
Running head: A JNNM FOR COMBINING HETEROGENEOUS USER DATA
SOURCES 1

A Joint Neural Network Model for Combining Heterogeneous User Data Sources: An

Example of At-risk Student Prediction

Chen Qiao

University of Hong Kong

Pokfulam Road, Hong Kong S.A.R. China

Email: cqiao@hku.hk

Xiao Hu

University of Hong Kong

Pokfulam Road, Hong Kong S.A.R. China

Email: xiaoxhu@hku.hk

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 2

Abstract

Information service providers often require evidence from multiple, heterogeneous

information sources to better characterize users and offer personalized service. In many

cases, statistic information (e.g. users’ profiles) and sequentially dynamic information

(e.g., logs of interaction with information systems) are two prominent sources that can

be combined to achieve optimised results. Previous attempts in combining these two

sources mainly exploited models designed for either static or sequential information, but

not both. This study aims to fill the gap by proposing a novel joint neural network

model that can naturally fit both static and sequential user data. To evaluate the

effectiveness of the proposed method, this study take the problem of at-risk student

prediction as an example where both static data (personal profiles) and sequential data

(event logs) are involved. A thorough evaluation was conducted on an open dataset,

with comparisons to a range of existing approaches including both static and sequential

models. The results reveal superb performances of the proposed method. Implications

of the findings on further research and applications of joint models are discussed.

Keywords: Joint model, Time series forecasting, Event log analysis, Neural

Networks, Personalized prediction, Academic performance prediction

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 3

A Joint Neural Network Model for Combining Heterogeneous User Data Sources: An

Example of At-risk Student Prediction

Introduction

Internet has accumulated user information from multiple sources. The

heterogeneous sources of information provide a more comprehensive view for

characterizing online users, based on which personalized information service could be

better offered to individuals. Accompanied by the recent surging of large-scale online

learning service, the same situation has flushed the educational domain as well (Qiao &

Hu, 2018). Better approach of combining heterogeneous sources of learner information

has also become prominent for characterizing learners and offering adapted learning

service. As a critical step of facilitating learners, early detection of their academic

performance is important for providing timely and personalized interventions for

academic success. Such prediction problem well-fits the more general problem of

combining heterogeneous user information for prediction making. Therefore, while

methodologically focusing on the more broad problem of combining heterogeneous data

sources, this study narrows its scope on the specific task of at-risk student prediction.

In the online learning environment, two typical types of data are available for

prediction: students’ personal profile information (e.g., highest education, gender,

studied credits, etc.) and students’ online event logs (e.g. visiting discussion forum,

accessing course materials, etc.) in the form of time series. Providing insights into who

the learners are and what learning activities they are doing, the two types of data can

potentially complement each other in forecasting learner performances at different

stages and can hence facilitate course providers in planning strategies for promoting and

enhancing personalized online learning experience(Kuzilek, Hlosta, Herrmannova,

Zdrahal, & Wolff, 2015).

Previous studies have implemented different predictive models for identifying

students at risk of failing in academic activities (e.g., assessment, course drop-out).

However, most adopted non-sequential models that ignores serial orders of data points,

while sequential event logs of students’ interactions with systems were aggregated into

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 4

summary statistics and treated as cross-sectional quantitative variables similar to profile

data. A few studies, on the other hand, implemented dynamic sequential models for

prediction, including traditional graphical temporal models such as Hidden Markov

Model (HMM) (Blikstein et al., 2014) and deep learning models, such as recurrent

neural networks (RNN) (Okubo, Yamashita, Shimada, & Ogata, 2017). However, these

implementations have not leveraged the information contained in the profile data.

In this study, models such as HMM and RNN are referred as sequential models,

due to their nature of modeling transitions among inner states of the input sequences.

In contrast, models such as Logistic Regression, K-NN, Decision Trees and SVMs are

referred to as non-sequential models, as they do not contain a mechanism of modeling

the sequential dynamics as the sequential models do, although it is possible to aggregate

sequential data and feed the aggregates to non-sequential models. From the other

direction, sequential models seeking to exploit profile information can encode profile

features into its input of each time step, so that the profile information has a global

impact on the prediction task. This approach can directly enable sequential models such

as Conditional Random Fields (CRF) and RNN to exploit information of both student

profiles and event logs, while incurring no additional modifications to the models.

In addition to using a sole sequential or non-sequential model, a different

perspective is to create a joint model to combine both within the same computational

framework. In this way, the two types of models can not only work with the most

suitable data types but also interact with each other to make collective predictions.

The main contributions of this study are as follows:

• The proposal of a neural network framework for jointly modelling time series and

cross-sectional features for prediction. The framework is also flexible to be applied

in/extended to other problems requiring the simultaneous modelling of

heterogeneous data sources.

• The empirical evaluation of the proposed framework and a variety of existing

approaches of predicting learner achievements using profile data and/or event log

series, which demonstrated the state-of-the-arts and indicated the superior

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 5

performance of the proposed method.

Related Work

In this section, relevant works will be reviewed in two lines. The first section

reviews literature in the general context of model combination, while existing methods

of at-risk student prediction are reviewed in the second section from the perspective of

adopted feature types and models.

Model Combination

Instead of using single models, machine learning scholars have demonstrated the

potential of improving performance by strategically combining models (Bishop, 2006).

Besides, combining models that work on different feature types enables heterogeneous

data processing.

A cluster of model combination methods are coined ensemble methods (Dietterich,

2000). The majority voting strategy (aka. committees) is an instance of ensemble

methods, which has been applied in previous study (Kuzilek et al., 2015) in predicting

at-risk students using heterogeneous information with non-sequential models. Another

popular method that usually obtains substantial improvements compared with using a

single model is the boosting method, where constituent models are trained sequentially

with predictions of the latter models depending on those of previous ones (Bishop,

2006) to lower the final prediction bias. Bagging (Breiman, 1996) is a technique that

applies bootstrap sampling to the training set to create a number of separate training

sets, on which individual models are trained and their predictions are combined to make

collective predictions. The fact that these approaches would greatly improve

performance led us to incorporate them in the evaluation experiment of this study.

Specifically, Gradient Boosting Tree classifiers (GBT), a boosting model combining a

set of classification trees, as well as Bagging of decision trees are included in the

experiment for comparison.

Another type of method aims to jointly train a single model with different

constituent models. Many influential cases could be found in the deep learning

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 6

literature. For example, the vision of combining classic machine learning models and

deep learning models have contributed to many joint models of powerful features. The

“Wide & Deep Learning” framework proposed by Cheng et al. (2016) jointly learn a

generalized linear model and feed-forward neural networks for recommendation systems,

and the online evaluation results indicated 3.9% and 1% performance gains of the

combined model compared to wide-only and deep-only models respectively. Besides,

joint training of RNNs and multinomial logistic regression models has also been

reported in the language processing domain, to significantly reduce the parameter

number of hidden layers in RNNs, since the multinomial logistic regression component

learns direct weights between inputs and outputs which would otherwise be learned

implicitly in larger hidden layer sizes in the RNN component (Mikolov, Deoras, Povey,

Burget, & Cernocky, 2011). In addition to the above forms, neural networks can be also

"embedded" into traditional graphical models for approximating several computational

procedures (Rezende, Mohamed, & Wierstra, 2014; Kingma & Welling, 2014), and such

kind of models and their derivations have achieved the state-of-art performances in

image generation, reinforcement learning and many other tasks (Goodfellow, Bengio,

Courville, & Bach, 2016).

