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Abstract

Background: A major cause of disease-related death in nasopharyngeal carcinoma (NPC) is the development of
distant metastasis (DM) despite combination chemoradiotherapy treatment. We previously identified and validated
a four microRNA (miRNA) signature that is prognostic for DM. In this study, characterization of a key component of
this signature, miR-34c, revealed its role in chemotherapy resistance.

Methods: Two hundred forty-six NPC patient biopsy samples were subject to comprehensive miRNA profiling and
immunohistochemistry (IHC). Two human normal nasopharyngeal cell lines (immortalized; NP69 and NP460), as well
as the NPC cell line C666-1, were used for miR-34c gain-of-function and loss-of-function experiments. Signaling
pathways were assessed using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability was measured
using the ATPlite assay.

Results: MiR-34c was downregulated in NPC patient samples, and confirmed in vitro to directly target SOX4, a
master regulator of epithelial-to-mesenchymal transition (EMT). MiR-34c downregulation triggered EMT-
representative changes in NP69 and NP460 whereby Snail, ZEB1, CDH2, and SOX2 were upregulated, while Claudin-
1 and CDH1 were downregulated. Phenotypically, inhibition of miR-34c led to cisplatin resistance, whereas miR-34c
over-expression sensitized NPC cells to cisplatin. TGF31 decreased miR-34c and increased SOX4 expression in vitro.
The TGFf receptor 1 inhibitor SB431542 reduced SOX4 expression and increased cisplatin sensitivity. Finally, IHC
revealed that lower SOX4 expression was associated with improved overall survival in chemotherapy-treated NPC
patients.

Conclusion: miR-34c is downregulated in NPC. Repression of miR-34c was shown to increase SOX4 expression,

which leads to cisplatin resistance, while TGF31 was found to repress miR-34c expression. Taken together, our study
demonstrates that inhibition of the TGF@1 pathway could be a strategy to restore cisplatin sensitivity in NPC.
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Background

Nasopharyngeal carcinoma (NPC) patients presenting with
locally advanced disease have a very modest overall survival
(OS) rate of approximately 65% after 5years [1-3]. Despite
the use of intensity-modulated radiation therapy for this
Epstein-Barr virus (EBV)-associated malignancy, 20—-30% of
NPC patients will still succumb to distant metastasis (DM)
[4]. Therapeutic options for such NPC patients are limited,
and a primary clinical challenge is resistance to chemoradi-
ation [5]. Concurrent chemotherapy (cisplatin/5-fluoroura-
cil) with radiation therapy (RT) modestly improves OS, but
can cause significant toxicity and death [4, 6-10].

Our group previously completed a global miRNA NPC
patient sample profiling, discovering and validating a
four-microRNA (miRNA) prognostic signature associ-
ated with risk for DM (low miR-34c, low miR-140, high
miR-154, and high miR-449b) [11]. A subsequent study
demonstrated that elevated levels of miR-449b were sig-
nificantly associated with poor OS in patients receiving
concurrent chemoradiotherapy [12]. MiR-449b overex-
pression in NPC was found to decrease transforming
growth factor beta-induced (TGFBI), leading to an in-
crease in transforming growth factor beta 1 (TGEFp1),
TGEp pathway activation, and cisplatin resistance [12].

TGEFp1 is a secreted protein involved in the regulation
of many cellular mechanisms, such as metastasis forma-
tion, chemoresistance, epithelial-to-mesenchymal transi-
tion (EMT) [13, 14], and more recently, miRNA
expression [15, 16]. This latter process occurs via
TGEP1-mediated Smad activation whereby Smads bind
to miRNA promoter regions that contain Smad-binding
elements, as well as the Drosha complex [17]. Con-
versely, numerous miRNAs have been shown to nega-
tively regulate TGF[ pathways [18].

TGFB1 mediates the overexpression of SOX4, a mem-
ber of the SOX (SRY-related HMG-box) family of tran-
scription factors, which are known to be involved in
developmental pathologies and cancer [19-22]. SOX4
dysregulation is involved in a myriad of cellular phe-
nomena, such as the cell cycle, apoptosis, response to
chemoradiation, metastasis development, and EMT [19,
23-27]. It is highly expressed in prostate [28], glioma
[29], gastric [30], and breast cancers [27, 31], and its ele-
vated expression, in turn has been associated with worse
survival in prostate [32], gastric [30, 33], and colon can-
cers [34], as well as NPC [35]. The opposite however,
has also been observed in several other malignancies,
suggesting that the involvement of SOX4 may be
context-dependent [36, 37].

