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Abstract  9 

Metatranscriptome has become increasingly important along with the application of 10 

next generation sequencing in the studies of microbial functional gene activity in 11 

environmental samples. However, the quantification of target active gene is hindered 12 

by the current relative quantification methods, especially when tracking the sharp 13 

environmental change. Great needs are here for an easy-to-perform method to obtain 14 

the absolute quantification. By borrowing information from the parallel metagenome, 15 

an absolute quantification method for both metagenomic and metatranscriptomic data 16 

to per gene/cell/volume/gram level was developed. The effectiveness of AQMM was 17 

validated by simulated experiments and was demonstrated with a real experimental 18 

design of comparing activated sludge with and without foaming. Our method provides 19 

a novel bioinformatic approach to fast and accurately conduct absolute quantification 20 

of metagenome and metatranscriptome in environmental samples. The AQMM can be 21 

accessed from https://github.com/biofuture/aqmm. 22 

Keywords: metagenome, metatranscriptome, absolute quantification, differential 23 
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Background  25 

Shotgun metatranscriptomics is a powerful tool in identifying the overall expression 26 

of microorganisms in an environment (Alexander et al. 2015, Gifford et al. 2011, Shi 27 

et al. 2009, Turner et al. 2013, Yu and Zhang 2012), shedding light on discovering 28 

how microbes respond to environmental changes or diseases status (Jorth et al. 2014, 29 

Mason et al. 2012) and capturing gene expression patterns for functionally important 30 

bacteria in engineering systems (Oyserman et al. 2015, Stark et al. 2014). For these 31 

applications, accurate quantification is required to detect the true variations or 32 

differential expression genes (DEGs).  33 

Traditionally, the abundance of a transcript in RNA-sequencing (RNA-seq) is thought 34 

to be influenced by the library size and inherent dependence on the expression levels 35 

of other transcripts as described in a comprehensive review (Rapaport et al. 2013). 36 

Following this idea, transcripts in RNA-seq was generally quantified by 37 

within-sample normalization. One of the most common quantification methods was 38 

RPKM (Mortazavi et al. 2008) (reads per kilobase of exon model per million mapped 39 

reads) which considered factors of both the length of gene and library size. Another 40 

improved within-sample normalization method was TPM (transcript per million) 41 

(Wagner et al. 2012) which only considered the transcript rather than the whole 42 

library size and respected the invariance of relative molar RNA concentration (rmc). 43 

The TPM was thought to be better fitted in sample comparison due to its unit-free 44 

characteristics. The FPKM (substitute the reads with fragments in RPKM) was an 45 

adaption of RPKM to pair-end reads. These above methods are all relative 46 

quantification (RQ) and suffer from the ‘composition effects’ (the increase of one 47 

transcript will decrease other unrelated transcript). To relieve this problem, Robinson 48 

and Oshlack proposed a new normalization method “TMM” (trimmed mean of 49 
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M-values) to detect the DEGs under the hypothesis that most of the genes are not 50 

differentially expressed (Robinson and Oshlack 2010), which has been integrated into 51 

popular DEGs detection R software edgeR (Robinson et al. 2010). The scaling factor 52 

in edgeR for normalization is the TMM value. Another method was to compute the 53 

median of the ratio as the scaling factor and it could be conducted by R software 54 

DESeq/DESeq2 (Love et al. 2014). It is also based on the assumption that most genes 55 

are not DEGs and this method then calculates the scaling factor (median of ratios) 56 

associated with this sample to perform further normalization. In the two software, the 57 

negative binomial distribution was applied to adjust the distribution of transcript 58 

between different conditions to relieve the dispersion effects of deviation from 59 

standard passion distribution (Rapaport et al. 2013). Although with these efforts in 60 

optimizing the normalization process, these indices were all still RQ based and the 61 

relationship could be distorted while performing comparative analysis across samples, 62 

especially when borrowing these methods from traditional Eukaryote RNA-seq to 63 

current Prokaryote metatranscriptome studies (Conesa et al. 2016). One feasible way 64 

to solve the problem was to get the absolute quantification (AQ) of expression level 65 

for each transcript. For example, the qRT-PCR has long been applied in RNA-seq or 66 

microarray data for AQ (Becker-André and Hahlbrock 1989, Whelan et al. 2003). In 67 

addition, there were methods by spiking in exterior/alien RNA in microarray to get the 68 

per cell absolute quantification (Kanno et al. 2006) and internal standard approach to 69 

estimate per liter expression in marine metatranscriptome (Gifford et al. 2011). 70 