Although both are model combination approaches, ensemble methods and joint

training methods follow different rationales. The constituent models of ensemble

methods are complete models themselves. They make separate inferences before a

mechanism (e.g., averaging, bootstrapping) integrates the individual judgments into a

final result based on specific policies. By contrast, parameters of constituent

components in a joint training procedure are updated together on a common gradient

source in each iteration of the training procedure, and usually the constituent

components are not "complete" models, as they do not directly make separate inferences

and produce error losses. The constituent components share a common gradient source

and can interact with each other in parameter tuning.

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 7

Automatic At-Risk Student Identification

Many studies have applied machine learning models for automatic detection of

at-risk students. Taking the prediction task as a machine learning problem, the basic

procedure is to use historical data to train predictive models and then apply these

models to make predictions on new data.

Data. Two types of data have been heavily used in at-risk student identification:

students’ profiles and their logged interactions with online learning systems. In case

event logs were unavailable (e.g. at the beginning of a course), students’ profile data are

the only source of applicable information. Such data are useful as information including

previous G.P.A. level, historical standard test score, age and even gender have all been

testified indicative of course success/failure (Wladis, Hachey, & Conway, 2014;

Lassibille & Gomez, 2008). On the other hand, as a course goes on, more immediate

evidence indicative of academic success or failure could be collected from learners’ event

logs as implicit learning feedback (da S. Dias & Wives, 2019). For example, in (Cerezo,

Sanchez-Santillan, Paule-Ruiz, & Nunez, 2016) the authors found that the top-3

variables related to final performance were the total time spent on course tasks, the

amount of time taken to submit the task (negative correlation), and the number of

words contributed to forums. Besides, click counts on learning materials (Wolff &

Zdrahal, 2012; Wolff, Zdrahal, Herrmannova, & Knoth, 2014), quantity and quality of

forum posts, as well as students’ social network positions in forums (Romero, Lopez,

Luna, & Ventura, 2013) are also influential features of predictive models. Nevertheless,

in a more pervasive perspective,Zhou et al. (2018) collected all the web access logs of

students in a local university to train predictive models, and found that at-risk students

tended to spend more time visiting entertainment-related sites than educational sites.

The fact that both types of data are useful naturally incurs the practice of combining

the power of both. As an example, Kuzilek et al. (2015) applied both student profile

data and the aggregated click counts on the resources in the online learning platform.

They compared the impacts of sole profile features and combined profile and event click

features of different levels, and demonstrated the different strengths of features on

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 8

indicating learner failure likelihood. Their results exposed the ineligible predictive

power of the information contained in both data types.

Models. As for machine learning models, many previous studies on at-risk

student identification tended to adopt traditional non-sequential models to fit profile

data, event log data, or the both. The experiment of Kuzilek et al. (2015) leveraged a

majority voting strategy based on predictions of four classifiers: a K-NN classifier

trained on profile data, a K-NN classifier trained on aggregated log event counts, and a

Naive Bayes (NB) and a Classification And Regression Tree (CART) classifier trained on

both data. This method achieved steadily increased precision scores on the predictions

of successive assessments of two courses, but is subject to recall decreases, resulting to

F1 scores all below 0.6 (with the best F1 score 0.574 for one of the assessments). The

authors (Kuzilek et al., 2015) claimed that the increase of precision and decrease of

recall were due to the requirement of restricted interventions to only return predictions

with the largest vote number. Although this explanation makes sense, the predictive

performance is susceptible regarding the true performance of the classifier, since the

prediction results were interfered due to the fact that students whose online behaviors

indicative of failing were reminded and motivated to change learning strategies.

Besides, Wilson, Olinghouse, McCoach, Santangelo, and Andrada (2016) trained a

Logistic Regression (LR) classifier on students’ demographic data related to writing

abilities and features from their writing tasks, and produced a model that could predict

at-risk students with an excellent Area Under Curve (AUC) score, 0.89. Likewise, using

cumulative G.P.A. and other profile information, David, Eley, Schafer, and Davies

(2016) built LR classifiers and Kaleita et al. (2016) used CART to predict students’

academic performances, with the classification performances ranging differently across

different groups of students: AUC scores ranging from 0.5 to 0.77 in (David et al., 2016)

and accuracy scores ranging from 0.33 to 0.94 in (Kaleita et al., 2016)). The divergence

of classification performances indicates the difficulties of the prediction task, and that

no single classifier could always perform the best in all scenarios.

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 9

Moreover, students’ event log statistics were used to compute indicator scores and

fit LR classifiers in (Saqr, Fors, & Tedre, 2017), and the classifiers won an excellent

AUC score (0.9) at the ending phase of the course compared with the mid-course

prediction performance (AUC 0.69). Simply using the aggregated click event statistics,

Wolff and Zdrahal (Wolff & Zdrahal, 2012) trained Support Vector Machine (SVM) and

decision tree classifiers, and the better performing decision trees obtained F1 scores

between 0.61 and 0.94 on three different courses. Other cases applying log events used

similar aggregation approaches and fit the data with non-sequential models (Wolff et

al., 2014; Romero et al., 2013).

However, the fact that event logs are time series could have aroused the attention

to sequential models, but to our best knowledge, only very few studies have tried to

make use of this kind of modeling tools in at-risk student prediction tasks. To name a

few, the study by Blikstein et al. (2014) aimed to predict student academic

performances in programming courses. They extracted features such as lines/characters

added, deleted or modified from students’ code snapshots during each save/compile

event, and assumed a latent variable indicating the state of the student, i.e., whether

he/she is progressing well or is in sink (risky) states encountering difficulties and

troubles. The authors modeled the observed data sequence and latent state transitions

with HMM, and a follow-up clustering analysis demonstrated the predictive power of

this model for students’ exam performances. In particular, the predictive power was

better for the final exams than the mid-term grades. In a more recent study (Okubo et

al., 2017), RNN was trained on students’ event logs to predict their final academic

grades in an information science course. Despite of the relatively low accuracy scores of

the RNN trained on the logs of the first several weeks, the performance of RNN

increased with the time went on, when more logs were available for model tuning. The

accuracy scores of the later weeks reached the perfect score 1.0.

Observed from the above studies, it can be found that 1) the time factor plays a

non-negligible role, as literature (Blikstein et al., 2014; Okubo et al., 2017; Saqr et al.,

2017) have reported better performances of models trained at later phases of the

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 10

courses, when data accumulated and became rich. 2) Studies have demonstrated the

benefits of combining the power of profile data and event logs (e.g., (Kuzilek et al.,

2015)), but only targeting non-sequential models, and the typical strategy is to

aggregate a sequence into fixed-point summary statistics, so that the event data can be

represented by single variables and be treated in the same way as profile attributes.

