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Abstract: Adipose tissue is an important organ in our
body, participating not only in energy metabolism but also
immune regulation. It is broadly classified as white (WAT)
and brown (BAT) adipose tissues. WAT is highly hetero-
geneous, composed of adipocytes, various immune, pro-
genitor and stem cells, as well as the stromal vascular
populations. The expansion and inflammation of WAT are
hallmarks of obesity and play a causal role in the devel-
opment of metabolic and cardiovascular diseases. The
primary event triggering the inflammatory expansion of
WAT remains unclear. The present review focuses on the
role of adipocyte progenitors (APS), which give rise to
specialized adipocytes, in obesity-associated WAT expan-
sion, inflammation and fibrosis.
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Introduction

The evolution inmulticellular organisms requires an organ
to store energy in times of food abundance and to provide
nutrients during food shortage. White adipose tissue
(WAT) represents such a key energy reservoir to convert
free fatty acids (FFA) for storage as triglycerides (Kahn et al.
2019). Apart from energy metabolism, WAT plays impor-
tant roles in thermal insulation and protection from me-

chanical stress. WAT is also the largest endocrine organ in
the body, secreting numerous adipokines, hormones, cy-
tokines, chemokines, growth factors, microRNAs and
lipids to regulate energy homeostasis and immune re-
sponses (Scheja et al. 2019). While WAT represents the
major constituent of adipose tissue in human, brown adi-
pose tissue (BAT) is abundant in infants and small mam-
mals primarily for energy dissipation and heat generation
(Pollard et al. 2020). In adults, WAT is composed of white
adipocytes, which store the triglycerides in unilocular lipid
droplets. A small number of inducible/recruitable brown-
like beige or brite adipocytes, which are multilocular and
enriched with mitochondria, also exist in WAT (Wu et al.
2012). Selective activation of beige adipogenesis in WAT
improves systemic glucose tolerance, insulin sensitivity
and metabolic flexibility (Villanueva 2020).

The majority of adipocytes are originated from the
mesoderm and organized into anatomically distinct de-
pots, including subcutaneous and visceral WAT (Schoettl
et al. 2018). The embryonic progenitors from the meso-
dermal sub-compartments unequally distribute into each
adipose depot, contributing to the diversified adipocyte
lineages that are affected by the developmental stage, age,
gender, nutritional status, as well as the tissue microen-
vironment (Sebo et al. 2019). For example, the visceralWAT
has divergent origins from those of subcutaneous WAT
(Gesta et al. 2006). Even within a single WAT depot, the
adipocytes are derived from different lineages (Merrick
et al. 2019). As a result, adipocytes in WAT are highly
heterogeneous and exhibit depot-specific ontogeny (San-
chez-Gurmaches et al. 2014). Adipocytes from the trans-
gelin (Tagln) lineage are present in all WAT depots,
whereas those from the paired-related homeobox 1 (Prx1)
lineage are found only in subcutaneous WAT (Sanchez-
Gurmaches et al. 2015). Adipocytes derived from the
mesothelium and marked by Wilms tumor 1 (Wt1) expres-
sion exist only in the visceral WAT (Chau et al. 2014). The
retroperitoneal WAT is derived from precursors expressing
myogenic factor 5 (Myf5) and paired box gene 3 (Pax3), both
of which are not essential for the development of mesen-
teric WAT (Sanchez-Gurmaches & Guertin 2014). The
perigonadal WAT is partially dependent on Pax3 and the
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zinc-finger protein 423 (Zfp423) (Jeffery et al. 2015; Schoettl
et al. 2018). In summary, the heterogeneity of adipocytes
influences the overall behavior of WAT and contribute to
the development of obesity, insulin resistance, metabolic
and cardiovascular diseases under obese conditions (Lee
et al. 2019).

