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ABSTRACT This paper proposes a new smoothly clipped absolute deviation (SCAD) regularized recur-
sive subspace model identification algorithm with square root(SR) extended instrumental variable (EIV)
and locally optimal variable forgetting factor (LOFF). The proposed algorithm is based on a new local
polynomial modeling (LPM)-based variable FF EIV projection approximation subspace tracking (PAST)
and multivariate recursive least squares algorithms for estimating respectively the subspace of the extended
observability matrix, and the input matrix and feedthrough matrix. The SREIV-PAST algorithm offers
improved resilience to additive noise over the PAST algorithm and it is implemented using the more stable
square-root form. The asymptotic mean square error of the corresponding LPM-based model is derived
and minimized at each time instant to obtain the proposed LOFF for improving the convergence speed and
steady state error. A recursive bi-iteration singular value decomposition (SVD) algorithm is also proposed
for recursive computation of the pseudo-inverse of the state transition matrix and its eigenvalues. This
facilitates online estimation of its model order using classical model selection criteria. Moreover, a new
criterion based on the percentage of explained variance is also proposed with improved performance. The
SCAD regularization is proposed for automatic model selection of the input and feedthrough matrices,
as it is asymptotically unbiased. Efficient techniques for incorporating SCAD and estimating other required
quantities are also developed. The proposed algorithms are evaluated using computer simulations under
stationary and nonstationary environments and a real dataset on wing flutter data. Results show that the
proposed algorithms offer improved convergence speed and steady state performance over the conventional
algorithms and it also provides an online estimate of the system model order.

INDEX TERMS Recursive subspace model identification (RSI), variable forgetting factor (VFF), SCAD
regularization, extended instrumental variable (EIV), local polynomial modeling (LPM), model order
estimation.

I. INTRODUCTION
Subspace-based approaches play an important role in sys-
tem identification [1]–[4] due to its theoretical and practical
convenience for building state-space models directly from
the input-output data of systems. Offline subspace identi-
fication techniques are characterized by the use of robust
numerical tools such as the RQ factorization and the singular
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values decomposition (SVD) of the data matrix [5]. However,
the batch subspace model identification (SMI) algorithms
are computational intensive for online implementation due to
the high computational complexity of SVD. Consequently,
much research on recursive subspace model identification
(RSI) [6]–[9] has been devoted to update the model param-
eters over time with a reduced computational cost. Most
RSI algorithms estimate the unknown state matrix AAA and
the output matrix CCC from the ‘‘data equation’’ consisting of
the input and output samples of the systems. This requires
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the estimation of the subspace of the extended observability
matrix, which requires SVD [10] or the use of more efficient
subspace tracking algorithms [11], [12]. The computation of
the state matrix AAA also requires the evaluation of a pseudo-
inverse and few works discussed the online estimation of the
model order since it involves the computation of its eigenval-
ues. On the other hand, the input matrix BBB, and feedthrough
matrix DDD can be estimated using the RLS algorithm with
multiple outputs. L1 regularization has been proposed for
automatic selection of their orders by shrinkage [13].

In the context of recursive subspace tracking, the projec-
tion approximation subspace tracking (PAST) algorithm [14]
has been shown to yield good performance and efficient
implementation for tracking the subspace spanned by the
observability matrix. The PAST algorithm is based on the use
of the recursive least squares (RLS) algorithm and the
projection approximation. It assumes that the subspace is
slowly time-varying and a fixed forgetting factor (FF) is
usually used. Therefore, its tracking performance in time-
varying systems or sudden system changes may be degraded.
Furthermore, a drawback of classical recursive SMI [15]–[17]
algorithms is that the disturbances acting on the system output
are required to be spatially and temporally white. Biased
estimates will result if such assumption is violated. The
instrumental variable (IV) method [18]–[21] is an effective
approach to tackle these types of noise problems by exploring
the cross-correlation between the instrumental variables with
the input variables rather than the covariance of the inputs
as in conventional least squares method. The extension of
IV to the PAST algorithm, namely the extended IV PAST
(EIV-PAST) method, has been proposed in [22] to address the
problem of biased estimates in the RSI algorithm when the
output disturbances are not spatially and temporally white.

It is known that the EIV-PAST algorithm is able to achieve
a faster convergence speed and smaller mean square error
(MSE) in slowly time-varying environment if a large FF is
utilized. On the other hand, a relatively small FF should be
used to facilitate the tracking of fast time-varying param-
eters. In the context of RLS algorithms, Thus, a number
of variable FF-based (VFF) algorithms have been proposed
[23]–[26] to achieve a satisfactory performance in stationary,
slowly or fast time-varying environment. In particular, a local
polynomial modeling (LPM)-based VFF-RLS algorithm is
recently developed in [26] by minimizing the MSE and its
performance compares favorably with other conventional
VFF-RLS algorithms tested. Note that these algorithms are
applicable to the case of single output and rely on the Wiener
solution involving the covariance of the inputs. On the other
hand, the EIV-PAST involves multiple outputs and a system
equation involving the cross-correlation between the input
signal and the instrumental variables. Therefore, it is highly
desirable to develop new VFF algorithms for better adapta-
tion of the EIV-PAST algorithm in time-varying and noisy
environment. Furthermore, it is important to be able to incor-
porate variable regularization in the EIV-PAST algorithms to
improve their numerical behavior at low input signal level.

In this paper, we propose a new RSI algorithm where the
subspace of the extended observability matrix (and hence the
state matrixAAA) is estimated by a newLPM-based VFF square-
root (SR) EIV-PAST algorithm while the input matrix BBB and
feedthrough matrix DDD are estimated by a VFF multivariate
RLS algorithm. A recursive bi-iteration SVD algorithm is
also proposed for the recursive computation of the pseudo-
inverse of AAA and its eigenvalues. This allows us to estimate
online the model order of AAA using classical Akaike informa-
tion criterion (AIC) and minimum description length (MDL)
criteria. Moreover, a new model order selection criterion
based on the percentage of explained variance is proposed.
On the other hand, the smoothly clipped absolute deviation
(SCAD) regularization (SC) is proposed for automatic selec-
tion for input matrix BBB and feedthrough matrix DDD, as it is
asymptotically unbiased unlike the L1 regularization [27].

The proposed VFF-SREIV-PAST algorithm utilizes the
LPM channel model [26] of time-varying channels so as to
derive the MSE of the EIV linear model as a function of
the forgetting factor. Moreover, the resultant MSE contains
a bias term which increases with the FF and a variance term
which decreases with the FF. Therefore, the asymptotic MSE
can be minimized at each time instant to obtain the proposed
locally optimized FF for improving the convergence speed
and steady state error. Techniques for estimating the various
quantities required will also be introduced. The resultant
SREIV-PAST algorithm offers improved resilience to addi-
tive noise over the PAST algorithm and it is implemented
using the more stable square-root form.

The proposed VFFmultivariate RLS algorithm is an exten-
sion of the VFF-RLS algorithm for single output [26] to
multiple outputs with SCAD regularization. The VFF speeds
up the convergence of the multivariate RLS algorithm whilst
the SCAD regularization helps to achieve automatic model
selection and the reduction of the estimation variance aris-
ing from possibly ill-conditioned covariance matrix espe-
cially at low input signal level. This is very useful during
signal fading where the covariance matrix may be signif-
icantly ill-conditioned. Efficient techniques for incorporat-
ing SCAD in the numerical more stable QR decomposi-
tion (QRD) and estimating other required quantities are also
developed.

Different from the LPM-based VFF-RLS algorithm
in [26], which deals with single output and autocovariance
matrix in theWiener filter, the proposed algorithms are appli-
cable to complex inputs, single and multiple outputs, and EIV
systems involving cross-correlation matrix. The proposed
algorithms are evaluated using computer simulations under
stationary and nonstationary environments and a real dataset
on wing flutter data. Experimental results show that the
proposed algorithm provides faster convergence performance
and more accurate estimates than conventional algorithms
tested. Moreover, it also provides the model order for the state
transition matrix and automatic model order selection for
the input and feedthrough matrices. The convergence of the
VFF-SREIV-PAST and RLS algorithms are also analyzed.
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FIGURE 1. Recuresive subspace model identification.

