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Abstract. We show that associated to any n-dimensional Bott-Samelson variety of
a complex semi-simple Lie group G, one has 2n naturally defined Poisson brackets on
the polynomial algebra A = C[z1, . . . , zn], each an iterated Poisson Ore extension and
one of them a symmetric Poisson CGL extension in the sense of Goodearl-Yakimov.
We express all the Poisson brackets in terms of root strings and the structure constants
of the Lie algebra of G. It follows that the coordinate rings of all generalized Bruhat
cells can be presented as symmetric Poisson CGL extensions. The paper establishes
the foundation on generalized Bruhat cells and sets up the stage for their applications
to integrable systems, toric degenerations of Poisson varieties, cluster algebras and
total positivity, some of which are discussed in the Introduction.

1. Introduction

1.1. Introduction. Poisson Ore extensions were introduced in [37] as Poisson analogs

of Ore extensions in the theory of non-commutative rings. Let k be any field. A

polynomial Poisson k-algebra

A = (k[z1, z2, . . . , zn], { , })

is called an iterated Poisson Ore extension (of k) if for each 1 ≤ i ≤ n− 1,

(1) {zi, k[zi+1, . . . , zn]} ⊂ zik[zi+1, . . . , zn] + k[zi+1, . . . , zn].

When a split k-torus T acts rationally on such an iterated Poisson Ore extension, one

may impose certain compatibility conditions between the T-action and the iterations,

leading to the notion of iterated T-Poisson Ore extensions (see §5.2). Iterated T-Poisson

Ore extensions were studied in [18, 27] for their T-invariant Poisson prime ideals and

are shown to arise as semi-classical limits of certain quantum coordinate rings.

By imposing additional symmetry conditions on iterated T-Poisson Ore extensions,

K. Goodearl and M. Yakimov introduce and study in [20, 23] symmetric Poisson CGL

extensions, which are named after G. Cauchon, K. Goodearl, and E. Letzter and are

Poisson analogs of (non-commutative) CGL extensions studied in [28]. In particular, it

is shown in [23] that a presentation of a polynomial Poisson algebra A as a symmet-

ric Poisson CGL extension gives rise to a cluster structure on A compatible with the

Poisson structure in the sense of Gekhtman-Shapiro-Vainshtein [16]. CGL extensions

and Poisson CGL extensions are the starting points of the remarkable body of work of

K. Goodearl and M. Yakimov on quantum and classical cluster algebras related to Lie

theory [20, 21, 22, 23] and especially on the quantum and classical Berenstein-Zelevinsky

conjectures on the equality of the cluster algebras and the upper cluster algebras de-

fined by the Berenstein-Fomin-Zelevinsky initial seeds associated to double Bruhat cells

in complex semi-simple Lie groups [2].

In this paper, we give a systematic construction of a class of iterated T -Poisson Ore

extensions associated to any connected complex semi-simple Lie group G and a maximal
1
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torus T ⊂ G. Briefly, associated to any sequence u = (s1, s2, . . . , sn) of simple reflec-

tions in the Weyl group W of G, one has the n-dimensional Bott-Samelson variety Zu

and a so-called standard Poisson structure πn on Zu (see §2.2). On the other hand, Zu

has a natural atlas consisting of 2n coordinate charts, one chart Oγ for each subexpres-

sion γ of u, and all parametrized by Cn (see §3.1). For each coordinate chart Oγ , we

prove that the restriction of πn to Oγ gives rise to an iterated T -Poisson Ore extension

(C[z1, . . . , zn], { , }γ), and we give the explicit formulas for { , }γ in terms of the root

strings and the structure constants of the Lie algebra g of G. For γ = u, we show that

(C[z1, . . . , zn], { , }u) is a symmetric Poisson CGL extension. Consequently, we prove

that the coordinate rings of all generalized Bruhat cells, introduced in [31, §1.3], have

natural presentations as symmetric Poisson CGL extensions.

The origin of the standard Poisson structures Bott-Samelson varieties is the so-called

standard multiplicative Poisson structure πst on G, and the Poisson Lie group (G, πst) is

the semi-classical limit of the much studied quantum group [7, 10, 12] associated to G.

Results of this paper have applications to quantum groups, integrable systems, cluster

algebras, total positivity, and toric degenerations of some Poisson varieties associated

to G. In the next §1.2, we give more details on the results of the paper. In §1.3 - §1.5

of the Introduction, we discuss applications.

1.2. Bott-Samelson varieties and iterated Poisson Ore extensions. Let G again

be a connected complex semi-simple Lie group with a fixed Borel subgroup B and a

maximal torus T ⊂ B, and let g, b, and h be the respective Lie algebras of G, B, and

T . Let ∆+ ⊂ h∗ be the set of positive roots determined by b and Γ ⊂ ∆+ the set of

simple roots. Let W = NG(T )/T be the Weyl group, where NG(T ) is the normalizer of

T in G. For α ∈ Γ, let sα ∈W be the corresponding simple reflection.

Let u = (s1, s2, · · · , sn) be any sequence of simple reflections, i.e, any word, in W ,

and for 1 ≤ i ≤ n, let Psi = B ∪BsiB, the parabolic subgroup of G associated to B and

si. Consider the product manifold Ps1 × . . .× Psn with the right action of Bn by

(p1, p2, . . . , pn) · (b1, b2, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn), pi ∈ Psi , bi ∈ B.

The quotient space, denoted by Zu = Ps1×B . . .×B Psn/B, is the Bott-Samelson variety

associated to u. For (p1, . . . , pn) ∈ Ps1× . . .×Psn , let [p1, . . . , pn] ∈ Zu denote the image

of (p1, . . . , pn) in Zu. Multiplication in the group G gives a well-defined map

(2) µ : Zu −→ G/B : µ([p1, p2, . . . , pn]) = p1p2 · · · pnB/B.

When u is a reduced word, µ is a resolution of singularities of the Schubert variety

BuB/B in G/B, where u = s1s2 · · · sn ∈W . Bott-Samelson varieties have been studied

extensively in the literature and play an important role in geometric representation

theory. See, for example, [3, 4] and the references therein.

It is well-known (see, for example, [7, §1.5] or [12, §4.4]) that the choice of the pair

(B, T ), together with that of a symmetric non-degenerate invariant bilinear form 〈 , 〉
on g, give rise to a standard multiplicative holomorphic Poisson structure πst, making

(G, πst) into the standard complex semi-simple Poisson Lie group (see §2.1). Every

parabolic subgroup of G containing B is a Poisson submanifold of (G, πst). Consequently,

for any sequence u = (s1, . . . , sn) of simple reflections in W , the restriction to Ps1× . . .×
Psn ⊂ Gn of the n-fold product Poisson structure πnst = πst× . . .×πst on Gn projects to
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a well-defined Poisson structure, denoted by πn, on the Bott-Samelson variety Zu (see

§2.2 for details). We refer to πn as a standard Poisson structure on Zu.

Fixing root vectors {eα : α ∈ Γ} and extending them to a Chevalley basis of g, one

obtains an atlas

(3) A = {(Φγ : Cn −→ Oγ ⊂ Zu) : γ ∈ Υu},

on Zu, where Υu is the set of all the 2n subexpressions of u (see §3.1). While referring

to §3.1 for the precise definition of the parametrization Φγ : Cn → Oγ for an arbitrary

γ ∈ Υu, we point out here that for γ = u,

(4) Ou = $(Bs1B ×Bs2B × · · · ×BsnB) ⊂ Zu,

where $ : Ps1 × · · · × Psn → Zu is the projection. The coordinate chart Φu : Cn → Ou

will play a very special role in this paper and for applications of the results in this paper.

In §3.2, we give our first formula (Lemma 3.2) of the Poisson structure πn in each

coordinate chart Φγ : Cn → Oγ in terms of certain vector fields on Bott-Samelson

subvarieties of Zu. It is also shown in §3.3 that πn is log-canonical in some of the

coordinate charts. The first main result of the paper is Theorem 4.14, in which we

further express the vector fields in Lemma 3.2 in terms of root strings and the structure

constants of g. In particular, πn is algebraic in every coordinate chart Φγ : Cn → Oγ .

For γ ∈ Υu, let { , }γ be the Poisson bracket on the polynomial algebra C[z1, . . . , zn]

defined by πn through the parametrization Φγ : Cn → Oγ . As consequences of Theorem

4.14, we prove in §5 the following prominent features of the Poisson polynomial algebras

(C[z1, . . . , zn], { , }γ) for γ ∈ Υu:

1) The Poisson polynomial algebra (C[z1, . . . , zn], { , }γ) is an iterated T -Poisson Ore

extension and is of the form

(5) {zi, zk}γ = ci,kzizk + bi(zk), 1 ≤ i < k ≤ n,

where ci,k ∈ C and bi is a derivation of C[zi+1, . . . , zk]. When γ = u, the iterated T -

Poisson Ore extension (C[z1, . . . , zn], { , }u) is a symmetric Poisson CGL extension in

the terminology of [23], and in particular

(6) bi(zk) ∈ C[zi+1, . . . , zk−1], ∀ 1 ≤ i < k ≤ n.

Precise statements are given in Theorem 5.12. Details on the constants ci,k and the

polynomials bi(zk) for the case of γ = u are summarized in Theorem 5.15.

2) Choose the bilinear form 〈 , 〉 on g such that 〈α,α〉2 ∈ Z for each root α. Then for

any γ ∈ Υu and 1 ≤ i < k ≤ n, the polynomial {zi, zk}γ ∈ C[z1, . . . , zn] has integer

coefficients, so { , }γ defines a Poisson bracket on Z[z1, . . . , zn]. Consequently, each

γ ∈ Υu gives rise to an iterated Poisson Ore extension (k[z1, . . . , zn], { , }γ) of any field

k of arbitrary characteristic. In particular, when the shortest roots α satisfy 〈α, α〉 = 2,

associated to γ = u one then has a symmetric Poisson CGL extension of any field k

with char(k) 6= 2, 3. See Theorem 5.21 and Remark 5.22.

We also remark that our explicit formula for { , }γ in Theorem 5.12 made it possible

for the first author to write a computer program using GAP [15] which computes the

Poisson bracket { , }γ on Z[z1, . . . , zn] for any triple (G,u, γ), where G is any connected

complex simple Lie group (the results only depend on the isogeny class of G), u is any



4 BALÁZS ELEK AND JIANG-HUA LU

length n sequence of simple reflections in the Weyl group ofG, and γ is any subexpression

of u. Some examples, such as when g is of type G2, are given in §5.5.

When u = (s1, s2, . . . , sn) is a reduced word of u = s1s2 · · · sn ∈ W , the map µ in

(2) restricts to an isomorphism between Ou and the Bruhat (or Schubert) cell BuB/B

in G/B. On the other hand, as B is a Poisson Lie subgroup of (G, πst), the Poisson

structure πst on G projects to a well-defined Poisson structure on G/B, denoted as πG/B,

with respect to which BuB/B is a Poisson submanifold [19]. It then follows from the

definition of πn and the multiplicativity of πst that

(7) µ|Ou : (Ou, πn) −→ (BuB/B, πG/B)

is a Poisson isomorphism. Referring to the coordinates (z1, . . . , zn) on Ou as the Bott-

Samelson coordinates on BuB/B (defined by the reduced expression u = s1s2 · · · sn via

µ|Ou), Theorem 5.12 then says that the coordinate ring of (BuB/B, πG/B) becomes a

symmetric Poisson CGL extension in the Bott-Samelson coordinates on BuB/B.

In applications, however, it is crucial that we have a symmetric Poisson CGL extension

associated to an arbitrary (i.e., not necessarily reduced) wordu = (s1, s2, . . . , sn) in W ,

as we will see in §1.4 when we apply Theorem 5.12 to generalized Bruhat cells.

In the remaining §1.3 - §1.5 of the Introduction, we discuss applications of results in

this paper to quantum groups and, via generalized Bruhat cells, to integrable systems,

cluster algebras, total positivity, and toric degenerations of Poisson varieties.

1.3. The Poisson analog of the Levendorskii-Soibelman strengthening law.

Consider again the case when u = (s1, s2, . . . , sn) is reduced, and let u = s1s2 · · · sn ∈W .

It is known (see [40, Lemma 4.3]) that (BuB/B,−πG/B) is the semi-classical analog of

the quantum Schubert cell U−[u] introduced by De Concini-Kac-Procesi [8] and Lusztig

[33], and that the coordinates (z1, . . . , zn) on Ou, now regarded as regular functions on

BuB/B via the isomorphism µ|Ou : Ou ∼= BuB/B, are the semi-classical analogs of the

Lusztig root vectors Fβ1 , . . . , Fβn ∈ U−[u], where βl = s1s2 · · · sl−1(αl) for 1 ≤ l ≤ n (see

[22, §9.2]). Recall [22, §9.2] [5, I.6.10] that the Lusztig root vectors Fβ1 , . . . , Fβn satisfy

the Levendorskii-Soibelman straightening law

FβiFβk − q
−〈βi,βk〉FβkFβi =

∑
(ji+1,...,jk−1)∈Ji,k

ξji+1,...,jk−1
F
ji+1

βi+1
· · ·F jk−1

βk−1
, 1 ≤ i < k ≤ n,

where Ji,k is a finite subset of Nk−i−1 and ξji+1,...,jk−1
∈ Q[q, q−1] is non-zero for

(ji+1, . . . , jk−1) ∈ Ji,k. The fact that the Poisson bracket { , }u is of the form

{zi, zk}u = −〈βi, βk〉zizk + bi(zk), 1 ≤ i < k ≤ n,

with bi(zk) ∈ C[zi+1, . . . , zk−1] is thus the Poisson analog of the Levendorskii-Soibelman

straightening law. However, while we express all the polynomials bi(zk) explicitly in

terms of roots strings and structure constants of g in Theorem 5.15, there are no such

general explicit descriptions, as far as we know, neither for the index set Ji,k nor for the

non-zero ξji+1,...,jk−1
∈ Q[q, q−1] when (ji+1, . . . , jk−1) ∈ Ji,k themselves (see, however,

[9, Appendix, (A4)-(A8)] for some concrete formulas when u is the longest element in

W for rank 2 groups, and [32, 34] for some other special cases). It would thus be very

interesting to seek for a quantization of the formulas in Theorem 5.15 to obtain explicit

expressions of the Levendorskii-Soibelman straightening law, and see in particular how
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the q-analogs of the binomial coefficients in Theorem 5.15 may appear in such formulas.

Partial results in this direction have been obtained in [35].

1.4. Symmetric Poisson CGL extensions associated to generalized Bruhat

cells. With the notation as in §1.1, for any integer n ≥ 1, let Bn act on Gn by

(g1, g2 . . . gn) · (b1, b2, . . . , bn) = (g1b1, b
−1
1 g2b2, . . . , b

−1
n−1gnbn), gi ∈ G, bi ∈ B,

and denote the quotient manifold by

(8) Fn = G×B · · · ×B G/B.

It is shown in [30, §7.1] (see also §2.2) that the n-fold product Poisson structure πnst on

Gn projects to a well-defined Poisson structure on Fn, which will also be denoted by

πn. Note that for any sequence u = (s1, . . . , sn) of simple reflections in W , the Bott-

Samelson variety Zu is isomorphic to a closed submanifold of Fn under the embedding

Ps1 × · · · × Psn ⊂ Gn. As Ps1 × · · · × Psn is a Poisson submanifold of Gn with respect

to πnst, it follows from the definitions that Zu, with the Poisson structure πn defined in

§1.1, is a Poisson submanifold of (Fn, πn). Note also that the T -action on the first factor

of Gn by left translation descends to a T -action on Fn preserving πn.