However, the experiment to perform spiking internal standard was difficult due to its 71 

skill-demanding nature and for metatranscriptome data, factors like the time to add 72 

spike-in material, the type and the amount of alien RNA required still needed to be 73 

elaborately designed. Hence, it was not as popular as those RQ methods. The 74 
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quantification methods in the newly developed analyzing pipelines for 75 

metatranscriptome like IMP (Narayanasamy et al. 2016), MetaTrans (Martinez et al. 76 

2016), COMAN (Ni et al. 2016) and SAMSA (Westreich et al. 2016) were still all 77 

based on RQ methods; this would result in accelerated spreading of the inaccurate 78 

quantification in many studies.  79 

To solve the problem of RQ and get an accurate quantification without performing 80 

spike-in experiment, an AQ bioinformatics software package AQMM was developed 81 

by combining metagenome and metatranscriptome data to achieve the goal of 82 

accurate and comparable quantification. In this study, we firstly introduced the 83 

AQMM algorithm flow, and then compared and validated it with RQ methods by 84 

simulated metagenome and metatranscriptome data. Moreover, we further applied this 85 

algorithm to a real combination of metagenome and metatranscriptome dataset in 86 

quantifying genes and transcripts of resistome in six foaming activated sludge (FAS) 87 

and non-foaming activated sludge (NFAS) samples.  88 

Results 89 

Overall view of AQMM algorithm  90 

The AQMM (Fig. 1) was designed to perform AQ of parallel metagenome and 91 

metatranscriptome dataset no matter whether spike-in experiment/internal standard 92 

was initially added or not. The major aims were to obtain the AQ of 93 

genes/transcripts/taxa in samples and to accurately detect DEGs in metatranscriptome 94 

data. The assumptions under the algorithm include: 1) with the known extraction ratio 95 

of DNA for a DNA extraction Kit for a type of sample, the total weight of DNA per 96 

volume of the sample could be calculated. The weight of the sequenced library of 97 

DNA could be estimated with the molecular weight and bases numbers of A, T, C and 98 
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G in the sample. Then, the ratio of sequenced DNA to total weight of DNA per 99 

volume of the sample could be calculated. In addition, by utilizing the universal 100 

single-copy phylogenetic marker genes (USCMGs), the number of cells for a 101 

metagenome library could be estimated accurately (Nayfach and Pollard 2015). With 102 

the above information, cells per volume could be calculated for a metagenome data; 2) 103 

Using the same volume of the sample contains the same number of cells for DNA and 104 

RNA extraction, the cell number per volume to extract RNA was the same as the 105 

parallel DNA sample; 3) With the known ratio of RNA extraction and the rRNA ratio 106 

of total RNA, by a similar process, the sequenced RNA weight ratio could be 107 

calculated, and then the equivalent cell numbers in a metatranscriptome could be 108 

deduced accordingly. With the cell numbers included in the metagenome and 109 

metatranscriptome data, the abundance of gene/transcript could be normalized to per 110 

cell level. Moreover, as the number of cells per volume is available, per cell 111 

quantification could be easily transformed into per volume quantification.   112 

Comparing and validating AQMM with RQ methods using simulated 113 

metatranscriptome demo 114 

To reveal the problem of RQ methods like RPKM, edgeR and DESeq2 and to assess 115 

the effectiveness of AQMM, simulated metatranscriptomic datasets comprised of 116 