In summary, the novelties of this paper are i) the develop-
ment of a new recursive RSI system identification algorithm
with automatic order estimation, ii) the algorithm is based
on efficient LPM based VFF EIV-PAST and multi-variate
RLS algorithms for improving the tracking speed and steady
state error, and they can be realized using efficient square-
root form based on hyperbolic rotations and conventional
QR decomposition respectively with improved its numerical
stability, iii) a recursive bi-iteration singular value decompo-
sition (SVD) algorithm is proposed for extraction of singular
values of the state transition matrix for automatic order selec-
tion, iv) a new criterion based on percentage of explained vari-
ance is proposed to facilitate online estimation of the model
order of A, and v) the SCAD regularization is incorporated for
automatic model selection of the input matrices B and D as
it is asymptotically unbiased. The regularized EIV algorithm
also helps to stabilize the subspace especially during signal
fading.

The rest of the paper is organized as follows. Section II
will briefly review the system model, problem formulation
and related works. In Section III, the proposed algorithm
is introduced. Numerical results and comparison with the
conventional algorithms are presented in Section IV. It sug-
gests that the proposed algorithm has a better performance
than conventional and the state-of-the-art algorithms. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
Consider the following N -th length discrete-time linear time-
invariant state-space model with M inputs and p outputs in
innovation form

xxx[n+ 1] = AAAxxx[n]+BBBuuu[n], (1a)

yyy[n] = CCCxxx[n]+DDDuuu[n]+ vvv[n] (1b)

where xxx[n] ∈ RRRN , uuu[n] ∈ RRRM and yyy[n] ∈ RRRp denote
respectively the finite dimensional state vector, input vec-
tor and output vector at time instant n. The unknown state
matrix AAA, input matrix BBB, output matrix CCC and feedthrough
matrixDDD have appropriate dimensions. The noise term vvv[n] is

assumed to be a zero mean white process uncorrelated with
the input uuu[n]. The system model is summarized in Fig. 1.
For notation convenience, let us define the following

stacked pα × 1 input, output and noise vectors

uuuα =
[
uuuT[n], . . . ,uuuT[n+ α − 1]

]T
, (2a)

yyyα =
[
yyyT[n], . . . ,yyyT[n+ α − 1]

]T
, (2b)

vvvα =
[
vvvT[n], . . . ,vvvT[n+ α − 1]

]T
, (2c)

where α is a user-defined integer larger than the model order.
Consequently, the input and output samples can be written in
the following vector form called the ‘‘data equation’’ [28]

yyyα[n] = 000αxxx[n]+888αuuuα[n]+ vvvα[n], (3)

where 000α is the extended observability matrix1 defined as

000α =
[
000T
0 ,000

T
1 , . . . ,000

T
α−1

]T
, (4)

000k = CCCAAAk , and888α is a block lower triangular Toeplitz matrix
consisting of the impulse response from the input to output
given by

888α =


DDD 000 · · · 000
CCCBBB DDD · · · 000
...

. . .
. . .

...

CCCAAAα−2BBB · · · CCCBBB DDD

 . (5)

It should be noted that 000α spans an n-dimensional signal
subspace, which contains the part of the output that is due
to the state vector.

B. RECURSIVE ESTIMATION OF AAA AND CCC
One can notice from (4) that, the matrix CCC can be obtained
from the first p × n submatrix 0000 of 000α . On the other hand,
two consecutive submatrices 000k+1 and 000k of 000α differ only
by AAA on its right hand side: 000k+1 = 000kAAA. Therefore, given
000α , one can solve for AAA as follows

ÂAA[n] = 000†
a000b (6)

1For notation simplicity, we have dropped the time dependent of the
matrices 000k = CCCAAAk .
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where 000a = [000T
0 ,000

T
1 , . . . ,000

T
α−2]

T, 000b = [000T
1 ,000

T
2 , . . . ,

000T
α−1]

T and the superscript (·)† denotes the Moore-Penrose
pseudo-inverse.

Since, the state space matrix is uniquely identifiable up
to an orthogonal transformation, it is sufficient to obtain a
subspace that span the column space of 000α . This problem is
very similar to the following formulation of the direction of
arrival (DOA) problem in array signal processing [29]

zzz[n] = 000[θ ]xxx[n]+ eee[n], (7)

where zzz[n] ∈ CCCm, xxx[n] ∈ CCCn and eee[n] ∈ CCCm represent
respectively the sensor signal vector from the m sensors,
the n source signals impinging the array, and additive noise.
000[θ ] is the m× n steering vector matrix with the j-th column
containing the steering vector (array response) of the j-th
source. By writing zzz[n] = yyyα[n]−888αuuuα , one can see that the
two models are identical with 000[θ ] equals to 000α and vvvα[n]
equals to eee[n]. This yields

zzz[n] = 000αxxx[n]+ vvvα[n], (8)

where zzz[n] = yyyα[n] −888αuuuα[n]. Since888α is not available at
snapshot n, it can be approximated as 888α[n − 1] consisting
of previously estimated AAA[n − 1], BBB[n − 1], CCC[n − 1] and
DDD[n − 1]. Another approach, which is called the past inputs
(PI) scheme, is to make use of the classical Givens rotations
to annihilate the input uuuα[n] from the output yyyα[n] via the RQ
(or QR) factorization.[
RRR11[n+ 1] 000 000
RRR21[n+ 1] RRR22[n+ 1] zzz[n]

]
= GGG[n]

[
RRR11[n] 000 uuuα[n]
RRR21[n] RRR22[n] yyyα[n]

]
, (9)

where GGG[n] is an appropriate orthonormal rotor, RRR11 ∈
CCC (Mα)×(Mα) and RRR22 ∈ CCC (pα)×(pα) are upper right triangular
matrix and RRR21 ∈ CCC (pα)×(Mα).
In array signal processing and related applications, very

efficient subspace tracking algorithms [14], [22], [30]–[32]
have been developed to recursively update the column
subspace of 000[θ ] for each input signal vector. Therefore,
[33], [34] have proposed to estimate the column space of 000α
using the PAST subspace tracking algorithm and its exten-
sions. To this end, one usually considers the following model
for zzz[n]

zzz[n] =WWW [n]sss[n]+ ηηη[n], (10)

whereWWW [n] ∈ CCC (pα)×K is the subspace matrix with rank K ,
sss[n] =WWWH[n]zzz[n] is the projection of zzz[n] onto the subspace
and ηηη[n] is the additive noise. Most subspace tracking algo-
rithms such as PAST aim to find a matrixWWW [n] which spans
the signal subspace by minimizing the following LS error of
the reconstruction zzz[n]−WWW [n]sss[n] = ηηη[n] over time:

ELS (WWW [n]) =
∑n

m=1
λn−m‖zzz[m]−WWW [n]ggg[m]‖22 (11)

where λ ∈ (0, 1] is a positive forgetting factor. Moreover,
the projection approximation, ggg[m] = WWWH[n − 1]zzz[m], is

frequently used to simply the minimization of (11), since (11)
can then be reduced to a conventional recursive least squares
(RLS) problem inWWW [n]. Consequently,WWW [n] can be used to
estimate the column space of 000α .
The use of the LS criterion in (11) implicitly assumes that

the additive noise ηηη[n] is spatially white. However, in the
context of system identification, the additive noise vvvα[n] may
not be spatially white. Consequently, the estimate tends to
be biased if the noise is not spatially white [33]. In [33],
a novel subspace tracking algorithm based on the concept of
instrumental variable (IV) is proposed. Instead of minimizing
the LS error of ηηη[n], an appropriate IV vector which is uncor-
related with vvvα[n] and highly correlated with xxx[n] is used to
eliminate the effects of the additive noise. The selection of
the instrumental variable is problem dependent. Usually, it is
chosen as neighboring signal vector over time to ensure that
the noise samples are uncorrelated.