For an arbitrary sequence u = (u1, . . . , un) in the Weyl group W , where the ui’s are

not necessarily simple reflections, the image of Bu1B × · · · ×BunB in Fn, denoted as

BuB/B = (Bu1B)×B · · · ×B (BunB)/B ⊂ Fn,

is called a generalized Bruhat cell in [31, §1.3]. It follows from the Bruhat decomposition

G =
⊔
u∈W BuB of G that one has the decomposition

(9) Fn =
⊔

u∈Wn

BuB/B

of Fn into the disjoint union of generalized Bruhat cells. As each BuB, where u ∈ W ,

is a Poisson submanifold of G with respect to πst, each generalized Bruhat cell BuB/B

is a T -invariant Poisson submanifold of (Fn, πn).

A generalized Bruhat cell of the form B(s1, . . . , sn)B/B ⊂ Fn, where each si is a

simple reflection, is said to be of Bott-Samelson type [31, §1.3]. In the notation of

the current paper, a generalized Bruhat cell B(s1, . . . , sn)B/B in Fn of Bott-Samelson

type is nothing but the affine chart Ou in the Bott-Samelson variety Zu ⊂ Fn, where

u = (s1, . . . , sn). See (4). Given an arbitrary u = (u1, . . . , un) ∈ Wn, choose any

reduced decomposition ui = si,1si,2 · · · si,l(ui) for each ui, where l : W → N is the length

function of W , and consider the sequence

ũ = (s1,1, . . . , s1,l(u1), s2,1, . . . , s2,l(u2), . . . , sn,1, . . . , sn,l(un))

of simple reflections of length l(u) = l(u1) + · · · + l(un). Then the multiplication map

on G induces a T -equivariant Poisson isomorphism

(10) (Zũ, πl(u)) ⊃ (Oũ, πl(u)) = (BũB/B, πl(u))
∼−→ (BuB/B, πn) ⊂ (Fn, πn)

(see [31, §1.3]). Thus, as Poisson manifolds, every generalized Bruhat cell BuB/B is

Poisson isomorphic to one of Bott-Samelson type. We will refer to the coordinates

(z1, . . . , zl(u)) on Oũ = BũB/B defined in §3.1 of the present paper as Bott-Samelson

coordinates on BuB/B (via the isomorphism in (10)). Theorem 5.12, applied to Oũ,

then immediately leads to the following conclusion on generalized Bruhat cells.



6 BALÁZS ELEK AND JIANG-HUA LU

Theorem 1.1. For any generalized Bruhat cell BuB/B, where u = (u1, . . . , un) ∈Wn,

the standard Poisson structure πn on BuB/B makes its coordinate ring into a symmetric

Poisson CGL extension in any Bott-Samelson coordinates (z1, . . . , zl(u)) on BuB/B;

the corresponding Poisson bracket on C[z1, . . . , zl(u)] is explicitly given in Theorem 5.15

(applied to ũ).

We also point out that for an arbitrary generalized Bruhat cell BuB/B, where u =

(u1, u2, . . . , un) ∈ Wn, the T -orbits of symplectic leaves of πn in BuB/B, also called

T -leaves, are described in [31, Theorem 1.1]. Namely, the T -leaves of πn in BuB/B are

precisely all the submanifolds of BuB/B of the form

Ru
w = {[g1, g2, . . . , gn] ∈ BuB/B : g1g2 · · · gn ∈ B−wB},

where w ∈ W , and w ≤ u1 ∗ u2 ∗ · · · ∗ un, with ∗ being the monoidal product on W .

Here B− is the Borel subgroup of G such that B ∩B− = T . Moreover, the dimension of

every symplectic leaf of πn in Ru
w is shown in [31, Theorem 1.1] to be equal to

l(u)− l(w)− dim ker(1 + u1u2 · · ·unw−1),

where 1 + u1u2 · · ·unw−1 denotes the linear operator on the Lie algebra h of T given

by x 7→ x + u1u2 · · ·unw−1(x), x ∈ h. The leaf-stabilizer subalgebra of h in Ru
w is also

explicitly described in [31, Theorem 1.1]. We refer to [31, Theorem 1.1] for more detail.

We regard Theorem 1.1 and [31, Theorem 1.1] as two basic results on the standard

Poisson structures on generalized Bruhat cells. As we will explain in the next §1.5,

iterated Poisson Ore extensions, or the more restrictive symmetric Poisson CGL exten-

sions, can be associated with many important varieties in Lie theory through generalized

Bruhat cells. These results set the foundation for applications of generalized Bruhat cells

to integrable systems, cluster algebras, total positivity, and toric degenerations of Pois-

son varieties.

1.5. Other symmetric Poisson CGL extensions through generalized Bruhat

cells. Recall [13] that double Bruhat cell in G are defined as Gu,v = (BuB)∩ (B−vB−),

where u, v ∈ W . Fomin and Zelevinsky introduced in [13] certain regular functions on

Gu,v, called twisted generalized minors, which play crucial roles in the theory of total

positivity and cluster algebra structures [2] on Gu,v. For u = v, Kogan and Zelevinsky

introduced in [26] an integrable system on the Poisson manifold (Gu,u, πst) formed by

some twisted generalized minors on Gu,u. In [29], a certain open Poisson embedding

(11) F u,v : (Gu,v, πst) −→ (T × (B(v−1, u)B/B), 0 ./ π2),

called the Fomin-Zelevinsky embedding, is introduced, where 0 ./ π2 is the sum of

the product Poisson structure 0 × π2 and a mixed term defined using the T -action on

the generalized Bruhat cell B(v−1, u)B/B by left translation. Defining Bott-Samelson

coordinates on Gu,v to be the combination of any (algebraic) coordinates on T and

Bott-Samelson coordinates on B(v−1, u)B/B (defined using reduced words for u and

v as in §3.1 of the present paper), it is shown in [29] that all the Fomin-Zelevinsky

twisted generalized minors on Gu,v become certain distinguished polynomials in the

Bott-Samelson coordinates. The fact that the Poisson structure π2 on B(v−1, u)B/B

is a symmetric Poisson CGL extension in the Bott-Samelson coordinates is then used

in [29] to prove that the Hamiltonian vector fields of all the Fomin-Zelevinsky twisted



BOTT-SAMELSON VARIETIES AND POISSON ORE EXTENSIONS 7

generalized minors on every Gu,v are complete in the sense that all of their integral

curves are defined on the whole of C. Consequently all the Hamiltonian flows of the

Kogan-Zelevinsky integrable system on each Gu,u are defined on the whole of C.

In general, we say that an n-dimensional complex algebraic Poisson manifold (P, π) is

an iterated Poisson Ore extension (of a point) (resp. a symmetric Poisson CGL extension

(of a point)) if there exists an isomorphism P ∼= Cn through which the coordinate ring

of (P, π) becomes an iterated Poisson Ore extension (resp. a symmetric Poisson CGL

extension) of C. A Poisson manifold (Z, πZ) is said to be paved (resp. covered) by

iterated Poisson Ore extensions if it is the disjoint union of (resp. has an open cover by)

iterated Poisson Ore extensions. Theorem 5.12, then, says that every Bott-Samelson

variety Zu with the standard Poisson structure πn is covered by iterated Poisson Ore

extensions, while the Poisson manifold (Fn, πn) is paved by symmetric Poisson CGL

extensions, namely by the generalized Bruhat cells BuB/B ⊂ Fn, as in (9). In [41],

results in this paper on generalized Bruhat cells are used to show that every orbit in

the double flag variety G/B ×G/B− for the diagonal G-action is covered by symmetric

Poisson CGL extensions. Note that examples are the closed orbit, which is isomorphic

to G/B, and the open orbit, which is isomorphic to G/T .

For an n-dimensional smooth Poisson variety (Z, π) covered by iterated Poisson Ore

extensions, one can regard (Z, π) as being glued together by Poisson Ore charts. On the

other hand, the changes of coordinates between these coordinate charts are, in general,

highly non-trivial birational maps from Cn to itself. See Example 4.12 for an example

for Bott-Samelson varieties. It seems a miracle that such complicated birational maps

from Cn to Cn in fact transform one iterated Poisson Ore extension to another (see [11,

Appendix A] for some direct computations related to Example 4.12). It would be very

interesting to see whether the changes of coordinates between two arbitrary Poisson

Ore charts are compositions of some simpler one-step mutations of iterated Poisson Ore

extensions. Results in this paper on Bott-Samelson varieties provide testing ground for

answering such questions.

For Poisson varieties (Z, π) that can be covered by symmetric Poisson CGL extensions,

such as the diagonal G-orbits in the double flag variety, one may consider the cluster

structure, and the resulting total positivity [14], on each Poisson Ore chart defined by the

corresponding symmetric Poisson CGL extension using the Goodearl-Yakimov theory

[23], and one can ask how they glue together to give some global cluster structure and

global total positivity on Z. These questions will be investigated elsewhere. We point out

for now that Theorem 1.1 and Theorem 5.12 from this paper on the symmetric Poisson

CGL extensions associated to generalized Bruhat cells will be crucial for such a project.

Finally, we remark that the symmetric Poisson CGL extension (C[z1, z2, . . . , zn], { , }u)

associated to the affine chart Ou of the Bott-Samelson variety Zu is also intimately re-

lated to toric degenerations of Zu through tropical geometry. More precisely, consider

(Zu, πn) with its cover A = {(Φγ : Cn −→ Oγ) : γ ∈ Υu} by iterated Poisson Ore

extensions. It is shown in [36] one has an isomorphism of cones

(12) Ctoric(Zu,A) ∼= Clog−can(C[z1, z2, . . . , zn], { , }u),

by an element in GL(n,Z), where Ctoric(Zu,A) is a certain toric degeneration cone,

whose integer points are the “directions” in which the Bott-Samelson variety Zu can
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be degenerated to a toric variety via re-scalings of the coordinates in the coordinate

charts in A, and Clog−can(C[z1, z2, . . . , zn], { , }u) is the log-canonical degeneration cone,

introduced in [1] by A. Alexseev and I. Davydenkova, of the polynomial Poisson algebra

(C[z1, z2, . . . , zn], { , }u), whose integer points are the “directions” in which the Poisson

bracket { , }u can be degenerated to its log-canonical term. The proof of (12) in [36]

uses in a very essential way the explicit formulas for the Poisson bracket { , }u given in

Theorem 5.15.
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1.7. Notation. Continuing with the notation from §1.2, let g = h +
∑

α∈∆ gα be the

root decomposition of g with respect to h. For α ∈ ∆, let hα be the unique element

in [gα, g−α] such that α(hα) = 2, and let α∨ : C× → T be the co-character of T

defined by hα. Let ∆+ ⊂ ∆ be the set of positive roots determined by b, and let

b− = h +
∑

α∈∆+
g−α. The Borel subgroup of G with Lie algebra b− is denoted by B−.

Let α ∈ ∆+. If eα ∈ gα and e−α ∈ g−α are such that [eα, e−α] = hα, we call

{hα, eα, e−α} an sl(2,C)-triple for α. Clearly, any non-zero eα ∈ gα uniquely deter-

mines an sl(2,C)-triple {hα, eα, e−α}, and every other sl(2,C)-triple for α is of the form

{hα, λeα, λ−1e−α} for a unique λ ∈ C. Given an sl(2,C)-triple {hα, eα, e−α}, let θα
denote both the Lie algebra homomorphism sl(2,C)→ g defined by

θα :

(
1 0
0 −1

)
7−→ hα,

(
0 1
0 0

)
7−→ eα,

(
0 0
1 0

)
7−→ e−α,

and the corresponding Lie group homomorphism SL(2,C)→ G, so that

α∨(t) = θα

((
t 0
0 t−1

))
, t ∈ C×,

and one also has the one-parameter subgroups u±α : C→ G given by

uα(z) = θα

((
1 z
0 1

))
= exp(zeα), u−α(z) = θα

((
1 0
z 1

))
= exp(ze−α), z ∈ C.

Let W = NG(T )/T be again the Weyl group of (G,T ). For α ∈ ∆+, let sα ∈W be the

reflection in W determined by α, and if {hα, eα, e−α} is an sl(2,C)-triple for α, let ṡα
be the representative of sα in NG(T ) given by

(13) ṡα = uα(−1)u−α (1)uα (−1) ∈ NG(T ).

For a complex algebraic torus T with Lie algebra t and for λ ∈ Hom(T,C×), the

differential at the identity element of T, which is an element in t∗, is also denoted by λ.

The values of λ on t ∈ T and on x ∈ t are respectively denoted as tλ ∈ C× and λ(x) ∈ C.

For a vector space V and u, v ∈ V , we also use the convention that

u ∧ v = u⊗ v − v ⊗ u ∈ ∧2V ⊂ V ⊗ V.
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2. Definition of the Poisson structure πn on Zu

2.1. The standard semi-simple Poisson Lie group (G, πst). Recall from [7, 12]

that a Poisson bivector field πL on a Lie group L is said to be multiplicative if

(L× L, πL × πL) −→ (L, πL) : (l1, l2) 7−→ l1l2, l1, l2 ∈ L,

is a Poisson map, where πL × πL is the product Poisson structure on L× L. A Poisson

Lie group is a pair (L, πL), where L is a Lie group and πL is a multiplicative Poisson

bivector field on L. A Poisson Lie subgroup of a Poisson Lie group (L, πL) is a Lie

subgroup L1 of L which is also a Poisson submanifold with respect to πL, and in this

case (L1, πL|L1), or simply denoted as (L1, πL), is a Poisson Lie group.

Let G be a connected complex semi-simple Lie group and let the notation be as in

§1.7. Fix, furthermore, a symmetric non-degenerate invariant bilinear form 〈 , 〉 on g,

and denote also by 〈 , 〉 the induced bilinear form on h∗. Define Λ ∈ ∧2g by

Λ =
∑
α∈∆+

〈α, α〉
2

e−α ∧ eα ∈ ∧2g,

where for each α ∈ ∆+, {hα, eα, e−α} is an sl(2,C)-triple for α. Note that for any

α ∈ ∆+, the element e−α ∧ eα ∈ ∧2g stays the same if the sl(2,C)-triple {hα, eα, e−α} is

changed to {hα, λeα, 1
λe−α} for λ ∈ C×. Consequently, the element Λ ∈ ∧2g depends on

〈 , 〉 but not on the choices of the sl(2,C)-triples for the positive roots. Let πst be the

bivector field on G given by

πst(g) = lg(Λ)− rg(Λ), g ∈ G,

where for g ∈ G, lg and rg respectively denote the left and right translations on G by

g. Then (G, πst) is a Poisson Lie group, called a standard complex semi-simple Poisson

Lie group [12, §4.4]. Moreover, the Poisson structure πst is invariant under the action

of T by left translation, and the T -orbits of symplectic leaves, also called T -leaves, of

πst are precisely the so-called double Bruhat cells (BuB) ∩ (B−vB−), where u, v ∈ W
(see [24, 26]). In particular, every BuB, where u ∈ W , is a Poisson submanifold of

(G, πst), and every parabolic subgroup P of G containing B, being a union of (B,B)-

double cosets in G, is a Poisson Lie subgroup of (G, πst). Similar statements hold if B

is replaced by B−.

We state another important property of (G, πst): let α be a simple root and consider

the group homomorphism θα : SL(2,C)→ G in §1.7 corresponding to any sl(2,C)-triple

{hα, eα, e−α} for α. Equip SL(2,C) with the multiplicative Poisson structure

(14) πSL(2,C)(g) = lg(Λ0)− rg(Λ0), g ∈ SL(2,C),

where Λ0 =

(
0 0
1 0

)
∧
(

0 1
0 0

)
∈ ∧2sl(2,C). Then [26]

(15) θα :

(
SL(2,C),

〈α, α〉
2

πSL(2,C)

)
−→ (G, πst)
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is a Poisson map. It follows that θα(SL(2,C)) is a Poisson Lie subgroup of (G, πst).

