 months vs 
4.3 months) [53]. Besides, clinical trials of oth- 
er PARP inhibitors (rucaparib and niraparib) 
have extended the study to platinum-based 
therapy in high-grade ovarian cancer patient 
regardless of BRCA status and yield positive 
results. On the other hand, the prevalence of 
somatic BRCA mutations in sporadic breast 
cancer was around 3.5% [54], yet very little 
information in hereditary breast cancer is av- 
ailable. In this testing cohort, no somatic BRCA 
mutation was identified, hence, we believed 
that BRCA-negative breast cancer patients  
are unlikely to carry somatic BRCA mutation. In 
light of a relatively low reported frequency in 
hereditary breast cancer, somatic BRCA muta-
tion testing for non-BRCA breast cancer pa- 
tients are of limited value, unlike as in ovarian 
cancer. 
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Figure 3. Nucleotide mutational profile. A. Frequency of nucleotide change. B. Distribution of YBR45. C. Distribution 
of Menopause. D. Distribution of Her2.
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Table 4. Frequency of transition and transversion mutations
To

A C G T
From A 6 (4.58%) 99 (75.57%) 26 (19.85%)

C 16 (8.16%) 23 (11.73%) 157 (80.1%)
G 105 (83.33%) 2 (1.59%) 19 (15.08%)
T 47 (53.41%) 29 (32.95%) 12 (13.64%)

Table 5. Mutation spectrum of breast and ovarian tumors
Breast (N=108) Ovarian (N=14)

Tier I/II Tier III Total Tier I/II Tier III Total 
APC 1 1 
AR 4 4 
ATM 4 4 1 1 
ATR 4 4 1 1 
BRCA1 2 2 1 1 2 
BRCA2 4 4 
BRIP1 1 1 2 
CBFB 3 2 5 
CDH1 2 6 8 
CSMD1 1 5 6 
ERBB3 5 5 1 1 
EXOC2 2 2 1 1 
EXT2 1 1 
GATA3 11 11 
HERC1 3 3 1 1 
KRAS 4 4 
MAP2K4 2 1 3 1 1 
MAP3K1 11 4 15 2 2 
MSH2 5 5 
NBN 4 4 
NF1 2 2 1 1 
PALB2 1 1 2 2 2 
PIK3CA 22 10 32 2 2 
PTEN 4 3 7 1 1 
RAD51C 1 1 
RB1 1 1 
SYNE1 6 6 
TP53 13 16 29 9 2 11 

In conclusion, characterization of somatic mu- 
tations in breast and ovarian tumors could pro-
vide insights into tumorigenesis and reveal can-
didates for targeted therapeutics. We fo- 
und that somatic PIK3CA and TP53 mutations 
were common events in germline mutation-
negative breast cancer patients and had dis-
tinct spectrum than in ovarian cancer. Results 