Such condition thrusts us to propose a joint model that could better exploit both

static profile features and dynamic event log data in a more reasonable manner.

Technically, the proposed joint model contributes to the modelling methods of

jointly combining heterogeneous user data of time series and static features, which can

be seen as a counterpart of the Wide and Deep model in the sequential and recurrent

context. Besides, in contribution to the specific at-risk student prediction task, the

proposed joint model can serve as a novel framework for addressing the problem with

improved capacity on combining time series and static features.

Problem Specification

We use a public dataset (Kuzilek et al., 2015; Kuzilek, Hlosta, & Zdrahal, 2017):

Open University Learning Analytics Dataset (OULAD). The anonymized data set

consists of information about courses, student profiles and their activities in the online

Virtual Learning Environment (VLE). Different deliveries of courses are marked with

different identifiers. Each course consists of different online resources and several

assessments, which are also differentiated by unique identifiers. By combining different

data tables in the dataset, we can extract a student’s event sequence of visiting different

resources in a designated time span. We postpone the details of feature descriptions to

the section Experiment Setup and Results.

The study by Kuzilek et al. (2015) predicted the pass and failure of assessments in

various courses. This study follows the original definition of failing an assessment: the

learner did not submit the assessment or his submitted assessment was rated below 40%

of the maximum score. Hereby the task becomes a binary classification problem where

the prediction label is pass or fail. The classification model is based on the features of a

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 11

student’s profile and/or his/her online activities conducted from the beginning of the

course to the time point right before the targeted assessment. Note, however, that the

time point is fixed out of an experimental purpose in this study. In the real-world

setting, the time point could be set as needed.

The Joint Neural Network Framework

The joint neural network framework is illustrated in Fig. 1. As shown in the

figure, it consists of sequential and non-sequential components which are named Time

Series Encoder (TSE) and Cross-Sectional Encoder (CSE) respectively. The two

components, TSE and CSE are then joined together in the upper common hidden layer,

before being connected to the output layer. Compared with single RNN and single

MLP structures, the proposed architecture is featured in its ability to simultaneously

encode time series and static profile features. Through interactions between the TSE

and CSE components during training, the model can learn to better balance between

evidence from users’ profiles and the log events accumulated through the starting,

middle and ending of a course. Such characteristics enable this joint model to make

better predictions at different stages.

As shown in Fig. 1, our model design is straightforward and concise, which fits the

principle of Occam’s razor, a guiding principle for designing machine learning models.

This principle prefers simpler models, given the same conditions, for greater

generalization power. As our prediction task requires the modelling of both time series

and static features, the simplest joint model requires one component for processing time

series and the other component for static features, which correspond to the TSE and

CSE components respectively.

Different from single RNN, MLP or the boosting of the two models, the joint

nature enables the proposed model to share a common gradient source, and trace back

how much each component contributes to its predictions. In such scenario, during

training, for each error made by this model, it can clearly estimate the proportion of

error contributed by the two components respectively, and then make synchronous

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 12

Hidden Units

Feature Vectors of
Time Series

Profile Features

y

...

m

...

......

o
(T)

h h

x x

(T)

(T)

(t)

(t)

x… xk K

x
PF

EL EL

y

Time Series Encoder (TSE) Cross-Sectional Encoder (CSE)

Figure 1 . Architecture of the Joint Neural Network Framework

corrections to update the parameters of both components. In other words, during

training, the parameters of the two components share information flows from the same

error cases, and learn how to interact to make better collective decisions.

There are two kinds of inputs to this model, the profile feature vector xP F of all

the profile variables, and the event feature vectors x(1)
EL, . . . ,x

(t)
EL for activities at each

time step. TSE encodes event information step-by-step. At each time step t, it

combines the history evidence so far with the new events x(t)
EL, and stores them as the

hidden state vector h(t). At the final step T, all the time steps are processed and TSE

yields the output vector o(T), conveying the evidence extracted from the whole

sequence. After that, o(T) is concatenated with the profile feature vector xP F , and goes

through a hidden neural network layer to yield the hidden state vector m. The initially

extracted evidence in m is then further processed by the output network layer so that

more complex relationship among profile and event information can be extracted.

Eventually, the output layer produces the model’s confidence (as y, a vector with two

values corresponding to pass or failure respectively) for predicting each label, based on

which the label with the highest confidence is adopted as the final prediction y.

TSE is essentially a single layer RNN in our context, whereas it is free to expand

it to deeper layers if enough training data are available. Each step of the time series

goes through a layer of the TSE, making it deep at the time dimension. The recurrent

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 13

mechanism enables each layer to share the parameters such that by reusing the

transition layer the model is free from parameter explosion. Hierarchically, CSE

(depicted on the right side of the framework) is a single input layer. Like the sequential

part, more hidden layers may be added to make CSE even deeper. The outputs of TSE

and CSE are concatenated, and at least one hidden layer (m in this framework) should

be included between the concatenation and the output layer y. Involving hidden layers

enables the model to learn complex mappings (e.g. the logical operation of Exclusive

Or) among the profile and event log features, which can not be captured in an

architecture without any hidden layer like m. Due to the existence of the hidden layer,

the information extracted by both TSE and CSE can interact and complement each

other for the final predictions.

Further, to keep long term dependency so as to take consideration of earlier

information over longer time spans, recurrent neural cells of the RNN in our

implementation are equipped with gating mechanisms called Long Short Term Memory

(LSTM) (Hochreiter & Schmidhuber, 1997). The derivations for the loss function and

gradients for the model parameters are provided as the supplementary materials.

In this study, the method of Adam (Kingma & Ba, 2015) is used as the optimizer

for finding the best updating direction and volume of the model parameters during each

iteration of the training procedure.

Experiment Setup and Results

Data Processing

Three course deliveries were randomly selected and information about the courses

is summarized in Table 1, where event types indicate the category of events such as

forum and course content activities, and a specific event in a more fine-grained sense

indicates whether the learner is accessing forum 1 or 2, or course content 2 or 5, which

are instances of the event types. The final examinations were excluded as not all course

deliveries had final exam scores.

For each course delivery, we fetched all the students, their profile information,

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 14

Table 1

Summary of The Three Course Deliveries

Course Presentation # Days # Students # Events # Event # Assessments

Code Code Types

BBB 2014B 234 1613 311 10 11

CCC 2014B 241 1936 196 9 8

FFF 2013J 268 2283 529 16 12

Note. # stands for the number of.

assessment scores and all their activities recorded in the online VLE as event logs. The

profile attributes are listed in Table 2. The continuous attributes include the number of

previous attempts to take the course and the previous credits acquired by the learners

while the categorical attributes include the highest education level, learners’ age range,

as well as disability status.

In the experiment, the multinomial variables were transformed to binary variables

with values one or zero, designating whether the original multinomial variable is taking

one of its values. For each multinomial variable, only one of its corresponding binary

variables would take the value 1, while all the others would take the value 0.