Moreover, let g = u−α(z) and g′ = uα(z)ṡα, where z ∈ C. Then

πst(g) =
〈α, α〉

2
lg(zhα ∧ e−α),(16)

πst(g
′) =

〈α, α〉
2

lg′(zhα ∧ e−α − 2eα ∧ e−α) =
〈α, α〉

2
rg′(zeα ∧ hα + 2eα ∧ e−α).(17)

2.2. The definition of the Poisson structure πn on Zu. Recall that given a Poisson

Lie group (L, πL) and a Poisson manifold (Y, πY ), a left Lie group action σ : L×Y → Y

of L on Y is said to be a Poisson action if σ is a Poisson map from the product Poisson

manifold (L × Y, πL × πY ) to (Y, πY ). Right Poisson actions of Poisson Lie groups are

similarly defined.

Let (Q, πQ) be a Poisson Lie group, let (X,πX) be a Poisson manifold with a right

Poisson action by (Q, πQ), and let (Y, πY ) a Poisson manifold with a left Poisson action

by (Q, πQ). Define the right action of Q on X × Y by

(x, y) · q = (xq, q−1y), x ∈ X, y ∈ Y, q ∈ Q,

and assume that the quotient space of X × Y by Q, denoted by X ×Q Y , is a smooth

manifold. Then (see [30, §7.1] and [38]) the direct product Poisson structure πX × πY
on X × Y projects to a well-defined Poisson structure on X ×Q Y .

Example 2.1. Let (Q, πQ) be a closed Poisson Lie subgroup of a Poisson Lie group

(L, πL), and let (Y, πY ) be a Poisson manifold with a left Poisson action by (Q, πQ).

Consider the quotient manifold Z = L ×Q Y , where Q acts on L by right translation.

Then Z has the Poisson structure πZ that is the projection to Z of the direct product

Poisson structure πL× πY on L×Y . Denoting the image in Z of (l, y) ∈ L×Y by [l, y],

it follows from the multiplicativity of πL that the left action of L on Z given by

(18) l · [l1, y] = [ll1, y], l, l1 ∈ L, y ∈ Y,

is a Poisson action of the Poisson Lie group (L, πL) on (Z, πZ). Moreover, since πL(e) =

0, where e is the identity element of L, the inclusion Y ↪→ L× Y, y 7→ (e, y), y ∈ Y , is a

Poisson embedding of (Y, πY ) into (L× Y, πL × πY ). Consequently,

Y ↪→ Z, y 7−→ [e, y], y ∈ Y,

is a Poisson embedding of (Y, πY ) into the Poisson manifold (Z, πZ). �

Consider now the standard semi-simple Poisson Lie group (G, πst) in §2.1. Let u =

(s1, . . . , sn) be any sequence of simple reflections in the Weyl group W . Then for each

1 ≤ i ≤ n, the parabolic subgroup Psi = B ∪BsiB is a Poisson Lie subgroup of (G, πst).

By taking (L, πL) = (Psi , πst) and Q = B in Example 2.1 and repeat the construction

therein, one sees that the direct product Poisson structure πnst, regarded as a Poisson

structure on the product manifold Ps1 × · · · × Psn , projects to a well-defined Poisson

structure, denoted by πn, on the Bott-Samelson variety Zu. It also follows from Example

2.1 that the left action of Ps1 on Zu given by

(19) p · [p1, p2, . . . , pn] = [pp1, p2, . . . , pn], p ∈ Ps1 , pj ∈ Psj , 1 ≤ j ≤ n,

is a Poisson action of the Poisson Lie group (Ps1 , πst) on (Zu, πn). In particular, since

πst(t) = 0 for t ∈ T , the action of T on Zu via (19) preserves πn.
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2.3. P1-extensions. To prepare for the calculation of the Poisson structure πn in coor-

dinates, we first look at a special case of Example 2.1: let (Y, πY ) be a Poisson manifold

with a left Poisson action σ by the Poisson Lie subgroup (B, πst) of (G, πst), and let α

be a simple root. One then has the quotient manifold Z = Psα ×B Y , which fibers over

Psα/B
∼= P1 with fibers diffeomorphic to Y . Let πZ denote the projection to Z of the

product Poisson structure πst × πY on Psα × Y . Choose any non-zero eα ∈ gα, giving

rise to the sl(2,C)-triple {hα, eα, e−α} for α, and let the notation be as in §1.7. Consider

the two open subsets

Z− = {[u−α(z), y] : z ∈ C, y ∈ Y } and Z+ = {[uα(z)ṡα, y] : z ∈ C, y ∈ Y }

of Z with parametrizations

ψ− : C× Y −→ Z−, ψ−(z, y) = [u−α(z), y],

ψ+ : C× Y −→ Z+, ψ+(z, y) = [uα(z)ṡα, y].

We will compute ψ−1
− (πZ) and ψ−1

+ (πZ) as bi-vector fields on C × Y . For x ∈ b, let ηx
be the vector field on Y given by ηx(y) = d

dt |t=0 exp(tx)y for y ∈ Y . In the statement of

the following Lemma 2.2, we use the obvious way of viewing vector fields on C and on

Y as that on C× Y .

Lemma 2.2. With the notation as above, one has

ψ−1
− (πZ)(z, y) = −〈α, α〉

2
z
d

dz
∧ ηhα(y) + πY (y),(20)

ψ−1
+ (πZ)(z, y) =

〈α, α〉
2

d

dz
∧ (zηhα(y)− 2ηeα(y)) + πY (y).(21)

Proof. For g ∈ Psα and y ∈ Y , let

λg : Z −→ Z : [p, y′] 7−→ [gp, y′], p ∈ Psα , y′ ∈ Y,
ρy : Psα −→ Z : p 7−→ [p, y], p ∈ Psα .

Fix z ∈ C and y ∈ Y , and let g = u−α(z) ∈ Psα and q = [u−α(z), y] = λg([e, y]) ∈ Z.

By Example 2.1, πZ(q) = λg(πZ([e, y])) + ρy(πst(g)). Using (16), one has

πZ(q) = λg(πZ([e, y]))+
〈α, α〉

2
(ρylg)(zhα∧e−α) = λg(πZ([e, y]))+

〈α, α〉
2

(λgρy)(zhα∧e−α)

and thus

(ψ−1
− (πZ))(z, y) = ψ−1

− (πZ(q)) = (ψ−1
− ◦ λg)(πZ([e, y])) +

〈α, α〉
2

(ψ−1
− λgρy)(zhα ∧ e−α).

Since the inclusion (Y, πY ) ↪→ (Z, πZ) : y′ 7→ [e, y′] is Poisson, (ψ−1
− ◦ λg)(πZ([e, y])) =

πY (y). Direct calculations give

(ψ−1
− λgρy)(hα) = ηhα(y) and (ψ−1

− λgρy)(e−α) =
d

dz
.

One thus has (20). Similarly, for z ∈ C and y ∈ Y , letting g′ = uα(z)ṡα and using (17),

one has

ψ−1
+ (πZ)(z, y) = πY (y) +

〈α, α〉
2

(ψ−1
+ λg′ρy)((zhα − 2eα) ∧ e−α).

Since (ψ−1
+ λg′ρy)(hα) = ηhα , (ψ−1

+ λg′ρy)(eα) = ηeα , and (ψ−1
+ λg′ρy)(e−α) = − d

dz , one

has (21).

Q.E.D.
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3. The Poisson structure πn in affine coordinate charts, I

Throughout §3, we fix a sequence u = (s1, . . . , sn) of simple reflections in W , and

let Zu be the Bott-Samelson variety associated to u. Recall that Γ denotes the set of

all simple roots. For 1 ≤ j ≤ n, let αj ∈ Γ be such that sj = sαj . To define local

coordinates on Zu, we also fix a root vector eα for each α ∈ Γ and let e−α ∈ g−α be

the unique element such that [eα, e−α] = hα. One then (see §1.7) has the one-parameter

subgroups u±α : C → G for each α ∈ Γ and the representative ṡα ∈ NG(T ) for the

simple reflection sα ∈W .

3.1. Affine coordinate charts on Zu. Let

Υu = {e, s1} × {e, s2} × · · · {e, sn},

where e denotes the identity element of W . Elements in Υu will be called subexpressions

of u. When γ = u, we say that γ is the full subexpression of u. For γ = (γ1, γ2, . . . , γn) ∈
Υu, let γ0 = e and γi = γ1γ2 · · · γi ∈W for 1 ≤ i ≤ n.

The maximal torus T of G acts on Zu via (19) with

ZTu = {[γ̇1, γ̇2, . . . , γ̇n] : (γ1, γ2, . . . , γn) ∈ Υu}

as the fixed point set, where ė = e. For each γ = (γ1, γ2, . . . , γn) ∈ Υu, let Oγ ⊂ Zu be

the image of the embedding Φγ : Cn → Zu given by

(22) Φγ(z1, . . . , zn) = [u−γ1(α1)(z1)γ̇1, u−γ2(α2)(z2)γ̇2, . . . , u−γn(αn)(zn)γ̇n].

The parametrization Φγ of Oγ by Cn depends on the choice of the root vectors {eα :

α ∈ Γ} for the simple roots, but different choices of such root vectors only result in

re-scalings of the coordinate functions (see §5.1 for more discussions). In particular,

the open subset Oγ of Zu is canonically defined. It is also easy to see that each Oγ is

T -invariant with

(23) t · Φγ(z1, z2, . . . , zn) = Φγ
(
t−γ

1(α1)z1, t
−γ2(α2)z2, . . . , t

−γn(αn)zn

)
,

where t ∈ T and (z1, z2, . . . , zn) ∈ Cn. Note also that
⋃
γ∈Υw

Oγ = Zu, i.e., Zu is covered

by the 2n T -invariant affine coordinate charts {(Φγ : Cn → Oγ) : γ ∈ Υu}, which we

will also abbreviate as the affine charts {Oγ : γ ∈ Υu}. .

3.2. The Poisson structure πn in coordinates, I. For each γ ∈ Υu, we now give our

first formula for the Poisson structure πn on Zu in the coordinates (z1, z2, . . . , zn) on Oγ
given in (22). A more detailed formula, expressing each Poisson bracket {zi, zk}, where

1 ≤ i < k ≤ n, as a polynomial with coefficients explicitly in terms of the structure

constants of the Lie algebra g, will be given in §4.

Notation 3.1. For 1 ≤ i ≤ n − 1, let σi be the holomorphic vector field on the Bott-

Samelson variety Z(si+1,...,sn) given by

(24) σi(p) =
d

dt
|t=0((exp(teαi)) · p), p ∈ Z(si+1,...,sn),

where · denotes the left action of B ⊂ Psi on Z(si+1,...,sn) by left translation (see (19)).

For γ = (γ1, . . . , γn) ∈ Υu and the coordinates (z1, . . . zn) on the affine chart Oγ given
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in (22), we will also regard (zi+1, . . . , zn) as coordinates on O(γi+1,...,γn) ⊂ Z(si+1,...,sn)

via the parametrization

Cn−i 3 (zi+1, . . . , zn) 7−→ [u−γi+1(αi+1)(zi+1)γ̇i+1, . . . , u−γn(αn)(zn)γ̇n] ∈ O(γi+1,...,γn),

and we identify the algebra of regular functions on O(γi+1,...,γn) as a subalgebra of that

on Oγ via the pullback of the projection Oγ → O(γi+1,...,γn) given by

[u−γ1(α1)(z1)γ̇1, . . . , u−γn(αn)(zn)γ̇n] 7−→ [u−γi+1(αi+1)(zi+1)γ̇i+1, . . . , u−γn(αn)(zn)γ̇n].

A polynomial in (zi+1, . . . , zn) can then be unambiguously regarded as a regular function

on both Oγ and O(γi+1,...,γn). �

Lemma 3.2. Let γ ∈ Υu. In the coordinates (z1, . . . zn) on the affine chart Oγ given

in (22), the Poisson structure πn on Zu is given by,

(25) {zi, zk} =

{
〈γi(αi), γk(αk)〉zizk, if γi = e

−〈γi(αi), γk(αk)〉zizk − 〈αi, αi〉σi(zk) if γi = si
, 1 ≤ i < k ≤ n,

where σi(zk) denotes the action of the vector field σi on zk as a function on O(γi+1,...,γn) ⊂
Z(si+1,...,sn) (see Notation 3.1).

Proof. Identify Oγ ∼= C × Oγ′ , where γ′ = (γ2, . . . , γn) ∈ Υu′ and u′ = (s2, . . . , sn).

Equip Oγ′ with the Poisson structure πn−1 on Z(s2,...,sn). One has, by Lemma 2.2,

(26) πn =

−
〈α1,α1〉

2 z1
d
dz1
∧ η1 + πn−1, if γ1 = e,

〈α1,α1〉
2

d
dz1
∧ (z1η1 − 2σ1) + πn−1, if γ1 = s1,

where η1 is the holomorphic vector field on Z(s2,...,sn) given by

η1(q) =
d

dt
|t=1(α∨1 (t) · q), q ∈ Z(s2,...,sn).

By (23), the vector field η1 is given in the coordinates (z2, . . . , zn) on Oγ′ by

η1 =
n∑
k=2

(−γ2 · · · γk(αk))(hα1)zk
∂

∂zk
= −

n∑
k=2

2〈γ1(α1), γk(αk)〉
〈α1, α1〉

zk
∂

∂zk
.

Lemma 3.2) now follows by repeatedly using (26).

Q.E.D.

Example 3.3. Consider G = SL(3,C) with the standard choices of B and B− consisting

respectively of upper triangular and lower triangular matrices in SL(3,C), and let the

bilinear form 〈 , 〉 on sl(3,C) be given by 〈X,Y 〉 = tr(XY ) for X,Y ∈ sl(3,C). Denote

the two simple roots by α1 and α2 and choose root vectors eα1 = E12 and eα2 = E23,

where Eij has 1 at the (i, j)-entry and 0 everywhere else. Let u = (sα1 , sα2 , sα1). Using

Lemma 3.2, one can compute directly the Poisson structure π3 on Zu in any of the eight

affine coordinate charts. For example, for γ = u, one has

(27) {z1, z2} = −z1z2, {z1, z3} = z1z3 − 2, {z2, z3} = −z2z3,

and for γ = (sα1 , e, e) ∈ Υu, one has

(28) {z1, z2} = z1z2, {z1, z3} = −2z1z3 + 2z2
3 , {z2, z3} = −z2z3.

�
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3.3. Some log-canonical charts for πn. Let γ ∈ Υu. We say that the affine coordi-

nate chart Oγ of Zu is log-canonical for the Poisson structure πn, or that the Poisson

structure πn is log-canonical in the affine coordinate chart Oγ , if the Poisson brackets

between the coordinate functions (z1, z2, . . . , zn) on Oγ have the form {zi, zk} = λikzizk
for some λik ∈ C for each pair 1 ≤ i < k ≤ n. By Lemma 3.2, πn is log-canonical in Oγ
if and only if

{zi, zk} = εi〈γi(αi), γk(αk)〉zizk, 1 ≤ i < k ≤ n,
where εi = 1 if γi = e and εi = −1 if γi = si. The following Lemma 3.4, which follows

trivially from Lemma 3.2, says that πn is log-canonical in the affine chart O(e,e,...,e).

Lemma 3.4. In the coordinates (z1, z2, . . . , zn) on O(e,e,...,e), one has

{zi, zk} = 〈αi, αk〉zizk, ∀ 1 ≤ i < k ≤ n.

To exhibit other log-canonical affine coordinate charts for πn, we make the following

observation on the functions σi(zk), 1 ≤ i < k ≤ n, in Lemma 3.2.

Lemma 3.5. Let γ = (γ1, . . . , γn) ∈ Υu, and let 1 ≤ i ≤ n. If γi = si and if k > i is

such that sj 6= si for all i+ 1 ≤ j ≤ k, then σi(zk) = 0.

Proof. For i+ 1 ≤ j ≤ n, let zj ∈ C and pj = u−γj(αj)(zj)γ̇j . For t ∈ C, consider

[uαi(t)pi+1, pi+2, . . . , pn] ∈ Z(si+1,...,sn).