Another component of the four-miRNA DM signature
is miR-34c, which was only compared to other miRNAs
within NPC, but not assessed in healthy individuals [11].
Other groups have shown miR-34c downregulation in
NPC compared to normal tissue [38, 39], which has also
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been demonstrated in several other cancers [40-43].
MiR-34c is a member of the miR-34 family, which is
composed of three pro-apoptotic members: miR-34a,
miR-34b, and miR-34c, all of which have been described
as transcriptional targets of p53 [44]. MiR-34a is located
on chromosome 1p36, whereas miR-34b/c are located
on chromosome 11q23 [45]. While extensive research
has been conducted on miR-34a [46], identifying its role
in chemosensitivity [47, 48], prevention of metastasis
formation [49-52], and reverting EMT [53, 54], there is
a paucity of information regarding miR-34c.

In this current study, the biological mechanisms and
effects of miR-34c downregulation were investigated.
The data suggest that this downregulation is caused by
TGEP1, which leads to SOX4 disinhibition, which in
turn promotes EMT and cisplatin resistance in NPC —
two features that contribute to the formation of DM.

Methods

Patient samples

In compliance with the Institutional Research Ethics
Board at the University Health Network (UHN), all pa-
tients provided written consent for the use of their
tissues in this study. Diagnostic formalin-fixed paraffin-
embedded (FFPE) blocks were obtained from NPC pa-
tients (n = 246) treated at the Princess Margaret Cancer
Center (PMCC) between 1993 to 2009, as previously de-
scribed [11]. FFPE tissues from patients who underwent
quadroscopy and were not diagnosed with NPC (1 =17)
were used as normal nasopharyngeal epithelial tissues.

NanoString analysis

RNA was isolated using the Recover All Total Nucleic
Acid Isolation Kit for FFPE (Ambion, Austin, TX, USA).
Total RNA (200 ng) was assayed using the nCounter Hu-
man miRNA Assay v1.0 (Nanostring; 734 unique human
and viral miRNAs). Please note that this experiment was
also used for a previous study. Full analyses and proto-
cols can be found in Bruce et al. [11].

Cell culture

The EBV-positive NPC cell line C666-1, the non-
tumorigenic human nasopharyngeal cell lines NP69
(SV40-immortalized) and NP460 (hTert-immortalized),
and HEK 293 T cells were cultured as previously de-
scribed [12]. NP69 and NP460 cell lines were generated
by SW Tsao’s group [55, 56] and served as “normal”
cells throughout this study. Every new batch of cells
underwent mycoplasma testing and STR analyses [12].
C666—1, NP69 and NP460 cells were used for gain- and
loss-of-function assays; HEK 293 T (ATCC CRL-32L)
cells were used for lentiviral generation and luciferase
assays.
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Compound treatments

SB431542 (#S1067, SelleckChem, Houston, TX, USA), a
TGEp receptor I (TGFBRI, also known as ALKS5) inhibi-
tor, was used as indicated. Human TGFp1 (#8915; Cell
Signaling, Danvers, MA, USA) was used where indicated
after overnight starvation of cells in Minimum Essential
Media (MEM) supplemented with 0.5% FBS.

Transfection

Polyplus-transfection JetPRIME (Graffenstaden, France)
was used for transfection of C666—1, NP69, NP460, and
HEK 293 T cells, according to manufacturer’s specifica-
tions. C666—1, NP69, and NP460 cells were transfected
with pre-miR-34c or pre-miR negative control (20 nM
and 50 nM, Ambion, Austin, TX, USA).

Lentiviral transduction

Lentiviral transduction was used to generate stable cell
lines as previously described [12]. pLV-miRNA-34c (Bio-
settia, San Diego, CA, USA), pLV-miR-34c-lockers (Bio-
settia, San Diego, CA, USA), and their respective control
vectors were used. All stable cell lines were generated
for the purpose of this work.