In addition to profile features, for each student in each assessment, his/her event

logs were extracted from the start date of the course to his assessment submission date,

or the submission deadline if the student did not submit the assessment. We set the

unit of a time step as a day, and aggregated students’ daily events into each event type

(See Table 3 for an example illustrating daily aggregated feature vectors with time and

event type features). Thereby, a student’s event log sequence before an assessment can

be represented with a matrix H, where each row indicates a date, and each column

indicates a resource type, the cell Hi,j stores the click counts on that resource type in

that day. Moreover, we appended a column indicating the logged date which locates the

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 15

Table 2

Attributes in Student Profiles

Variable Type Variable

Continuous
number of previous attempts

studied credits

Categorical

gender

highest education

age band

disability status

log event in the global timespan of the course 1. A sample fragment of a student

activity sequence is presented in Table 3, where each of the columns except for the first

represents an event type (e.g., accessing course resource, quiz, ouwiki, etc.), and the

cells are filled with corresponding click counts. More details about the online course

resources and activity types can be found in the descriptions of the original dataset 2

(Kuzilek et al., 2017).

In our experiment, we applied 5-fold cross-validation method to evaluate the

model performances. Moreover, in order to tune the hyper-parameters for model

training, in each fold, the 4/5 data used as the training set were further split into two

subsets to yield a smaller training set and a validation set (with 4:1 ratio). The same

model configured with different hyper-parameters would be trained on the smaller

training set, and then evaluated on the validation set. After that, we select the model

with the best configuration and evaluate it on the test fold to obtain its fold-wise

performance. Finally, the test performances on the five test folds are averaged to yield

1 The date attribute could be negative, indicating that this learning activity was conducted before the

start of the course.

2 https://analyse.kmi.open.ac.uk/open_dataset

https://analyse.kmi.open.ac.uk/open_dataset

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 16

Table 3

A Sample Fragment of A Student’s Event Sequence

date resource quiz ouwiki url forumng homepage . . .

5 1 0 0 0 2 3 . . .

10 1 0 0 2 14 3 . . .

11 1 1 0 0 9 1 . . .

12 0 0 0 0 9 0 . . .

. .

the final performance of the model.

Experiment and Model Configuration

For a thorough evaluation, we include different model-feature combinations as

listed in Table 4. It should be noted that, the state-of-the-art models for at-risk student

prediction are mostly ensemble methods or standard RNNs, which were reviewed in the

Related Works section, and have been enrolled in our evaluation experiment. However,

to our best knowledge, the proposed framework is the first joint neural network model

for combining time series and static features, so there were no other joint neural

network models available for our experiment.

Non-sequential models. The first model cluster consists of non-sequential

baseline models including:

• K-Nearest Neighbors (KNN),

• Classification and Regression Trees (CART),

• Naive Bayesian Classifier (NB),

• Support Vector Machines (SVM),

• Logistic Regression classifiers (LR),

• Gradient Boosting Trees (GBT), and

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 17

Table 4

List of Different Model-Feature Combinations

Model cluster Feature set

1. non-sequential models:

– K-Nearest Neighbors (KNN) PF; EL.ns; Both.ns

– Classification & Regression Tree (CART) PF; EL.ns; Both.ns

– Naive Bayesian Classifier (NB) PF; EL.ns; Both.ns

– Support Vector Machines (SVM) PF; EL.ns; Both.ns

– Logistic Regression (LR) PF; EL.ns; Both.ns

– Gradient Boosting Trees (GBT), PF; EL.ns; Both.ns

– Bagging of decision trees (Bagging), PF; EL.ns; Both.ns

2. sequential baselines:

– Conditional Random Fields (CRF) EL.s; Both.s

– Hidden-state Conditional Random Field (HCRF) EL.s; Both.s

– Recurrent Neural Networks (RNN) EL.s; Both.s

3. Joint Neural Network Model (JNNM) PF, EL.s

PF: Profile data;

EL.s: Event Log as sequence;

EL.ns: Event Log as aggregated non-sequential attribute;

Both.s: EL.s with profile feature incorporated in each time stamp;

Both.ns: union of feature sets PF and EL.ns

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 18

• Bagging of Decision Trees.

Each of these classifiers works on three sets of features:

• profile only (PF),

• event log features generated by concatenating all daily event vectors (as in Table

3) of a student (EL.ns), and

• the combined set of both types (Both.ns).

The concatenation approach for event sequences makes the input unchanged

regarding that of sequential models, the only difference is that all event vectors are fed

into the non-sequential models at the same time, while it takes steps to feed the event

feature vectors into the sequential models one by one. All Cluster One classifiers were

implemented with the Scikit-learn package 3.

Sequential models. The second cluster of models contains three sequential

models:

• Conditional Random Field (CRF),

• Hidden-state Conditional Random Field (HCRF) (Wang, Quattoni, Morency,

Demirdjian, & Darrell, 2006),

• Recurrent Neural Network (RNN).

Each of the models works on two types of data:

• sole event-log feature vectors as sequences (EL.s) in contrast to the concatenated

features (EL.ns) for non-sequential models, and

• event feature vectors expanded with additional dimensions to incorporate global

profile features (Both.s).

3 http://scikit-learn.org/

http://scikit-learn.org/

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 19

Here the investigation is intended to include the comparison between traditional

probabilistic sequential models (CRF) and sequential neural network models (RNN).

Given the fact that RNNs possess nice performances in many sequential modeling tasks

(e.g. (Errattahi, Hannani, Hain, & Ouahmane, 2019; Zhang, Yin, Zhang, Liu, &

Bengio, 2018; Xu, Rahmatizadeh, Boloni, & Turgut, 2018)), we would like to evaluate

whether the performance of RNN would still lead in this task. The original linear-chain

CRF as well as an extension, HCRF were adopted for evaluation. The original CRF is

used for sequence prediction, meaning that it would predict the label for each time step

of the input time series. To enable the application of CRF in our scenario, we repeat

each class to form a homogeneous sequence of classes with the length equivalent to its

corresponding input sequences. CRFs could thus be trained on input and target

sequences. In prediction phase, the most frequent label in the output sequence

produced by a trained CRF is selected as the final class of the whole sequence,

indicating whether a student failed or passed an assessment. In contrast to the original

CRF, the derived HCRF could predict the class for a whole input sequence by modeling

hidden states in the original CRF. The performance of HCRF in whole sequence

classification was proved to be better than traditional CRF in the study of Wang et al.

(2006), and the same situation is expected to occur in our scenario. The Python version

of CRFsuite 4 was leveraged to implement the original CRF, while package pyHCRF 5

was used to implement HCRF. The two models were both optimized with L-BFGS

optimizer (Nocedal, 1980). The coefficients for L1 and L2 regularization were tuned for

CRF using Randomized Search, while parameters HCRF was tuned with Grid Search

method, including the number of hidden states, L2 regularization coefficient, and state

noise degrees. Besides, RNN was implemented with Keras 6 package. We adopted

LSTM cell as hidden state unit to enhance long-term dependency of the information

through the whole sequence. The dimensionality of hidden state vectors was tuned

4 http://www.chokkan.org/software/crfsuite/

5 https://github.com/dirko/pyhcrf

6 https://github.com/fchollet/keras

http://www.chokkan.org/software/crfsuite/
https://github.com/dirko/pyhcrf
https://github.com/fchollet/keras

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 20

among the candidates of 16, 32, 48 and 64, ReLU was adopted as the activation

functions, and the network was optimized with Adam (Kingma & Ba, 2015) optimizer,

with the L2 regularization and learning rate tuned in the development set. An early

stop trick (described in (Goodfellow et al., 2016)) was applied to stop model training

after 15 consecutive performance halts in the validation set.