For each i + 1 ≤ j ≤ k, since pi+1pi+2 · · · pj lies in the Levi subgroup of the parabolic

subgroup of G determined by the set of simple roots in {αi+1, . . . , αj} which does not

contain αi, one has

gj := (pi+1pi+2 · · · pj)−1uαi(t)pi+1pi+2 · · · pj ∈ N,

where N is the unipotent subgroup of G with Lie algebra n =
∑

α∈∆+
gα. Thus

[uαi(t)pi+1, pi+2, . . . , pn] = [pi+1, gi+1pi+2, pi+3, . . . , pn]

= [pi+1, pi+2, . . . , gk−1pk, pk+1, . . . , pn]

= [pi+1, pi+2, . . . , pk, gkpk+1, . . . , pn].

It follows from the definition of the vector field σi that σi(zk) = 0.

Q.E.D.

The next Lemma 3.6, which follows directly from Lemma 3.2 and Lemma 3.5, exhibits

a log-canonical affine chart for πn associated to each s ∈ {s1, . . . , sn}.

Lemma 3.6. Let s ∈ {s1, s2, . . . , sn} and let i0 = max{i : 1 ≤ i ≤ n, si = s}. Let

γ = (γ1, γ2, . . . , γn) be such that γi0 = s and γi = e for all i 6= i0. Then in the

coordinates (z1, z2, . . . , zn) on Oγ given in (22) and for all 1 ≤ i < k ≤ n, one has

(29) {zi, zk} =

{
〈αi, αk〉zizk, 1 ≤ i < k < i0 or i0 < i < k ≤ n,
〈αi, s(αk)〉zizk, 1 ≤ i ≤ i0 ≤ k ≤ n.

The following Corollary 3.7 also follows directly from Lemma 3.2 and Lemma 3.5.

Corollary 3.7. If u = (s1, s2, . . . , sn) is such that si 6= sj for all i 6= j, then the

Poisson structure πn on Zu is log-canonical in every one of the 2n affine coordinate

charts {Oγ : γ ∈ Υu}.
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4. The Poisson structure πn in affine coordinates charts, II

Throughout §4, fix a sequence u = (s1, . . . , sn) of simple reflections, and let Zu be the

corresponding Bott-Samelson variety. To better understand the Poisson structure πn in

the coordinates (z1, z2, . . . , zn) on the affine chart Oγ defined in §3.1, where γ ∈ Υu, one

needs to compute more explicitly the vector field σi in Lemma 3.2 on the Bott-Samelson

variety Z(si+1,...,sn) for 1 ≤ i ≤ n− 1. For x ∈ b, define the vector field σx on Zu by

(30) σx(p) =
d

dt
|t=0((exp tx) · p), p ∈ Zu,

where · denotes the left action of B ⊂ Ps1 on Zu given in (19). Using some facts on root

strings of the root system of g reviewed in §4.1, and for any β ∈ ∆+ and eβ ∈ gβ, we give

in §4.2 an explicit formula for σeβ in the coordinates (z1, z2, . . . , zn) on each affine chart

Oγ of Zu. The formula for σeβ , given in Theorem 4.10, is expressed explicitly in terms

of the root strings and the structure constants of g. As a consequence (see Theorem

4.14), the Poisson structure πn can also be expressed in each affine coordinate chart Oγ
in terms of root strings and the structure constants of g. We believe that our formula

for the vector fields σeβ is of interest irrespective of the Poisson structure πn.

4.1. Some lemmas on root strings. In §4.1, let

(31) {hα}α∈Γ ∪ {e±α ∈ g±α}α∈∆+

be any basis of g such that [eα, e−α] = hα for each α ∈ ∆+. One then has the Lie group

homomorphism θα : SL(2,C)→ G for each α ∈ ∆+. Let the notation be as in §1.7. For

α, β ∈ ∆ such that α+ β ∈ ∆, let Nα,β 6= 0 be such that [eα, eβ] = Nα,βeα+β.

Lemma 4.1. For α ∈ ∆+, one has

uα(t)uα(z)ṡα = uα(t+ z)ṡα, t, z ∈ C,(32)

uα(t)u−α(z) = u−α

(
z

1 + tz

)
uα(t(1 + tz))α∨(1 + tz), t, z ∈ C, 1 + tz 6= 0,(33)

u−α(t) = uα

(
1

t

)
ṡαuα(t)α∨(t), t ∈ C×.(34)

For α, β ∈ Γ and α 6= β, one has .

(35) uβ(t)β∨(t)u−α(z) = u−α

(
t
−2〈α,β〉
〈β,β〉 z

)
uβ(t)β∨(t), t ∈ C×, z ∈ C.

Proof. Identity (32) is clear. Identities (33) and (34) follow from computations in

SL(2,C), and (35) follows from the fact that the two root subgroups corresponding

to −α and β commute.

Q.E.D.

Let α and β be two linearly independent roots, α ∈ ∆+, and let {β+jα : −p ≤ j ≤ q},
where p and q are non-negative integers, be the α-string through β. Then the subspace

L =

q∑
j=−p

gβ+jα
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of g becomes an SL(2,C)-module via the group homomorphism θα : SL(2,C)→ G and

the adjoint representation of G on g. On the other hand, let Lp+q be the vector space

of homogeneous polynomials in (x, y) of degree p+ q with the action of SL(2,C) by((
a b
c d

)
· f
)

(x, y) = f

(
(x, y)

(
a b
c d

))
= f (ax+ cy, bx+ dy) ,

(
a b
c d

)
∈ SL(2,C).

Let {u0, . . . , up+q} be the basis of Lp+q given by

(36) ui = ε0ε1 · · · εi−1

(
p+ q

i

)
xiyp+q−i, 0 ≤ i ≤ p+ q,

where for 0 ≤ j ≤ p+ q − 1, εj ∈ C is defined by

(37) εj =
j + 1

Nα,β−(p−j)α
,

and it is understood that ε0ε1 · · · εi−1 = 1 when i = 0 in (36).

Lemma 4.2. With the notation as above, the linear map

(38) χ : L −→ Lp+q : χ(eβ+jα) = up+j , −p ≤ j ≤ q,

is an SL(2,C)-equivariant isomorphism.

Proof. The two irreducible representations of SL(2,C) on L and on Lp+q, being of the

same dimension, must be isomorphic, and by Schur’s lemma, there is a unique SL(2,C)-

equivariant isomorphism χ : L → Lp+q such that χ(eβ−pα) = u0. Straightforward

calculations show that χ must be given as in (38). See also [6, Lemma 6.2.2].

Q.E.D.

The following Lemma 4.3 is the key to the proof of Theorem 4.10 in §4.2.

Lemma 4.3. Let α ∈ ∆+ and β ∈ ∆ be linearly independent, and let {β + jα : −p ≤
j ≤ q} be the α-string through β. Then for any t ∈ C, one has

Ad(uα(t)ṡα)−1(eβ) =

q∑
j=0

(−1)p
ε0ε1 · · · εp−1

ε0ε1 · · · εq−j−1

(
p+ j

j

)
tjesα(β)−jα,(39)

Ad(u−α(t))−1(eβ) =

p∑
j=0

(−1)jεp−jεp−j+1 · · · εp−1

(
q + j

j

)
tjeβ−jα.(40)

Proof. By Lemma 4.2, one has

χ
(
Ad(uα(t)ṡα)−1(eβ)

)
=

(
0 1
−1 t

)
· up

= ε0ε1 · · · εp−1

(
p+ q

p

)
(−y)p(x+ ty)q

= ε0ε1 · · · εp−1

(
p+ q

p

)
(−y)p

 q∑
j=0

(
q

j

)
tjyjxq−j


=

q∑
j=0

(−1)p
ε0ε1 · · · εp−1

ε0ε1 · · · εq−j−1

(
p+ j

j

)
tjuq−j .
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It follows that

Ad(uα(t)ṡα)−1(eβ) =

q∑
j=0

(−1)p
ε0ε1 · · · εp−1

ε0ε1 · · · εq−j−1

(
p+ j

j

)
tjeβ+(q−p−j)α.

As (see for example, [25, Proposition 25.1])
2〈β, α〉
〈α, α〉

= p− q, one has, for any j ∈ Z,

sα(β)− jα = β − 2〈β, α〉
〈α, α〉

α− jα = β + (q − p− j)α,

from which (39) follows. One proves (40) similarly (see also [6, Lemma 6.2.1]).

Q.E.D.

To unify the two formulas in (39) and (40), for α ∈ ∆+, κ ∈ {sα, e}, and t ∈ C, let

(41) pκ,α(t) = u−κ(α)(t)κ̇ ∈ G,

and for β ∈ ∆, β 6= ±α, as in Lemma 4.3, let

cκ,jα,β = (−1)p
ε0ε1 · · · εp−1

ε0ε1 · · · εq−j−1

(
p+ j

j

)
, j = 0, . . . , q and κ = sα,(42)

cκ,jα,β = (−1)jεp−jεp−j+1 · · · εp−1

(
q + j

j

)
, j = 0, . . . , p and κ = e.(43)

Lemma 4.3 can now be reformulated as follows.

Lemma 4.4. Let α ∈ ∆+ and β ∈ ∆ be linearly independent. Then for κ ∈ {sα, e} and

t ∈ C,

(44) Ad(pκ,α(t))−1(eβ) =
∑
j≥0,

κ(β)−jα∈∆

cκ,jα,β t
j eκ(β)−jα.

Proof. Let j ∈ Z and j ≥ 0. When κ = e, κ(β)−jα ∈ ∆ if and only if β−jα ∈ ∆, which

is the same as 0 ≤ j ≤ p. When κ = sα, κ(β)− jα ∈ ∆ if and only if sα(β + jα) ∈ ∆,

which is the same as β + jα ∈ ∆, which, in turn, is the same as 0 ≤ j ≤ q.

Q.E.D.

Remark 4.5. Recall that a basis {hα}α∈Γ∪{eα ∈ gα}α∈∆ of g is said to be a Chevalley

basis if [eα, e−α] = hα for all α ∈ ∆, and if for all α, β ∈ ∆ such that α + β ∈ ∆,

one has Nα,β = −N−α,−β. If {hα}α∈Γ ∪ {eα ∈ gα}α∈∆ is a Chevalley basis of g, by [6,

Theorem 4.1.2] and [25, Theorem 25.2], Nα,β = ±(p + 1) for any roots α and β such

that α+β ∈ ∆, where p is the largest non-negative integer such that β−pα ∈ ∆. Thus,

for α and β as in Lemma 4.3 and for every 0 ≤ j ≤ p + q − 1, one has εj = ±1, and

consequently all the coefficients cκ,jα,β appearing in (44) are integers. �

4.2. The vector field σeβ in coordinates. Fix again u = (s1, . . . , sn) = (sα1 , . . . , sαn)

be a sequence of simple reflections, and let Zu be the corresponding Bott-Samelson

variety. Let {eα ∈ gα : α ∈ Γ} be a set of root vectors for the simple roots, and extend

it to a basis {hα}α∈Γ ∪ {eα ∈ gα}α∈∆ of g such that [eα, e−α] = hα for all α ∈ ∆. Recall
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from (30) that for x ∈ b, σx is the vector field on Zu generating the action of B on Zu

in the direction of x. For β ∈ ∆+, we then have the vector field σeβ on Zu given by

(45) σeβ (p) =
d

dt
|t=0((exp teβ) · p), p ∈ Zu.

On the other hand, recall that the choice {eα : α ∈ Γ} gives rise to coordinates

(z1, . . . , zn) on the affine chart Oγ for γ ∈ Υu via (22). For each γ ∈ Υu, we now

use the results in §4.1 to compute the vector fields σeβ , β ∈ ∆+, in the coordinates

(z1, . . . , zn) on Oγ in terms of root strings and structure constants of g in the basis

{hα}α∈Γ ∪ {eα ∈ gα}α∈∆ of g.

For x ∈ b and 1 ≤ k ≤ n, consider also the vector field σ
(k)
x on the Bott-Samelson

variety Z(sk,...,sn) defined by

(46) σ(k)
x (p) =

d

dt
|t=0((exp tx) · p), p ∈ Z(sk,...,sn),

where · is the left action of B on Z(sk,...,sn) in (19). Note that σx = σ
(1)
x for x ∈ b and

that for 1 ≤ i ≤ n − 1, σi = σ
(i+1)
eαi

for the vector field σi on Z(si+1,...,sn) defined in

Notation 3.1.

Fix γ = (γ1, . . . , γn) ∈ Υu and let again (z1, . . . , zn) be the coordinates on Oγ ⊂ Zu.

Recall from Notation 3.1 that for 1 ≤ k ≤ n, we regard polynomials in (zk, . . . , zn) as

regular functions on both O(γk,...,γn) ⊂ Z(sk,...,sn) and on Oγ . In particular, for x ∈ b and

k ≤ j ≤ n, σ
(k)
x (zj), the action of σ

(k)
x on zj as a function on O(γk,...,γn), is also regarded

as a regular function on Oγ . We now a recursive formula for σeβ as a vector field on Oγ .

Lemma 4.6. Let β ∈ ∆+ and γ = (γ1, . . . , γn) ∈ Υu.

1) β = α1 and γ1 = s1. In this case, σeβ (z1) = 1 and σeβ (zk) = 0 for all k ≥ 2;

2) β = α1 and γ1 = e. In this case, σeβ (z1) = −z2
1 and for k ≥ 2,

σeβ (zk) = σ(2)
eβ

(zk) + z1σ
(2)
hα1

(zk);

3) β 6= α1. In this case, σeβ (z1) = 0 and for k ≥ 2,

σeβ (zk) =
∑
j≥0,

γ1(β)−jα1∈∆+

cγ1,jα1,β
zj1 σ

(2)
eγ1(β)−jα1

(zk).

Proof. Cases 1) and 2) follow from (32) and (33) respectively. Case 3) follows from

Lemma 4.4 and the fact that, as β ∈ ∆+ and β 6= α1, all the roots in the α1-string

through γ1(β) are positive.

Q.E.D.

To combine the cases in Lemma 4.6, we note that when β = α1,

{j1 ≥ 0 : γ1(β)− j1α1 ∈ ∆+} =

{
∅, if γ1 = s1,

{0}, if γ1 = e.

For α ∈ Γ, also set

(47) ce,0α,α = 1.

We can now reformulate Lemma 4.6 as follows.
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Lemma 4.7. Let β ∈ ∆+ and γ = (γ1, . . . , γn) ∈ Υu. Then

(48) σeβ (z1) =


1, if β = α1 and γ1 = s1,

−z2
1 , if β = α1 and γ1 = e,

0, if β 6= α1,

and for 2 ≤ k ≤ n,

σeβ (zk) =
∑
j1≥0,

γ1(β)−j1α1∈∆+

cγ1,j1α1,β
zj11 σ(2)

eβγ1(β)−j1α1
(zk) +

{
z1σ

(2)
hα1

(zk), if β = α1 and γ1 = e,

0, otherwise.

(49)

To obtain a closed formula for the vector field σeβ on Zu, we introduce more notation.

Let N denote the set of non-negative integers.

Notation 4.8. For β ∈ ∆+ and (j1, . . . , jn) ∈ Nn, let β(j1) = γ1(β)− j1α1 ∈ h∗, and for

2 ≤ k ≤ n, let

β(j1,...,jk) = γk(β(j1,...,jk−1))− jkαk
= γkγk−1 · · · γ2γ1(β)− j1γkγk−1 · · · γ2(α1)− . . .− jk−1γk(αk−1)− jkαk ∈ h∗,

Jk =
{

(j1, . . . , jk−1) ∈ Nk−1 : β(j1,...,jl) ∈ ∆+, ∀ 1 ≤ l ≤ k − 1, and β(j1,...,jk−1) = αk

}
.