known community structure and expression levels were generated (Fig. 2; Details in 117 

methods). The simulated data was with known ground truth absolute expression for 118 

each gene. For simplicity, to focus on the quantification of metatranscriptome in 119 

identifying DEGs, we assume the DNA content are not changed like what happens in 120 

a reactor with a stable biomass concentration, however the gene expression under 121 

condition A and B are significantly changed with fold of 2 or 16 in part of the bacteria 122 

like what happens under sharp environmental change. In order to focus only on the of 123 
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influence normalization methods, in generation of the simulated metatranscriptome, 124 

the base qualities of were all set with 50 and to eliminate the influence of mapping 125 

process, the mapping criteria of bowtie2 was set to exactly match without gap and 126 

mismatch allowed (bowtie2 parameters, -N 0 -L 31, --rdg 100,150 --rfg 100,150 127 

--gbar 100,150). The result of DEGs detection was in Table 1. We can observe that 128 

compared with ground truth, the RQ methods detect quite a large portion of false 129 

positive higher gene expression under condition A. On the contrary, the AQMM 130 

method which aims to obtain the AQ has limited errors detection even with a given 131 

variance in RNA extraction efficiency (Table 1). Noticeably, in real combination of 132 

metagenome and metatranscriptome, the metagenome could also be totally different, 133 

and in this case, the AQMM is still applicable. 134 

Case study: AQ of activate resistome in FAS and NFAS 135 

The AQMM was applied in the six metagenome and metatranscriptome dataset of 136 

FAS and NFAS, the AQ of the sequenced cells generated by the pipeline were shown 137 

in Table 2. In detail, the metagenome contained 8 to 11.8 GBs data and 138 

metatranscriptome with a depth between 13 and 16 GBs for each sample. The “per 139 

cell/volume” quantifying values were the fundamental of normalizing to cells or 140 

volume in order to perform comparison among different studies. The cell number per 141 

milliliter in literature was at 3.3E+09 using flow Cytometer to quantify(Foladori et al. 142 

2010) and was from 2.1E+09 to 5.5E+09 using CFU and flow Cytometer (Manti et al. 143 

2008) level for AS which was a bit lower than the obtained number in this study at the 144 

magnitude of E+10 cells per milliliter. Overall number of mRNA molecules per cell 145 

are 387.98 ± 102.86 and 235.21 ± 30.59 averagely for FAS and NFAS, respectively 146 

(Table S1), which is consistent with previous observation of coastal bacterioplankton 147 

by 142-238 mRNA molecules per Cell (Gifford et al. 2011, Moran et al. 2013).  148 
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 149 

As WWTPs become the hot-spot of antibiotic resistant genes (ARGs) to the receiving 150 

environment. Hence, the expressions of ARGs in the AS were in great concerns and 151 

further profiled. Overall, the abundance of ARGs per cell in FAS and NFAS were 152 

0.0517 ± 0.0034 and 0.0483 ± 0.0041; and the transcript of ARGs per cell were 153 

0.0140 ± 0.0039 and 0.0059 ± 0.0009, respectively (Table S2 & S3). The overall 154 

transcription of ARGs was significantly higher in FAS compared with NFAS. At DNA 155 

level, only tetracycline resistance gene was higher in FAS and beta-lactam was higher 156 

in NFAS, other types were not significantly different. However, at transcript level, all 157 

the types were all significantly higher in FAS. Among the nine transcribed ARGs 158 

types, beta-lactam and sulfonamide resistance genes were the most abundant 159 

expressed ARG types in both FAS and NFAS. Per volume ARGs abundance and 160 

expression at type level were shown in Fig. 3. The overall ARGs abundance per 161 

milliliter AS in FAS and NFAS were 2.51E+09 ± 2.44E+08 and 2.66E+09 ± 162 

5.63E+08; and the transcript of ARGs per milliliter were 9.83E+09 ± 3.82E+08 and 163 

4.49E+09 ± 5.10E+08, respectively. With the AQ results, the transcripts per copy gene 164 