Assuming that there exists such an IV vector ξξξ [n] ∈ CCC l

with l ≥ n such that
(C1) E[vvvα[n]ξξξH[n]] = 000,
(C2) Rank(CCCxξ ) = Rank{E[xxx[n]ξξξH[n]]} = N
one can then multiply both sides of (8) by ξξξH[n]. After
taking expectation, and using the above two assumptions,
one gets

E[zzz[n]ξξξH[n]] = 000αE[xxx[n]ξξξH[n]]+ E[vvvα[n]ξξξH[n]]

= 000αE[xxx[n]ξξξH[n]]. (12)

It can be seen that assumption (C1) ensures that the IV
vector ξξξ [n] is uncorrelated with the noise vector vvvα[n] so
that the noise term on the right hand side is eliminated. This
mitigates the effect of noise (which may also be correlated
with xxx[n]) and gives rise to a consistent unbiased estimate
even for spatially color disturbance. On the other hand, (C2)
is required so that the rank of000α is preserved inE[zzz[n]ξξξH[n]].
Therefore, the space spanned by the columns of 000αCCCxξ is
equal to the columns of 000α , i.e. span(000αCCCxξ ) = span(000α).
If xxx[n] and ξξξ [n] have the same dimension, then E[xxx[n]ξξξH[n]]
is nonsingular and we have 000α = E[zzz[n]ξξξH[n]]E[xxx[n]
ξξξH[n]]−1. Since xxx[n] is not assessable, we resort to its alter-
native form in (10) where sss[n] is now a rotated form of xxx[n].
In general, there are many ways to construct instrumental
variables (IVs) in IV method. For instance, additional pre-
filtering may be performed to derive IV for system identifi-
cation and other applications [35]. The optimal instruments
and prefilters have been studied in [36]. It turns out that the
optimal instruments and prefiltering will depend on the true
system dynamics and the statistics properties of the noise.
A multistep algorithm has been proposed in [36]. In this
paper, we mainly focus on the temporal IV implementation,
which is chosen as time delayed measurements. Moreover,
to avoid further iterations and filtering over the temporal
snapshots, we do not consider prefiltering the snapshots
in exchange for a simple recursive implementation. Using
the same approach above with the projection approximation
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TABLE 1. The ECF-ICF-RSI algorithm [22].

ggg[m] =WWWH[n− 1]zzz[m], one gets

CCCzξ = E[zzz[n]ξξξH[n]]

= WWW · E[ggg[n]ξξξH[n]]+ E[ηηη[n]ξξξH[n]]

= WWW ·CCChξ , (13)

and an estimate of is 000α where WWW = CCCzξ [n]CCC
−1
gξ , CCCzξ =

E[zzz[n]ξξξH[n]] and CCCgξ = E[ggg[n]ξξξH[n]]. This is called the
simple IV method. In the extended IV method, the size of
ξξξ [n] is longer than xxx[n], which leads to an over-determined
system. One can then resort to the LS solution, which can be
obtained by multiplying both sides of (13) by CCCH

gξ to obtain
the following normal equation for solvingWWW :

(CCCzξCCCH
gξ ) =WWW · (CCCgξCCCH

gξ ). (14)

Note that the system matrix (CCCgξCCCH
gξ ) is symmetric and also

nonsingular if (A2) is met under persistent excitation.
In practice, CCCzξ and CCCξg need to be recursively estimated

and tracked from data using an exponentially weighting
scheme as follows

CCCZ4[n] = ZZZH[n]DDDλ[n]444[n]

=

∑t

i=1
λt−izzz[i]ξξξH[i]

= λCCCZ4[n− 1]+ zzz[n]ξξξH[n], (15a)

CCC4G[n] = CCCH
G4[n] = 444

H[n]DDDλ[n]GGG[n]

=

∑t

i=1
λt−iξξξ [i]gggH[i]

= λCCC4G[n− 1]+ ξξξ [n]gggH[n], (15b)

where ZZZ [n] = [zzz[n], zzz[n− 1], . . . , zzz[1]]H, DDDλ[n] =

diag(1, λ, . . . , λt−1), 444[n] = [ξξξ [n], ξξξ [n− 1], . . . , ξξξ [1]]H,
GGG[n] = [ggg[n],ggg[n− 1], . . . ,ggg[1]]H, and λ ∈ (0, 1] is a
positive forgetting factor (FF).
For the simple IV method, the inverse of CCC4G[n]

can be recursively updated from (15a) using the matrix
inversion lemma. Hence, the solution ofWWW at time n,WWW [n],

TABLE 2. The SR-ECF-ICF-RSI algorithm [38].

can be obtained as

WWW [n] = CCCZ4[n]CCC
−H
4G[n]. (16)

For the EIV method, (14) can be similarly solved using the
RLS algorithm as shown in Table 1 [22], [33], [37]. However,
since the conditioning of the system matrix ĈCCG4[n]ĈCC4G[n]
is deteriorated by the squaring operation, the accuracy of
the resulting RLS solution may be compromised. We found
that a recursive EIV algorithm based on the factorization
of ĈCCG4[n]ĈCC4G[n] and the Hyperbolic transformation was
proposed in [38]. Due to the square root (SR) operation,
the condition number of the system is considerably improved.
Therefore, we have utilized this algorithm for estimating
WWW [n] in the proposed subspace-based system identification
algorithm. The resultant algorithm based on the SREIV-PAST
is summarized in Table 2. Interested readers are referred
to [38] for the detailed derivations of the algorithm.Moreover,
in Section III, we shall introduce a new VFF SREIV-PAST
algorithm for estimating WWW [n] in time-varying subspace,
in which the FF is chosen to minimize the mean square
error or deviation (MSD) of the estimator.

Similarly to (6),AAA[n] andCCC[n] can be extracted fromWWW [n]
as follows

ÂAA[n] = WWW †
1:p(α−1)[n]WWW (p+1):pα[n], (17a)

ĈCC[n] = WWW 1:p[n]. (17b)

where the subscript (·)1:p represents the first row to the
p-th row. Alternatively, the pseudo inverse (·)† can be recur-
sively estimated with lower complexity by applying the bi-
iteration singular value decomposition (SVD) [30] to the
matrixWWW 1:p(α−1). More specifically, the iterations reads.
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For l = 1, 2, . . . until convergence iterate:

XXX (l)
B = WWW 1:p(α−1)QQQ

(l)
A

XXX (l)
B = QQQ(l)

B RRR
(l)
B (QR factorization)

XXX (l)
A = WWWH

1:p(α−1)QQQ
(l)
B

XXX (l)
A = QQQ(l+1)

A RRR(l)A (QR factorization) (18)

In this recurrence,QQQ(l)
A and QQQ(l)

B will converge toward the
N dominant left and right singular vectors of WWW 1:p(α−1),
respectively. Furthermore, both triangular matrices RRR(l)A and
RRR(l)B will approach the N × N diagonal matrix composed
of dominant singular values of WWW 1:p(α−1). Instead of using
the conventional identity matrix, the converged QQQA at time
instant n can be used as the initial value QQQ(0)

A for the next
time instant n + 1. Simulation results in section IV show
that the number of iterations, can be significantly reduced
over the conventional bi-iteration SVD algorithm. Usually,
the iteration will converge in around five iterations.

(17a) can be recursively solved with the help of
(18) using the multivariate complex RLS algorithm [32].
In Section III-C, we shall discuss how the model order ofAAA[n]
and CCC[n] can be recursively estimated.

C. RECURSIVE ESTIMATION OF BBB AND DDD
Given ÂAA[n] and ĈCC[n], the remaining system matrices BBB and
DDD can be estimated from the following linear regression
according to [39]

yyy[n] = φφφH[n]θθθ [n]+ vvv[n], (19)

where

θθθ [n] =
[
vecT(DDD) vecT(BBB)

]T
, (20a)

φφφH[n]= [(uuuH[n]⊗ IIIp) (
∑t−1

s=1
uuuH[s]⊗ ĈCCÂAA

t−s−1
)]. (20b)

and vec(·) denotes the vectorization operator, ⊗ is the
Kronecker matrix product. The optimal weight vector
therefore satisfies the following normal equation

RRR88[n]θθθopt [n] = rrr8Y [n], (21)

where RRR88[n] =
∑n

i=1 λ
n−iφφφ[i]φφφH[i] and rrr8Y [n] =∑n

i=1 λ
n−iφφφ[i]yyy[i]. Hence, θ̂θθ[n] and hence B̂BB[n] and D̂DD[n]

can be recursively updated by the multivariate RLS
algorithm [40].

In this work, we shall utilize the complex VFF-RLS algo-
rithmwithmultiple outputs in [32] to estimate the matrix B̂BB[n]
and D̂DD[n]. It is based on the QR decomposition and the single
output VFF-RLS algorithm proposed in [26] with real-valued
input. The algorithm is summarized in Table 3.

III. THE PROPOSED SC-VFF-SREIV AND -RLS RSI
ALGORITHM
A. THE PROPOSED VFF-SREIV-PAST ALGORITHM
In the proposed VFF-SREIV-PAST algorithm for tracking the
subspace of 000α , the FF is chosen to optimize the MSD of
the estimator. Therefore, we need to obtain the mathemat-
ical expression of the MSD in terms of the FF used. More

precisely, we wish to analyze the MSD of the SREIV-PAST
algorithm for a time-varying subspace with coefficients being
modelled by a local polynomial [26], [32].We shall first show
that the MSD consists of a bias term which increases with the
FF and a variance term which decreases with the FF. There-
fore, it is possible to select an appropriate FF which mini-
mizes the MSD. Then, we shall discuss the estimation of the
quantities required for computing the FF. Finally, the SCAD
regularization is incorporated to the VFF-SREIV-PAST algo-
rithm to reduce the estimation variance of the subspace during
signal fading.