For 2 ≤ k ≤ n and for (j1, . . . , jk−1) ∈ Jk, let

cγj1,...,jk−1
= cγ1,j1α1,β

· · · cγk−1,jk−1

αk−1,β(j1,...,jk−2)
6= 0.(50)

Here it is understood that β(j1,...,jk−2) = β if k = 2. Also note that for k ≥ 2 and

1 ≤ i ≤ k − 1, cγi,jiαi,β(j1,...,ji−1)
is defined in (42) and (43) when β(j1,...,ji−1) 6= αi. When

β(j1,...,ji−1) = αi, one has γi(β(j1,...,ji−1)) − jiαi ∈ ∆+ only when γi = e and ji = 0, and

in this case cγi,jiαi,β(j1,...,ji−1)
= 1 as defined in (47).

For each 1 ≤ k ≤ n, introduce two functions φγβ(z1, . . . , zk−1) and ψγβ(z1, . . . , zk−1) as

follows: for k = 1, let

(51) φγβ(z1, . . . , zk−1) =

{
1 if β = α1,

0 if β 6= α1,
and ψγβ(z1, . . . , zk−1) = 0,

and for 2 ≤ k ≤ n, let

φγβ(z1, . . . , zk−1) =
∑

(j1,...,jk−1)∈Jk

cγj1,...,jk−1
zj11 z

j2
2 · · · z

jk−1

k−1 ,(52)

ψγβ(z1, . . . , zk−1) = −
∑

1≤i≤k−1, γi=e

2〈γi(αi), γk(αk)〉
〈γi(αi), γi(αi)〉

ziφ
γ
β(z1, . . . zi−1),(53)

where recall that γi = γ1γ2 · · · γi for 1 ≤ i ≤ n, and the function φγβ(z1, . . . , zk−1) (resp.

ψγβ(z1, . . . , zk−1)) is defined to be 0 if the index set for the summation on the right hand

side of (52) (resp. (53)) is empty. �

Remark 4.9. Since a root string can have length at most 4, it follows from (52)

and (53) that the powers of any coordinate zi in the polynomials φγβ(z1, . . . , zk−1) and

ψγβ(z1, . . . , zk−1) can be at most 3 (and 1 when g is simply-laced). �
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The following Theorem 4.10 is our main result for the vector field σeβ .

Theorem 4.10. Let β ∈ ∆+ and let γ = (γ1, . . . , γn) ∈ Υu. The vector field σeβ acts on

the coordinate functions (z1, . . . , zn) on the affine chart Oγ as follows: for 1 ≤ k ≤ n,

(54) σeβ (zk) =

{
φγβ(z1, . . . , zk−1) + ψγβ(z1, . . . , zk−1)zk, if γk = sk,

−φγβ(z1, . . . , zk−1)z2
k + ψγβ(z1, . . . , zk−1)zk, if γk = e.

Proof. When k = 1, Theorem 4.10 holds by (51) and by Lemma 4.7. Let k ≥ 2. Let

J ′k =
{

(j1, . . . , jk−1) ∈ Nk−1 : β(j1,...,jl) ∈ ∆+, ∀ 1 ≤ l ≤ k − 1
}
,

and define cγj1,...,jk−1
∈ C× for (j1, . . . , jk−1) ∈ J ′k as in (50). Then by Lemma 4.7,

σeβ (zk) =
∑
j1∈J ′2

cγ1,j1α1,β
zj11 σ

(2)
eβ(j1)

(zk) +

{
z1σ

(2)
hα1

(zk), if β = α1 and γ1 = e,

0, otherwise.
(55)

Applying (55) to σ
(2)
eβ(j1)

(zk) and repeating the process, one sees using the definition of

φγβ(z1, . . . , zi−1) for 1 ≤ i ≤ k − 1 that

σeβ (zk) =
∑

(j1,...,jk−1)∈J ′k

cγj1,...,jk−1
zj11 · · · z

jk−1

k−1 σ
(k)
eβ(j1,...,jk−1)

(zk)

+
∑

1≤i≤k−1, γi=e

φγβ(z1, . . . , zi−1)ziσ
(i+1)
hαi

(zk).

Let z′k = 1 if γk = sk and z′k = −z2
k if γk = e. By Lemma 4.6, for (j1, . . . , jk−1) ∈ J ′k, one

has σ
(k)
eβ(j1,...,jk−1)

(zk) = 0 unless β(j1,...,jk−1) = αk, in which case σ
(k)
eβ(j1,...,jk−1)

(zk) = z′k.

Thus

σeβ (zk) =
∑

(j1,...,jk−1)∈Jk

cγj1,...,jk−1
zj11 · · · z

jk−1

k−1 z
′
k +

∑
1≤i≤k−1, γi=e

φγβ(z1, . . . , zi−1)ziσ
(i+1)
hαi

(zk)

= φγβ(z1, . . . , zk−1)z′k +
∑

1≤i≤k−1, γi=e

φγβ(z1, . . . , zi−1)ziσ
(i+1)
hαi

(zk)

On the other hand, for each 1 ≤ i ≤ k − 1 with γi = e,

σ
(i+1)
hαi

(zk) = −2〈αi, γi+1 · · · γk(αk)〉
〈αi, αi〉

zk = −2〈γi(αi), γk(αk)〉
〈γi(αi), γi(αi)〉

zk.

It follows that

σeβ (zk) = φγβ(z1, . . . , zk−1)z′k + ψγβ(z1, . . . , zk−1)zk.

Q.E.D.

Remark 4.11. In the context of Theorem 4.10, for a given γ = (γ1, . . . , γn) ∈ Υu

and 1 ≤ k ≤ n, let γ′ = (γ1, . . . , γk−1, γksk, γ
′
k+1, . . . , γ

′
n) ∈ Υu, where γ′j ∈ {e, sj} are

arbitrary for k+1 ≤ j ≤ n, and let (z′1, . . . , z
′
n) be the coordinates on Oγ′ . Then zj = z′j

for 1 ≤ j ≤ k − 1, and z′k = 1/zk. By (52) and (53),

φγβ(z1, . . . , zk−1) = φγ
′

β (z1, . . . , zk−1) and ψγβ(z1, . . . , zk−1) = −ψγ
′

β (z1, . . . , zk−1).

One can thus derive one case of the formula (54) from the other case using the change

of coordinates z′k = 1/zk. �
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Example 4.12. Let β be a simple root and let γ = (e, e, . . . , e) ∈ Υu. Then in the

affine chart O(e,e,...,e) with coordinates (z1, . . . , zn) given in (22), the vector field σeβ is

given by

(56) σeβ (zk) = −2〈β, αk〉
〈β, β〉

 ∑
1≤i≤k−1, αi=β

zi

 zk +

{
0, if αk 6= β,

−z2
k, if αk = β,

1 ≤ k ≤ n.

Indeed, let 1 ≤ k ≤ n. By Theorem 4.10, one has,

σeβ (zk) = −φγβ(z1, . . . , zk−1)z2
k + ψγβ(z1, . . . , zk−1)zk.

As β is a simple root, one sees from the definition of φγβ that φγβ(z1, . . . , zk−1) = 1 if

αk = β and φγβ(z1, . . . , zk−1) = 0 if αk 6= β. It follows from the definition of ψγβ that

ψγβ(z1, . . . , zk−1) = −2〈β, αk〉
〈β, β〉

 ∑
1≤i≤k−1, αi=β

zi

 .

This proves (56). Applying Lemma 3.2 and (56), one sees that in the affine chart

O(s1,e,...,e), the Poisson structure Π is given by

{zi, zk} = 〈αi, αk〉zizk, if 2 ≤ i < k ≤ n,

{z1, zk} =

−〈α1, αk〉
(
z1 − 2

∑
2≤i≤k−1, αi=α1

zi

)
zk, if 2 ≤ k ≤ n and αk 6= α1,

−〈α1, α1〉
(
z1 − zk − 2

∑
2≤i≤k−1, αi=α1

zi

)
zk, if 2 ≤ k ≤ n and αk = α1.

On the other hand, by Lemma 3.4, in the coordinates (ξ1, . . . , ξn) on O(e,e,...,e) given by

(ξ1, ξ2, . . . , ξn) 7−→ [u−α1(ξ1), u−α2(ξ2), . . . , u−αn(ξn)],

the Poisson structure πn is given by {ξi, ξk} = 〈αi, αk〉ξiξk for all 1 ≤ i < k ≤ n. It

is easy to see that on the intersection O(e,e,...,e) ∩ O(s1,e,...,e), the changes between the

coordinates (ξ1, ξ2, . . . , ξn) on O(e,e,...,e) and the coordinates (z1, z2, . . . , zn) on O(s1,e,...,e)

are given by z1 = 1/ξ1, and for 2 ≤ k ≤ n,

zk =


ξk

(∑
αi=α1

1≤i≤k−1
ξi

)−2〈α1,αk〉
〈α1,α1〉

if αk 6= α1,

ξk

(∑
αi=α1

1≤i≤k−1
ξi

)−1(
ξk +

∑
αi=α1

1≤i≤k−1
ξi

)−1

if αk = α1.

It is remarkable (see [11] for some details of the calculations) that these changes of

coordinates indeed change the quadratic Poisson structure expressed in the coordinates

(z1, . . . , zn) to the log-canonical one in the coordinates (ξ1, . . . , ξn). �

4.3. The Poisson structure πn in coordinates, II. Let again {eα ∈ gα : α ∈ Γ} be

a set of root vectors for the simple roots, which gives rise to the coordinates (z1, . . . , zn)

on each affine chart Oγ via (22). Recall from Lemma 3.2 that the Poisson structure πn
can be expressed in the coordinates (z1, . . . , zn) on Oγ in terms of the vector fields σi,

1 ≤ i ≤ n − 1 on the Bott-Samelson variety Z(si+1,...,sn), given in (24). We now apply

Theorem 4.10 to the vector fields σi.

To this end, extend the set {eα ∈ gα : α ∈ Γ} to a basis {hα}α∈Γ ∪ {eα ∈ gα}α∈∆ of

g such that [eα, e−α] = hα for all α ∈ ∆. Fix γ = (γ1, . . . , γn) ∈ Υu. For 1 ≤ i < k ≤ n,
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define two polynomials in the variables (zi+1, . . . , zk−1) by

φγi,k(zi+1, . . . , zk−1)
def
= φ

(γi+1,...,γn)
αi (zi+1, . . . , zk−1),(57)

ψγi,k(zi+1, . . . , zk−1)
def
= ψ

(γi+1,...,γn)
αi (zi+1, . . . , zk−1)(58)

by taking β = αi and replacing u by (si+1, . . . , sn) and γ by (γi+1, . . . , γn) in (52) and

(53). Here recall that when k = i + 1, it is understood that C[zi+1, . . . , zk−1] = C.

Let 1 ≤ i ≤ n − 1. By Theorem 4.10, the vector field σi is given in the coordinates

(zi+1, . . . , zn) on the affine chart O(γi+1,...,γn) of Z(si+1,...,sn) by

(59)

σi(zk) =

{
φγi,k(zi+1, . . . , zk−1) + ψγi,k(zi+1, . . . , zk−1)zk, if γk = sk,

−φγi,k(zi+1, . . . , zk−1)z2
k + ψγi,k(zi+1, . . . , zk−1)zk, if γk = e,

i < k ≤ n.

Lemma 4.13. The polynomials φγi,k(zi+1, . . . , zk−1) and ψγi,k(zi+1, . . . , zk−1), where γ ∈
Υu and 1 ≤ i < k ≤ n, are independent of the extension of {eα : α ∈ Γ} to the basis

{hα}α∈Γ ∪ {eα ∈ gα}α∈∆ of g.

Proof. The coordinates (z1, . . . , zn) on Oγ and the definition of the vector fields σi,

1 ≤ i ≤ n− 1, on Z(si+1,...,sn) depend only on the choice of {eα : α ∈ Γ} and not on its

extension to the basis {hα}α∈Γ ∪ {eα ∈ gα}α∈∆ of g.

Q.E.D.

The following Theorem 4.14, which expresses more explicitly the formula for the

Poisson structure πn on Zu in the affine coordinates given in Lemma 3.2, is a combination

of Lemma 3.2 and Theorem 4.10.

Theorem 4.14. Let {eα : α ∈ Γ} be any choice of a set of root vectors for the simple

roots and let γ ∈ Υu. Then in the coordinates (z1, . . . , zn) on the affine chart Oγ of Zu

determined by {eα : α ∈ Γ}, the Poisson structure πn is given by

(60) {zi, zk} =

{
〈γi(αi), γk(αk)〉zizk, if γi = e

−〈γi(αi), γk(αk)〉zizk − 〈αi, αi〉σi(zk) if γi = si
, 1 ≤ i < k ≤ n,

where for 1 ≤ i < k ≤ n, σi(zk) ∈ C[zi+1, . . . , zk] is given in (59). In particular, when

γ = u is the full subexpression, σi(zk) ∈ C[zi+1, . . . , zk−1] for all 1 ≤ i < k ≤ n.

5. The polynomial Poisson algebras (C[z1, . . . , zn], { , }γ)

Throughout §5, fix a Bott-Samelson variety Zu with u = (s1, . . . , sn) = (sα1 , . . . , sαn)

and αi ∈ Γ for 1 ≤ i ≤ n,

The coordinates (z1, . . . , zn) on the affine charts Oγ of Zu, where γ ∈ Υu, depend

on the choice of the set {eα : α ∈ Γ} of root vectors for the simple roots. A different

choice of such a set gives rise to re-scalings of the coordinates and thus may result in

a different Poisson bracket on the polynomial algebra of the coordinate functions. We

show in §5.1 that this is not the case.
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5.1. Re-scaling of coordinates. Let {eα : α ∈ Γ} and {e′α : α ∈ Γ} be two sets of

choices of root vectors for the simple roots. For α ∈ Γ, let u±α, u
′
±α : C → G be the

one-parameter subgroups of G respectively determined by the sl(2)-triples {eα, e−α, hα}
and {e′α, e′−α, hα} (see §1.7), and let

ṡα = uα(−1)u−α (1)uα (−1) ∈ NG(T ) and ṡ′α = u′α(−1)u′−α (1)u′α (−1) ∈ NG(T ).

For z ∈ C, and κ ∈ {e, sα}, let

pκ,α(z) = u−κ(α)(z)κ̇ ∈ Psα and p′κ,α(z) = u′−κ(α)(z)κ̇
′ ∈ Psα ,

where recall that ė = ė′ = e ∈ G. For each γ = (γ1, . . . , γn) ∈ Υu, one then has two sets

of coordinates (z1, . . . , zn) and (z′1, . . . , z
′
n) on Oγ , respectively by

Cn 3 (z1, . . . , zn) 7−→ [pγ1,α1(z1), . . . , pγn,αn(zn)] ∈ Oγ ,(61)

Cn 3 (z′1, . . . , z
′
n) 7−→ [p′γ1,α1

(z′1), . . . , p′γn,αn(z′n)] ∈ Oγ .(62)

The main result of §5.1 is the following Proposition 5.1.

Proposition 5.1. Let γ = (γ1, . . . , γn) ∈ Υu and let the two sets of coordinates

(z1, . . . , zn) and (z′1, . . . , z
′
n) on Oγ be given as in (61) and (62). For 1 ≤ i < k ≤ n, let

{zi, zk} = fi,k(z1, . . . , zn) ∈ C[z1, . . . , zn]. Then

{z′i, z′k} = fi,k(z
′
1, . . . , z

′
n), 1 ≤ i < k ≤ n.

Remark 5.2. It is easy to see that the two sets of coordinates are related by re-scalings,

i.e., there exist δ1, . . . , δn ∈ C× such that z′i = δizi for each 1 ≤ i ≤ n. One thus has

{z′i, z′k} = δiδk{zi, zk} = δiδkfi,k(z1, . . . , zn) = δiδkfi,k(δ
−1
1 z′1, . . . , δ

−1
n z′n),

for all 1 ≤ i < k ≤ n. Proposition 5.1 states that the polynomials fi,k satisfy

δiδkfi,k(δ
−1
1 z′1, . . . , δ

−1
n z′n) = fi,k(z

′
1, . . . , z

′
n), 1 ≤ i < k ≤ n.