(TPCG), which represents of the transcribe rate could be further derived. The 165 

unclassified, quinolone, multidrug and beta-lactam were more active in FAS 166 

compared with NFAS in terms of TPCG, (Table S4). For the detected ARGs, the host 167 

taxonomy was assigned by LCA algorithms using all the genes annotation in the same 168 

Contig. Thirteen orders were detected to carry ARGs and eleven of them were 169 

transcribed (Fig. 3). The most ARGs transcribed order was Enterobacteriales. The 170 

active ARGs in bacteria enclosed in foams of FAS posed potential threats for the 171 

public as ARGs carrying bacteria could spread into the air from the foams bubbles.  172 

 173 
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The co-expression of ARGs and MRGs was also studied to check whether there were 174 

co-expression effects at the RNA level. Using this dataset, we observed co-expression 175 

within ARGs, within MRGs, and between ARGs and MRGs (Fig. 4). Numerous types 176 

of MRGs were detected in the metagenome and metatranscriptome. The most 177 

abundant MRG was Cu resistant genes and for the ARGs, beta-lactam, tetracycline 178 

and aminoglycoside were the most expressed types. The highest number of 179 

co-expression within MRGs was Cr and Fe; while within ARGs was beta-lactam and 180 

tetracycline. The most MRG and ARGs co-expression was Cr, which co-expression 181 

with nine types of ARGs. This was the first transcript level evidence of the 182 

co-expression of ARGs and MRGs in AS.  183 

Discussion  184 

Metatranscriptome enabled the study of whole metabolic pathways expression of the 185 

system and many studies had already taken this advantage for different environments, 186 

such as in marine (Mason et al. 2012), rhizosphere of the plant (Turner et al. 2013), 187 

human oral disease (Jorth et al. 2014). Each study has specific method to integrate the 188 

metagenome and metatranscriptome information to understand the microbes and their 189 

activities in the system. The quantification of metatranscriptome was generally RQ 190 

based methods. The RQ methods are problematic as they may not be able to reflect 191 

the actual expression level of a population in the whole community. Due to the 192 

relative characteristics, the RQ methods are always suffer from the so-called 193 

composition effects, which indicates that the upgrade of one gene should definitely 194 

make other genes downgrade. Additionally, the RQ methods are just a relative portion 195 

rather than a value with biological implications. On the contrary, the AQ could be 196 

more biological meaningful at per cell/volume unit. Hence, it was necessary to 197 

conduct AQ to compare different samples. In this study, we proposed an AQ method 198 
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and developed a set of algorithms to conveniently calculate the absolute number of 199 

sequenced cells for each RNA library by borrowing cell numbers from a 200 

corresponding data set of DNA library of the same sample. 201 

Noticeably, there were several hypotheses for the application of the proposed method. 202 

Firstly, the sample used to extract DNA and RNA should contain the same cell 203 

numbers per volume which could be easily met with sufficient mixing of samples. 204 

Secondly, the DNA and RNA extraction efficiency should be estimated, as well as the 205 

rRNA ratio in total RNA. This was likely difficult to achieve. However, for an 206 

environmental sample, generally literature based data could be used for the extraction 207 

kit, for example, to FastDNA SPIN Kit for Soil, the extract efficiency was estimated 208 

as 28.4% (Mumy and Findlay 2004). Most importantly, as the parallel samples were 209 

extracted under the same condition, the difference between samples was minimized 210 

(DNA extraction data, unpublished). This AQMM method is capable of performing 211 

absolute quantification of both metagenome and metatranscriptome without the 212 

requirement to do complex spike-in experiments. Importantly, AQMM avoids the RQ 213 

problems of composition effects and able to detect accurate DEGs. Hence, the 214 

proposed AQMM is a method in between experimental spike-in based AQ methods 215 

and those improved RQ methods of TMM based edgeR. 216 

With AQ, a number of indices with various biological meaning were proposed in this 217 

study (Methods), for example, the transcript per copy gene (TPCG) index is a 218 

reflection of the transcribe rate of the gene, which could never be delivered by RQ 219 

methods. It was demonstrated with simulating RNA-seq that the organism abundance 220 