1) LOCAL POLYNOMIAL MODELING
From (11), we can observe that the k-th element of zzz[m],
zzzk [m], is equal to wwwT

k [m]sss[m], where wwwk [m] is the k-th row of
WWW [n]. To simplify the analysis and derivation, we assume that
the underlying time varying vector hhhk that wwwk [n] is tracking
admits a local first order polynomial expansion at time index
tn as follows [32]

hhhk (tm) = hhhk (tn)+
1
1!
hhh(1)k (tn)(tm − tn)+ rrrk (tm − tn) (22)

where tm belongs to an appropriately close neighborhood
B(tn) of tn, hhh

(1)
k (tn) is the derivative of hhhk (t) at time tn and

rrrk (tm − tn) is the remainder. Both hhh(1)k (tn) and rrrk (tm − tn)
can be considered as random vectors and the latter is of order
O(tm− tn), which implies that ‖rrrk (tm− tn)(tm− tn)−1‖2 tends
to zero as |tm − tn| → 0. For simplicity, we also assume that
hhh(1)k (tn) and rrrk (tm − tn) are stationary processes inside B(tn).

Substituting (22) into (8) with tn = nTs, where Ts is the
sampling period, the k-th component of the vector zzz observed
at the m-th sampling instant can be written as

z∗k [m] = hhhH[m]hhhk [m]+ ηk [m]

= hhhH[m](hhhk [n]+hhh
(1)
k [n](m−n))+ηk [m]+ςk [m] (23)

where hhhk [n] = hhhk (nTs), hhh
(1)
k [n] = hhh(1)k (nTs)Ts, and ςk [m] =

hhhH[m]rrrk [m − n] with rrrk [n] = rrrk (nTs). ηk [m] denotes the
additive noise which may arise from using the projection
approximation or other sources.

Stacking the observed signal samples zk [m],m = n, . . . , 1,
we obtain the following model for the observation signal
vector

zzz∗k [n] = GGG[n]hhhk [n]+DDDτ [n]GGG[n]hhh
(1)
k [n]+ ηηηk [n]+ ςςςk [n],

(24)

where DDDτ [n] = diag(τττ [n]) with τττ [n] = [0,−1, . . . ,
−(n− 1)]T, ςςςk [n] = [ςk [n], ςk [n− 1], . . . , ςk [1]]T is resid-
ual component vector due to higher order term, and ηηηk [n] =
[ηk [n], ηk [n− 1], . . . , ηk [1]]T is the additive noise vector.

For simplicity of analysis, we assume that
(A1) rrrk [m − n], ηηηk [n] for k = 1, . . . ,K , and GGG[n] are

independent.
(A2) rrrk [m − n] and ηηηk [n] for k = 1, . . . ,K , are

zero mean with covariance respectively given by
E
[
ηηηk [n]ηηηH

k [n]
]
= σ 2

ηk
δ[n−m]III and E

[
rrrk [n]rrrH

k [n]
]
=
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σ 2
rk δ[n − m]III , where δ[n] is the unit impulse function

and III is the identity matrix with appropriate dimension.

(A3) hhh(1)k [n] has mean E
[
hhh(1)k [n]

]
h̄hh
(1)
k [n] and covariance

E
[
δhhh(1)k [n]δhhh(1)Hk [n]

]
= σ 2

hk [n]III where hhh(1)k [n] =

h̄hh
(1)
k [n]+ δhhh(1)k [n].

For remarks regarding themotivation behind these assump-
tions, interested readers are referred to [32] and the sup-
plementary materials for more details. From the simulation
results to be presented in Section IV, we found that the pro-
posed VFF-SREIV-PAST algorithm, which is derived from
the above assumption, performs satisfactorily both in the
synthetic as well as real data. This suggests that the above
assumptions are reasonable.

To start with, we substituting (24) into (16) and obtain
the following expression of the EIV solution under the LPM
time-varying channel model:

wwwk [b] = hhhk [n]+BBB[n]hhh
(1)
k [n]+CCC[n](ηηηk [n]+ ςςςk [n]) (25)

where BBB[n] = (CCCH
4G[n]CCC4G[n])

−1RRRτ [n], RRRτ [n] =

GGGH[n]DDDλ[n]444[n]444H[n]DDDλ[n]DDDτ [n]GGG[n] andCCC[n] = (CCCH
4G[n]

CCC4G[n])−1GGGH[n]DDDλ[n]444[n]444H[n]DDDλ[n]. Moreover, we have
used that fact that (CCCH

4G[n]CCC4G[n])
−1GGGH[n]DDDλ[n]444[n]444H[n]

DDDλ[n]GGG[n] is equal to the identity matrix.

2) VFF RECURSIVE EIV ALGORITHM FOR ESTIMATING AAA
AND CCC
The mean squares deviation (MSD) of the estimatorWWW [n] is
equal to the sum of the MSE of all its components wwwk [n].
In Appendix, the latter is evaluated under the local polyno-
mial time-varying model and hence the total MSD is given
by (A.13) as follows

JMSD[n] ≈
1− λ[n]
1+ λ[n]

σ 2
6Tr(���)+

λ2[n]σ 2
h [n]

(1− λ[n])2
. (26)

where��� = (CCCH
ξgCCCξg)

−1CCCH
ξgCCCξξCCCξg(CCC

H
ξgCCCξg)

−H . σ 2
6 and σ 2

h
denote the total error variance and the variance of the true
parameter, respectively.

By minimizing JMSD[n] with respect to λ[n], one can
equate the partial derivative of (26) with respect to λ[n] to
zero. This yields

∂JMSD[n]
∂λ[n]

= −
2σ 2
6Tr(���)

(1+ λ[n])2
+

2λ[n]σ 2
h [n]

(1− λ[n])3
. (27)

which can be solved for the desired variable FF (VFF). To this
end, we let µ = (1 + λ[n])/(1 − λ[n]) so that (A.3) can
be reduced to µ2(µ − 1) ≈ 2σ 2

6[n]Tr(���)/σ
2
h [n] ≈ µ3.

Consequently, the VFF can be determined as follows

λ[n] =
µ− 1
µ+ 1

, if λ[n] > 0

µ = (2σ 2
6[n]Tr(���)/σ

2
h [n])

1/3. (28)

Note that σ 2
h = KE

[
‖δhhh(1)k [n]‖22

]
+
∑K

k=1 h̄hh
(1)
k [n] =

E
[∑K

k=1 hhh
(1)H
k [n]hhh(1)k [n]

]
and they can be recursively

estimated as

σ̂ 2
h [n+ 1] = λ[n]σ̂ 2

h [n]

+ (1− λ[n])
∑K

k=1
(ĥhh

(1)H
k [n]ĥhh

(1)
k [n]), (29)

where ĥhh
(1)
k [n] is an estimate of hhh(1)k [n]. For instance, ĥhh

(1)
k [n]

can be estimated by the difference of the weight vector
obtained at time instances n and n − 1 as ĥhh

(1)
k [n] =

wwwk [n] − wwwk [n − 1]. Hence, the system variance σ 2
h can be

updated as

σ̂ 2
h [n+ 1] = λ[n]σ̂ 2

h [n]+ (1− λ[n])‖1WWW [n]‖2F , (30)

where 1WWW [n] = WWW [n] −WWW [n − 1]. For the noise variance
σ 2
6 , such information can be calculated from the error term
eee[n] by using a relatively large FF as follows

σ̂ 2
6[n+ 1] = λL σ̂ 2

6[n]+ (1− λL)‖eee[n]‖2. (31)

Due to page limitation, the estimation of��� and other details
are described in the supplementary material.

Using the VFF, one can vary the FF according to (28) in
the recursive EIV algorithm in Tables 1 and 2 for tracking the
subspace for computingAAA andCCC . It should be noted that both
the SREIV-PAST in Table 2 and the EIV square root propa-
gator method (EIV sqrtPM) proposed in [41] algorithms are
derived from the classical work of Porat and Friedlander [38].
The EIVsqrtPM algorithm extends the algorithm in [38] to
the multivariable case using a fixed FF and the proposed
SREIV-PAST algorithm focuses on the complex-valued case
and the adaption and realization of the variable FF and reg-
ularization parameter. The complex-valued case is motivated
by the fact that observations in some communication systems
are complex-valued. As mentioned in [42], the propagator
method and the SREIV-PAST algorithm differ in the exact
subspace vectors they are tracked. However, the subspace
estimated are fundamentally identical. Therefore, their per-
formances are very close to each other. The SREIV-PAST
with a constant FF will exhibit a performance very similar to
the one of the complex extension of the EIVsqrtPM in [41].
Therefore, we only compare our proposed algorithm with
the SREIV-PAST algorithm, which is almost identical to the
complex EIVsqrtPM algorithm.