Quantitative real-time PCR (qRT-PCR)

The Total RNA Purification Kit (Norgen Biotek, Thor-
old, ON, Canada) was used for both mRNA and miRNA

Table 1 Oligonucleotides used for gRT-PCR
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isolation. Reverse-transcription of total RNA (1 pg) was
performed using the iScript cDNA Synthesis Kit
(BioRad, Hercules, CA, USA). qRT-PCR was performed
using SYBR Green (Roche, Basel, Switzerland) and the
primers are listed in Table 1. mRNA expression was
normalized to the average expression of two housekeep-
ing genes (B-actin and GAPDH, as in [12]) and melting
curves were generated for each experiment. MiRNA
levels were assessed using the TagMan MicroRNA
Assay, and processed according to manufacturer’s in-
structions (Applied Biosystem, Foster City, CA, USA).
RNU44 and RNU48 were used to normalize miR-34c ex-
pression [57, 58]. Relative expression was calculated
using the 2788C method [59].

Western blot

Immunoprecipitation buffer (150 mM NaCl, 5mM
EDTA, 50 mM Hepes pH 7.6, 1-2% Nonidet P-40; with
protease inhibitor cocktail, Roche), was used for protein
extraction. Electrophoresis was performed with Bolt 4—
20% Gels (Life Technologies, Carlsbad, CA, USA).

The Epithelial-Mesenchymal Transition Antibody
Sampler Kit (Cell Signaling; #9782; 1/1000 each), anti-
TGFB1 (Cell Signaling; #3711; 1/1000), and anti-p-actin
(Sigma: 1/5000) antibodies were used. The SuperSignal
West Femto ECL (Pierce, #34095, Thermo Scientific,
Waltham, MA, USA) was used for ZEB1, CDHI1 and

Gene Forward Primer (5' to 3') Reverse Primer (5' to 3')
B-actin AGAGCTACGAGCTGCCTGAC AGCACTGTGTTGGCGTACAG
ARID5A ACCAGATGATGCCAGGAAAG GAGCTTCTTTTTGGCCAGTG
BAX GGGTGGTTGCCCTTTTCTACT CCCGGAGGAAGTCCAGTGTC
BIK AAGACCCCTCTCCAGAGACAT CAAGAACCTCCATGGTCGGG
CCL22 ACTGCACTCCTGGTTGTCCT CGGCACAGATCTCCTTATCC
GAPDH TGTTGCCATCAATGACCCCTT CTCCACGACGTACTCAGCG
LITAF TCGGTTCCAGGACCTTACCA GGAGGATTCATGCCCTTCCC
MARCKS CCCAGTTCTCCAAGACCGC CTGTCCGTTCGCTTTGGAAG
MR1 GACTCGCACCCTATCACCAC CGAGGTTCTCTGCCATCCAT
NFKBIA GAAGTGATCCGCCAGGTGAA CTGCTCACAGGCAAGGTGTA
NOTCH1 TCCACCAGTTTGAATGGTCA AGCTCATCATCTGGGACAGG
PDE4B GGAAAAATCCCAGGTTGGTT AGTGGTGGTGAGGGACTTTG
PML GGCAGAGGAACGCGTTGTGGT GGCTGGATGACCACGCGGAA
RANGAP1 TCAAGAGCTCAGCCTGCTTC TTCCGGTGACATTCGGTCAG
RBM4 CTTGAGGTGGGATGTGTGTG GCAGGAGAGGAAAGGAAAGG
RNF24 TGAGTTGGGGATTTGTCCAT TACTTTGCGAACTTCCAGCC
SOX2 GCTACAGCATGATGCAGGACCA TCTGCGAGCTGGTCATGGAGTT
SOX4 CCAAATCTTTTGGGGACTTTT CTGGCCCCTCAACTCCTC
TGIF2 TGAAGATCCTCCGGGACTGG CAGCACTGACAGGTTGGTCT
TRIO AGCACACCTGGACCTAAAGC GCACTCCAACACTCCACGTA




Bissey et al. BMC Cancer (2020) 20:597

Z0O-1 detection. Pierce ECL (#32209) was used to detect
all other proteins.

RNA sequencing (RNA-Seq) and data analysis

RNA from our cohort of FFPE samples was isolated
(200 ng/sample), processed (Ribo-Zero Gold rRNA Re-
moval Kit (Illumina, San Diego, CA, USA)), and se-
quenced as previously described (as in the NanoString
section of [11]). A subset of these samples (n =53) was
processed for RNA-seq. Library preparation was per-
formed using the TruSeq Stranded Total RNA Sample
Prep Kit (Illumina, San Diego, CA, USA). Sequencing
was conducted on the Illumina HiSeq 2000 to > 100 mil-
lion paired-end 100 bp reads. STAR (v2.4.2a) was used
to align the reads [60], and RSEM (v1.2.21) was used to
summarize expression values [61].