Joint neural network model. The final cluster is the proposed joint neural

network model. Because it is an integration of non-sequential and sequential models, it

can fit to both data types in the most original forms: profile features (PF) and event

vector sequences (EL.s). The joint model was also implemented with Keras package,

with the basic configurations the same as those of the RNN elaborated in the Sequential

models section. Moreover, we applied Leaky ReLU activation unit (He, Zhang, Ren, &

Sun, 2015)7 and batch normalization (Ioffe & Szegedy, 2015) to the concatenated layer

(m in Fig. 1) to facilitate training. The same Adam optimizer and early-stop method

were also applied to the joint training procedure.

Results and Analysis

F1 scores and the corresponding ranking of all the models are summarized in the

Fig. 2-4 and Table 5 below. Following previous studies (Kuncoro et al., 2018; Wolff,

Zdrahal, Nikolov, & Pantucek, 2013), we visualize the model performances using bar

charts in Fig. 2-4 for more intuitive inter-model comparisons.

Improved Performance Obtained by Classical Non-Sequential and

Sequential Models Using both Features. Fig. 2 shows the mean ranks (the

best-performing classifier has the rank 21/21) and F1 scores among the non-sequential

classifiers on three types of non-sequential data for each course. In addition, Fig. 3

shows the comparisons for an individual model type on three data types (the best rank

7 The reason to use Leaky ReLU instead of the more popular ReLU activation is to tackle the issue of

training halt, which is a known issue for ReLU when backpropagated gradients are always zero and the

model parameters can not be updated further. Since the training of our model suffers from this

problem, LeakyRelu was adopted instead in our model, as this activation function is invented to tackle

this issue.

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 21

1

3

5

7

9

11

13

15

17

19

21

KNN CART NB SVM GBT Bagging LR

R
an

k
 (

th
e

la
rg

er
 t

h
e

b
et

te
r)

Classifier

BBB2014B - Mean Rank

Both.ns PF EL.ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KNN CART NB SVM GBT Bagging LR

F
1

 s
co

re

Classifier

BBB2014B - Mean F1

Both.ns PF EL.ns

1

3

5

7

9

11

13

15

17

19

21

KNN CART NB SVM GBT Bagging LR

R
an

k
 (

th
e

la
rg

er
 t

h
e

b
et

te
r)

Classifier

CCC2014B - Mean Rank

Both.ns PF EL.ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KNN CART NB SVM GBT Bagging LR

F
1

 s
co

re

Classifier

FFF2013J - Mean F1

Both.ns PF EL.ns

1

3

5

7

9

11

13

15

17

19

21

KNN CART NB SVM GBT Bagging LR

R
an

k
 (

th
e

la
rg

er
 t

h
e

b
et

te
r)

Classifier

FFF2013J - Mean Rank

Both.ns PF EL.ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KNN CART NB SVM GBT Bagging LR

F
1

 s
co

re

Classifier

CCC2014B - Mean F1

Both.ns PF EL.ns

Figure 2 . Mean Ranks (on F1) and F1 Scores of Non-Sequential Models Trained on

Three Data types on Three Courses

is 3 for each model).

It could be generally spotted that classifiers trained on profile-only performed

worst on average, whereas those trained on aggregated event log features or combined

features took turns to lead the predictive performance, with the best model type all

being GBT (shown in Fig. 2 the highest bars). Fig 3 shows in courses BBB2014B and

FFF2013J, where the overall predictive performances were relatively high, most

classifiers achieved good performance based on sole event log features. The addition of

profile features brought no better results, whereas, on the contrary, sometimes it

brought down the performance. Nonetheless, in course CCC2014B whose assessments

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 22

0.00

0.50

1.00

1.50

2.00

2.50

3.00

R
an

k
 (

th
e

la
rg

er
 t

h
e

b
et

te
r)

Classifier

BBB2014B - Mean Rank
(Inner Model Comparison)

Both.ns PF EL.ns

0.00

0.50

1.00

1.50

2.00

2.50

3.00

R
an

k
 (

th
e

la
rg

er
 t

h
e

b
et

te
r)

Classifier

FFF2013J - Mean Rank
(Inner Model Comparison)

Both.ns PF EL.ns

0.00

0.50

1.00

1.50

2.00

2.50

3.00

R
an

k
 (

th
e

la
rg

er
 t

h
e

b
et

te
r)

Classifier

CCC2014B - Mean Rank

(Inner Model Comparison)

Both.ns PF EL.ns

Figure 3 . Mean Ranks for Inner Model (Non-Sequential) Comparisons. Each Model Is

Trained on the Three Feature Types and then Ranked.

were more difficult to predict, we observed that the majority of the classifiers trained on

combined features ranked relatively higher than on sole event log features, with the

scenarios under KNN and SVM almost in tier. Here, unlike the situation in the other

two courses, the event log information failed to offer as reliable clues for prediction as in

the other two courses, whereas when complemented by the information from profiles,

the prediction became more competent.

Likewise, it can be observed from Fig. 4 that the performances of the sequential

models also demonstrated a distribution generally in accordance with the

non-sequential models on the three courses, with better average F1 scores achieved on

the same two courses and relatively lower overall performance on Course CCC2014B.

However, for the sequential models the benefits of enrolling both profile and log event

features are greater: except for the HCRF in course BBB2014B, the mean F1 scores for

all the other classifiers improved to various extents. Moreover, the improvements of

using both features for CRF and HCRF in assignments of CCC2014B, and for RNN

and CRF in FFF2013J are significant. On the other hand, the RNN reported in

numerous previous studies to outperform CRF also showed its significant superiority

over CRFs in this experiment.

The Joint Neural Network Model vs. all the other Models. The

proposed joint neural network model is compared with all the other classifiers in the

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 23

0

0.2

0.4

0.6

0.8

1

RNN CRF HCRF RNN CRF* HCRF* RNN* CRF* HCRF

BBB2014B CCC2014B FFF2013J

F
1
 (
th

e
la

rg
er

 t
h
e

b
et

te
r)

Classifiers by group

Mean F1

EL.s Both.s

Figure 4 . Mean F1 Scores of Sequential Models

(Significant cases at the 0.05 level are marked with "*")

prediction tasks. Table 5 lists the results after selecting the best instances for each

model type. On average, JNNM is ranked highest among all the methods.

In general, The best non-sequential models were the ensemble methods GBT and

Bagging, of which the best versions were all trained on both profile and event log

features

The overall performances of the sequential models tended to outperform those of

the non-sequential models, and RNN, the current state-of-the-art sequential model

again outperformed HCRF and CRF in the academic performance prediction setting. It

is also noticeable that all the best versions of the sequential models were trained on

both profile and event log features.