Diversified cellular composition
in WAT

In addition to adipocytes, WAT contains different cellular
populations, including mesenchymal stem cells (MSC),
adipocyte progenitors (APS), pre-adipocytes, fibroblasts,
endothelial cells, neutrophils, eosinophils, macrophages
and lymphocytes. The cellular compositions of WAT are
not static but altered by different pathophysiological con-
ditions (Martyniak et al. 2017). The pluripotentMSC resided
within WAT are referred to as adipose-derived mesen-
chymal stem cells (ASC) that play important roles in tissue
regeneration, remodeling and homeostasis (Locke et al.
2009). ASC are able to differentiate into different lineages,
such as adipocytes, cardiomyocytes, osteoblasts, chon-
drocytes and myocytes (Badimon et al. 2017). The Inter-
national Federation for Adipose Therapeutics and Science
(https://www.ifats.org/) has defined ASC based on the
minimal cluster of differentiation (CD) surface markers,
including CD39+CD44+CD73+CD90+CD105+CD45−CD31−

(Bourin et al. 2013). The expression of the surface markers
changes with division, thus different subpopulations of
ASC exist in WAT and show distinct ability to grow,
differentiate and regenerate (Badimon and Cubedo 2017).
The very early ASCs required for adipocyte development
andWAT expansion aremarked by Pref-1, the preadipocyte
factor 1 (Hudak et al. 2014).

Most of the adipocytes inWATarise fromAPS that have
been committed prenatally or in early postnatal life (Rosen
et al. 2014). APS isolated from differentWAT depots exhibit
distinct patterns of gene expression and differentiation
potential, thus affecting the capacity of adipogenesis and
the susceptibility to insulin stimulation (Ghaben et al.
2019).White and brown adipocytes originate fromdifferent
APS lineages (Giralt et al. 2013). Despite differences in pre-
adipocyte commitment, the adipogenic differentiation in-
volves a shared transcriptional cascade regulated by
peroxisome proliferator-activated receptor (PPAR)-γ and
CCAAT/enhancer-binding proteins (C/EBPs) (Farmer 2006;
Gesta et al. 2007). Nevertheless, the cellular hierarchy that
governs the commitment of ASC to APS and the subsequent
differentiation of pre-adipocytes into white or brown

adipocytes remains incompletely understood (Merrick
et al. 2019).

Local inflammation, together with deregulated release
of FFA to ectopic organs, such as liver and skeletal muscle,
are the key events linking WAT dysfunction with obesity-
associated insulin resistance and metabolic diseases (Lee
et al. 2019). The cellular composition in WAT is signifi-
cantly altered during the progression of obesity in a depot-
specific manner (Gao et al. 2018; Lee et al. 2019; Schwalie
et al. 2018). Accumulation of visceral WAT, referred to as
central obesity, is positively associated with the develop-
ment of insulin resistance and the increased risk of meta-
bolic diseases (Ghaben and Scherer 2019). Visceral WAT
contains a large population of immune cells that either
inhibit or promote immune responses. Compared to sub-
cutaneous WAT, chronic inflammation in visceral WAT
results in more deleterious effects (Alvehus et al. 2010;
Ibrahim 2010). Macrophage infiltration in visceral WAT
contributes to systemic inflammation, insulin resistance
and oxidative stress (Xu et al. 2003). In lean WAT, the F4/
80+CD206+ M2 macrophages express arginase-1 and pro-
duce anti-inflammatorymolecules, such as IL-10, to inhibit
immune cell activation (Lumeng et al. 2007). In visceral
WAT of obese individuals, the relative amount of proin-
flammatory F4/80+CD11c+ M1 macrophages increases,
whereas that of regulatory T-cells (Treg) decreases, thus
promoting chronic low grade inflammation (Kolodin et al.
2015; Weisberg et al. 2003). The presence of CD8+ T-cells
precedes the infiltration of macrophages in obese WAT
(Nishimura et al. 2009).

