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Abstract

Intraspecific variation in the number of vertebrae is taxonomically widespread, and both genetic and environmental factors
are known to contribute to this variation. However, the relative importance of genetic versus environmental influences on
variation in vertebral number has seldom been investigated with study designs that minimize bias due to non-additive
genetic and maternal influences. We used a paternal half-sib design and animal model analysis to estimate heritability and
causal components of variance in vertebral number in three-spined sticklebacks (Gasterosteus aculeatus). We found that
both the number of vertebrae (h2 = 0.36) and body size (h2 = 0.42) were moderately heritable, whereas the influence of
maternal effects was estimated to be negligible. While the number of vertebrae had a positive effect on body size, no
evidence for a genetic correlation between body size and vertebral number was detected. However, there was a significant
positive environmental correlation between these two traits. Our results support the generalization-in accordance with
results from a review of heritability estimates for vertebral number in fish, reptiles and mammals-that the number of
vertebrae appears to be moderately to highly heritable in a wide array of species. In the case of the three-spined stickleback,
independent evolution of body size and number of vertebrae should be possible given the low genetic correlation between
the two traits.
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Introduction

Jordan [1] observed that fish species living at higher latitudes

tended to have more vertebrae than those living at lower latitudes.

This formed the basis for what is today known as ‘Jordan’s rule’

[2]. Although Jordan’s rule has been confirmed in a number of

interspecific (review in [2])-and sometimes also in intraspecific (e.g.

[3–5])–studies, its underlying causes remain unclear [2]. As

pointed out by MacDowall [2], there is also a lack of

discrimination between environmental and inherited causes of

variation in vertebral number. In fact, although studies in

inheritance of vertebral number have been conducted in several

species (see Discussion), many of these have used methods that do

not allow additive genetic effects to be distinguished from

maternal, early environmental and non-additive genetic effects.

The three-spined stickleback has become an important model

organism in evolutionary biology and developmental research [6–

8]. In particular, lateral plate variation has been studied

extensively (reviewed in [9]), but less attention has been paid to

body size and vertebral number variation. However, earlier studies

have revealed that vertebral number can be under directional

natural selection [10–11], and that they appear to have a heritable

basis [12]. However, the available heritability estimates do not

fully account for confounding environmental and maternal effects,

and the relationship between number of vertebrae and body size

has not been investigated.

The aim of this study was to investigate the relative roles of

genetic, environmental and maternal effects on the number of

vertebrae in three-spined sticklebacks, as well as to estimate

heritability of this trait. To this end, we performed a large number

of half-sib crosses on marine sticklebacks and subjected the data to

‘animal model’ analyses. In addition, we investigated the

relationship between body size and the number of vertebrae,

and tested whether the increase in vertebral number results in the

increase of body size. Additionally, the genetic and environmental

correlations between body size and number of vertebrae were

estimated.

Results

In all three cases-univariate analyses of vertebral number and

body size, and multivariate analysis of both traits-only the models

that included the additive effects received the strongest support

(Table 1). Hence, the data do not lend support to the existence of

any substantial maternal effects, either in the number of vertebrae

or in body size.

The mean number of vertebrae was 31.74 (S.E. = 0.03,

range = 29234, n = 342), and there was no difference in the mean

number of vertebrae between the sexes (difference [male-

female] = 0.046, 95% HPDI: 20.070–0.167). There was signifi-

cant additive genetic variation in vertebral number (Table 2), and

the heritability of this trait equaled h2 = 0.357 (Table 2).
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The mean body size was 40.62 mm (S.E: = 17.29, n = 338), but

there was significant sexual size dimorphism, with females (mean

body size = 41.4560.24 [S.E.] mm, n = 167) being on average

larger than males (mean body size = 39.7460.22 mm; mean

difference [male-female] = 20.176 mm, 95% HPDI: 20.231–

20.115). There was significant additive genetic variance also for

body size (Table 2), with heritability equaling h2 = 0.445 (Table 2).

Fitting the number of vertebrae as a covariate into this analysis

revealed that the body size increased as a function of number of

vertebrae (b = 0.082, 95% HPDI: 0.027–0.134), but other effects in

the model remained qualitatively unaffected.

Genetic correlation between number of vertebrae and body size

was negative but not significant (rg = 20.324 [95% HPDI:20.793–

0.162]). However, environmental correlation between the traits

was positive and significant (re = 0.424 [0.116–0.760]). Since

phenotypic correlation is a sum of genetic and environmental

correlations [13], the weak positive association (rp = 0.104)

observed above is largely driven by environmental effects.