(community structure) was important at normalizing metatranscritptome data in 221 

identifying DEGs (Klingenberg and Meinicke 2017). The gene per cell (GPC) and 222 

transcript per cell (TPC) in AQMM are global level normalization indices and the 223 
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scaling factor is the total number of cells in the DNA or RNA library. This global 224 

scaling factor could be easily transformed into taxa specific scaling factors with the 225 

relative quantification of different taxa with indices of transcript of taxon A per cell 226 

(TTPC). Hence, the normalization in AQMM is well fit for the factor of microbial 227 

abundance in metatranscriptome data.  228 

AS is important biological wastewater treatment process and this system is considered 229 

as a hot spot for ARG dissemination into the receiving water. The foaming of AS 230 

would result in spreading of foams with AS bacteria into the surrounding environment. 231 

Understanding the active resistome and the host bacteria in foaming AS enables 232 

engineers understanding the risk of sludge foaming incurred to the surrounding 233 

environment. We observed a wide profile of active ARG types in the FAS, the 234 

identification of opportunity pathogen bacteria Pseudomonas carrying active ARGs 235 

alerts us the risk of spreading ARGs-carrying bacteria. Additionally, per cell mRNA 236 

molecules is an important indication of the activity of the cell, generally natural 237 

bacterial communities was observed to hold a lower inventory of transcripts (Moran et 238 

al. 2013); and the absolute quantification obtained with AQMM was well-fitted with 239 

previous observation.  240 

Conclusions 241 

In this study, we filled the gap of lacking a bioinformatic algorithm to perform AQ of 242 

metatranscriptomic data. The developed AQMM was demonstrated to gain enhanced 243 

performance at identifying DEGs compared with those RQ methods benchmarked 244 

with simulated metagenomic and meatranscriptomic data. Additionally, with the 245 

AQMM, the active resistome in foaming and normal activated sludge were quantified 246 

to per cell/volume level and even down to the transcription per copy gene. The active 247 
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ARG host were quantified and the co-expression of MRGs and ARGs was revealed 248 

for the first time in AS.  249 

Materials and methods 250 

Absolute quantification of gene abundance and transcript expression 251 

We developed a package of scripts AQMM (absolute quantification of metagenome 252 

/metatranscriptome) to perform comparative analysis.  253 

The formula for cells per mL: 254 

𝑪	 = 𝑁%	/	
'()*+	∗	-./	∗	

	01∗	232.5	6	07	∗	289.5	6	0:∗	5;/.3;	6	0<	∗	25/.53
=.855∗		3852

> ?
  (1) 255 

C is value of cell numbers per mL AS 256 

Nc is the estimated cell numbers for the sequenced DNA library with USCMGs 257 

Lsize is the sequencing depth  258 

RA, RT, RC and RG are ratios of A, T, C and G 259 

X is the overall extracted weight (ng) of DNA for 1 mL AS 260 

α is DNA extraction efficiency, for FAST DNA Kit for Soil, α is estimated as 28.2% 261 

(Mumy and Findlay 2004). 262 

The sequenced cells for RNA sequencing, for a RNA-seq with library size of Lsize 263 

after removing all ribosomal RNA, the equivalent sequenced cells for this sample is  264 

𝑬𝒄 = 𝐶 ∗	
	'()*+	∗	-./	∗	

01∗25/.5	6	0C	∗	28=.5	6	0:∗	28D.5	6	0<	∗	29D.5
=.855∗		3852	

E∗	F
G

   (2) 265 

Ec is the estimated number of cells sequenced for this RNA library 266 

C is value of cell numbers per mL AS 267 

Lsize is the sequencing depth 268 

RA, RU, RC and RG are ratios of A, U, C and G, the value they multiplied are molecular 269 

weight 270 

Y is the overall extracted weight (ng) of RNA for 1 mL AS 271 
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β is RNA extraction efficiency, the estimated β is about 7.5% as used in this study. 272 