Luciferase reporter assay for MiR-34c/SOX4 target activity
MiR-34c was predicted to target the wild-type (WT) 3'-
untranslated region (3’'UTR) of SOX4 in silico. This re-
gion was inserted into the pMIR-REPORT vector
(Ambion). JetPRIME was used to reverse transfect HEK
293T cells with pre-miR-control or pre-miR-34c.
Twenty-four hours later, JetPRIME was used to co-
transfect pRL-SV Renilla vector (Promega, Madison, WI,
USA) with either pMIR-SOX4 3'UTR WT (CTAGTG
CTCAGCTCAAGTTCACTGCCTGTCAGAT) or
pMIR-SOX4 3'UTR Mutant (CTAGTGCTCAGCTC
AAGTTTCTGTAAAGTCAGAT). The Dual-Luciferase
Reporter Assay (Promega) was used to measure lucifer-
ase activity 24 h post-transfection.

Cell viability assays

Stable cell lines generated from C666-1, NP69 and
NP460 cells were seeded in 96-well plates (2000 cells/
well). After 1 day, they were exposed to decreasing con-
centrations of cisplatin (CDDP) for 72 h as indicated in
the figures. Dose-response curves for cisplatin were de-
termined through treatment using two-fold serial dilu-
tions starting from 12.5 pg/mL (which induced ~ 90%
cell death in NP69/NP460 cells after 72 h of treatment).
Cell viability was assessed using the ATPlite 1 Step Lu-
minescence Assay System (PerkinElmer, Waltham, MA,
USA).

Immunohistochemistry (IHC)

Sections from FFPE blocks were subject to IHC using
microwave antigen retrieval. Citric acid (0.01 M, pH 6.0)
and the LSAB+ System-HRP (Dako, Les Ulis, France)
were used. Rabbit polyclonal anti-SOX4 (PA5-41442,
lot#SB2344261A, Invitrogen: 1/40) antibody was used,
but omitted for negative control staining. Positive nu-
clear SOX4 localization was detected by light micros-
copy. The percentage of positive tumour cells was
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quantified by evaluating a total of at least 300 tumour
cells from the three most densely staining fields (magni-
fication 400x). A final score was calculated as the prod-
uct of the percentage of positive tumour cells and
staining intensity (0 = negative; 1 =weak; 2 = moderate;
3 =strong) as previously described [62]. No samples had
an intensity score of 3. All scoring was performed
blinded to any knowledge of clinical or pathological pa-
rameters. Each section was scored at least twice.

Statistical analyses

All experiments were performed at least three times. In
order to maintain independence between replicates, new
frozen batches of cells were used each time. Data are
presented as the mean + SEM. GraphPad Prism (Graph-
Pad Software, San Diego, CA, USA) was used for statis-
tical analyses. Intergroup statistical significance was
determined using the ANOVA test, with the Bonferroni
post-test (if applicable), or the Mann-Whitney U test
(socscistatistics.com).

Results
MiR-34c is downregulated by TGFf1
In order to investigate the role of miR-34c downregula-
tion in the validated prognostic signature for NPC DM
[11], we first confirmed that miR-34c expression was sig-
nificantly reduced in NPC diagnostic FFPE samples
compared to normal nasopharyngeal tissues using previ-
ously generated NanoString data [11] (Fig. 1a). Cell line
models were then assessed for miR-34c expression.
EBV-positive NPC cell line C666-1 exhibited signifi-
cantly lower levels of miR-34c compared to the two nor-
mal (immortalized) nasopharyngeal cell lines NP69 and
NP460 (Fig. 1b), consistent with clinical observations.

We had previously demonstrated that miR-449b over-
expression, another component of the validated prog-
nostic DM signature [11], led to TGFBI mRNA
degradation with subsequent TGFpB1 accumulation [12].
Given that TGFpP1 plays an important role in NPC pro-
gression [53, 63-68] and in the regulation of miRNAs,
particularly miR-34a [52], we sought to measure TGF[}1
in these cell lines. Indeed, C666—1 cells (which have high
miR-449b expression [12]) expressed higher levels of ac-
tive TGEP1 compared to either NP69 or NP460 cells
(both of which have lower miR-449b expression [12])
(Fig. 1c). We therefore hypothesized that TGFB1 could
be regulating miR-34c in these cells. Treatment with re-
combinant TGFp1 significantly reduced miR-34c expres-
sion in both NP69 and NP460 cells (Fig. 1d and e).
Conversely, a TGFP receptor 1 (TGFBR1) inhibitor
(SB431542) increased miR-34c expression in C666-1
cells (Additional file 1: Figure S1A).