We will show in Lemma 5.4 that the re-scaling of the coordinates comes from the action

of an element t ∈ T , from which Proposition 5.1 will follow. �

Lemma 5.3. Let α ∈ Γ and let λα ∈ C× be such that e′α = λαeα. Then for κ ∈ {e, sα}
and z ∈ C, one has

(63) p′κ,α(z) =

{
pκ,α(λαz)α

∨(1/λα), κ = sα,

pκ,α(z/λα), κ = e.

Proof. Let θα, θ
′
α : SL(2,C) → G be the Lie group homomorphisms respectively deter-

mined by the sl(2)-triples {eα, e−α, hα} and {e′α, e′−α, hα}, where note that e′−α = λ−1
α e−α

(see §1.7). Choose either one of the two square roots of λα in C× and denote it by
√
λα.

Then

θ′α = Adα∨(
√
λα) ◦ θα,

where Adα∨(
√
λα) : G→ G denotes conjugation by α∨(

√
λα) ∈ T . It follows that

(64) ṡ′α = Adα∨(
√
λα)(ṡα) = ṡα α

∨(1/λα),

and thus

p′κ,α(z) = Adα∨(
√
λα)(pκ,α(z)) =

{
pκ,α(λαz)α

∨(1/λα), κ = sα,

pκ,α(z/λα), κ = e.
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Q.E.D.

For α ∈ Γ, let λα ∈ C× be as in Lemma 5.3. Choose any t ∈ T such that

(65) tα = λα, ∀ α ∈ Γ.

Such an element indeed exists, as it can be taken to be any of the preimages in T ⊂ G of

the unique such element in the maximal torus T/Z(G) of Gad
def
= G/Z(G), where Z(G)

is the center of G. Recall from (19) that · denotes the left action of B on Zu.

Lemma 5.4. For any t ∈ T satisfying (65) and for any γ = (γ1, . . . , γn) ∈Υu, one has

(66) t · [pγ1,α1(z1), . . . , pγn,αn(zn)] = [p′γ1,α1
(z1), . . . , p′γn,αn(zn)], (z1, . . . , zn) ∈Cn.

Proof. We prove Lemma 5.4 by induction on n. When n = 1, t−γ1(α1) = tα1 = λα1 if

γ1 = s1 and t−γ1(α1) = t−α1 = 1/λα1 if γ1 = e, so by Lemma 5.3,

t · [pγ1,α1(z1)] = [pγ1,α1(t−γ1(α1)z1)] = [p′γ1,α1
(z1)].

Let n ≥ 2 and assume that Lemma 5.4 holds for n− 1. Then

t · [pγ1,α1(z1), . . . , pγn,αn(zn)]

= [pγ1,α1(t−γ1(α1)z1), tγ1pγ2,α2(z2), pγ3,α3(z3), . . . , pγn,αn(zn)].

Here for κ ∈ {e, sα}, we set tκ = κ̇−1tκ̇ ∈ T . If γ1 = e, then pγ1,α1(t−γ1(α1)z1) =

pγ1,α1(z1/λα1) = p′γ1,α1
(z1), so (66) holds by the induction assumption. Assume that

γ1 = s1. Then by Lemma 5.3,

t · [pγ1,α1(z1), . . . , pγn,αn(zn)]

= [p′γ1,α1
(z1), α∨1 (λα1)ts1pγ2,α2(z2), pγ3,α3(z3), . . . , pγn,αn(zn)].

Consider now the element α∨1 (λα1)ts1 ∈ T . For every α ∈ Γ, one has

(α∨1 (λα1)ts1)α = λ
2〈α,α1〉
〈α1,α1〉
α1 ts1(α) = t

2〈α,α1〉
〈α1,α1〉

α1+s1(α)
= tα = λα.

By the induction assumption, one then has

α∨1 (λα1)ts1 · [pγ2,α2(z2), pγ3,α3(z3), . . . , pγn,αn(zn)]

= [p′γ2,α2
(z2), . . . , p′γn,αn(zn)] ∈ Z(s1,...,sn),

and hence (66) holds.

Q.E.D.

Proof of Proposition 5.1: Let (z1, . . . , zn), (z′1, . . . , z
′
n) ∈ Cn be such that

[pγ1,α1(z1), . . . , pγn,αn(zn)] = [p′γ1,α1
(z′1), . . . , p′γn,αn(z′n)] ∈ Oγ .

Let t be any element in T satisfying (65). By Lemma 5.4,

t · [pγ1,α1(z′1), . . . , pγn,αn(z′n)] = [p′γ1,α1
(z′1), . . . , p′γn,αn(z′n)]

= [pγ1,α1(z1), . . . , pγn,αn(zn)].

It follows that

[pγ1,α1(z′1), . . . , pγn,αn(z′n)] = t−1 · [pγ1,α1(z1), . . . , pγn,αn(zn)].
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Denote by (t−1)∗ : C[Oγ ] → C[Oγ ] the Poisson isomorphism on the algebra C[Oγ ] of

regular functions on Oγ induced by the action of t−1 ∈ T . One then has z′i = (t−1)∗zi
for every 1 ≤ i ≤ n, and hence for any 1 ≤ i, k ≤ n,

{z′i, z′k} = {(t−1)∗zi, (t−1)∗zk} = (t−1)∗{zi, zk} = (t−1)∗fi,k = fi,k(z
′
1, . . . , z

′
n).

This finishes the proof of Proposition 5.1.

5.2. The Poisson algebra (C[z1, . . . , zn], { , }γ) as an iterated T -Poisson Ore ex-

tension of C. Recall [18, 27, 37] that a Poisson polynomial algebra

A = (C[z1, . . . , zn], { , })

is said to be an iterated Poisson Ore extension (of C) if the Poisson bracket { , } satisfies

{zi,C[zi+1, . . . , zn]} ⊂ ziC[zi+1, . . . , zn] + C[zi+1, . . . , zn], 1 ≤ i ≤ n− 1.

In such a case, define the derivations ai and bi on C[zi+1, . . . , zn] by

(67) {zi, f} = ziai(f) + bi(f), 1 ≤ i ≤ n− 1, f ∈ C[zi+1, . . . , zn].

Then [37] for each 1 ≤ i ≤ n − 1, ai is a Poisson derivation, and bi an ai-Poisson

derivation, of the Poisson subalgebra C[zi+1, . . . , zn] of the Poisson algebra A, i.e.,

ai{f, g} = {ai(f), g}+ {f, ai(g)},(68)

bi{f, g} = {bi(f), g}+ {f, bi(g)}+ ai(f)bi(g)− bi(f)ai(g)(69)

for f, g ∈ C[zi+1, . . . , zn]. In this case, the Poisson algebra A is also denoted as

(70) A = C[zn] [zn−1; an−1, bn−1] · · · [z2; a2, b2] [z1; a1, b1].

An iterated Poisson Ore extension as in (70) is said to be nilpotent [20, Definition 4] if bi
is a locally nilpotent derivation of C[zi+1, . . . , zn] for each 1 ≤ i ≤ n− 1. The following

Definition 5.5 follows [20, Definition 4] but emphasizes on the torus actions.

Definition 5.5. Let A = (C[z1, . . . , zn], { , }) be a polynomial Poisson algebra and T a

complex algebraic torus with Lie algebra t acting on A rationally [18] by Poisson algebra

automorphisms. A is said to be an iterated T-Poisson Ore extension (of C) (with respect

to the given T-action) if each zi, 1 ≤ i ≤ n, is a weight vector for the T-action with

weight λi ∈ Hom(T,C×), and if

A = C[zn] [zn−1; an−1, bn−1] · · · [z2; a2, b2] [z1; a1, b1]

is an iterated Poisson Ore extension such that there exist h1, . . . , hn ∈ t satisfying

λi(hi) 6= 0 and ai = hi|C[zi+1,...,zn] for each 1 ≤ i ≤ n − 1. Such an iterated T-Poisson

Ore extension is said to be symmetric if

bi(zk) ∈ C[zi+1, . . . , zk−1], 1 ≤ i < k ≤ n,

and if, there exist h′1, . . . , h
′
n ∈ t such that λi(h

′
i) 6= 0 for 2 ≤ i ≤ n and

(71) λi(h
′
k) = λk(hi), 1 ≤ i < k ≤ n.

Following [23] (see Remark 5.8), a polynomial Poisson algebra which is a symmetric

iterated T-Poisson Ore extension for some torus T is called a symmetric Poisson CGL

extension (of C). �



26 BALÁZS ELEK AND JIANG-HUA LU

Remark 5.6. For an iterated T-Poisson Ore extension as in Definition 5.5, one has

{zi, zk} = ai(zk)zi + bi(zk) = λk(hi)zizk + bi(zk) ∈ λk(hi)zizk + C[zi+1, . . . , zn]

for all 1 ≤ i < k ≤ n, a property referred to as semi-quadratic in [20, Definition 4]. �

Remark 5.7. Let A be an iterated T-Poisson Ore extension as in Definition 5.5. Then

(72) [h|C[zi+1,...,zn], bi] = λi(h)bi, 1 ≤ i ≤ n− 1, h ∈ t,

where the left hand side denotes the commutator bracket between the two derivations

h|C[zi+1,...,zn] and bi of C[zi+1, . . . , zn]. In fact, (72) is equivalent to

[h|C[zi+1,...,zn], bi](zk) = λi(h)bi(zk), 1 ≤ i < k ≤ n, h ∈ t,

which, by the fact that zj is a T-weight vector with weight λj for each 1 ≤ j ≤ n, is in

turn equivalent to

h({zi, zk}) = {h(zi), zk}+ {zi, h(zk)}, h ∈ t, 1 ≤ i < k ≤ n,

which follows from the assumption that T acts on A by Poisson automorphisms. In

particular, one has

[ai, bi] = λi(hi)bi, 1 ≤ i ≤ n− 1.

Let 1 ≤ i ≤ n − 1 and consider the 2-dimensional Lie bialgebra b2 = Cx + Cy with

Lie bracket [x, y] = 2y and Lie co-bracket δ : b2 → ∧2b2 given by δ(x) = 0 and

δ(y) = −λi(hi)
2 x ∧ y. Consider the Poisson subalgebra Ai+1 = C[zi+1, . . . , zn] of A and

let DerC(Ai+1) be the Lie algebra of derivations (for the commutative algebra structure)

of Ai+1. Define the Lie algebra anti-homomorphism σ : b2 → DerC(Ai+1) by

σ(x) = − 2

λi(hi)
ai, σ(y) =

1

λi(hi)
bi.

Then (68) and (69) are equivalent to σ being a left Poisson action of the Lie bialgebra

(b2, δ) on the Poisson algebra Ai+1 (see [30, §2]). Let b∗2 be the dual vector space of b2

with basis (x∗, y∗) dual to the basis (x, y) of b2. Then the dual Lie bialgebra of (b2, δ)

is b∗2 with Lie bracket [x∗, y∗] = −λi(hi)
2 y∗ and Lie co-bracket x∗ 7→ 0 and y∗ 7→ 2x∗∧ y∗.

Let ρ : b∗2 → DerCC[zi] be the Lie algebra homomorphism given by

ρ(x∗) =
λi(hi)

2
zi∂/∂zi, ρ(y∗) = −λi(hi)∂/∂zi.

Then ρ is a right Poisson action of the Lie bialgebra b∗2 on C[zi] with the trivial Poisson

bracket. The Poisson Ore extension Ai := C[zi, zi+1, . . . , zn] of Ai+1 with the Poisson

bracket given in (67) can now be interpreted as the mixed product Poisson structure

on Ai = C[zi] ⊗ Ai+1 defined by the pair (ρ, σ) of Poisson actions of Lie bialgebras

introduced in [30]. �

Remark 5.8. A symmetric iterated T-Poisson Ore extension is automatically nilpotent.

Indeed, let 1 ≤ i ≤ n − 1 and let the notation be as in Definition 5.5. To show that

bi is locally nilpotent as a derivation of C[zi+1, . . . , zn], observe first that for integers

m,N ≥ 1 and f1, f2, . . . , fm ∈ C[zi+1, . . . , zn], bNi (f1f2 · · · fm) is a linear combination

of terms of the form bN1
i (f1)bN2

i (f1) · · · bNmi (fm) with N1 + N2 + · · · + Nm = N . Thus

bi is locally nilpotent if for each i < k ≤ n, bNki (zk) = 0 for some integer Nk ≥ 1.

As bi(zi+1) ∈ C, one has b2i (zi+1) = 0. Assume that there exist Nj ≥ 1 such that

b
Nj
i (zj) = 0 for i + 1 ≤ j ≤ k − 1. As bi(zk) ∈ C[zi+1, . . . , zk−1], the above observation
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shows that there is an integer Nk ≥ 1 such that bNki (zk) = 0. Induction on k now shows

that bi is locally nilpotent. Observe also that if A is a symmetric iterated T-Poisson Ore

extension, then for 1 ≤ i < k ≤ n,

(73) {zi, zk} = λk(hi)zizk + bi(zk) ∈ λk(hi)zizk + C[zi+1, . . . , zk−1] ⊂ C[zi, . . . , zk].

Consequently, C[zi, . . . , zk] is a Poisson subalgebra of A for all 1 ≤ i < k ≤ n. �

Lemma 5.9. [23] If A = (C[z1, . . . , zn], { , }) is a symmetric iterated T-Poisson Ore

extension, then, with respect to the same T-action, A is a T-Poisson Ore extension in

the reversed order of the variables. More precisely, in the notation of Definition 5.5, for

each 2 ≤ k ≤ n, C[z1, . . . , zk−1] is a Poisson subalgebra of A, and

(74) {f, zk} = a′k(f)zk + b′k(f), f ∈ C[z1, . . . , zk−1],

where a′k = h′k|C[z1,...,zk−1] as a derivation of C[z1, . . . , zk−1] and b′k is the unique deriva-

tion of C[z1, . . . , zk−1] such that b′k(zi) = bi(zk) ∈ C[zi+1, . . . , zk−1] for 1 ≤ i ≤ k − 1.

Moreover, for any h ∈ t, [h|C[z1,...,zk−1], b
′
k] = λk(h)b′k as derivations of C[z1, . . . , zk−1].

Proof. It follows from (73) that C[z1, . . . , zk−1] is a Poisson subalgebra of A for every

2 ≤ k ≤ n. The assumption that λi(h
′
k) = λk(hi) for all 1 ≤ i < k ≤ n and the

definition of the b′k’s imply that (74) holds for f = zi for each i < k, so it holds for all

f ∈ C[z1, . . . , zk−1]. Let h ∈ t and 2 ≤ k ≤ n. Then for each 1 ≤ i ≤ k − 1, using (72),

one has h(bi(zk))− bi(h(zk)) = λi(h)bi(zk), from which one has

h(bi(zk))− λi(h)bi(zk) = bi(h(zk)) = λk(h)bi(zk),

and it follows that

h(b′k(zi))− b′k(h(zi)) = h(bi(zk))− λi(h)bi(zk) = λk(h)bi(zk) = λk(h)b′k(zi).

This proves that [h|C[z1,...,zk−1], b
′
k] = λk(h)b′k as derivations of C[z1, . . . , zk−1].

Q.E.D.

Notation 5.10. In the context of Lemma 5.9, one also writes

(75) A = C[z1] [z2; a′2, b
′
2] · · · [zn−1; a′n−1, b

′
n−1] [zn; a′n, b

′
n].

�

We now return to the Bott-Samelson variety Zu with the Poisson structure πn, where

u = (s1, . . . , sn) = (sα1 , . . . , sαn), and choose again a set {eα : α ∈ Γ} of root vectors for

the simple roots, so that one has the parametrization Φγ : Cn → Oγ for each γ ∈ Υu.