from this study exemplify the 
necessity of somatic testing  
in breast and ovarian cancer 
patients, besides germline mu- 
tation screening, and to guide 
future research directions on 
other targeted therapies.
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Table S1. Tier III mutation variants identified from 108 breast tumors
Tier III
Mutation variants Freq Mutation variants Freq Mutation variants Freq
APC: c.8412G>T; p.Gln2804His 1 ERBB3: c.985A>G; p.Lys329Glu 1 RET: c.2342A>G; p.Gln781Arg 1
AR: c.2659A>G; p.Met887Val 1 ESR1: c.1370G>A; p.Gly457Glu 1 RET: c.2980A>G; p.Lys994Glu 1
AR: c.302G>A; p.Arg101His 1 ESR1: c.620C>A; p.Ala207Asp 1 RET: c.565C>T; p.Arg189Cys 1
AR: c.528C>A; p.Ser176Arg 2 EXOC2: c.350G>A; p.Arg117His 1 SEPT9: c.1204C>T; p.Arg402Cys 1
ATM: c.2803A>G; p.Thr935Ala 1 EXOC2: c.557C>T; p.Ala186Val 1 SEPT9: c.38G>C; p.Ser13Thr 1
ATM: c.3078G>T; p.Trp1026Cys 1 EXT2: c.962A>G; p.Asn321Ser 1 SMARCA4: c.1532C>T; p.Thr511Met 1
ATM: c.7115A>T; p.Asp2372Val 1 FGFR1: c.2284A>G; p.Met762Val 1 SMARCA4: c.923C>T; p.Thr308Met 1
ATM: c.8173G>C; p.Asp2725His 1 FGFR2: c.1535C>T; p.Ala512Val 1 SYNE1: c.10288G>A; p.Gly3430Arg 1
ATR: c.1453C>A; p.Pro485Thr 1 GEN1: c.2606A>G; p.Asp869Gly 1 SYNE1: c.12553A>C; p.Lys4185Gln 1
ATR: c.1909G>A; p.Val637Met 1 HERC1: c.14525T>C; p.Met4842Thr 1 SYNE1: c.15497C>G; p.Ala5166Gly 1
ATR: c.637C>G; p.Leu213Val 1 HERC1: c.4274G>A; p.Arg1425Gln 1 SYNE1: c.2374C>T; p.Leu792Phe 1
ATR: c.6640G>C; p.Asp2214His 1 HERC1: c.8626G>T; p.Val2876Leu 1 SYNE1: c.26372C>T; p.Thr8791Met 1
BAP1: c.1031A>G; p.Asn344Ser 1 MAP2K4: c.563_565delTTTinsGTA; p.PheTyr188CysAsn 1 SYNE1: c.911C>G; p.Ser304Cys 1
BMPR1A: c.1318A>G; p.Met440Val 1 MAP3K1: c.1694G>A; p.Gly565Glu 1 TP53: c.1073A>T; p.Glu358Val 1
BRCA1: c.5072C>A; p.Thr1691Lys 1 MAP3K1: c.1739G>A; p.Arg580Lys 1 TP53: c.394A>G; p.Lys132Glu 1
BRCA1: c.5096G>A; p.Arg1699Gln 1 MAP3K1: c.4298G>C; p.Trp1433Ser 1 TP53: c.533A>C; p.His178Pro 1
BRCA2: c.2401A>G; p.Asn801Asp 1 MAP3K1: c.65C>T; p.Pro22Leu 1 TP53: c.646G>A; p.Val216Met 1
BRCA2: c.3040A>G; p.Asn1014Asp 1 MED12: c.1883C>T; p.Ala628Val 1 TP53: c.659A>G; p.Tyr220Cys 1
BRCA2: c.5942C>T; p.Ala1981Val 1 MEN1: c.1496C>T; p.Pro499Leu 1 TP53: c.700_702delTAC; p.Tyr234del 1
BRCA2: c.8419T>G; p.Ser2807Ala 1 MEN1: c.1546G>T; p.Val516Leu 1 TP53: c.711G>A; p.Met237Ile 1
BRIP1: c.2158G>A; p.Val720Met 1 MLH1: c.1154G>A; p.Arg385His 1 TP53: c.713G>C; p.Cys238Ser 1
CASP8: c.38G>C; p.Ser13Thr 1 MLH1: c.1780G>C; p.Glu594Gln 1 TP53: c.722C>T; p.Ser241Phe 1
CASP8: c.458G>T; p.Gly153Val 1 MSH2: c.1204C>G; p.Gln402Glu 1 TP53: c.747G>T; p.Arg249Ser 1
CASP8: c.932C>T; p.Pro311Leu 1 MSH2: c.1886A>G; p.Gln629Arg 3 TP53: c.775G>T; p.Asp259Tyr 1
CBFB: c.189T>G; p.Asn63Lys 1 MSH2: c.260C>A; p.Ser87Tyr 1 TP53: c.814G>A; p.Val272Met 1
CBFB: c.80T>G; p.Ile27Ser 1 MUTYH: c.1165C>A; p.Leu389Met 1 TP53: c.814G>T; p.Val272Leu 1
Mutation variants Freq Mutation variants Freq Mutation variants Freq
CCND1: c.724-8_724-4delCTCT 1 NBN: c.1616C>T; p.Ser539Phe 1 TP53: c.824G>A; p.Cys275Tyr 1
CDH1: c.1022A>C; p.Tyr341Ser 1 NBN: c.2176G>C; p.Glu726Gln 1 TP53: c.833C>T; p.Pro278Leu 1
CDH1: c.1031_1033delTGG; p.Val345del 1 NBN: c.235A>G; p.Asn79Asp 1 TP53: c.838A>G; p.Arg280Gly 1
CDH1: c.1103C>T; p.Thr368Ile 1 NBN: c.800G>C; p.Gly267Ala 1 TRAF5: c.1591G>C; p.Glu531Gln 1
CDH1: c.1213A>G; p.Asn405Asp 1 NCOR1: c.5504A>G; p.Asp1835Gly 1 WEE1: c.241C>T; p.Pro81Ser 1
CDH1: c.61C>G; p.Leu21Val 1 NEK2: c.289G>T; p.Val97Leu 1 WEE1: c.269A>G; p.Glu90Gly 2
CDH1: c.875A>G; p.Asp292Gly 1 NF1: c.3510C>G; p.His1170Gln 1 ZBED4: c.1429T>G; p.Cys477Gly 1
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CSMD1: c.4184G>C; p.Gly1395Ala 1 NF1: c.8509_8512delAGAT; p.Lys2837del 1 ZBED4: c.1585G>A; p.Ala529Thr 1
CSMD1: c.694G>A; p.Ala232Thr 1 PALB2: c.3428T>A; p.Leu1143His 1
CSMD1: c.7504G>A; p.Gly2502Arg 1 PALLD: c.455T>C; p.Val152Ala 1
CSMD1: c.8014G>A; p.Glu2672Lys 1 PALLD: c.790G>A; p.Ala264Thr 1
CSMD1: c.850A>G; p.Ile284Val 1 PBRM1: c.2746G>A; p.Glu916Lys 1
EGFR: c.2749G>A; p.Gly917Arg 1 PIK3CA: c.1035T>A; p.Asn345Lys 5
EGFR: c.926G>C; p.Arg309Pro 1 PIK3CA: c.1258T>C; p.Cys420Arg 3
EP300: c.2563C>T; p.Pro855Ser 1 PIK3CA: c.1637A>C; p.Gln546Pro 1
EP300: c.4477G>A; p.Asp1493Asn 1 PIK3CA: c.314_325delTAGGCAACCGTG; p.Val105_Arg108del 1
EPCAM: c.391A>G; p.Thr131Ala 1 PIK3R1: c.869T>C; p.Ile290Thr 1
EPCAM: c.785A>G; p.Gln262Arg 1 PMS2: c.1251T>G; p.Ile417Met 1
ERBB2: c.1738-3_1738-2insC 1 PTEN: c.210-7_210-3delCTTTT 1
ERBB2: c.2018T>A; p.Ile673Asn 1 PTEN: c.389G>A; p.Arg130Gln 1
ERBB3: c.1166C>T; p.Thr389Ile 1 PTEN: c.406T>C; p.Cys136Arg 1
ERBB3: c.1300A>G; p.Lys434Glu 1 RAD51: c.290G>A; p.Arg97His 1
ERBB3: c.1553T>C; p.Leu518Ser 1 RAD51C: c.246C>G; p.His82Gln 1
ERBB3: c.2611G>T; p.Ala871Ser 1 RAD51D: c.179A>G; p.Gln60Arg 1
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Table S2. Recurrence mutation variants identified from 
108 breast tumors
Tier Gene Mutation Variants Frequency
Tier I/II AKT1 c.49G>A; p.Glu17Lys 3