Depot-specific differences in APS affect the suscepti-
bility of WAT to chronic inflammation (Hwang et al. 2019;
Joe et al. 2009). The increased production of monocyte
chemoattractant protein (MCP)-1 and the activation of
inflammasome signaling pathway in APS promote innate
inflammatory responses in obese WAT (Kaplan et al. 2015).
WAT inflammation per se also governs the differentiation
and plasticity of APS (Badimon and Cubedo 2017). Pro-
inflammatory cytokines, such as interleukin (IL)-1 and tu-
mor necrosis factor (TNF)-α, suppress PPAR-γ expression
thus inhibiting the adipogenic potential of APS (Cortez
et al. 2013; Haylett et al. 2020). The complexity and het-
erogeneity of APS influence the plasticity and remodeling
of WAT under different pathophysiological conditions. As
adipocytes of different lineages exhibit variable responses
to insulin stimulation, fatty acid uptake, lipolysis, lipo-
genesis and adipogenesis (Lee et al. 2019), to fully under-
stand the complexity, heterogeneity and functionality of
APS in different WAT depots is critical for uncovering the
key mechanisms underlying the development of obesity
and related metabolic abnormalities.
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APS and WAT expansion

In response to excess energy supply, WAT undergoes
massive expansion and remodeling, characterized by hy-
perplasia (increase in number) and hypertrophy (increase
in size) of the adipocytes, extracellular matrix (ECM)
accumulation, impaired angiogenesis, as well as inflam-
matory cell infiltration and activation (Figure 1). WAT
expansion occurs via adipocyte hypertrophy or through the
recruitment and differentiation of APS. The expansion of
subcutaneous WAT is due primarily to hyperplasia,
whereas that of visceral WAT occurs mainly by hypertro-
phy (Joe et al. 2009). WAT hyperplasia is generally more
favorable than hypertrophy during adipose tissue remod-
eling, as small adipocytes show improved insulin sensi-
tivity (Eriksson-Hogling et al. 2015; Shao et al. 2018).
Hyperplasia requires the proliferation and differentiation
of APS in WAT, which are positive for stem cell antigen-1
(SCA1) and CD34, and negative for CD45, CD31, and/or
Ter119 [lineage (Lin) surface markers for endothelial cells,
platelets, macrophages, white blood cells, osteoclasts and
erythrocytes] (Rodeheffer et al. 2008). Obesity is associated
with a diminished capacity for APS to self-renew and
differentiate into adipocytes (Yamashita et al. 2007).

APS reside around the vasculature inWAT (Rodeheffer
et al. 2008; Tang et al. 2008). Almost all Lin−SCA1+CD34+

APS isolated from the stromal vascular fraction (SVF) of
WAT are able to differentiate into adipocytes. However, the
expression of the surface markers changes with division
and differentiation, thus different subpopulations of APS
exist in WAT (Berry et al. 2013; Macotela et al. 2012). There
is no single set of consensus marker of APS, due largely to
their heterogeneity. The complexity and heterogeneity of

APS influence the expansion of WAT under different
pathophysiological conditions (Vishvanath et al. 2019).
High self-renewal APS stimulates the production of well-
functioning adipocytes through enhanced adipogenesis,
rather than expanding the size of adipocytes with
concomitant loss of function (Haylett and Ferris 2020).
Compared to subcutaneous APS, the visceral APS are less
committed to adipocyte differentiation due to a blockage of
PPAR-γ expression (Macotela et al. 2012). In response to
dietary obesity, however, enhanced adipogenesis occurs in
visceral but not subcutaneousWAT (Jeffery et al. 2015; Kim
et al. 2014).