This value was deduced from AS empirical data of proportion of RNA biomass by 273 

engineering perspective and the extracted RNA biomass.   274 

γ is non-ribosomal RNA ratio, for AS the estimated γ is about 0.03. 275 

Based on the two AQ numbers of cells for each sample, the gene or transcript 276 

abundance matrix could be further normalized into the following indices.  277 

GPC (Gene per Cell): an indication of the overall abundance of the gene in system. 278 

GPC	 = 	 	KL+MN∗'L+MN/'O+P+
KQ

  (3) 279 

TPC (Transcript per Cell): an indication of overall activity of the gene in system. 280 

TPC	 = 	 	KL+MN∗'L+MN/'O+P+
SQ

  (4) 281 

TPCG (Transcript per copy gene): an indication of the absolute activity of one copy 282 

gene in the system, equivalent to transcribe rate for each gene.   283 

TPCG	 = 	TPC 𝐺𝑃𝐶    (5) 284 

GTPC (Gene of taxon A per Cell): an indication of the overall abundance of the taxon 285 

in system averagely. 286 

GTPC	 = 	 𝐺𝑃𝐶VW
VX-            (6) 287 

TTPC (Transcript of taxon A per Cell): an indication of overall activity of the taxon 288 

in system averagely. 289 

TTPC	 = 	 𝑇𝑃𝐶VW
VX-            (7) 290 

ATCT (Averagely transcript per copy gene of taxon A): indication of the averagely 291 

absolute activity per copy expressed gene in taxon A  292 

ATCT	 = 	 -
W

𝑇𝑃𝐶𝐺VW
VX-     (8) 293 

Nc is the estimated cell numbers for the sequenced DNA library, 294 

Nread is the number of reads or transcript mapping to the target gene 295 
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Lread is the length of reads 296 

Lgene is the length of the target gene 297 

n is the number of genes affiliated to taxa A.  298 

When the number of cells per mL was obtained, using the GPC, genes per mL could 299 

be calculated.  300 

Simulating metatranscriptome data  301 

To validate our method and comparing with those RQ methods in identifying the 302 

DEGs, simulated data was generated by workflow illustrated in Fig. 2. For simplicity, 303 

the DNA was set unchanged to mimic the activated sludge community composition 304 

with 16 strains from different phylogeny. The metatranscriptome data sets were 305 

generated for two conditions A and B, each with three biological duplications; for the 306 

condition A and B, there were part of the strains with folds of significantly changed 307 

expression (Table S5). To only focus on the quantification method, all the system 308 

errors caused by other factors like base qualities, cDNA synthesis, assembly, mapping 309 

parameters were not considered.  310 

Sampling  311 

AS samples were collected in Shatin wastewater treatment plant at three locations 312 

along the flow direction while serious foaming happened at 2016-04-08 and nearly no 313 

foaming happened at 2016-04-25. Samples were collected on site by storing in liquid 314 

nitrogen immediately and then transported to the laboratory for RNA extraction. The 315 

DNA samples were mixed with 1:1 100% ethanol and AS and then stored at -20 °C 316 

fridge. Totally six samples were collected for both DNA and RNA samples alongside 317 

the segment aeration tank in three locations as depicted in Fig. 5.  318 
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Whole DNA, total RNA extraction, removal of ribosomal RNA, cDNA synthesis 319 

and next generation sequencing 320 

FAST DNA Kit was used to extract total DNA from 1 mL mixed AS samples. RNeasy 321 

Mini was used to extract the total RNA from 0.5 mL AS stored in liquid nitrogen. The 322 

extracted RNA was then processed by DNase I to eliminate the DNA in the RNA 323 

samples. Then both Illumina Ribo-Zero rRNA removal KIT (Bacteria) and Ribo-Zero 324 

rRNA removal KIT (Human/Mouse/Rat) was applied for each sample to remove 325 

rRNA from Prokaryote and Eukaryote respectively in order to get the total clean 326 

non-ribosomal RNA. Generally, metatranscriptome rRNA depletion was only used the 327 