GATA3 c.925-3_925-2delCA 6
PIK3CA c.1633G>A; p.Glu545Lys 5
PIK3CA c.3140A>G; p.His1047Arg 12
PIK3CA c.3140A>T; p.His1047Leu 3
TP53 c.723delC; p.Cys242AlafsTer5 2
TP53 c.734G>A; p.Gly245Asp 2
TP53 c.916C>T; p.Arg306Ter 2

Tier III AR c.528C>A; p.Ser176Arg 2
MSH2 c.1886A>G; p.Gln629Arg 3

PIK3CA c.1035T>A; p.Asn345Lys 5
PIK3CA c.1258T>C; p.Cys420Arg 3
WEE1 c.269A>G; p.Glu90Gly 2

Table S3. Mutation variants identified from 14 ovarian tumors
Tier I/II Tier III
Mutation variants Freq Mutation variants Freq
BRCA1: c.1674delA; p.Gly559Valfs*11 1 ATM: c.4724G>A; p.Arg1575His 1
KRAS: c.35G>A; p.Gly12Asp 2 ATR: c.7667C>G; p.Thr2556Ser 1
KRAS: c.35G>T; p.Gly12Val 2 AXIN2: c.863G>C; p.Gly288Ala 1
PIK3CA: c.1624G>A; p.Glu542Lys 1 BRCA1 LOH 1
PIK3CA: c.3145G>C; p.Gly1049Arg 1 ERBB3: c.2864G>A; p.Arg955His 1
RB1: c.1899_1902dupCTCA; p.Ala635Leufs*25 1 EXOC2: c.1706A>G; p.Asn569Ser 1
TP53: c.97-3_103delinsG 1 HERC1: c.1268C>T; p.Ser423Phe 1
TP53: c.250delG; p.Ala84Profs*39 1 MAP2K4: c.239G>A; p.Ser80Asn 1
TP53: c.524G>A; p.Arg175His 2 MAP3K1: c.233_234delTCinsCT; p.Leu78Pro 1
TP53: c.527G>T; p.Cys176Phe 1 MAP3K1: c.2617G>A; p.Val873Ile 1
TP53: c.659A>G; p.Tyr220Cys 1 NCOR1: c.2746G>A; p.Val916Ile 1
TP53: c.742C>T; p.Arg248Trp 1 NF1: c.4766C>A; p.Ala1589Glu 1
TP53: c.743G>A; p.Arg248Gln 1 PALB2: c.1492G>T; p.Asp498Tyr 1
TP53: c.818G>A; p.Arg273His 1 PALB2: c.2423G>A; p.Gly808Glu 1

PTEN: c.729_730delGGinsCT; p.Met243_Gly244delinsIleCys 1
TP53: c.376G>A; p.Ala26Thr 1
TP53: c.785_786delinsTA; p.Gly262Val 1