In mice, a population of APS expressing SCA1, CD34,
CD29 and platelet-derived growth factor receptor (PDGFR)-α
exhibits strong adipogenic potentials and contributes to the
expansion of WAT upon long-term overfeeding (Miwa et al.
2018). However, this population of APS is not homoge-
neous, certain subpopulations co-expressing PDGFRβ, a
mural cell marker (Z. Gao et al. 2018). Under normal con-
ditions, the mature adipocytes do not express PDGFRα
although its re-expression in disease states such as obesity
could be important. PDGFRα expression precedes PDGFRβ
in subcutaneous WAT, whereas the PDGFRβ+ population is
derived from a separate APS lineage in visceral WAT
(Vishvanath et al. 2016). PDGFRβ is expressed in mural cell
progenitors to regulate their recruitment and expansion,
and to modulate the innate or adaptive immunity (Olson
et al. 2011). The PDGFRβ+ APS express high levels of adi-
pogenic factors, such as Pparγ and Zfp423, and reside
adjacent to the endothelium in WAT blood vessels (Gupta
et al. 2012; Tang et al. 2008).Mural cells, includingpericytes
and vascular smooth muscle cells, are heterogeneous and
derived from mesoderm or neural crest. High-fat diet
feeding induces PDGFRβ+ lineage recruitment to generate
hypertrophic adipocytes. Increasing the adipogenic ca-
pacity of PDGFRβ+ APS through PPAR-γ overexpression
results in healthy visceralWAT expansion,whereas the loss
of mural cell PPAR-γ triggers pathologic visceral WAT
expansion upon high-fat diet feeding (Shao et al. 2018). In
subcutaneous WAT, beige adipocytes are induced from
PDGFRα-high/PDGFRβ-low APS (Seki et al. 2016), whereas
PDGFRβ induction and PDGFRα suppression favor white
adipogenesis (Gao et al. 2018). The beige APS in subcu-
taneous WAT are marked as Lin−CD81+PDGFRa+SCA1+

(Oguri et al. 2020).
Among the Lin−CD29+CD34+SCA1+ APS isolated from

the WAT SVF, a subpopulation of adipogenesis-regulatory
(Areg) cells characterized by high expression of CD142 and
the ATP-binding cassette subfamily G member 1 (ABCG1)
suppress APS differentiation and adipocyte formation in a
paracrine manner (Schwalie et al. 2018). Areg cells are

Figure 1: WAT expansion and remodeling. Different cellular
components, including adipocytes, lymphocytes andmacrophages,
contribute to the healthy or unhealthy expansion of WAT.
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located perivascularly and more abundantly present in
visceral than subcutaneous WAT, consistent with the
higher adipogenic potential of the latter depot (Haider et al.
2019). In human WAT, several cell surface proteins are
commonly reported to be expressed on APS isolated from
SVF, including CD34, CD29, CD13, CD44, CD73, CD90,
CD142 and CD9 (Cawthorn et al. 2012). Adipogenesis is
also observed in cell populations expressing CD36 and
mesenchymal stromal cell antigen-1 (MSCA)-1 (Esteve et al.
2015; H. Gao et al. 2017). The Lin−PDGFRα+CD29+ APS
are identified to include CD34high, CD34low and CD34-

subpopulations, which possess similar proliferative and
adipogenic capacities but different rates of lipid flux.
Moreover, the APS with no CD34 expression display beige-
like adipocyte properties (Raajendiran et al. 2019). Human
adipose tissue also contains APS expressing PDGFRα and
PDGFRβ, the balance of which determines APS commit-
ment to beige or white adipocytes (Z. Gao et al. 2018).
In human subcutaneous WAT, increased numbers
of Lin−CD81+PDGFRα+SCA1+ APS are associated with
increased de novo beige fat adipogenesis and improved
metabolic health profile (Oguri et al. 2020). In addition,
Lin−PDGFRα+MyoD+ and other APS populations form
distinct subtypes of beige adipocytes depending on the
nature of browning stimuli (Chen et al. 2019). A better
understanding of the mechanisms that define white or
beige adipogenesis and the identities of different APS
during WAT expansion represents a significant area of
research.

APS and WAT inflammation

In WAT, different stages of obesity affect the infiltration
and distribution of subpopulations of immune cells
(Johnson et al. 2012). Macrophage accumulation in WAT is
directly proportional to adiposity and contribute to sys-
temic inflammation, insulin resistance and oxidative stress
(McNelis et al. 2014;Weisberg et al. 2003; Xu et al. 2003). In
lean WAT, the F4/80+CD206+ M2 macrophages express
arginase-1 and produce anti-inflammatorymolecules, such
as IL-10, to inhibit immune cell activation (Kosteli et al.
2010; Lumeng et al. 2008). Early stages of WAT expansion
are characterized by M2 macrophage polarization (Prieur
et al. 2011). A delicate balance of the polarizedmacrophage
populations maintains WAT expansion and function. In
visceral WAT of obese individuals, the relative amount
of proinflammatory F4/80+CD11c+ M1 macrophages in-
creases, whereas that of Treg decreases, thus promoting
chronic low grade inflammation (Feuerer et al. 2009;
Lumeng et al. 2007).