Ribo-Zero for Bacteria, in this study, the addition of Eukaryote rRNA removal was 328 

due to a fact that by only using the Ribo-Zero Bacteria rRNA removal Kit for AS, 329 

there was still over half of RNA were rRNA from Eukaryote (our previous experiment, 330 

data unpublished). To get more non-rRNA, the Ribo-Zero rRNA Kit to remove 331 

Eukaryote was also used. RNA then was fragmented into 170 bps library and was 332 

reverse-transcribed to construct cDNA library for sequencing. The quality of DNA 333 

and RNA were assessed with Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 334 

Alto, CA, USA). All the samples was sent to sequence, considering the complexity of 335 

AS and the aims of this study to detect the expression of low abundance gene, we 336 

gave each sample a very deep sequencing depth which doubled the sequencing depth 337 

in previous studies. All the samples were sequenced with Hiseq 4000 in 338 

BGI-ShenZhen. DNA samples with PE-150 with library size of 300 bps. And RNA 339 

with PE101 of library size 170 bps. 340 

Bioinformatics analysis 341 

Quality filtering was firstly performed on DNA and RNA reads to keep only high 342 

quality reads using trimmomatic v1.04 (Bolger et al. 2014). DNA datasets were 343 
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pooled together and assembled by CLC Genomics Workbench 6.5.3 (CLC Bio, 344 

Aarhus, Denmark, https://www.qiagenbioinformatics.com/) with default parameters. 345 

Finally, 1,430,611 contigs with length over 100 bps (N50, 2,416 bps; 2,457,704,443 346 

bps length in total) were obtained and 74.5% of reads could be mapped back to these 347 

Contigs. All these contigs were sent to predict genes with Prodigal (version 1.5) 348 

(Hyatt et al. 2010) using `-meta` parameter and finally 3,234,330 genes were obtained. 349 

By removing exactly the same genes using USEARCH (version 8.0.1623) (Edgar 350 

2010) unique command (parameters -fastx_uniques), 3,234,246 million genes were 351 

kept; this set was defined as ‘unique gene set’. Reads were mapped back to the contig 352 

set and ‘unique gene set’ to obtain reads coverage matrixes for contigs and genes. The 353 

matrix of genes was finally normalized to cell numbers. For metatranscriptome 354 

samples, after quality filtering, the SortMeRNAv1.9 was used to remove all the 355 

possible ribosomal RNA by aligning to six databases of bacteria, archaea and 356 

eukaryotic small and large subunits (Kopylova et al. 2012). RNA reads for each 357 

sample were then mapped back to the `unique gene set` to get the transcript coverage 358 

for each gene with CLC genomic workbench 6.5.3 using parameters of gap penalty 2, 359 

gap extension 3, length fraction 0.8 and similarity at least 0.9.  360 

Taxonomy composition of the metagenome was generated with MEGAN6 (Huson et 361 

al. 2015). In detail, all genes were aligned to NCBI NR database (version 201603) 362 

with diamondv1.09 (Buchfink et al. 2015) to find out the homology proteins. To each 363 

gene, the local common ancestors (LCA) were applied using the taxonomy 364 

information of the hit NR protein in NCBI taxonomy database (Acland et al. 2014) 365 

and then this gene was annotated with the common ancestor taxonomy. We further 366 

processed the NCBI taxonomy annotation results to remove those subdivisions and 367 

subgroups to format the annotation to 7 levels from kingdom to species. Among total 368 
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3,234,246 unique genes predicted, 2,348,907 could be aligned to NR database. The 369 

remaining 885,339 (27.3%) genes could not be annotated with the NR database. The 370 

abundance of each taxon was a sum of all the annotated genes under that taxon in 371 

every sample. Antibiotic resistant genes (ARGs) were annotated with SARG database 372 

which contained a type-subtype structure annotation (Yang et al. 2016). Metal 373 

resistance genes (MRGs) were detected by aligning the “unique gene set” to the MRG 374 

database (Li et al. 2017). Absolute abundance and transcript was determined by 375 