In order to confirm the association between increased
miR-449b, increased TGFP1l, and decreased miR34c,
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Fig. 1 MiR-34c is under-expressed in NPC and downregulated by TGF(31. a Relative miR-34c expression in normal patients (not diagnosed with
NPC) vs. NPC patients (using data from Bruce et al., 2014 [11]). b Relative expression (QRT-PCR) of miR-34c in NP69, NP460, and C666-1 cell lines,
normalized to NP6&9 cells. ¢ Whole cell lysate (WCL) Western blotting (WB) of NP69, C666-1, and NP460 cells using anti-TGF31 antibody (aTGFB1),
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expression assessed by qRT-PCR after treatment with 10 ng/mL of recombinant TGF31 in NP69 (d) and NP460 (e) cells. UT = untreated. f WB
performed on WCL of stably transfected NP69-miR-control, NP69-anti-miR-34c, and NP69-pre-miR-449b cells using anti-TGF31 antibody, with anti-
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presented in Additional file 5: Figure S5. The data are represented as the mean + SEM of at least three independent experiments. *** P < 0.001
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NP69 cells stably expressing pre-miR-449b were com-
pared to NP69 cells stably expressing miR-control or
anti-miR-34c. NP69-pre-miR-449b  cells expressed
higher levels of active TGFP1 protein compared to
NP69-miR-control or NP69-anti-miR-34c cells (Fig. 1f,
top); associated with a correspondingly lower expression
of miR-34c compared to NP69-miR-control (Fig. 1f

bottom). Taken together, these data support the hypoth-
esis that TGFP1 decreases miR-34c expression, although
the mechanism of regulation remains unknown.

MiR-34c directly downregulates SOX4
In order to identify miR-34c target candidates, 17 genes
at the intersection between computationally predicted
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targets and genes upregulated in patient NPC samples miR-34c) (Additional file 1: Figure S1B and C). These
[69] were examined (Fig. 2a). Using qRT-PCR, 6 of the  genes were then assessed for response to transient miR-
17 genes were observed to be upregulated in C666—-1  34c overexpression (pre-miR-34c transfection) (Fig. 2b
(low miR-34c) compared to NP69 and NP460 cells (high  for the 6 genes; Additional file 2: Figure S2A for the
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Fig. 2 MiR-34c inhibits SOX4 expression. a Evaluation of miR-34c targets: the Venn diagram was generated by combining miRWalk-predicted miR-
34c targets and the upregulated NPC genes from Shi et al., 2006 [69] using the online tool at www.bioinformatics.psb.ugent.be/webtools/Venn. b
and ¢ gRT-PCR of genes highly expressed in C666-1 cells compared to NP69/NP460 cells. b C666-1 cells were transiently transfected with pre-
miR-34c (20 or 50 nM) for 72 h. ¢ C666-1 cells were treated with SB431542 (10 or 20 uM) for 72 h. d Relative luciferase activity after transient
transfection with pre-miR-34c (20 nM) for 48 h, followed by co-transfection with Renilla plasmid (100 ng) and either pMIR-SOX4 3'UTR Wildtype
(WT) (150 ng) or pMIR-SOX4 3'UTR Mutant (150 ng) for 24 h. e gRT-PCR for SOX4 in NP69 cells transiently transfected with miR-control (50 nM), or
pre-miR-34c (20 or 50 nM) for 72 h; 8 h after transfection, the media was changed to MEM 0.5% FBS; the following morning, cells were treated
with recombinant TGFB1 (10 ng/mL) for 48 h. f Kaplan-Meier plot of DRFS for NPC patients (n = 53) dichotomized based on low (<median) vs.
high (>median) SOX4 mRNA expression (median follow-up time = 6 years). The data are represented as the mean + SEM of at least three
independent experiments. * P < 0.05; ** P <0.01; *** P <0.001
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other 11 genes), and TGFP pathway inhibition using
SB431542 (a TGFBR1 inhibitor, which also upregulates
miR-34c) (Fig. 2c for the 6 genes; Additional file 2: Fig-
ure S2B for the remaining 11 genes) in C666—1 cells. As
can be seen in Fig. 2b and c, elevated miR-34c condi-
tions consistently and significantly downregulated
ARID5A, BIK, and SOX4. Interestingly, BAX and PML
were consistently and significantly upregulated (Add-
itional file 2: Figure S2A and B), suggesting that they are
not direct targets of miR-34c, but possibly further down-
stream or altered via a more complex mechanism.