Over 90% of macrophages in obese WAT are localized
surrounding the dead adipocytes and form crown-like
structures (CLS) (Weisberg et al. 2003). The macrophages
found in CLS are positive for theM1 proinflammatory CD11c
marker (Wentworth et al. 2010; Zeyda et al. 2010). The
infiltrated macrophages initially function to clear adipo-
cyte debris and enable healthy expansion of WAT. How-
ever, over time, the chronic inflammation often leads to
reduced metabolic flexibility, long-term insulin and cate-
cholamine resistance, abnormal WAT tissue remodeling
and fibrosis (Reilly et al. 2017). Monocyte chemoattractant
protein-1 (MCP-1) is a potent chemokine that recruits
monocytes. Increased MCP-1 expression recruit CCR2+

proinflammatory monocytes that differentiate into F4/
80+CD11c+ macrophages in WAT (Kanda et al. 2006). Defi-
ciency of MCP-1 protectsmice fromdietary obesity-induced
WAT inflammation and insulin resistance (Kanda et al.
2006). Shortly after the initiation of high-fat diet, the
Lin−CD29+CD34+SCA1+CD24− APS produce a high level of
MCP-1 in visceral WAT (Kaplan et al. 2015). In humanWAT,
the Lin−CD34+CD90+ APS with high surface expression of
CD44 marks the MCP-1 producing APS (Kaplan et al. 2015).

Recent single-cell transcriptomic studies suggest that
obese WAT contains multiple distinct populations of
macrophages, the functional heterogeneity of which in-
fluencesmetabolic outcomes (Hill et al. 2018; Li et al. 2010).
The Ly6c macrophages reside outside of CLS are adipo-
genic, whereas CD9 macrophages within CLS are lipid-
laden and proinflammatory (Hill et al. 2018). Under obese
conditions, a subset of CD9+CD63+ lipid-associated mac-
rophages are prominently arising from circulating mono-
cytes and positioned around the enlarged adipocytes to
drive protective immune responses in WAT (Jaitin et al.
2019). The functional heterogeneity of macrophages in the
obese WAT influence the different metabolic outcomes
(Kraakmanet al. 2015). Thus, to characterize the interactions
between the subpopulations of macrophages and APS dur-
ing the development of obesity will help to uncover the
detailed cellular events triggering WAT inflammation and
dysfunction.

Treg, characterized by CD4+CD25+FOXP3+, are key
players to inhibit WAT inflammation (Feuerer et al. 2009).
They are generated in the thymus and enriched in the
visceral WAT of lean mice (Cipolletta et al. 2015; Kolodin
et al. 2015). The percentage content of Treg significantly
decreases in the visceral WAT of obese mice (Deiuliis et al.
2011; Eller et al. 2011). High-fat diet induces a rapid increase
of the proinflammatory Th1 cells, followed by a decrease in
Treg in visceral WAT (Winer et al. 2009). Experimental
ablation of Treg acutely reduces insulin sensitivity,
whereas transfer of these cells improves insulin sensitivity
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in animals changed with dietary obesity (Ilan et al. 2010;
Wensveen et al. 2015). The differentiation, accumulation
and function of Treg depend on IL-33, a critical immuno-
modulatory alarmin (Vasanthakumar et al. 2015). Genetic
variations in IL-33 are linked to the development of obesity
in humans, suggesting a role of this cytokine in the regu-
lation of WAT inflammation (Angeles-Martinez et al. 2017;
Hasan et al. 2014). IL-33 deficiency in mice results in
increased WAT inflammation, whereas IL-33 treatment
boosts the numbers and activity of WAT Treg (Vasantha-
kumar et al., 2015). IL-33 is required for Treg cell accumu-
lation in visceral WAT through binding to its receptor IL-1
receptor-like 1, also known as IL1RL1 or ST2, which is
highly expressed on Treg (Han et al. 2015; Kolodin et al.
2015).