AQMM.  376 
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Figures and legends 504 

 505 
Fig. 1: Schematic flow diagram for absolute quantification of metagenome and 506 

metatranscriptome to cell/volume level.  507 
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Fig. 2 Flowchart of the simulation datasets generation and analyzing process to get 509 

the differential expression genes. 510 

 511 

Fig. 3: Absolute quantification of type level ARGs abundance and transcription in 512 

FAS and NFAS. ARGs-carry hosts abundance and expression. * represents significant 513 

difference (P-value < 0.05).  514 

 515 
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 516 

Fig. 4: Co-expression of ARGs and MRGs in Shatin AS, a) was the network of ARGs 517 

and MRGs expression; b) was statistical of co-expression within MRGs; c) was 518 

statistical of co-expression with ARGs; d) was statistical of co-expression of ARGs 519 

and MRGs. Lines in the network represented Spearman association over 0.6, P-value 520 

0.05 the P-value was adjusted with B-H method.  521 

  522 
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 523 

 524 

Fig. 5 Samples were collected for foaming activated sludge at 08/04/2016 and 525 

non-foaming activated sludge at 25/04/2016 alongside the bioreactor at Shatin 526 

wastewater treatment plant.  527 

  528 
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Table 1 Comparing relative quantification methods with AQMM on detection of 529 

DEGs for simulated metatranscriptome data.  530 

 531 

 532 

Table 2: Summary of sequencing outputs and absolute quantification of each sample 533 

at cell level with AQMM.  534 

Sample ID Type 

Library size 

(bps clean 

data) 

Total extracted 

DNA and RNA 

(ng/mL) 

Estimated 

sequenced 

cells * 

Estimated 

cells per mL  

* 

DNA1 Foaming AS 8,567,524,200 49,140 1,541 6.11E+10 

DNA2 Foaming AS 11,786,228,700 54,600 2,179 6.98E+10 

DNA3 Foaming AS 10,108,576,800 58,380 1,919 7.66E+10 

DNA4 Normal AS 8,755,895,700 57,974 1,425 6.52E+10 

DNA5 Normal AS 9,196,724,100 66,752 1,541 7.73E+10 

  
# of genes Higher 

expression in B 

No expression 

difference 

# of genes 

Higher 

expression in A 

Theoretical Ground Truth 28524 36572 0 

RPKM+t-Test (P < 0.05) 16477 11558 37062 

edgeR 18278 20778 26040 

AQMM-5%-variation 28744.72  ± 143.53 35807.52 ± 48.08 543.77 ± 129.72 

AQMM-10%-variation 28740.83 ± 298.43 35801 ± 188.31 554.17 ± 256.81 

AQMM-20%-variation 28549.48 ± 1007.17 35941.86 ± 919.86 604.66 ± 654.76 

AQMM-50%-variation 16673.93 ± 9394.27 47694.99 ± 9600.33 727.08 ± 1775.09 
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DNA6 Normal AS 11,185,847,400 75,194 1,957 9.09E+10 

RNA1 Foaming AS 14,894,959,100 12,270 98,936   

RNA2 Foaming AS 13,598,855,700 12,710 99,744   

RNA3 Foaming AS 15,551,044,400 20,290 78,449   

RNA4 Normal AS 15,376,790,700 8,350 160,343   

RNA5 Normal AS 16,156,607,900 8,790 189,776   

RNA6 Normal AS 13,700,741,100 10,735 154,925   

*: Estimated sequenced cells for DNA libraries was using MicrobeCensus and for RNA 

libraries using AQMM. The assumption for AQMM was that per ml sample used for DNA 

and RNA extraction contained the same number of cells.  

 535 
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