Standard generalized mixed model analysis produced estimates

of heritabilities (body size, h2 = 0.51, 95% HPDI: 0.20–0.86;

number of vertebrae, h2 = 0.29, 95% HPDI: 0.05–0.58) that

largely agreed with the animal model estimates. The slightly lower

estimate for vertebral number in this alternative approach could

be due to the fact that animal model estimates did not account for

maternal (and common environment; see Methods) effects.

Although non-significant, they accounted in the standard

generalized mixed model analysis for 2.9% (95% HPDI: 211.8–

17.4%) and 6.4% (95% HPDI: 29.7–18.3%) of the total

phenotypic variance in body size and vertebral number,

respectively. The estimate of genetic correlation in this alternative

approach was rg = 0.071 (95% HPDI: 20.517–0.626), the

correlation of maternal (or common environment) effects

rm = 20.316 (95% HPDI: 20.782–0.195), and environmental (or

residual) correlation re = 0.211 (95% HPDI: 0.101–0.331). These

estimates indicate that the non-significant negative genetic

correlation observed with the animal model might in fact stem

from maternal or common environment effects.

Discussion

This study revealed that both body size and number of

vertebrae in the three-spined stickleback are heritable, and that

within population variation in body size is positively correlated to

the number of vertebrae. However, this positive effect of vertebral

number on size appears to stem from non-genetic influences, as

the genetic correlation between the two traits was, depending on

the analytical approach, either negative or weak, and in any case

non-significant. Hence, the positive effect of vertebral number on

body size appears to be due to environmental sources of variation,

which influence both traits in a correlated fashion.

Although subject to much research over decades (e.g. [7,14]),

relatively few studies have investigated heritability of morphomet-

ric traits in three-spined sticklebacks ([12,15–19]; see also [20]). Of

these, only Hermida et al. [12] have looked at heritability of

vertebral number. Comparison of our estimates with those of

Hermida et al [12] is not straightforward. Our estimates from

Table 1. Model selection of genetic models.

Trait(s) Model type Random effects DIC DDIC

Body size Univariate Additive genetic 66.0 0.0

Additive genetic+Maternal 96.8 30.8

Maternal 124.3 58.3

None 159.6 93.6

Number of vertebrae Univariate Additive genetic 561.7 0.0

Additive genetic+Maternal 574.3 12.6

Maternal 591.7 30.0

None 616.8 55.1

Body size, number of vertebrae Bivariate Additive genetic 543.4 0.0

Additive genetic+Maternal 646.5 103.1

Maternal 701.1 157.7

None 772.6 229.2

Model selection based on deviance information criterion (DIC). Most parsimonius model in bold.
doi:10.1371/journal.pone.0019579.t001

Table 2. Heritability of vertebrae number and body size.

Number of vertebrae Body size

Source Var (95% HPDI) h2 (95% HPDI) Var (95% HPDI) h2 (95% HPDI)

VA 0.135 (0.038–0.248) 0.357 (0.104–0.603) 0.043 (0.016–0.072) 0.445 (0.188–0.692)

VR 0.239 (0.148–0.325) 0.052 (0.031–0.076)

VP 0.374 0.095

Heritability (h2) and sources of variation in vertebrae number and body size in three-spined sticklebacks. VA = additive genetic variance, VR = residual variance, VP = total
phenotypic variance.
doi:10.1371/journal.pone.0019579.t002
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laboratory-reared fish were based on a paternal half-sib design,

which is efficient in separating additive genetic effects from

confounding environmental and non-additive effects [13], whereas

those of Hermida et al. [12] were based on full-sib estimates

known to be sensitive to inflation due to these effects [13]. Hence,

the tendency for higher heritabilities (h2 = 0.4420.55) from [12] as

compared to this study (h2<0.36) could owe to methodological

differences. This is also suggested by the fact that regression

estimates of heritabilites in the Hermida et al. [12] study were

much lower (and non-significant) than the full-sib estimates

(Table 3).

Depending on study design, maternal and non-additive genetic

effects can confound estimates of additive genetic variance and

heritability. The breeding design we have employed in this study

should be robust in respect to both of these factors. In our design,

most non-additive effects should end up in residual variance,

whereas maternal effects could either increase or decrease additive

genetic variance. We did take maternal effects into account in the

model selection-fitting models that included them–but since no

evidence for them was found, maternal effect terms were excluded

from final parameter estimation. Also, the standard generalized

mixed model analyses–in which the dam effects were explicitly

fitted into the model–suggested that maternal effect influences

were small (2–7% of total variance explained) relative to additive

genetic effects. However, these analyses also suggest that the small

discrepancy between animal model (h2 = 0.36) and standard

generalized mixed model (h2 = 0.29) estimates of heritability for

vertebral number could be due to unaccounted maternal effects

(m = 0.06) in the animal model estimate.