IL-33-expressing cells are non-hematopoietic and
located at the circumference of the adipose depot, pre-
sumably the mesothelium, or the interior of the depot in
close association with blood vessels or neurons (Pichery
et al. 2012). Over 90% of IL-33-producing cells are from
CD45−CD31−PDGFRα+SCA1+ population of APS in WAT
(Spallanzani et al. 2019). However, as the PDGFRα+SCA1+

cells are highly heterogeneous (Bernardo et al. 2013), the
identity of the IL-33+ cells in WAT remain contentious.
Some APS in visceral WAT are derived from the mesothe-
lium in the lateral plate mesoderm and show high
expression of the mesothelial markers Wt1, mesothelin
(Msln) and uroplakin 3b (Upk3b), as well as the mesoderm
gene marker Tcf21 (Chau et al. 2014). Mesothelial
cells characterized by podoplanin(PDPN)hiCD9+PDGFRα−

represent a distinct population of IL-33 expressing APS in
visceral WAT (Mahlakoiv et al. 2019), which are regulated
by Treg in a negative feedback loop (Spallanzani et al.
2019). APS-targeted ablation of IL-33 reduces visceral Treg
accumulation (Li et al. 2020). To identify the cellular
sources of IL-33 and themolecularmechanisms controlling
the regulation of Treg by IL33-expressing APS are of critical
importance for understanding the inflammation and
remodeling process in WAT.

APS and WAT fibrosis

In advanced obesity, chronic inflammation and massive
remodeling ultimately leads to unresolved tissue fibrosis of
WAT (Marcelin et al. 2019). Inflamed and fibrotic WAT is
deleterious for energy storage and endocrine function,
resulting in altered local and systemic metabolic control
(Longo et al. 2019). Fibrosis is a process involving the
destruction of normal tissue by deposition of collagen-rich
ECM. In response to high-fat diet treatment, adipocytes

initially become hypertrophic and later hyperplastic (Jeff-
ery et al. 2015; Wang et al. 2013). Hypertrophic adipocytes
exhibit micro-hypoxia, ER stress, increased lipolysis and
altered ECM remodeling (Halberg et al. 2009; Wensveen
et al. 2015), which trigger adipocyte death and eventually
prevent WAT to expand further (Cinti et al. 2005; Giordano
et al. 2013; Gupta et al. 2012). Excessive deposition of ECM,
especially the type I, IV and VI collagens, represents the
physical constraints to WAT expansion (Chun et al. 2006).
Moreover, fibrosis itself induces adipocyte dysfunction and
promotes WAT inflammation. Abnormal remodeling char-
acterized by reduced adipocyte size exists in regions of
fibrotic WAT (Divoux et al. 2010). Targeting ECM remod-
eling improves glucose tolerance and insulin sensitivity
(Khan et al. 2009).

Hyperactivation of the PDGFRα signaling in pericytes
and adventitial cells located on the abluminal surface
of capillaries and large vessels causes WAT fibrosis
(Iwayama et al. 2015; Olson et al. 2009). The bipotent fibro/
adipogenic progenitors in WAT are characterized by
CD31−CD45−CD34+CD44+PDGFRα+ (Marcelin et al. 2017).
Among this population of progenitors, those expressing
CD24 actively proliferate to enlarge the pool of postmitotic
PDGFRα+CD24- that differentiate into adipocytes (Rode-
heffer et al. 2008), whereas those of PDGFRα+CD9high cells
are highly fibrotic and represent an important source of
both ECM production and proinflammatory factors (Mar-
celin et al. 2017). Activation of the PDGFRα+CD9high pro-
genitors promotes WAT fibrosis and the development of
insulin resistance (Olson & Soriano 2009). Upon the
initiation of high-fat diet, there is a rapid switch of
PDGFRα+CD9low to PDGFRα+CD9high cells, accompanied by
collagen deposition and local insulin resistance. Obese
patients with the highest metabolic deterioration also
show the highest number of CD9high cells in their visceral
WAT (Marcelin et al. 2017).