The expression of the potential miR-34c targets was
then determined through qRT-PCR on NP69 and NP460
cells transiently transfected with pre-miR-34c (Add-
itional file 2: Figure S2C and D), as well as on NP69,
NP460, and C666-1 cells stably expressing pre-miR-34c
and anti-miR-34c (Additional file 2: Figure S2E, F, G, H,
I and J). Together, these data show that only SOX4 was
both significantly and inversely related to miR-34c in all
tested cell line models. SOX4 is potentially important in
the tumorigenesis of a number of different cancers
(reviewed in [70]), including NPC [35, 71]. It is also
known to be regulated by TGFp1 [19], although its rela-
tionship with miR-34c remains to be investigated. Thus,
we proceeded to interrogate the relationship between
the TGFp pathway, miR-34c, and SOX4.

First, miR-34c—mediated direct inhibition of SOX4 ex-
pression was confirmed using a luciferase reporter assay
(Fig. 2d). The data were corroborated in NP69 cells,
wherein TGFEP1 treatment significantly increased SOX4
expression, which was abrogated with miR-34c overex-
pression (Fig. 2e). Furthermore, RNA-seq performed on
53 diagnostic NPC biopsy samples revealed that patients
with higher than median SOX4 transcript levels experi-
enced a lower 10-year distant relapse-free survival
(DRES) compared to those with lower levels (p = 0.063)
(Fig. 2f). Taken together, these data suggest that elevated
TGEFB1 (via miR-449b upregulation (Fig. 1f) and conse-
quent TGFBI degradation [12]) may lead to the down-
regulation of miR-34c, which directly upregulates SOX4
overexpression, possibly leading to an inferior 10-year
DRES, as seen in this dataset.

MiR-34c regulates the SOX2-EMT Axis

SOX4 has been characterized as a master regulator of
EMT [25, 27], notably by upregulating SOX2 [19-22], a
well-known mediator of tumour initiation and cancer
stem cell maintenance [72-74]. We therefore hypothe-
sized that miR-34c could affect EMT via SOX4 and
SOX2. First, SOX2 was confirmed to be highly expressed
in C666—-1 cells (low miR-34c; high SOX4) compared to
NP69 and NP460 cells (high miR-34c; low SOX4)
(Fig. 3a). NP69 cells stably expressing SOX4 had a sig-
nificant increase in SOX2 expression (Additional file 3:
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Figure S3A), corroborating previous reports [19-22].
Moreover, downregulation of miR-34c in both NP69 and
NP460 anti-miR-34c stable cell lines led to the signifi-
cant upregulation of SOX2 (Fig. 3b and c). The overex-
pression of miR-34c in C666-1 correspondingly
decreased SOX2 transcript levels (Additional file 3: Fig-
ure S3B).

The expression of well-known EMT markers were
then investigated. NP69 anti-miR-34c stable cells overex-
pressed SNAI1 (Snail), ZEB1, and CDH2, while under-
expressing CLDN1 (Claudin-1), ZO-1, and CDH1 (Fig.
3d). Similar results were observed in NP460 anti-miR-
34c stable cells (Fig. 3e), supporting the role of miR-34c
downregulation in the promotion of EMT in normal
nasopharyngeal cell lines. C666—1 cells were not amen-
able to this gene expression analysis (ZEB1, CDH2, and
CLDN1 are not expressed). However, TGFBR1 inhib-
ition using SB431542 decreased SOX2 transcript expres-
sion in C666-1 cells (Fig. 3f). Taken together, the data
show that high levels of TGFP1 downregulate miR-34c,
which directly leads to SOX4 overexpression and conse-
quent SOX2 upregulation, promoting EMT in nasopha-
ryngeal cells.