Definition 5.11. For γ ∈ Υu, to emphasize on the dependence of γ, let { , }γ denote

the Poisson structure on the polynomial algebra C[z1, . . . , zn] defined by the Poisson

structure πn on Oγ via the parametrization Φγ : Cn → Oγ . �

Fix γ ∈ Υu. Recall that the maximal torus T acts on Oγ by (23), which gives rise to a

rational action of T on (C[z1, . . . , zn], { , }γ) by Poisson automorphisms. More precisely,

(76) t · zi = t−γ
i(αi)zi, 1 ≤ i ≤ n.
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For h ∈ h = Lie(T ), let h also denote the Poisson derivation of (C[z1, . . . , zn], { , }γ)

generating the T -action in the direction of h, i.e,

(77) h(zi) = −γi(αi)(h)zi, 1 ≤ i ≤ n, h ∈ h.

Note that both the T -action and the derivations h on C[z1, . . . , zn] for h ∈ h depend on

γ, but for notational simplicity we do not include the dependence on γ in the notation.

For 1 ≤ i ≤ n − 1, recall from Notation 3.1 the vector field σi on the Bott-Samelson

variety Z(si+1,...,sn) and that for γ = (γ1, . . . , γn) ∈ Υu, elements in C[zi+1, . . . , zn] are

regarded as regular functions on both O(γi+1,...,γn) ⊂ Z(si+1,...,sn) and Oγ .

Theorem 5.12. For each γ ∈ Υu, (C[z1, . . . , zn], { , }γ) is an iterated T -Poisson Ore

extension of C with respect to the T -action on given in (76). More explicitly,

(78) (C[z1, . . . , zn], { , }γ) = C[zn] [zn−1; an−1, bn−1] · · · [z2; a2, b2] [z1; a1, b1],

where for 1 ≤ i ≤ n− 1,

(79) ai = −〈αi, αi〉
2

γi−1(hαi)|C[zi+1,...,zn], bi =

{
0, if γi = e,

−〈αi, αi〉σi, if γi = si.

When γ = u, the extension is symmetric. More explicitly, for γ = u, one also has

(80) A = C[z1] [z2; a′2, b
′
2] · · · [zn−1; a′n−1, b

′
n−1] [zn; a′n, b

′
n],

where for 2 ≤ k ≤ n, a′k = − 〈αk,αk〉2 γk−1(hαk)|C[z1,...,zk−1], and b′k is the unique derivation

of C[z1, . . . , zk−1] such that b′k(zi) = −〈αi, αi〉σi(zk) for 1 ≤ i ≤ k − 1.

Proof. Let γ = (γ1, . . . , γn) ∈ Υu and let λi = −γi(αi) for 1 ≤ i ≤ n. By (76), zi is a

weight vector for the T -action on C[z1, . . . , zn] with weight λi. For 1 ≤ i ≤ n, define

hi ∈ h = Lie(T ) by

(81) hi = −〈αi, αi〉
2

γi−1(hαi) =

−
〈αi,αi〉

2 γi(hαi), if γi = e,

〈αi,αi〉
2 γi(hαi), if γi = si.

Then for 1 ≤ i < k ≤ n,

hi(zk) = λk(hi)zk = −γk(αk)(hi)zk = 〈γi−1(αi), γ
k(αk)〉zk.

It now follows from Theorem 4.14 that (78) holds with the ai’s and bi’s given by (79).

Moreover, for each 1 ≤ i ≤ n, λi(hi) 6= 0, as

(82) λi(hi) = 〈γi−1(αi), γ
i(αi)〉 = 〈αi, γi(αi)〉 =

{
〈αi, αi〉, γi = e,

−〈αi, αi〉, γi = si.

Thus (C[z1, . . . , zn], { , }γ) is an iterated T -Poisson Ore extension of C.

Assume now that γ = u is the full subexpression of u. In this case, let

hi = −〈αi, αi〉
2

γi−1(hαi) = −〈αi, αi〉
2

s1s2 · · · si−1(hαi) ∈ h, 1 ≤ i ≤ n,

and let h′k = hk for 2 ≤ k ≤ n. With λi = s1s2 · · · si−1(αi), one has, for 1 ≤ i < k ≤ n,

λi(h
′
k) = −〈γi(αi), γk(αk)〉 = −〈s1s2 · · · si−1(αi), s1s2 · · · sk−1(αk)〉 = λk(hi).

By Theorem 4.14, one also has bi(zk) ∈ C[zi+1, . . . , zk−1] for 1 ≤ i < k ≤ n. This shows

that (C[z1, . . . , zn], { , }u), as an iterated T -Poisson Ore extension of C with respect to

the T -action given in (76), is symmetric. By Lemma 5.9, (80) holds.
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Q.E.D.

Remark 5.13. We already know from Remark 5.7 that for h ∈ t and 1 ≤ i ≤ n − 1,

the two derivations ah := h|C[zi+1,...,zn] and bi on C[zi+1, . . . , zn] in Theorem 5.12 satisfy

[ah, bi] = λi(h)bi. This can also be checked directly: it clearly holds when γi = e.

Assume that γi = si. In the notation of (46) and by Lemma 2.2, one has ah = σ
(i+1)

(γi)−1(h)

and bi = −〈αi, αi〉σ(i+1)
eαi

. Thus

[ah, bi] = −〈αi, αi〉
[
σ

(i+1)

(γi)−1(h)
, σ(i+1)

eαi

]
= 〈αi, αi〉σ(i+1)

[(γi)−1(h),eαi ]
= λi(h)bi.

�

Remark 5.14. For an arbitrary γ ∈ Υu, (C[z1, . . . , zn], { , }γ) expressed as an iterated

T -Poisson Ore extension as in (78) is not necessarily a Poisson CGL extension in the

sense of [23], as the definition in [23] requires the derivations bi be locally nilpotent

(recall Remark 5.8). In Example 3.3 for γ = (sα1 , e, e), the derivation b1 on C[z2, z3] is

given by b1(z2) = 0 and b1(z3) = 2z2
3 which is not locally nilpotent. �

5.3. The Poisson structure πn in Ou. We now look in more detail at the Poisson

polynomial algebra (C[z1, . . . , zn], { , }u). In this case, T acts on C[z1, . . . , zn] by

(83) t · zi = ts1s2···si−1(αi)zi, t ∈ T, 1 ≤ i ≤ n.

Due to its connection with the Levendorskii-Soibelman straightening law explained in

§1.3 and applications to the standard Poisson structures on generalized Bruhat cells

explained in §1.4, we now extract from Theorem 4.14 and (59) the details of the explicit

formula for the Poisson bracket { , }u.

Theorem 5.15. In the coordinates (z1, . . . , zn) on Ou given by the parametrization

Φu : Cn → Ou, one has

{zi, zk}u = ci,kzizk + bi(zk)

for 1 ≤ i < k ≤ n, where

(84) ci,k = −〈s1s2 · · · si−1(αi), s1s2 · · · sk−1(αk)〉,

and bi(zk) ∈ C[zi+1, . . . , zk−1] is given as follows:

1) If k = i+1, one has bi(zi+1) = 0 if αi+1 6= αi, and bi(zi+1) = −〈αi, αi〉 if αi+1 = αi;

2) Assume that k > i+ 1. For (ji+1, . . . , jk−1) ∈ Nk−i−1 and i+ 1 ≤ l ≤ k − 1, let

β(ji+1,...,jl) = slsl−1 · · · si+2si+1(αi)− ji+1slsl−1 · · · si+2(αi+1)− · · · − jl−1sl(αl−1)− jlαl
= sl(β(ji+1,...,jl−1))− jlαl ∈ h∗,

where β(ji+1,...,jl−1) = αi if l = i+ 1. Let Ji,k ⊂ Nk−i−1 be given by

Ji,k = {(ji+1, . . . , jk−1) ∈ Nk−i−1 : β(ji+1,...,jl) ∈ ∆+ ∀ i+ 1 ≤ l ≤ k − 1 and

β(ji+1,...,jk−1) = αk}.

If Ji,k = ∅, then bi(zk) = 0. Otherwise,

(85) bi(zk) = −〈αi, αi〉
∑

(ji+1,...,jk−1)∈Ji,k

cji+1,...,jk−1
z
ji+1

i+1 · · · z
jk−1

k−1 ,

where for (ji+1, . . . , jk−1) ∈ Ji,k,

cji+1,...,jk−1
= c

si+1,ji+1
αi+1,αi c

si+2,ji+2

αi+2,β(ji+1)
· · · csk−1,jk−1

αk−1,β(ji+1,...,jk−2)
6= 0,
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and for i + 1 ≤ l ≤ k − 1, csl,jlαl,β(ji+1,...,jl−1)
is a certain binomial coefficient with plus

or minus sign, with the binomial coefficient being determined by the αl-string of roots

through β(ji+1,...,jl−1) and the plus or minus sign determined by the signs of the structure

constants of g in the chosen Chevalley basis, as in (42), (50) and (52).

By Theorem 5.12, for 2 ≤ k ≤ n, one also has the derivation b′k of C[z1, . . . , zk−1]

such that b′k(zi) = bi(zk) for 1 ≤ i ≤ k − 1. In the rest of §5.3, we give the geometric

meaning of the derivation b′k, similarly to that of the derivation bi on C[zi+1, . . . , zn]

given in Theorem 4.14. To this end, consider the quotient manifold

F ′−n = B−\G×B− G× · · · ×B− G

of Gn by (B−)n, where (B−)n acts on Gn from the left by

(86) (b1, b2, . . . , bn) · (g1, g2, . . . , gn) = (b1g1b
−1
2 , b2g2b

−1
3 , . . . , bngn), bj ∈ B−, gj ∈ G.

Let ρ− : Gn → F ′−n be the natural projection. Similar to the case of the quotient

manifold Fn in (8), the product Poisson structure πnst on Gn projects by ρ− to a well-

defined Poisson structure on F ′−n, which will be denoted by π′−n. Let P−si = B− ∪
B−siB− for 1 ≤ i ≤ n. As each P−si is a Poisson submanifold of (G, πst), the closed

submanifold

Z ′−u = B−\P−s1 ×B− P−s2 × · · · ×B− P−sn
of F ′−n is a Poisson submanifold with respect to π′−n. We will also call Z ′−u a Bott-

Samelson variety. Note that for each 1 ≤ i ≤ n, one has

uαi(z)ṡi = ṡiu−αi(−z), z ∈ C.

Setting ρ−(g1, g2, . . . , gn) = [g1, g2, . . . , gn]− ∈ F ′−n for (g1, g2, . . . , gn) ∈ Gn, it follows

that one has the open affine chart

O′,u− := B−\(B−s1B−)×B− (B−s2B−)× · · · ×B− (B−snB−)

of Z ′−u, with the parametrization by Cn via

(87) Cn 3 (z1, z2, . . . , zn) 7−→ [uα1(z1)ṡα1 , uα2(z2)ṡα2 , . . . , uαn(zn)ṡαn ]− ∈ O′,u− .

The restriction of the Poisson structure π′−n to O′,u− will also be denoted by π′−n.

Proposition 5.16. The map I : (Ou, πn)→ (O′,u− , π′−n) given by

[uα1(z1)ṡα1 , uα2(z2)ṡα2 , . . . , uαn(zn)ṡαn ]

7−→ [uα1(z1)ṡα1 , uα2(z2)ṡα2 , . . . , uαn(zn)ṡαn ]−,

where (z1, z2, . . . , zn) ∈ Cn, is a Poisson anti-isomorphism.

Proof. Let ρ : Gn → Fn be the natural projection, so that πn = ρ(πnst). It is proved in

[30, §8] that the pair

ρ : (Gn, πnst) −→ (Fn, πn) and ρ− : (Gn, πnst) −→
(
F ′−n, π

′
−n
)

of Poisson submersions is a Poisson pair (see §A the Appendix), i.e., the map

(ρ, ρ−) : (Gn, πnst) −→ (Fn × F ′−n, πn × π′−n), g 7−→ (ρ(g), ρ−(g)), g ∈ Gn,

is Poisson. For α ∈ Γ, let Σα be the symplectic leaf of πst in G through the point ṡα ∈ G.

To describe the two-dimensional symplectic manifold (Σα, πst|Σα), consider the surface

Σ = {(p, q, t) ∈ C3 : t2(1− pq) = 1}
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in C3 and equip Σ with the Poisson structure π given by

(88) {p, q} = 2(1− pq), {p, t} = pt, {q, t} = −qt.

A calculation in SL(2,C) shows that the embedding

J : Σ −→ SL(2,C), (p, q, t) 7−→
(
pt −t
t −qt

)
, (p, q, t) ∈ Σ,

identifies (Σ, π) as the symplectic leaf through

(
0 −1
1 0

)
∈ SL(2,C) of the Poisson

structure πSL(2,C) on SL(2,C) in (14). Using the Poisson homomorphism θα in (15), one

sees [26] that

Σα = {gα(p, q, t) : (p, q, t) ∈ Σ},
and πst|Σα = 〈α,α〉

2 (θα ◦ J)(π), where for (p, q, t) ∈ Σ,

(89) gα(p, q, t) = θα

(
pt −t
t −qt

)
= uα(p)ṡαα

∨(t)uα(−q) = u−α(q)α∨(t)ṡαu−α(−p).

Consider now the product manifold Σu = Σα1×Σα2×· · ·×Σαn and denote the restriction

of the product Poisson structure πnst to Σu still by πnst. It follows from (89) that

ρ(Σu) = Ou and ρ−(Σu) = O′,u− ,

and, denoting again by ρ (resp. ρ−) the induced map from Σu to Ou (resp. to O′,u− ),

(90) ρ : (Σu, π
n
st) −→ (Ou, πn) and ρ− : (Σu, π

n
st) −→ (O′,u− , π′−n)

are Poisson submersions and form a Poisson pair. Moreover, the submanifold

L := {(uα1(z1)ṡα1 , uα2(z2)ṡα2 , . . . , uαn(zn)ṡαn) : (z1, z2, . . . , zn) ∈ Cn}

of Σu is Lagrangian with respect to πnst, and it is clear that ρ|L : L → Ou is a diffeo-

morphism. It now follows from Lemma A.1 in the Appendix that I = ρ− ◦ (ρ|L)−1 :

(Ou, πn)→ (O′,u− , π′−n) is a Poisson anti-isomorphism.

Q.E.D.

We now prove a fact similar to that in Lemma 2.2: let (X,πX) be a Poisson manifold

with a right Poisson action by the Poisson Lie group (B−, πst), let α be a simple root,

and consider the quotient manifold Z = X ×B− P−sα (see notation in §2.2) equipped

with Poisson structure πZ which is the projection to Z of the product Poisson structure

πX × πst on X × P−sα . Denote by [x, p] the image of (x, p) ∈ X × P−sα in Z. Fix any

sl(2,C)-triple {eα, e−α, hα} and consider

φ : X × C −→ Z0, (x, z) 7−→ [x, uα(z)ṡα], x ∈ X, z ∈ C.

Then φ is an embedding, and we regard φ as a diffeomorphism from X × C to Z0 =

φ(X × C). For ξ ∈ b−, let σ′ξ be the vector field on X defined by

σ′ξ(x) =
d

dt
|t=0(x exp(tξ)), x ∈ X.

Using the second part of (17), the proof of the following Lemma 5.17 is similar to that

of Lemma 2.2 and is omitted.

Lemma 5.17. With the notation as above, one has

φ−1(πZ)(x, z) = πX(x) +
〈α, α〉

2

d

dz
∧
(
zσ′hα(x) + 2σ′e−α(x)

)
.



32 BALÁZS ELEK AND JIANG-HUA LU

Returning now to the Bott-Samelson variety Z ′−u for u = (s1, . . . , sn) = (sα1 , . . . , sαn),

let 2 ≤ k ≤ n, and consider

Z ′−(s1,...,sk−1) = B−\P−s1 ×B− P−s2 × · · · ×B− P−sk−1
.