Although heritabilities of vertebrae counts have been estimated

in a number of earlier studies, this body of work–conducted in

various reptilian, fish and mammalian species–has apparently

never been reviewed. Although the aim of this study was not to

conduct any comprehensive review of this topic, the compilation of

published heritability estimates for vertebral counts in Table 3

provides some insights. It is noteworthy that the heritability

estimates for number of vertebrae are generally very high: the

median estimate in Table 3 is 0.650, which is much higher than

that for morphological traits in general (0.461, S.E. = 0.004; [21]).

However, as many of the estimates are based on full-sib analyses, it

is possible that some may be inflated by maternal and common

environmental effects. Nevertheless, several of the estimates

obtained using parent-offspring regressions are high as well,

suggesting that heritabilities of number of vertebrae are generally

Table 3. Heritability of number of vertebrae in different species.

Taxon Species nF/nI h2±S.E. Type Reference

Fish Belly shark, Etmopterus spinax 23/224 0.5960.21 FS [35]

Medaka, Oryzia latipes 134/? 0.3260.07 MM* [30]

? 0.90 FS [27]{{

Eelpout, Zoarces viviparious ? 0.81 OM [36]

Japanese flounder, Paralichthys olivaceus (hatchery) 31/63 0.6460.07 AM [37]

(wild) 33/50 0.5260.12 AM [37]

Coho salmon, Oncorhynchus kisutch (1994) 6/262 0.64 FS [38]

(1995) 13/455 0.69 FS [38]

Masu salmon, Oncorhynchus masu 10/500 0.6560.20 MM [39]

Rainbow trout, Oncorhynchus mykiss ? 0.66 RH [40]{{

Carp, Cyprinus carpio ? 0.86 RH [41]{{

? 0.65 ? [42]{{

? 0.90 ? [42]{{

Guppy, Poecilia reticulata 14/1412 0.38 LC [43]

Brown trout, Salmo trutta ? 0.90 MM [44]{{

Threespine stickleback, Gasterosteus aculeatus 33/? 0.5160.16 FS** [12]

33/? 0.2460.22 MM** [12]

48/342 0.36 AM This study

Nine-spined stickleback, Pungitius pungitius 10/81 1.2260.40{ MM [45]

Reptiles Garter Snake, Thamnophis elegans (costal) 94/780 0.6560.14 FS [24]

(inland) 159/1459 0.7960.11 FS [24]

Adder, Vipera berus 29/213 0.3960.14 FS [46]

Japanese Mamushi snake, Gloydius blomhoffii 10/<24 0.7160.30 FS [26]

Mammals Domestic pig, Sus scrofa 4784/? 0.74 MM [47]

Domestic pig, Sus scrofa +120/4258 0.6260.06 AM [25]

Heritability (h2) of number of vertebrae in different species. Type refers to heritability estimation method (FS = full-sib heritability, MM = midoffspring-midparent
regression, AM = animal model, RH = realized heritability, LC = line-cross). nF = number of families, nI = number of individuals. ‘?’ denotes missing information.
*Pooling 13 populations.
**average of separate estimates for caudal and abdominal estimates.
{Calculated from data in Table 1 in [45].
{{Estimates taken from Table 19 in [36].
doi:10.1371/journal.pone.0019579.t003
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very high. This is interesting in light of the inverse correlation

between trait heritability and its importance to fitness [22]. In

other words, the high heritability of vertebral number suggests that

it is unlikely to be a trait under strong and consistent directional

selection.

According to Jordan’s Rule [1,2], the number of vertebrae is

expected to increase towards higher latitudes-a pattern which has

been observed also in the case of mean body size in several species

of fishes [23]. A positive correlation between body size and

vertebral number would be expected if the number of vertebrae

allows individuals to grow large. Indeed, such a correlation has

been earlier documented in some studies focusing on within

population variation (e.g. [24–26]). We also found a positive

association between number of vertebrae and body size in the

three-spined stickleback. However, this effect was rather weak, and

interestingly, apparently non-genetic, as the genetic correlation

between the number of vertebrae and body size was negative and

non-significant. Instead, the positive correlation appeared to be

due to positive environmental covariance between body size and

vertebral number. Hence, some as yet unidentified environmental

factor(s) exerting a positive influence on the number of vertebrae

also appear to influence individual growth.