TGFBR1 inhibition sensitizes C666-1 cells to cisplatin
Our group previously demonstrated that miR-449b over-
expression was associated with EMT and cisplatin sensi-
tivity in NPC [12], with EMT being a well-described
mediator of chemoresistance [75]. In this current study,
miR-34c was found to be downregulated by TGFfp1 (Fig.
1), leading to EMT. On this basis, the potential involve-
ment of miR-34c in cisplatin resistance was examined.
Downregulation of miR-34c using anti-miR-34c signifi-
cantly increased resistance to cisplatin in NP69, NP460,
and C666-1 stable cell lines (Fig. 4a and b, Additional
file 3: Figure S3C). Conversely, overexpression of miR-
34c using pre-miR-34c increased cisplatin sensitivity in
NP69, NP460, and C666—1 stable cell lines (Additional
file 3: Figure S3D and E, Fig. 4c). Additionally, SB431542
treatment had a cytotoxic effect on C666-1 cells in a
dose-dependent manner in vitro (Additional file 3: Fig-
ure S3F). The combination of SB431542 and cisplatin
had an additive effect on the cell death of C666-1 cells
(Fig. 4d). Finally, IHC performed on NPC biopsy sam-
ples from patients treated with chemoradiation (n = 25)
demonstrated that lower SOX4 nuclear immunostaining
was associated with a superior 10-year OS compared to
patients with high SOX4 immunostaining (p = 0.031; Fig.
4e, and Additional file 4: Figure S4). These data all sup-
port a role for the TGFB1-miR34c-SOX4-SOX2 pathway
in mediating cisplatin sensitivity in NPC.

In summary, miR-34c acts as a switch that controls
EMT and chemoresistance in NPC. With TGFB1 stimu-
lation, miR-34c is repressed, directly leading to an
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increase in SOX4, which consequently upregulates
SOX2, leading to EMT and cisplatin resistance in NPC
(Fig. 4f).

Discussion

This study revealed a novel role of miR-34c in EMT and
chemoresistance in NPC. Downregulation of miR-34c¢ in
our cellular model, caused at least partially by miR-449b
overexpression and consequent TGEB1 activity, resulted
in SOX4 and SOX2 overexpression, which triggered
EMT and cisplatin resistance (Fig. 4f). Concordantly,
miR-34c overexpression sensitized NPC cells to

cisplatin—a phenotype corroborated in other cancer
types [76-79].

Interestingly, miR-34c and miR-449b belong to the
same miRNA family, as their seed sequences are
highly similar (reviewed in [80]). Despite having po-
tentially overlapping predicted targets however, as il-
lustrated in this study, they do not function in the
same manner in every context. Our data do demon-
strate a similar effect wherein both miR-449b and
miR-34c lead to the same cellular outcome: EMT and
cisplatin resistance. Further experiments would be re-
quired to unravel the roles of the other members of
the miR-34/449 family in NPC.
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In NPC, miR-34c downregulation has been previ-
ously reported by several groups [11, 38, 39], but its
mechanism of action has never been determined.
This study elucidated a clear signaling pathway and
provides data suggesting a myriad of other miR-34c
effects. For example, our data demonstrated that
miR-34c overexpression increased the expression of
well-known pro-apoptotic genes, such as BAX [81]
and PML [82]. Interestingly, the inhibition of PML

nuclear bodies by the EBV protein EBNA1 has been
described to contribute to tumorigenesis in NPC
cells [83, 84]. MiR-34c has also been reported to
suppress tumorigenesis through MET inhibition [38].
These and other miR-34c relationships remain to be
further investigated in NPC.

Other miR-34 family members have been shown to be
pro-apoptotic [44], with a liposome containing a miR-
34a mimic (MRX34) being developed and evaluated
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clinically as a therapeutic agent [85]. Additionally, while
miR-34a regulates SOX2 expression through PAI-1 [86],
its overexpression reverts EMT, which suppresses inva-
sion in NPC [53] and enhances docetaxel sensitivity in
prostate cancer [87].