The most interesting and noteworthy result is the performance of the proposed

JNNM. The proposed method achieved an average F1 score of 0.8803 and outperformed

all the other methods. A closer look at its top-ranked average performances across

different courses shows that its superiority was stable across different datasets, and

statistical tests also demonstrate that such superiority is significant (adjusted p-values

< 0.05 for paired-t test between JNNM and any other method) on all the assessments of

the courses.

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 24

Table 5

Mean Test F1 Scores of All Classifiers

Classifier BBB2014B (11) CCC2014B (8) FFF2013J (12) ALL (31) Ranking

JNNM 0.9175 0.7545 0.9299 0.8803 1

RNN 0.9103 0.7398 0.9138 0.8676 2

GBT 0.8917 0.7153 0.8958 0.8473 3

HCRF 0.8961 0.7260 0.8909 0.8469 4

Bagging 0.8880 0.7050 0.8930 0.8427 5

KNN 0.8897 0.6733 0.8849 0.8320 6

CRF 0.8629 0.6969 0.8872 0.8294 7

SVM 0.8776 0.6632 0.8442 0.8092 8

LR 0.8440 0.6542 0.8294 0.7890 9

CART 0.8314 0.6151 0.8355 0.7758 10

NB 0.8048 0.5891 0.8419 0.7635 11

Courses BBB2014B, CCC2014B and FFF2013J have 11, 8 and 12 assessments respectively

Discussion

The experiment results revealed rich evidence on the characteristics of different

models. In general, the sequential models, through modelling sequential dynamics,

achieved relatively better performances than non-sequential models. Besides, the

proposed JNNM demonstrated superb performance compared to all the other methods,

and the superiority holds stably across different datasets. The results, supported by

several positive evidences, indicate the promising values of the proposed method in

combining student profile and event log sequences for prediction tasks.

However, given the results that the best non-sequential models (e.g., GBT,

Bagging) in our experiment could already achieve comparable results to those of the

sequential models, why shall we turn to sequential or even the proposed joint model to

gain a possibly "minimal" performance gain? To answer this, we should note that the

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 25

evaluation of this study was performance-oriented. There were several tricky operations

which might have increased model performance, but these operations might not be

generalizable to real-world settings. To elaborate, each of the non-sequential models

involving event logs took as its input a high-dimensional event log feature vector that

was concatenated by daily logs. This is not a sound real-world practice because 1) the

timestep lengths were fixed for these models, so that incorporating additional

aggregations of event logs would require extra model parameters, resulting in model

reconstruction and inflexibility; 2) with the number of log features and days expanding,

the cost of memory and computation in simultaneously coping with the

high-dimensional feature vector would also increase linearly, in some cases might even

be beyond hardware capacities; and 3) the large feature size could enlarge model

complexity and make the models more likely to overfit. A possible way to mitigate the

feature exploding problem is to increase the time intervals for aggregation. However,

aggregation in more coarse-grained intervals losses temporal information, yielding

decreased performance which has been observed in our pilot trials. Another treatment

is to enroll feature selection or feature reduction procedures, which were not covered in

our experiment due to the controlling requirement for the same feature content.

However, the downside of feature selection/reduction is the loss of information from raw

features, which might be less strong regarding the reduction algorithms, whereas still

indicative for prediction. Moreover, the size of the reduced feature space would be a

new hyper-parameter awaiting tuning.

Given the above facts, we are highly motivated to try out the alternatives. In

contrast to the non-sequential models, the parameter sizes of sequential/joint models

evaluated in this study can stay invariant with respect to variable time-step lengths.

Besides, at a single time step, sequential models only take a single step of log features,

which is much lower in dimensionality than the linearly increasing concatenated feature

vector. For sequential models, it should be noted that more sophisticated dynamic

graphical models than the ones evaluated in this study could be invented in the future

to account for more detailed global/local variable structures. However, the efficiency of

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 26

estimation and inference for complex probabilistic models would remain an issue to be

explored and validated.

Finally, the proposed joint model not only shares the advantages of flexibility

regarding time variants and dimension-reduced input feature size, but also relieves the

operation of repetitive integration of profile features and event log features at each

timestep, and thus is more computationally efficient, especially in the case of large

volumes of raw/transformed profile features. The additional benefits of the joint model

compared with both the non-sequential and sequential models warrant its advantages

beyond the performance aspect.

Conclusion

Users’ profile and event logs are both valuable information sources for conducting

personalized predictive analysis. Existing studies have adopted different machine

learning models and data processing methods and obtained promising results. This

study, by comparing the proposed joint neural network model with existing methods of

model/feature combination, demonstrated the benefits of applying multiple information

sources for prediction, and that the proposed joint modelling approach is competent in

making collective use of multiple information sources.

Finally, we would like to point out that the proposed framework is highly

generalizable. Although in this study, it is implemented in a binary classification task,

it is straightforward to adapt the model to multiclass classification or continuous value

regression, by modifying the output layer according to the goal of the task. In this

sense, the proposed framework provides an alternative and potentially superior solution

to classification and regression tasks involving both cross-sectional data (the

generalization of profile features) and time series data (the generalization of event logs).

Moreover, by "joining" additional encoding components, the framework can also be

extended to prediction tasks of other information services which involve simultaneous

modeling of multiple/asynchronous information sources.

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 27

Acknowledgement

This study is partially supported by an Early Career Scheme grant from the

Research Grants Council of the Hong Kong Special Administrative Region, China.

(Project No. HKU 27401114).

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 28

References

Bishop, C. (2006). Pattern recognition and machine learning. Springer.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014).

Programming pluralism: Using learning analytics to detect patterns in the

learning of computer programming. Journal of the Learning Sciences, 23 (4),

561-599. doi: 10.1080/10508406.2014.954750

Breiman, L. (1996, 8 01). Bagging predictors. Machine Learning, 24 (2), 123-140. doi:

10.1023/A:1018054314350

Cerezo, R., Sanchez-Santillan, M., Paule-Ruiz, M. P., & Nunez, J. C. (2016). Students’

lms interaction patterns and their relationship with achievement: A case study in

higher education. Computers & Education, 96 , 42-54. doi:

10.1016/j.compedu.2016.02.006

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., . . . Shah,

H. (2016). Wide & deep learning for recommender systems. In Proceedings of the

1st workshop on deep learning for recommender systems (pp. 7–10). New York,

NY, USA: ACM. doi: 10.1145/2988450.2988454

da S. Dias, A., & Wives, L. K. (2019, Jan 21). Recommender system for learning

objects based in the fusion of social signals, interests, and preferences of learner

users in ubiquitous e-learning systems. Personal and Ubiquitous Computing.

Retrieved from https://doi.org/10.1007/s00779-018-01197-7 doi:

10.1007/s00779-018-01197-7

David, M. C., Eley, D. S., Schafer, J., & Davies, L. (2016). Risk assessment of student

performance in the international foundations of medicine clinical science

examination by the use of statistical modeling. Advances in Medical Education

and Practice, 7 , 653-660. doi: 10.2147/AMEP.S122841

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier

systems (p. 1 - 15). Springer Berlin Heidelberg.