In visceral WAT depot of several mouse strains, the
Lin−CD29+SCA1+CD34+ PDGFRα+ APS with CD34high expres-
sion are associated with hypertrophic growth, inflamma-
tion, ECM deposition, fibrosis and metabolic dysfunction
(Buffolo et al. 2019). Moreover, the CD34high APS are CD9+

and elicit paracrine function to inhibit the adipogenic dif-
ferentiation of CD34low APS. These cells exhibit the potential
to differentiate into vascular smooth muscle cells (Buffolo
et al. 2019). Obesity induces the formation of Sca1−S-
ma+ITGA5+ fibrogenic progenitor cells (FPC) in adipose tis-
sue. CD9 and ITGA5 (CD49e) may function together to
facilitate recruitment of FPC from the vascular compartment
(Lin et al. 2018; Marcelin et al. 2017). In humanWAT depots,
distinct Lin−CD29+APS subtypeswith CD34- andCD34low are
present and exhibit similar adipogenic properties, but
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producing adipocytes with marked differences in their
metabolic and thermogenic capacities as well as endocrine
function. The subtypes with CD34high are found as a firbo-
adipogenic progenitor cells and exhibit increased fibro-
genic potential (Raajendiran et al. 2019). The molecular
events that shift the fate of perivascular progenitors from
APS toFPCare poorly characterizedbut represent important
area of intervention for protections against chronic obesity-
induced fibrosis and metabolic dysfunction.

Mesothelial cells form a monolayer of the mesothelium
that covers internal organs, and share a common develop-
mental lineage with the mural cells (Rinkevich et al. 2012).
Under certain circumstances, they undergo mesothelial-
mesenchymal transition to acquire a myofibroblastic
phenotype to secret inflammatory mediators and ECM
components (Darimont et al. 2008; Mutsaers et al. 2015;
Yanez-Mo et al. 2003). Single-cell sequencing revealed that
one cluster of the PDGFRβ+ stromal cells express mesothe-
lial cell markers and are CD9high (Hepler et al. 2018). Despite
the information, the exact role of these cells in visceralWAT
fibrosis remains unknown. Among the PDGFRβ+ APS in
visceral WAT, the Ly6c−CD9−PDGFRβ+ cells represent a
distinct pool with a high adipogenic potential, whereas the
Ly6c+PDGFRβ+ cells are fibro-inflammatory progenitors
(FIP) (Shao et al. 2018; Vishvanath et al. 2016). Different
from the Areg, FIP in visceral WAT suppress the differenti-
ation of APS but activate immune cells, and exhibit a
mesoderm-mural cell origin (Buffolo et al. 2019;Hepler et al.
2018). However, it remains unclear whether the PDGFRα+

and PDGFRβ+ progenitors represent the same or different
fibrogenic niche for WAT remodeling. Identification of the
adipogenic/fibrogenic progenitors forWAT remodeling is of
clinical interest to limit adipocyte hypertrophy, fibrotic
hyperplasia and the deleterious effects of obesity.

Summary

Obesity is driven by the massive expansion and chronic
inflammation of WAT. With excess energy pressure,
expandability and proper remodeling of WAT appear to be
critical for determining the clinical outcomes. Under obese
conditions, the pathological WAT remodeling is charac-
terized by enlarged adipocytes, reduced adipogenesis,
excessive macrophage accumulation, low-grade inflam-
mation and fibrosis. APS have become a target of interest to
control the homeostatic balances of WAT expansion,
inflammation and fibrosis (Figure 2). APS in WAT not only
function as a reservoir of precursors to replenish the
mature differentiated adipocytes, but also act as important
immunomodulators. The identification of specific markers

by single cell transcriptomic analysis allows tracking of the
fate and function of APS within WAT. However, more
studies are needed to delineate the different lineages of
APS and the critical pathways controlling their activation
and differentiation in order to uncover the keymechanisms
underlying the development of obesity and related meta-
bolic abnormalities. In particular, a deeper understanding
of the multipotent capacity, heterogeneity and dynamic
functions of APS in different WAT depots would lay the
groundwork for developing new therapeutic strategies for
obesity and associated metabolic diseases.
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