There has been increasing evidence supporting a pri-
mary role for TGEP pathway activation in NPC [12, 53,
63, 65—67]. This current study demonstrated that miR-
34c can be downregulated by TGFP1, and that miR-449b
overexpression can cause similar effects. Correspond-
ingly, miR-449b upregulation and miR-34c downregula-
tion were components of the four-miRNA prognostic
signature for DM in NPC [11]. Cellular models mimick-
ing these miRNA dysregulations display mesenchymal
features and resistance to cisplatin, which are known
contributors to disease recurrence and metastasis [12,
88, 89]. Furthermore, in C666-1 cells, TGFp pathway in-
hibition produced a similar gene expression profile to
transient miR-34c overexpression (i.e. NOTCH1, TGIF2,
BAX, and PML), suggesting a close relationship between
TGFpB1 and miR-34c pathways. The relationship between
these pathways and chemoresistance should be a poten-
tial avenue of investigation for future translational
studies.

Conclusion

This study elucidates the novel role of miR-34c in EMT
and cisplatin resistance. TGFP1 negatively regulates
miR-34¢, which in turn increases the expression of
SOX4 and SOX2, mediators of EMT triggering leading
to cisplatin resistance (Fig. 4f). Correspondingly, miR-
34c overexpression and TGFp pathway inhibition leads
to cisplatin sensitivity in NPC, highlighting a potential
therapeutic strategy for this complex disease.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512885-020-07081-z.

Additional file 1: Figure S1. (A) Relative miR-34c expression assessed
by qRT-PCR in C666-1 cells treated with SB431542 (10 or 20 uM) for 72 h
compared to untreated cells (UT). (B and C) Relative expression of puta-
tive miR-34c targets assessed by qRT-PCR in NP69, NP460, and C666-1
cells, normalized to C666-1 cells. (B) Genes that are highly expressed in
C666-1 (NPC) cells vs. NP69 and NP460 (normal nasopharyngeal) cells. (C)
Genes with no significant differences in expression between C666-1 cells
and NP69/NP460. Note that MARCKS and PML expression were significant
only between C666-1 and NP460 cells. The data are represented as the
mean + SEM of at least three independent experiments. * P < 0.05; ** P <
0.01; *** P<0.001.

Additional file 2: Figure S2. (A) Relative expression of putative miR-34c
target genes after transient transfection with pre-miR-34c (20 or 50 nM;
72 h after transfection) in C666-1 cells. (B) Relative expression of putative
miR-34c target genes after SB431542 treatment (10 or 20 uM; 72 h) in
C666-1 cells. (C to J) Relative expression of significantly dysregulated
genes (ARID5A, BIK, LITAF, NFKBIA, SOX4, BAX, and PML) as assessed by
gRT-PCR. (C) Gene expression after transient transfection with pre-miR-
34c (20 or 50 nM) in NP6&9 cells. (D) Gene expression after transient
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transfection with pre-miR-34c (20 or 50 nM) in NP460 cells. (E) Gene ex-
pression of NP69-anti-miR-34c stable cells. (F) Gene expression of NP69-
pre-miR-34c stable cells. (G) Gene expression of NP460-anti-miR-34c
stable cells. (H) Gene expression of NP460-pre-miR-34c stable cells. (1)
Gene expression of C666—-1-anti-miR-34c stable cells. (J) Gene expression
of C666-1-pre-miR-34c stable cells. The data are represented as the
mean + SEM of at least three independent experiments. * P < 0.05; ** P <
0.01; *** P <0.001.

Additional file 3: Figure S3. (A) Relative SOX4 and SOX2 expression
assessed by qRT-PCR in NP69 cells stably overexpressing SOX4. (B) Rela-
tive SOX2 expression assessed by gRT-PCR in C666-1 cells stably express-
ing pre-miR-34c. (C, D, and E) Cell viability was measured by ATPlite assay
72 h after cisplatin treatment: (C) Stable C666-1-anti-miR-34c (or control)
cells. (D) Stable NP69-pre-miR-34c (or control) cells. (E) Stable NP460-pre-
miR-34c (or control) cells. (F) Effect of SB431542 on C666-1 cell viability
measured by ATPlite at 72 h. The data are represented as the mean +
SEM of at least three independent experiments. * P < 0.05; ** P < 0.01; ***
P <0.001.

Additional file 4 Figure S4. IHC was performed on NPC patient
samples with an anti-SOX4 polyclonal antibody. Representative photomi-
crographs of SOX4 expression in the tumour nuclei of scores 0, 1, and 2
at 200X. No samples presented with a score of 3.

Additional file 5: Figure S5. Uncropped Western blots for Fig. 1c and f.
Additional file 6: Figure S6. Uncropped Western blots for Fig. 3d.
Additional file 7: Figure S7. Uncropped Western blots for Fig. 3e.
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