Denote again by [p1, . . . , pk−1]− the image of (p1, . . . , pk−1) ∈ P−s1 × · · · × P−sk−1
in

Z ′−(s1,...,sk−1), and let B− act on Z ′−(s1,...,sk−1) from the right by

[p1, . . . , pk−2, pk−1]− ·b− = [p1, . . . , pk−2, pk−1b−], b− ∈ B−, pi ∈ P−si , 1 ≤ i ≤ k−1.

For ξ ∈ b−, denote by σ
′,(k−1)
ξ the vector field on Z ′−(s1,...,sk−1) given by

(91) σ
′,(k−1)
ξ ([p1, . . . , pk−2, pk−1]) =

d

dt
|t=0[p1, . . . , pk−2, pk−1 exp(tξ)]−,

where pi ∈ P−si for 1 ≤ i ≤ k− 1, so σ
′,(k−1)
ξ generates the action of B− on Z ′−(s1,...,sk−1)

in the direction of ξ. Let

(92) σ′k = σ′,(k−1)
e−α .

Consider the coordinates (z1, z2, . . . , zn) on O′,u− given in (87). Then (z1, . . . , zk−1) can

be considered as coordinates on the open submanifold

O′,(s1,...,sk−1)
− = B−\(B−s1B−)×B− (B−s2B−)× · · · ×B− (B−sk−1B−)

= {[uα1(z1)ṡα1 , . . . , uαk−1
(zk−1)ṡαk−1

]− : (z1, . . . , zk−1) ∈ Ck−1}

of Z ′−(s1,...,sk−1), and σ′k can be regarded as a derivation on C[z1, . . . , zk−1].

Lemma 5.18. In the coordinates (z1, z2, . . . , zn) on O′,u− given in (87), the Poisson

structure π′−n is given by

(93) {zi, zk} = −ci,kzizk − 〈αk, αk〉σ′k(zi), 1 ≤ i < k ≤ n,

where for 1 ≤ i, k ≤ n, ci,k is given in (84).

Proof. By repeatedly applying Lemma 5.17 to the Poisson manifold (O′,u− , π′−n), one sees

that π′−n is given in the coordinates (z1, z2, . . . , zn) on O′,u− by (see notation in (91))

{zi, zk} = −〈αk, αk〉
2

zkσ
′,(k−1)
hαk

(zi)− 〈αk, αk〉σ′k(zi), 1 ≤ i < k ≤ n,

For h ∈ t, one checks directly from the definition of the vector field σ
′,(k−1)
h that

(94) σ
′,(k−1)
h (zi) = (sk−1sk−2 · · · si+1(αi)(h))zi, 1 ≤ i ≤ k − 1.

Identity (93) now follows from

〈αk, αk〉
2

σ
′,(k−1)
hαk

(zi) = 〈sk−1sk−2 · · · si+1(αi), αk〉zi
= −〈s1s2 · · · si−1(αi), s1s2 · · · sk−1(αk)〉zi
= ci,kzi.

Q.E.D.

Corollary 5.19. In the notation in Theorem 5.12 for the case of γ = u, one has

b′k = 〈αk, αk〉σ′k, 2 ≤ k ≤ n.
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Proof. By Proposition 5.16 and Lemma 5.18, the Poisson structure πn is given in the

coordinates (z1, . . . , zn) on the affine chart Ou by

{zi, zk} = ci,kzizk + 〈αk, αk〉σ′k(zi), 1 ≤ i < k ≤ n.

It follows from the definition of b′k that b′k = 〈αk, αk〉σ′k for 2 ≤ k ≤ n.

Q.E.D.

Remark 5.20. We already know from Lemma 5.9 that for any h ∈ t and 2 ≤ k ≤
n, [a′h, b

′
k] = λk(h)b′k, as derivations of C[z1, . . . , zk−1], where a′h = h|C[z1,...,zk−1] and

λk = s1s2 · · · sk−1(αk). This fact can also be checked directly from Corollary 5.19.

Indeed, that in the notation of (91), it follows from (94) that a′h = −σ′,(k−1)
sk−1···s2s1(h) and

b′k = 〈αk, αk〉σ
′,(k−1)
e−αk

, so

[a′h, b
′
k] = −〈αk, αk〉

[
σ
′,(k−1)
sk−1···s2s1(h), σ

′,(k−1)
e−αk

]
= λk(h)b′k.

�

5.4. The polynomial rings (Z[z1, . . . , zn], { , }γ). Recall from §2 that once the Borel

subgroup B and the maximal torus T ⊂ B of G are fixed, the definition of the Poisson

structure πn on Zu depends only on the choice of a symmetric non-degenerate invariant

bilinear form 〈 , 〉 on g and not on the choices of root vectors eα for α ∈ ∆. Although

a choice of the set {eα : α ∈ Γ} of root vectors for the simple roots is needed to define

the coordinates (z1, . . . , zn) on Oγ for γ ∈ Υu, we proved in Proposition 5.1 that the

polynomials fi,k := {zi, zk}γ ∈ C[z1, . . . , zn] for 1 ≤ i, k ≤ n are independent on the

choices of the root vectors for the simple roots. For each γ ∈ Υu, one thus has a

well-defined Poisson polynomial algebra (C[z1, . . . , zn], { , }γ).

Theorem 5.21. Suppose that the symmetric non-degenerate invariant bilinear form

〈 , 〉 on g is chosen such that 1
2〈α, α〉 ∈ Z for each α ∈ ∆. Then for any γ ∈ Υu, the

Poisson structure { , }γ on C[z1, . . . , zn] has the property that {zi, zk} ∈ Z[zi, . . . , zk] ⊂
Z[z1, . . . , zn] for all 1 ≤ i < k ≤ n.

Proof. Choose any set {eα : α ∈ Γ} of root vectors for the simple roots and extend it

to a Chevalley basis of g. Theorem 5.21 now follows from Remark 4.5 and the fact that

for any α, β ∈ ∆, 〈α, β〉 =
2〈α, β〉
〈α, α〉

〈α, α〉
2
∈ Z.

Q.E.D.

Note that a canonical choice of the bilinear form 〈 , 〉 on g is such that 〈α, α〉 = 2 for

the short roots for each of the simple factors of g.

Remark 5.22. By Theorem 5.21, each γ ∈ Υu gives rise to a Poisson algebra

(k[z1, . . . , zn], { , }γ)

over any field k of arbitrary characteristic. In particular, it follows from (60) in Theorem

4.14 that the Poisson structure { , }γ on k[z1, . . . , zn] is log-canonical for every γ ∈ Υu

if char(k) = 2. On the other hand, suppose that the bilinear form 〈 , 〉 on g is such that

〈α, α〉 = 2 for all the short roots. Then 〈α, α〉 ∈ {2, 4, 6} for all α ∈ Γ. It follows from

(82) that (k[z1, . . . , zn], { , }u) is a symmetric Poisson CGL extension of any field k with

char(k) 6= 2, 3. �
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5.5. Examples. Assume that g is simple and let 〈 , 〉 be such that 〈α, α〉 = 2 for

the short roots of g. Based on Theorem 4.14, the first author has written a com-

puter program in the GAP language [15] which computes the Poisson bracket { , }γ on

Z[z1, . . . , zn] for any u = (s1, . . . , sn) and any γ ∈ Υu. We given some examples.

Example 5.23. Consider G2 with the two simple roots α1 and α2 satisfying

〈α2, α2〉 = 3〈α1, α1〉 = 6.

Let u = (sα1 , sα2 , sα1 , sα2 , sα1 , sα2) and note that sα1sα2sα1sα2sα1sα2 is the longest

element in the Weyl group of G2. For γ = u, one has

{z1, z2} = −3z1z2, {z1, z3} = −z1z3 − 2z2, {z1, z4} = −6z2
3 ,

{z1, z5} = z1z5 − 4z3, {z1, z6} = 3z1z6 − 6z5, {z2, z3} = −3z2z3

{z2, z4} = −6z3
3 − 3z2z4, {z2, z5} = −6z2

3 , {z2, z6} = 3z2z6 − 18z3z5 + 6z4

{z3, z4} = −3z3z4, {z3, z5} = −z3z5 − 2z4, {z3, z6} = −6z2
5

{z4, z5} = −3z4z5, {z4, z6} = −6z3
5 − 3z4z6, {z5, z6} = −3z5z6.

For the same u but γ = (sα1 , sα2 , e, e, sα1 , e), one has

{z1, z2} = −3z1z2, {z1, z3} = 2z2z
2
3 + z1z3, {z1, z4} = −6z2z3z4 + 6z3z

2
4 − 3z1z4,

{z1, z5} = −4z2z3z5 + 6z3z4z5 − z1z5 − 2z2 + 2z4,

{z1, z6} = 6z3z
3
5z

2
6 + 6z2

5z
2
6 + 6z2z3z6 − 6z3z4z6, {z2, z3} = 3z2z3,

{z2, z4} = −6z2z4 + 6z2
4 , {z2, z5} = −3z2z5 + 6z4z5,

{z2, z6} = 6z3
5z

2
6 + 3z2z6 − 6z4z6, {z3, z4} = −3z3z4, {z3, z5} = −2z3z5,

{z3, z6} = 3z3z6, {z4, z5} = 3z4z5, {z4, z6} = −3z4z6, {z5, z6} = 3z5z6.

�

Example 5.24. Consider G = SL(2) with the only simple root denoted by α and s = sα
and 〈α, α〉 = 2. Let u = (s, s, s, s, s). For γ = u, one has

{z1, z2} = 2z1z2 − 2, {z1, z3} = −2z1z3, {z1, z4} = 2z1z4, {z1, z5} = −2z1z5,

{z2, z3} = 2z2z3 − 2, {z2, z4} = −2z2z4, {z2, z5} = 2z2z5, {z3, z4} = 2z3z4 − 2,

{z3, z5} = −2z3z5, {z4, z5} = 2z4z5 − 2.

For γ = (s, e, e, e, s), one has

{z1, z2} = −2z1z2 + 2z2
2 , {z1, z3} = −2z1z3 + 4z2z3 + 2z2

3 ,

{z1, z4} = −2z1z4 + 4z2z4 + 4z3z4 + 2z2
4 ,

{z1, z5} = 2z1z5 − 4z2z5 − 4z3z5 − 4z4z5 − 2,

{z2, z3} = 2z2z3, {z2, z4} = 2z2z4, {z2, z5} = −2z2z5,

{z3, z4} = 2z3z4, {z3, z5} = −2z3z5, {z4, z5} = −2z4z5.

In general, it is easy to see from Theorem 4.14 that for the sequence u = (s, s, . . . , s) of

length n, and γ = u, the Poisson bracket { , }γ on Z[z1, . . . , zn] is given by

{zi, zi+1} = 2zizi+1 − 2, 1 ≤ i ≤ n− 1,

{zi, zk} = 2(−1)k−i+1zizk, 1 ≤ i < k ≤ n, k − i ≥ 2.
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The coefficient 2 in all the Poisson brackets results from that fact that 〈α, α〉 = 2. �

Appendix A. Poisson pairs

In [30, §8.5], a Poisson pair is defined to be a pair of Poisson maps

(95) ρY : (X, πX) −→ (Y, πY ) and ρZ : (X, πX) −→ (Z, πZ)

between Poisson manifolds such that the map

(ρY , ρZ) : (X, πX) −→ (Y × Z, πY × πZ), x 7−→ (ρY (x), ρZ(x)), x ∈ X,

is Poisson. If (Y, πY ) and (Z, πZ) are two Poisson manifolds, the projections from the

product Poisson manifold (Y ×Z, πY ×πZ) to the two factors clearly form a Poisson pair.

Moreover, for a differentiable map φ : Y → Z, it is well-known [39] that φ : (Y, πY ) →
(Z, πZ) is anti-Poisson if and only if Graph(φ) = {(y, φ(y) : y ∈ Y } is a coisotropic

submanifold of (Y ×Z, πY ×πZ). The following Lemma A.1 is a (partial) generalization

of this fact to the case of Poisson pairs.

Lemma A.1. Let (ρY , ρZ) be a Poisson pair as in (95). Suppose that X ′ is a coisotropic

submanifold of (X,πX) such that ρY |X′ : X ′ → Y is a diffeomorphism. Then

φ = ρZ ◦ (ρY |X′)−1 : (Y, πY ) −→ (Z, πZ)

is an anti-Poisson map.

Proof. Fix x ∈ X ′ and let ρY (x) = y and z = ρZ(x) ∈ Z. Let

ρY ,x : TxX −→ TyY and ρZ,x : TxX −→ TzZ

be respectively the differentials of ρY and ρZ at x. Lemma A.1 now follows from the

following Lemma A.2 by taking (V, π) = (TxX,πX(x)), V1 = ker ρY ,x, V2 = ker ρZ,x,

and U = TxX
′. Indeed, in the notation stated below for Lemma A.2, the assumption

πX(x)(V 0
1 , V

0
2 ) = 0 is the same

πX(x)(ρ∗Y ,x(T ∗y Y ), ρ∗Z,x(T ∗z Z)) = 0

which is satisfied because (ρY , ρZ) : (X, πX)→ (Y × Z, πY × πZ) is a Poisson map.

Q.E.D.

In the following Lemma A.2, for a finite dimensional vector space V and a subspace

U1 ⊂ V , set U0
1 = {ξ ∈ V ∗ : ξ|U1 = 0} ⊂ V ∗, and U1 is said to be coisotropic with

respect to π ∈ ∧2V if π ∈ U1 ∧ V , where for any subspace U2 of V ,

U1 ∧ U2 = (∧2V ) ∩ (U1 ⊗ U2 + U2 ⊗ U1) ⊂ ∧2V.

Lemma A.2. Let V be a finite dimensional vector space, let π ∈ ∧2V , and let V1 and V2

be two vector subspaces of V such that π(V 0
1 , V

0
2 ) = 0. For j = 1, 2, let ρj : V → V/Vj

be the projections so that ρj(π) ∈ ∧2(V/Vj). Assume that U is a coisotropic subspace of

V and that ρ1|U : U → V/V1 is an isomorphism. Let ψ = ρ2 ◦ (ρ1|U)−1 : V/V1 → V/V2.

Then ψ(ρ1(π)) = −ρ2(π).
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Proof. For π′ =
∑

j vj ∧ v′j ∈ ∧2V and ξ ∈ V ∗, let ξcπ′ =
∑

j(〈ξ, vj〉v′j − 〈ξ, v′j〉vj),
where 〈 , 〉 denotes the pairing between V and V ∗. Then the condition π(V 0

1 , V
0

2 ) = 0 is

equivalent to ξcπ ∈ V2 for all ξ ∈ V 0
1 . By assumption, V = U + V1 is a direct sum. As

U is coisotropic with respect to π, one can uniquely write π = πU +π1, where πU ∈ ∧2U

and π1 ∈ U ∧ V1. Let {u1, . . . , um} be a basis of U and let ξi ∈ V 0
1 , 1 ≤ i ≤ m, be such

that 〈ui, ξj〉 = δi,j for 1 ≤ i, j ≤ m. Then

πU =
1

2

m∑
i=1

ui ∧ (ξicπU) and π1 =
m∑
i=1

ui ∧ (ξicπ1).

For 1 ≤ i ≤ m, let xi = ξicπ = ξic(πU + π1). Then

π =
1

2

m∑
i=1

ui ∧ (ξicπU) +
m∑
i=1

ui ∧ (ξic(πU + π1))−
m∑
i=1

ui ∧ (ξicπU)

= −1

2

m∑
i=1

ui ∧ (ξicπU) +
m∑
i=1

ui ∧ xi = −πU +
m∑
i=1

ui ∧ xi.

As xi ∈ V2 for each 1 ≤ i ≤ m, ρ2(
∑m

i=1 ui ∧ xi) = 0, so ψ(ρ1(π)) = ρ2(πU) = −ρ2(π).

Q.E.D.
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