The convergence of the recursive RSI algorithm has been
studied in [42]. Since we are using a VFF SREIV-PAST algo-
rithm instead of the conventional PAST algorithm, we will
study the convergence of the variable forgetting factor (VFF)
EIVmethod in the supplementary material using the ordinary
differential equation (ODE) method [40]. It is found that
under reasonable assumptions and conditions (C1) and (C2),
the algorithm converges to the true subspace in stationary
environment if λ[i] ∈ (0, 1] is monotonic increasing and
approaches a value of one. Like the VFF-PAST algorithm
in [32], the asymptotic MSE is minimized via the forgetting
factor in (28). As the recursive EIV algorithm is convergent
if CCCH

ξgCCCξg is nonsingular, σ 2
h will decrease. Hence µ and

λ[n] will increase continuously. This satisfies the monotonic
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condition above if λ[n] is allowed to change smoothly so
that the recursive EIV algorithm can converge gradually to
a lower MSE. If σ 2

h is equal to zero, we immediately obtain
λ[n] = 1, which is the desired result. However, in practice, σ 2

h
is estimated online and it is unlikely to be zero and λ[n] will
reach a value close to one at convergence. This is observed in
the simulation results to be presented in Figs. 4 and 5 where
the forgetting factor increases monotonically and reaches a
value close to 0.99 at time instant 400. As suggested in [32],
if a high accuracy is required in a stationary environment,
one can detect the convergence of the algorithm and push the
forgetting factor further.

For time-varying subspaces, the MSE mainly depends on
the subspace variation and the estimate may not converge
to a fixed value. In the supplementary material, the stability
of the proposed VFF algorithm is analyzed. As expected,
if the system is persistently excited, i.e. CCCH

ξgCCCξg is positive
definite, under finite noise and channel variances, then the
MSD of the proposed VFF algorithm as n→∞ is bounded
if 0 < λ[n] < 1.

Next, we consider the estimation ofBBB andDDD using the VFF
multivariate RLS algorithm.

B. THE VFF RLS ALGORITHM FOR ESTIMATING BBB AND DDD
Since BBB and DDD can be estimated using the linear regression
model in (19), it can be recursively estimated using the
complex-valued LOFF RLS algorithm in [32]. Moreover,
it can be implemented using the QRD as shown in step (vi)
normal update of Table 3.

Moreover, the MSD under the LPM modeling of θθθ[n] can
be similarly obtained as follows

J̃MSD(n) ≈
1− λ̃[n]

1+ λ̃[n]
σ̃ 2
6Tr(RRR

−1
88)+

λ̃2[n]σ 2
θ [n]

(1− λ̃[n])2
. (32)

TABLE 3. The QRD-based SC-ELF-ILF-RSI algorithm.

with the following LOFF

λ̃opt [n] =
µ̃− 1
µ̃+ 1

, if λ̃opt [n] > 0

µ̃ = (2σ̃ 2
6[n]Tr(RRR

−1
88)/σ

2
θ [n])

1/3. (33)

where σ̃ 2
6[n] and σ

2
θ [n] can be estimated as σ̃ 2

6[n + 1] =
λL σ̃

2
6[n] + (1 − λL)‖ẽee‖2 and σ̂ 2

θ [n + 1] = λ[n]σ̂ 2
θ [n] +

(1 − λ[n])1θθθH[n]1θθθ [n] where ẽee[n] = yyy − φφφH[n]θθθ [n − 1]
and 1θθθ [n] = θθθ [n]− θθθ [n− 1].

C. MODEL ORDER ESTIMATION FOR THE PROPOSED
LOFF-EIV RECURSIVE SUBSPACE IDENTIFICATION (RSI)
ALGORITHMS
1) THE PROPOSED MODEL ORDER ESTIMATION FOR AAA
With the LOFF-recursive EIV algorithm, we can estimate the
subspace estimate WWW [n], and hence the matrices AAA and CCC .
On the other hand, the matrices BBB and DDD can be estimated
using the LOFF complex RLS algorithm.

In some real applications, one may wish to estimate the
order of the matrix AAA and hence CCC . This can be gauged from
the rank of 000α , which in turns is related to the number of
major eigenvalue ofCCCzξ . Since we have already estimated the
K dimension subspaceWWW [n], one can further estimate recur-
sively the eigenvalues associated with WWW [n]. Consequently,
we can retain the major eigenvalues and estimate the model
order of AAA. More precisely, the singular values of AAA can be
computed recursively via the bi-iteration SVD in (18) with
000α replaced by AAA, instead of the batch SVD algorithm which
requires O(N 3) arithmetic complexity. The corresponding
matricesQQQ(l)

A andQQQ(l)
B will then converge toward the N domi-

nant left and right singular vectors ofAAA, respectively. Further-
more, both triangular matrices RRR(l)A and RRR(l)B will approach the
N×N diagonal matrix composed of dominant singular values
of AAA. Usually, the diagonal values of RRR(l)A are chosen as the
dominant singular values. Instead of using the conventional
identity matrix as the initial value QQQ(0)

A , the converged QQQA at
time instant n can be used for QQQ(0)

A in the next time instant
n+ 1. Simulation results in section IV show that the number
of iterations can be significantly reduced fromfive to one over
the conventional bi-iteration SVD algorithm.

Classical model order estimation algorithm such as Akaike
Information Criterion (AIC) and Minimum Description
Length (MDL) usually assume that the minor singular values
are equal. However, this assumption may not always be met
in practice. Here, we shall investigate another hypothesis pro-
posed in [43] which aims to find the model order such that the
proportion of variance explained by the minor components is
less than a certain value.

Let l1, l2, . . . , lP be the eigenvalues of AAA, and denote the
following estimated proportion of variance in the first K
principal signal subspace

9̂K = (
∑K

k=1
l̂k )/(

∑P

p=1
l̂p) (34)

where l̂k is the k-th estimated eigenvalue of AAA in
descending order of their magnitudes. It can be shown

VOLUME 8, 2020 43527



J.-Q. Lin et al.: Variable Regularized Recursive Subspace Model Identification Algorithm With EIV and VFF

that 9̂k is asymptotically normal with mean 9K =

(
∑K

k=1 lk )/(
∑P

p=1 lp) and variance

τ 2K =
2Tr(AAA2)

(N − 1)(Tr(AAA))2
[92

K − 2α9K + α] (35)

where α = (
∑K

k=1 l
2
k )/(

∑P
p=1 l

2
p ) and N denotes the effective

sample number, say N = 1/(1 − λ[n]). Hence (35) may be
used to derive the approximate confidence intervals for 9K .
Consequently, we can determine the minimum K = 1, . . . ,P
such that the lower limit of the confidence interval[

9̂K − χ

√
τ 2K/N , 9̂K + χ

√
τ 2K/N

]
(36)

contains a specified proportion of the variance. For instance,
the constant χ can be selected as 1.96 for 95% confidence.

2) AUTOMATIC MODEL ESTIMATION OF BBB AND CCC USING
SCAD REGULARIZATION
For the matrices BBB and CCC , it is more conveniently to employ
robust regularization to select automatically the model order
online. Regularization is also valuable to mitigate possible ill-
conditioning problemwhen the input is not persistently excit-
ing when the input signal level is very low. Consequently,
the covariance matrix RRR88 may be ill-conditioned and it will
result in a large estimation error variance or even divergence.
To address this problem, we propose to utilize the SCAD
regularization technique to avoid possible ill-conditioning
and perform automatic model selection by shrinking small
coefficients in BBB and DDD to zero. This will also reduce the
variance of the estimates. Unlike L1 regularization, which is
biased, robust regularization technique like SCAD is unbi-
ased [27], [44]. The SCAD regularization can be imposed by
adding the term

∑L
i=1 fµ(θi) to the LS objective function of

the RLS algorithm

ESC (θθθ) =
∑n

i=1
λn,i(y[i]− φφφH[i]θθθ)2 +

∑L

i=1
fµ(θi), (37)

where λn,i = λ[n]λn−1,i, λn,n = 1, L = M (N + p),

fµ(θ )=


µ|θ |, for |θ | ≤ µ

−
(|θ | − ãµ)2

2(ã− 1)
+
(ã+ 1)µ2

2
, for µ < |θ | ≤ ãµ

(ã+ 1)µ2/2, for |θ | > ãµ
(38)

with µ is a non-negative regularization parameter and ã > 2
(which is usually chosen as 3.7). It was suggested in [44] that
the variable regularization parameter can be chosen as

µ[n] = (1− λ̃[n])Lσ̄ 2
φ [n]

√
σ̃ 2
6[n]/(Tr(RRR88)+ ε)M1, (39)

where σ̂ 2
φ [n] is a long-term estimate of the input signal power,

which can be estimated as σ̂ 2
φ [n] = (1/n)

∑n
i=1 Tr(RRR88[i]).