Errattahi, R., Hannani, A. E., Hain, T., & Ouahmane, H. (2019). System-independent

asr error detection and classification using recurrent neural network. Computer

https://doi.org/10.1007/s00779-018-01197-7

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 29

Speech & Language, 55 , 187 - 199. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0885230818302031

doi: https://doi.org/10.1016/j.csl.2018.12.007

Goodfellow, I., Bengio, Y., Courville, A., & Bach, F. (2016). Deep learning. MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2015, 12). Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In 2015 ieee

international conference on computer vision (iccv) (p. 1026-1034). doi:

10.1109/ICCV.2015.123

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9 (8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the 32nd

international conference on international conference on machine learning, volume

37 (p. 448-456). JMLR.org.

Kaleita, A. L., Forbes, G. R., Ralston, E., Compton, J. I., Wohlgemuth, D., & Raman,

D. R. (2016). Pre-enrollment identification of at-risk students in a large

engineering college. International Journal of Engineering Education, 32 (4), 1647 -

1659.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In the

3rd international conference on learning representations (iclr2015) (Vol.

abs/1412.6980).

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In Proceedings

of the international conference on learning representations (iclr) 2014.

Kuncoro, A., Dyer, C., Hale, J., Yogatama, D., Clark, S., & Blunsom, P. (2018, July).

LSTMs can learn syntax-sensitive dependencies well, but modeling structure

makes them better. In Proceedings of the 56th annual meeting of the association

for computational linguistics (volume 1: Long papers) (pp. 1426–1436).

Melbourne, Australia: Association for Computational Linguistics. Retrieved from

https://www.aclweb.org/anthology/P18-1132

http://www.sciencedirect.com/science/article/pii/S0885230818302031
https://www.aclweb.org/anthology/P18-1132

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 30

Kuzilek, J., Hlosta, M., Herrmannova, D., Zdrahal, Z., & Wolff, A. (2015, 3). Ou

analyse: analysing at-risk students at the open university. Learning Analytics

Review, LAK15-1 , 1-16.

Kuzilek, J., Hlosta, M., & Zdrahal, Z. (2017). Open university learning analytics

dataset. Scientific data, 4 , 170171.

Lassibille, G., & Gomez, L. N. (2008). Why do higher education students drop out?

evidence from spain. Education Economics, 16 (1), 89-105. doi:

10.1080/09645290701523267

Mikolov, T., Deoras, A., Povey, D., Burget, L., & Cernocky, J. (2011, 12). Strategies for

training large scale neural network language models. In 2011 ieee workshop on

automatic speech recognition understanding (p. 196-201). doi:

10.1109/ASRU.2011.6163930

Nocedal, J. (1980). Updating quasi-newton matrices with limited storage. Mathematics

of Computation, 35 (151), 773–782.

Okubo, F., Yamashita, T., Shimada, A., & Ogata, H. (2017). A neural network

approach for students’ performance prediction. In Proceedings of the seventh

international learning analytics & knowledge conference (p. 598-599). New York,

NY, USA: ACM. doi: 10.1145/3027385.3029479

Qiao, C., & Hu, X. (2018, July). Discovering student behavior patterns from event logs:

Preliminary results on a novel probabilistic latent variable model. In 2018 ieee

18th international conference on advanced learning technologies (icalt)

(p. 207-211). doi: 10.1109/ICALT.2018.00056

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and

approximate inference in deep generative models. In Proceedings of the 31st

international conference on international conference on machine learning - volume

32 (p. 1278-1286). JMLR.org.

Romero, C., Lopez, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students’ final

performance from participation in on-line discussion forums. Computers &

Education, 68 , 458-472. doi: 10.1016/j.compedu.2013.06.009

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 31

Saqr, M., Fors, U., & Tedre, M. (2017). How learning analytics can early predict

under-achieving students in a blended medical education course. Medical Teacher ,

39 (7), 757-767. doi: 10.1080/0142159X.2017.1309376

Wang, S. B., Quattoni, A., Morency, L. P., Demirdjian, D., & Darrell, T. (2006).

Hidden conditional random fields for gesture recognition. In 2006 ieee computer

society conference on computer vision and pattern recognition (cvpr’06) (Vol. 2,

p. 1521-1527). doi: 10.1109/CVPR.2006.132

Wilson, J., Olinghouse, N. G., McCoach, D. B., Santangelo, T., & Andrada, G. N.

(2016). Comparing the accuracy of different scoring methods for identifying sixth

graders at risk of failing a state writing assessment. Assessing Writing, 27 , 11-23.

doi: 10.1016/j.asw.2015.06.003

Wladis, C., Hachey, A. C., & Conway, K. (2014). An investigation of course-level

factors as predictors of online stem course outcomes. Computers & Education, 77 ,

145-150. doi: 10.1016/j.compedu.2014.04.015

Wolff, A., & Zdrahal, Z. (2012, 7). Improving retention by identifying and supporting

"at-risk" students. EDUCAUSE Review Online.

Wolff, A., Zdrahal, Z., Herrmannova, D., & Knoth, P. (2014). Predicting student

performance from combined data sources. In A. Pena-Ayala (Ed.), Educational

data mining: Applications and trends (p. 175-202). Cham: Springer International

Publishing. doi: 10.1007/978-3-319-02738-8_7

Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013). Improving retention:

Predicting at-risk students by analysing clicking behaviour in a virtual learning

environment. In Proceedings of the third international conference on learning

analytics and knowledge (pp. 145–149). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/2460296.2460324 doi:

10.1145/2460296.2460324

Xu, J., Rahmatizadeh, R., Boloni, L., & Turgut, D. (2018, Aug). Real-time prediction

of taxi demand using recurrent neural networks. IEEE Transactions on Intelligent

Transportation Systems, 19 (8), 2572-2581. doi: 10.1109/TITS.2017.2755684

http://doi.acm.org/10.1145/2460296.2460324

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 32

Zhang, X., Yin, F., Zhang, Y., Liu, C., & Bengio, Y. (2018, April). Drawing and

recognizing chinese characters with recurrent neural network. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 40 (4), 849-862. doi:

10.1109/TPAMI.2017.2695539

Zhou, Q., Quan, W., Zhong, Y., Xiao, W., Mou, C., & Wang, Y. (2018, 5 01).

Predicting high-risk students using internet access logs. Knowledge and

Information Systems, 55 (2), 393-413. doi: 10.1007/s10115-017-1086-5

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 33

Appendix

Math Derivations

In this section, we derive the equations for constructing the loss and the gradients that

are back-propagated for tuning the neural network parameters.

Referring back to the model architecture in Figure 1, the model consists of TSE

and CSE which are merged in the hidden layer m, before a prediction y is generated.