ε is a small positive constant included to avoid ill-
conditioning or division by zero when Tr(RRR88[n]) is small.
M1 is the number of nonzero coefficients.

By setting its derivative of (37) with respect to θ to zero,
we can obtain the equation for solving for the regularized
parameter

(λ̃[n]RRR88[n− 1]+ φφφ[n]φφφH[n]+KKK [n])θθθopt [n] = rrr8Y [n]

(40)

where

KKK [n] = diag(κ1[n], . . . , κL[n]), (41a)

κi[n] = f ′µ(θi[n− 1])/θi[n− 1], (41b)

f ′µ(θ ) =


sgn(θ )µ, for |θ | ≤ µ
(−θ + sgn(θ )ãµ

ã− 1,
for µ < |θ | ≤ ãµ

0, for |θ | > ãµ,

(41c)

and sgn(θ) represents the sign function.
We note that the desired solution θ in (40) can be efficiently

estimated using the QRD structure. The update of RRR88[n]
involves two terms φφφ[n]φφφH[n] and KKK [n]. The first one term
is a rank-one change, which can be achieved using conven-
tional QRD. The second term is of full rank and hence its
exact realization will require O(L3) complexity. To reduce
the complexity, we only update a row vector of LKKKm[n] either
randomly or sequentially with KKKm[n] being the m-th row of
KKK [n] and n mod L = m. Here, mod denotes the modulo
operation. Consequently, the QRD operation is executed once
for the data vector [φφφH[n],yyy[n]] and once for the regulariza-
tion term [

√
LKKKm[n],000] at each time instant. This yields the

proposed SCAD regularized algorithm, as shown in Table 3.

3) ARITHMETIC COMPLEXITY COMPARISON
The arithmetic complexities of various algorithms are com-
pared in Table 4. Here, notation convenience, we shall use
‘ECF’ and ‘ELF’ to denote the SREIV-PAST algorithm with
constant and local optimal FF, respectively. ‘ICF’ and ‘ILF’
are used to denote respectively the recursive algorithm for
estimating the input-related matrices BBB and DDD with constant
FF and local optimal FF. Finally, ‘PI’ and ‘SC’ denote respec-
tively the past-input instrumental variable and SCAD regular-
ization schemes.

The complexities of the SREIV-PAST and multivariate
RLS algorithms are respectively O(r31 ) + 10r21 + (4L1 +
8N1 + 9)r1 and O(r22 ) + N2r2, where N1 = pα, r1 = K ,
N2 = (p+N )M , r2 = p and L1 denotes the dimension of the
instrumental variable. The complexity of the PI scheme [34]
is O(M2) + 4N1M . The proposed LOFF for SREIV-PAST
and multivariate RLS will require additional (4N1+6L1)r21 +
(2N1 − 2)r1 and 3N2r2 + 3N2 + 7r2 operations, respectively.
The SCAD regularization needs N2r2 + N2 updates per time
instance. Hence, the total arithmetic complexity of the pro-
posed SC-ELF-ICL-RSI algorithm is O(r31 )+ (4N1 + 6L1 +
10)r21 + (4L1 + 10N1 + 7)r1 +O(r22 )+ 5N2r2 + 4N2 + 7r2.
It can be noticed that the proposed algorithm has a compa-
rable arithmetic complexity with those algorithms using a
constant FF.
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TABLE 4. Complexity comparison.

IV. NUMERICAL EXAMPLE
We now evaluate the performance of the proposed algorithms
by comparing themwith other conventional approaches using
simulated experimental and real measurement data. Both
stationary and dynamic environments are investigated. The
SISO and MIMO systems tested are widely used in the litera-
ture for comparison [33], [34], [42]. For simplicity, we follow
the notations for the proposed algorithms and other compared
approaches in section III-3 and Table 4.

A. A SISO TIME-INVARIANT SYSTEM
Wefirst present simulation results on the following SISO time
invariant system studied in [33]:

y[n] =
q−1 − 0.5q−2

1− 1.5q−1 + 0.7q−2
u[n]+

1
1− 0.8q−1

e[n], (42)

where the numerator and denominator coefficient vectors are
respectively and a =

[
1 − 1.5 0.7

]
, and e[n] is an additive

white Gaussian noise. The corresponding state-space model
can be expressed as

xxx[n+ 1] =
[
1.5 −0.7
1 0

]
xxx[n]+

[
1
0

]
u[n], (43a)

y[n] =
[
1 −0.5

]
xxx[n]+

[
0
]
u[n]+ v[n] (43b)

The input u[n] is taken as a Gaussian sequence with zero
mean and unit variance. The proposed methods are compared
with the RSI [33] and PI-SC-ELF-ILF-RSI algorithms at
17dB SNR. The constant forgetting factor for the ECF-based
algorithms is set to 0.99. The minimum and maximum range
of the forgetting factors of the proposed ELF-ICF-RSI and
ECF-ILF-RSI algorithms are λmin = 0.97 and λmax = 0.999,
respectively, while the short term and long term forgetting
factors are set to λS = 0.9 and λL = 0.99, respectively. The
order of the state space model is chosen as n = 2. All the
results are obtained by averaging 100 independent trial runs.

Since the model order is unknown, we use our proposed
approach to estimate themodel order compared with the well-
known criteria such as AIC andMDL. Different model orders
of 2, 3 and 4 are used, and the result is shown in Table 5.
It is shown that our proposed approach can give a consistent
and accurate estimate over the AIC and MDL criteria for the
tested systems.

TABLE 5. Model order estimation.

The comparison of the proposed algorithms with other
methods is shown in Fig. 2 and Fig. 3. It can be seen that
the proposed ELF-based algorithms converge considerably
faster than the RSI algorithm with a fixed FF for denominator
coefficients estimation. The use of SCAD regularization also
improves slightly the steady-state accuracy. The change of
forgetting factor in the ELF-based algorithms is illustrated
in Fig. 4. It can be seen the value of the FF gradually increases
to a large value which reduces the steady state MSE. For
estimating the numerator coefficients, the ILF-based algo-
rithms converge much faster than the corresponding constant
FF-based algorithms. It should be noted that the proposed
variable FF can also speed up the convergence performance
for PI-based algorithms. The change of the forgetting factor

FIGURE 2. Estimated denominator coefficients using ECF-ICF-RSI in [22],
and proposed ECF-ILF-RSI, ELF-ICF-RSI, ELF-ILF-RSI and SC-ELF-ILF-RSI
algorithms under 17 dB SNR. ‘ECF’ and ‘ELF’ denote the SREIV-PAST
algorithm with constant FF and local optimal FF, respectively. ‘ICF’ and
‘ILF’ represent the recursive algorithm to estimate the input-related
matrices BBB and DDD with constant FF and local optimal FF. ‘SC’ is the
abbreviation for SCAD regularization.
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FIGURE 3. Estimated numerator coefficients using ECF-ICF-RSI in [22],
and proposed ECF-ILF-RSI, ELF-ICF-RSI, ELF-ILF-RSI, SC-ELF-ILF-RSI,
PI-ECF-ICF-RSI, PI-SC-ELF-ILF-RSI, algorithms under 17 dB SNR.

FIGURE 4. Change of the optimal forgetting factor in ELF-ILF-RSI
algorithm.

in ILF-based algorithms is shown in Fig. 5. The small FF
utilized in the initial stage can achieve faster convergence
speed while the large FF used at the steady state yields a
smaller MSE.

Next, we compare the steady state performance of the
ECF-ICF-RSI, ELF-ICF-RSI, ECF-ILF-RSI and SC-ELF-
ILF-RSI algorithms in stationary environment. The SNR is
kept at 17dB. The Bode diagrams of different algorithms at
the 1000-th time-point are shown in Fig. 6. It can be seen
that the SC-ELF-ILF-RSI algorithm gives the smaller error
from the ground-truth. The ELF-based algorithms are more
accurate due to the more accurate estimation of the extended
observability matrix 000.

B. SISO SYSTEMS WITH TIME-VARYING AAA
Consider the following time-varying system studied in [15]

AAA[n] =

1.5+ 0.05
e−n/1000 − 1
e−1 − 1

− 0.7

1 0− 0.03
e−n/1000 − 1
e−1 − 1


(44)

FIGURE 5. Change of the optimal forgetting factor in ELF-ILF-RSI
algorithm.

All the other settings are identical to the last example. The
following colored measurement noise was added to the noise-
free output of the system

v[n] =
1

1− 0.8q−1
e[n], (45)

where e[n] is a zero mean white Gaussian noise. The output
SNR was set to 25 dB.

The criterion chosen to measure and to compare the per-
formance was subspace angle [45]–[47] in degree between
000 and 0̂00 as

cos(θn) = max
uuu∈000

max
vvv∈0̂00

uuuTvvv = uuuT
nvvvn,

s.t. ‖uuu‖22 = ‖vvv‖
2
2 = 1, uuuT

i uuui = 0,
vvvT
i vvvi = 0, i = 1, 2, . . . , n− 1 (46)

The motivation of the criterion is that the largest subspace
angle is related to the distance of equidimensional sub-
spaces. Fig. 7 compares the subspace angle of different algo-
rithms in nonstationary environment. It can be seen that the
SC-ELF-ILF-RSI algorithm achieves a faster initial conver-
gence speed and similar steady state error as the ECF-ICF-
RSI algorithm. The ELF-ICF-RSI algorithm performs similar

FIGURE 6. Bode diagrams of different algorithms at 1000-th time-point.
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FIGURE 7. Estimated subspace angle using ECF-ICF-RSI in [22], and
proposed ECF-ILF-RSI, ELF-ICF-RSI and SC-ELF-ILF-RSI algorithms under
25 dB SNR in nonstationary environment.

to the SC-ELF-ILF-RSI algorithm as a result of the variable
forgetting factor employed to calculate the extended observ-
ability matrix 000. The ECF-ILF-RSI algorithm converges a
little slower than the SC-ELF-ILF-RSI algorithm, which is
still faster than the ECF-ICF-RSI algorithm due to the vari-
able forgetting factor used to compute the impulse response
matrix888 from input to output.
To better illustrate the advantage of the proposed VFF

algorithms, we also consider a system with poles closer to
the origin similar to the last system:

AAA[n]=

1+0.1
e−n/1000 − 1
e−1 − 1

− 0.7

1 0− 0.05
e−n/1000−1
e−1 − 1

 (47)

Other settings are identical to the previous simulation. The
subspace angles of different algorithms are shown in Fig.8.
It can be seen that the SC-ELF-ILF-RSI and ELF-ICF-RSI
algorithms perform significantly better than the ECF-ILF-
RSI and ECF-ICF-RSI algorithms. Next, we compare the
tracking capability of the proposed algorithm with other
methods in Fig. 9. It can be seen that SC-ELF-ILF-RSI algo-
rithm can track the varying coefficients with the fastest speed.
The ELF-ICF-RSI algorithm performs comparably with the
ELF-ILF-RSI algorithm, while both of them converge faster
than the ECF-ILF-RSI and ECF-ICF-RSI methods.

C. A SISO SYSTEM WITH TIME-VARYING BBB
Next, we consider a system similar to the last time-varying
system with

BBB[n]=
[
1+ 0.6

e−n/1000 − 1
e−1 − 1

0− 0.2
e−n/1000 − 1
e−1 − 1

.

]
(48)

All the other settings are identical to the last example whileAAA
is stationary as the first example. The tracking performances
of the numerator coefficients of various algorithms are shown
in Fig. 10. Both ELF-ICF-RSI and ECF-ICF-RSI algorithms

FIGURE 8. Estimated subspace angle using ECF-ICF-RSI in [22], and
proposed ECF-ILF-RSI, ELF-ICF-RSI and SC-ELF-ILF-RSI algorithms under
25 dB SNR in nonstationary environment with poles closer to the origin.

FIGURE 9. Estimated denominator coefficients using ECF-ICF-RSI in [22],
and proposed ECF-ILF-RSI, ELF-ICF-RSI, ELF-ILF-RSI and SC-ELF-ILF-RSI
algorithms under 25 dB SNR in nonstationary environment.

are capable of tracking the fast changing parameters, but with
a slower tracking speed than the ILF-based algorithms in
which local optimal FF is employed to estimate BBB andDDD.

D. A MIMO TIME-INVARIANT SYSTEM
Here, we consider an N = 4 MIMO time-invariant system
studied in [48]

AAA=


0.7 0.7 0 0
−0.7 0.7 0 0
0 0 −0.7 −0.7
0 0 0.7 −0.7

 , BBB=


1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3561 1.7971


(49a)

CCC =
[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]
, (49b)
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FIGURE 10. Estimated numerator coefficients using ECF-ICF-RSI in [22],
and proposed ECF-ILF-RSI, ELF-ICF-RSI, ELF-ILF-RSI and SC-ELF-ILF-RSI
algorithms under 25 dB SNR in nonstationary environment.

FIGURE 11. Estimated real part of poles using ECF-ICF-RSI in [22], and
proposed ELF-ICF-RSI and SC-ELF-ILF-RSI algorithms in a MIMO system.

DDD =
[
−0.1356 −1.2704
−1.3493 0.9846

]
(49c)

The measurement and process noises are respectively KKKvvv[n]
and vvv[n], where

KKK =


0.4968 −0.3580
−0.3312 −0.0512
0.1560 −0.3872
−0.0900 0.5836

 ,
RRRv =

[
0.0176 −0.0267
−0.0267 0.0497

]
. (50)

vvv[n] is a zero mean white Gaussian noise with covarianc RRRv.
Fig. 11 and Fig. 12 show the trajectories of the real and
imaginary parts of the estimated poles using various algo-
rithms, respectively. It can be seen from Fig. 11 that the
ELF-ILF-RSI based algorithms converge much faster than

FIGURE 12. Estimated imaginary part of poles using ECF-ICF-RSI in [22],
and proposed ELF-ICF-RSI and SC-ELF-ILF-RSI algorithms in a MIMO
system.

TABLE 6. Numerical comparison for the flutter system.

the ECF-ICF-RSI algorithm in estimating the real part of
the poles. The imaginary parts of the poles estimated also
show the same characteristic in Fig. 12. The ELF-ILF-RSI
algorithm performs comparably with the SC-ELF-ILF-RSI
algorithm in terms of convergence speed.

Next, we compare the accuracy of the estimated poles
obtained by the ECF-ICF-RSI, ELF-ILF-RSI and SC-ELF-
ILF-RSI algorithms. The eigenvalues of the estimated AAA
matrices in 100 Monte-Carlo simulations are plotted and
compared with the true ones. 300 samples are used for each
realization. The estimated poles obtained by the ECF-ICF-
RSI, ELF-ILF-RSI and SC-ELF-ILF-RSI algorithms are pre-
sented respectively in Fig. 13, Fig. 14 and Fig. 15. It can
be noted that the mean of the eigenvalue estimates are
equally accurate for these algorithms. However, the variance
of the eigenvalue estimates of the ECF-ICF-RSI algorithm is
slightly larger than the ELF-ILF-RSI algorithm. The eigen-
value estimates obtained by the SC-ELF-ILF-RSI algorithm
are more close to the true ones due to the effect of SCAD
regularization.

E. APPLICATION TO A WING FLUTTER DATA
In this section, the proposed algorithms are tested using the
wing flutter data [49] from the DaISy (Database for the
Identification of Systems). The data consists of 1024 time
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FIGURE 13. Estimated poles using ECF-ICF-RSI algorithm in [22] for a
Monte Carlo simulation of size 100.