Besides, profile feature vector is denoted as xP F = [x1, . . . , xk, . . . , xK], where K is the

number of profile features. Sequential inputs are represented as

XEL = [x(1)
EL, . . . ,x

(t)
EL, . . . ,x

(T)
EL] which is encoded by TSE to yield the final time-step

output vector o(T), where T is the final time step of the log sequence, and XEL is a

matrix with T rows and the column number equivalent to the number of event type

features. The detailed computational procedures are as follows:

1) TSE takes in XEL and outputs o(T). For each of the time step, the current

output o(t) is computed as: Input activation:

at = tanh(Wa · x(t)
EL + Ua · o(t−1) + ba) (1)

Input gate:

it = σ(Wi · x(t)
EL + Ui · o(t−1) + bi) (2)

Forget gate:

ft = σ(Wf · x(t)
EL + Uf · o(t−1) + bf) (3)

Output gate:

gt = σ(Wg · x(t)
EL + Ug · o(t−1) + bg) (4)

The internal hidden state is calculated with the element-wise gated sum of the

current input features and the last-time hidden state:

h(t) = at � it + f � h(t−1) (5)

The output of the current time step is then:

o(t) = tanh(h(t))� gt (6)

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 34

The equations 1-6 repeats for each time step until the final step output o(T) is

generated. The matrices W{a,i,f,g} and U{a,i,f,g} and bias vectors b{a,i,f,g} are model

parameters transforming the current input feature vector x(t)
EL and the last-time output

vector o(t−1) to yield the corresponding activations and gates for later computations.

The symbol � denotes element-wise multiplication of two vectors, while σ(z) = 1
1+e−z

and tanh(z) = ez−e−z

ez+e−z are activation functions applied to each element of the vectors.

2) Transform the concatenation of sequential output o(T) and profile feature

vector xP F :

am = Wm · concat(o(T),xP F) + bm (7)

m = LeakyRelu(am) (8)

where Wm and bm are transformation parameters, concat(u,v) is a function

appending elements of vector v to the end of the elements in vector u, and

LeakyRelu(z) =

z, ifz ∈ (0,+∞)

0.01z, otherwise
is an activation function that is applied in our

study to facilitate model training.

3) Make the final prediction:

ay = Wy ·m + by (9)

y = softmax(ay) (10)

where matrix Wy and bias vector by transform the network output m to a 2-D

vector ay. The function softmax(zj) = ezj∑K

i=1 ezi
normalizes the activation vector values

to ensure they sum to one in y. Finally, the vector dimensionality label of y with the

larger value is chosen as the prediction label. In our context, the dimensionalities of y

denote passing or failing a course assessment.

To train the parameters of the joint model, cross entropy is specified as the loss

function:

L(T,Y) =
N∑

i=1
ε(t(i),y(i)) = −

N∑
i=1

M∑
c=1

t(i)c · log(y(i)
c) (11)

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 35

where N and M = 2 are the numbers of instances and classes respectively, and T

and Y are matrices of N ×M dimensions, denoting the true and predicted results.

Scalers t(i)c and y(i)
c ∈ {0, 1} indicate the true (only one of the M dimensions would be 1

and other be 0) and predicted values with respect to the i-th instance for the c-th class.

Each output vector y(i) is computed with the equations listed above on different data

points.

The loss function measures the degree of incorrectness of the model during each

training iteration, and mini-batch gradient descent method is applied to propagate back

the error gradients to tune model parameters so that prediction loss could be minimized.

Suppose the model prediction for a data point is ŷ and the true label vector is t,

with equation (11), the loss can be computed as:

l(t, ŷ) = −
M∑

c=1
tc · log(ŷc) (12)

Based on the loss, the gradients of the parameters W{y,m,a,i,f,g} ,U{a,i,f,g} and

b{y,m,a,i,f,g} can be computed in the following procedure.

∇ŷ(l) = −1× (t1, . . . , tM)� (1
ŷ1
, . . . ,

1
ŷM

) (13)

Note that equation (13) yields a vector with only one non-zero element, abide by

the fact that only one element of t has non-zero value.

∇ay(l) = ∇ŷ(l)�∇aysoftmax(ay) (14)

where ∇zsoftmax(z) = z − z2 computes the gradient of a softmax function and is

applied to each element of the input vector.

∇Wy(l) = ∇ay(l) ·mT (15)

∇by(l) = ∇ay(l) (16)

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 36

∇am(l) = (WT
y · ∇ay(l))�∇amLeakyRelu(am) (17)

where ∇zLeakyRelu(z) equals 1, if z > 0 and 0.01, otherwise.

∇Wm(l) = ∇am(l) · concat(o(T),xP F)T (18)

∇bm = ∇am(l) (19)

Note that, here only the recurrent output o(T) of the concatenated vector requires

further propagating gradients, for which the part of Wm corresponding to o(T) is

truncated and denoted as W′
m. The gradients propagated back to the recurrent network

can hence be computed as:

gr = W′T
m · ∇am(l) (20)

Before working on, the LSTM-related parameters are represented compactly in

3-D tensors in the following forms:

Gt =

at

it

ft

gt

,W =

Wa

Wi

Wf

Wg

,U =

Ua

Ui

Uf

Ug

,B =

ba

bi

bf

bg

 (21)

We denote the current gradients propagated from the dependent successors as g(t),

and initialize it as g(t) = gr, then the component gradients in each time step are

calculated as follows:

∇h(t)(l) = o(t) � gt � (1− tanh2(h(t))) + h(t+1) � ft+1 (22)

Note that for the final hidden state h(T) only the first term of the right side of

Equation (22) is used, as it has no successive hidden state.

∇at(l) = h(t) � it � (1− a2
t) (23)

A JNNM FOR COMBINING HETEROGENEOUS USER DATA SOURCES 37

∇it(l) = h(t) � at � it � (1− it) (24)

∇ft(l) = h(t) � h(t−1) � ft � (1− ft) (25)

∇gt(l) = o(t) � tanh(h(t))� gt � (1− gt) (26)

g(t−1) = UT ·Gt (27)

Here 1 is a vector with elements all being 1, and its dimension can be inferred

from its counterpart in the same mathematical operations. After the gradients are

propagated to the start time step, the final gradients to the model parameters are

summed as follows:

∇W(l) =
T∑

t=0
Gt ⊗ x(t)

EL (28)

∇U(l) =
T−1∑
t=0

Gt+1 ⊗ o(t) (29)

∇B(l) =
T∑

t=0
Gt+1 (30)

Symbol ⊗ denotes tensor production. In the mini-batch schema, suppose I data

points are included in one batch, then any parameter would obtain an averaged gradient
1
I

∑I
i=1∇(·)(l), based on which it gets updated.

	Abstract
	A Joint Neural Network Model for Combining Heterogeneous User Data Sources: An Example of At-risk Student Prediction
	Introduction
	Related Work
	Model Combination
	Automatic At-Risk Student Identification
	Data
	Models

	Problem Specification
	The Joint Neural Network Framework
	Experiment Setup and Results
	Data Processing
	Experiment and Model Configuration
	Non-sequential models
	Sequential models
	Joint neural network model

	Results and Analysis
	Improved Performance Obtained by Classical Non-Sequential and Sequential Models Using both Features
	The Joint Neural Network Model vs. all the other Models

	Discussion
	Conclusion
	References