FIGURE 14. Estimated poles using ELF-ILF-RSI algorithm for a Monte
Carlo simulation of size 100.

points with single input and single output. The input sig-
nal is highly colored and the response is acquired via an
accelerometer sensor in real time. The mathematical model
of the mechanical system is unknown. Therefore, we use
our proposed approach and the model order estimated is
equal to 5. We tested different numbers of block rows with
α = 7, 8, 9, 10 and the result is summarized in Table 6. The
following commonly used FIT criterion [50], [51] is used to
compare the performance of various algorithms

FIT = 100×
(
1−
‖y− ŷ‖
‖y− ȳ‖

)
, (51)

where y is the measured system output, ŷ and ȳ denote
the estimated output of the system and the arithmetic mean
of y, respectively. Note that ‖y− ŷ‖ =

√
SSE and ‖y− ȳ‖ =

FIGURE 15. Estimated poles using SC-ELF-ILF-RSI algorithm for a Monte
Carlo simulation of size 100.

√
SST, where

SSE =
∑N

i=1
(yi − ŷi)2, (52)

is the sum of squared errors and

SST =
∑N

i=1
(yi − ȳi)2, (53)

is the total sum of squares deviation or total variation.
It can be seen that α = 8 gives the best results for all algo-

rithms. The proposed ELF-ILF-RSI and SC-ELF-ILF-RSI
algorithms can achieve high FIT values and outperform other
compared methods. The accuracy of ELF-ICF-RSI algorithm
is slightly better than the ECF-ILF-RSI algorithm. The pre-
diction accuracy obtained with the ECF-ICF-RSI algorithm
is much lower due to the constant forgetting factor.

V. CONCLUSION
A new SCAD regularized LOFF-based algorithm for recur-
sive subspace model identification has been presented. The
VFF parameter is obtained by minimizing the MSE of the
SREIV-PAST algorithm when the observability matrix is
modeled by local polynomial modeling. A SCAD regular-
ization term is also incorporated to reduce the estimation
variance of the subspace during signal fading. Applications of
the proposed algorithms under stationary and non-stationary
environments show that the proposed algorithms offer con-
siderably improved performance over the conventional and
state-of-the-art algorithms.

APPENDIX
MEAN SQUARES DEVIATION (MSD) OF THE ESTIMATOR
As mentioned, our aim is to find the FF so as to minimize
the MSD of the estimator. Therefore, we need to evaluate the
MSD of the estimator, which can be written as

JMSD(wwwk ) = E
[
‖wwwk [n]− hhhk [n]‖22

]
. (A.1)
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To this end, we first rewrite the estimation error as

wwwk [n]− hhhk [n] = bbbk [n]+ vvvk [n] (A.2)

where bbbk [n] = E [wwwk [n]] − hhhk [n] is the bias and
vvvk [n] = wwwk [n] − E [wwwk [n]] is associated with the variance.
Consequently

JMSD(wwwk ) = E
[
‖bbbk [n]‖22

]
+ E

[
‖vvvk [n]‖22

]
. (A.3)

We now evaluate E [wwwk [n]] and hence bbbk [n] and vvvk [n] from
which the right hand side of (A.3) can be evaluated. From
(25), we get the expected value of the estimate as

E [wwwk [n]] = hhhk [n]+BBB[n]h̄hh
(1)
k [n], (A.4)

where h̄hh
(1)
k [n] = E

[
hhh(1)k [n]

]
. Moreover, following the

technique in [52], we have (CCCH
4G[n]CCC4G[n])

−1 n→∞
≈ (1 −

λ[n])2(CCCH
ξgCCCξg)

−1 where CCC4G[n]
n→∞
≈ (1 − λ[n])−1CCCξg and

CCCξg = E
[
ξξξ [n]gggH[n]

]
. For simplicity, let us define RRRτ [n] =

GGGH[n]DDDλ[n]444[n]444H[n]DDDλ[n]DDDτ [n]GGG[n]. As n→∞,

RRRτ [n]
n→∞
= GGGH[n]DDDλ[n]444[n]444H[n]DDDλ[n]DDDτ [n]GGG[n]

n→∞
= −(1−λ[n])−1CCCH

ξh

∑n

i=1
λn−i[n]ξξξ [i]gggH[i](n− i)

n→∞
≈ −(1− λ[n])−1CCCH

ξh

∑n−1

i=0
iλi[n]CCCyy

n→∞
= −(1− λ[n])−1λ[n]

×

(
1− λn−1[n]
(1− λ[n])2

−
(n− 1)λn−1[n]

1− λ[n]

)
CCCH
ξgCCCξg

n→∞
≈ −

λ[n]
(1− λ[n])3

CCCH
ξgCCCξg. (A.5)

Using (A.5 and the above results for (CCCH
4G[n]CCC4G[n])

−1,

we have BBB[n] = (CCCH
4G[n]CCC4G[n])

−1RRRτ [n]
n→∞
≈ −

λ[n]
1−λ[n] and

hence

bbbk [n] = BBB[n]h̄hh
(1)
k

n→∞
= −

λ[n]
1− λ[n]

h̄hh
(1)
k [n]. (A.6)

Note that the FF λ[n] is slowly varying over time. However,
it can be assumed to be constant inside the neighborhood
B(tn), which is assumed to be the interval under consideration
i = 1, . . . , n. From (A.7), we finally get

E
[
‖bbbk [n]‖22

]
=

λ2[n]
(1− λ[n])2

ζk , (A.7)

where ζk = h̄hh
(1)H
k [n]h̄hh

(1)
k [n]. Similarly, we have

vvvk [n] = CCC[n](ηηηk [n]+ ςςςk [n])+BBB[n]δhhh
(1)
k [n], (A.8)

where hhh(1)k [n]h̄hh
(1)
k + δhhh

(1)
k [n] and

E
[
‖vvvk [n]‖22

]
= E

[
Tr(CCCH[n]CCC[n]ηηηk [n]ηηηH

k [n])
]

+E
[
Tr(CCCH[n]CCC[n]ςςςk [n]ςςςH

k [n])
]

+E
[
Tr(BBB[n]δhhh(1)k δhhh

(1)H
k [n]BBB[n])

]
(A.9)

Moreover, using assumptions (A1) to (A3), (A.9) can be
simplified to: (A.9) can be simplified to

E
[
‖vvvk [n]‖22

]
=
Kσ 2

δhk [n]λ
2[n]

(1− λ[n])2

+
1− λ[n]
1+ λ[n]

(σ 2
ηk
+ σ 2

rkTr(CCCξξ ))Tr(���), (A.10)

where σ 2
ηk
=

1
K E

[
‖ηηηk [n]‖22

]
, σ 2

rk =
1
K E

[
‖rrrk [n]‖22

]
,

σ 2
δhk =

1
K E

[
‖δhhhk [n]‖22

]
and ��� = (CCCH

ξgCCCξg)
−1CCCH

ξgCCCξξCCCξg
(CCCH

ξgCCCξg)
−H . Here, we have also used the following:

E
[
Tr(CCCH[n]CCC[n])

]
= Tr((CCCH

4G[n]CCC4G[n])
−H (CCCH

4G[n]CCC4G)
−1

·GGGH[n]DDDλ[n]444[n]444H[n]DDD2
λ[n]444[n]444

H[n]DDDλ[n]GGG[n])
n→∞
= (1− λ[n])2Tr((CCCH

ξgCCCξg)
−1CCCH

ξg444
H[n]DDD2

λ[n]444[n]

·CCCξg(CCCH
ξgCCCξg)

−H )

n→∞
=

1− λ[n]
1+ λ[n]

Tr((CCCH
ξgCCCξg)

−1CCCH
ξgCCCξξCCCξg(CCC

H
ξgCCCξg)

−H ),

(A.11)

and the fact that444H[n]DDD2
λ[n]444[n]

n→∞
≈ (1−λ2[n])−1CCCξξ and

E
[
Tr(BBB[n]BBBH[n])

]
= Tr((CCCH

4G[n]CCC4G[n])
−1RRRτ [n]RRRH

τ [n] ·

(CCCH
4G[n]CCC4G[n])

−H )
n→∞
≈

Kλ2[n]
(1−λ[n])2

.
Consequently,

JMSD(wwwk [n]) ≈
1− λ[n]
1+ λ[n]

σ 2
6k
Tr(���)+

λ2[n]σ 2
hk [n]

(1− λ[n])2
, (A.12)

where σ 2
6k
= σ 2

ηk
+ σ 2

rkTr(CCCξξ ), σ
2
hk [n] = Kσ 2

δhk [n] + ζk .
Therefore, the total MSD is given by

JMSD[n] ≈
1− λ[n]
1+ λ[n]

σ 2
6Tr(���)+

λ2[n]σ 2
h [n]

(1− λ[n])2
. (A.13)

where σ 2
6 =

∑K
k=1 σ

2
6k

and σ 2
h [n] =

∑K
k=1 σ

2
hk [n].
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