Finally, we note that the vertebral counts in fish appear to be

strongly influenced by temperature experienced during their early

development (e.g. [27–28]). Consequently, the amount of additive

genetic and environmental variance–and thereby heritability–in

vertebral counts may differ depending on the rearing conditions

(e.g. [29]). Given that natural environments are likely to be more

heterogeneous than standardized laboratory environments, it is

likely that the environmental component of variance is higher in

the wild than in the laboratory. If so, this could explain why the

heritabilities in Table 3 are so high. That heritability estimates of

vertebral number can be influenced by environmental conditions

has been demonstrated e.g. by Yamahira et al. [30]. Studying

medaka, they observed that the heritability vertebral number

declined as function of increasing rearing temperature. It has also

been shown for three-spined sticklebacks that the correlation

between the vertebral number of mother and offspring can change

from positive to negative depending on temperature [31].

In conclusion, the results of this study confirm that the number

of vertebrae in three-spined sticklebacks is heritable, and that

variation in vertebral number is positively associated with

variation in body size in the same population. However, the

positive correlation between body size and number of vertebrae

appears to be non-genetic, suggesting that selection on either body

size or number of vertebrae would not necessarily result in

correlated response in either trait. Whether the positive correlation

between body size and vertebral number occurs also among

different three-spined stickleback populations remains to be

investigated.

Ethics statement
The breeding experiment in this study was conducted in

accordance with Finnish laws and guidelines with permission from

the University of Helsinki Animal Experimentation Board

(permission # STH379A/HY121-06).

Materials and Methods

The parents for the fish used in this study were collected in June

2006 from the Baltic Sea near Helsinki (Vuosaari, Helsinki;

60u109N, 25u009E) for the purpose of a large genetic experiment

[18–19]. In short, a paternal half-sib design was employed using

42 males, each mated with two independent females resulting in

84 full-sib families. Fertilizations were done as explained in

Leinonen et al. [18–19] and the eggs from these crosses were

raised in 17uC until hatching. After hatching, the fry from each

family were divided into two replicates, and 15 fish/family/block

from each of the 84 families were raised to an age of 190 days,

after which the fish were killed with an overdose of MS-222. 4–5

fish from each family were used for this experiment (vertebra

counts). The killed fish were fixed in 10% formalin for

approximately one month, after which they were stored in 70%

ethanol. Leinonen et al. [18–19] give more details about rearing

conditions and feeding regime of the experimental fish.

The vertebrae were counted under dissection microscope after

the whole vertebral column from one side was exposed with the

aid of a scalpel. To determine the repeatability of vertebral

number counts, 20 individuals were counted twice and blind with

respect to the first count. Repeatability (R) was estimated following

[32] and found to be R = 1 (F19,20.3630.99, P,0.001). Hence,

counting (measurement) error was zero. All the counts were made

by the same person. No distinction was made between abdominal

and caudal vertebrae, but all vertebrae were counted. Fused

vertebrae were counted as two.

Sex of the individuals was identified by amplifying a part of

39UTR of the IDH gene as explained in [18]. This method is

based on the logic that the primers amplify two fragments

(,280 bp and 300 bp) in males, but only one fragment (300 bp) in

females [18]. From each fish, we also measured standard length

(from anterior tip of the upper lip to the end of the caudal

peduncle to get an estimate of body size. This measure is strongly

correlated with multivariate measures of body size (PC1 and

centroid size) calculated from this data based on 17 landmark

measurements (cf. [19]).

Contributions of genetic and environmental effects on vertebral

number and body size were estimated for individuals measured for

both traits (on average 3.98 [median = 4] fish from each of the 84

families) using animal model analyses as implemented in

MCMCglmm package [33]. To this end, we fitted the univariate

model:

yi~mzsjzbkzaizmdzei ð1Þ

Where yi is the observed trait value, j the sex, k the block and d the

dam of individual i, m the intercept, sj fixed effect of sex, bk fixed

effect of block, ai the random additive genetic effect, md the

random effect of maternal identity estimating maternal effects

influences, and ei the residual or environmental effect. Apart from

fitting this model, in the case of body size we also fitted a model in

which vertebral number was added as a covariate. The rationale

behind this was to see whether any of variance in the body size

could be explained by variation in vertebral number. Also a

multivariate model was fitted to estimate genetic and environ-

mental correlations between body size and vertebral number.

Normal distribution was assumed for all random effects in all

models, and commonly used prior specification for variance

components (Inverse-Wishart, V = 1, nu = 0.002) was used for

univariate and (V = diag(2) * 0.02, nu = 3) for multivariate models.

For each model, one chain with 600,000 iterations–first 100,000 of

which discarded as burnin–was run. The chain was thinned by

100, resulting in 5,000 samples from posterior distribution.

In all three cases–univariate analyses of vertebral number and

body size, and multivariate analysis of both traits–we used model

selection procedure based on deviance information criterion (DIC)

to choose the most parsimonious model: the smaller the DIC-

value, the more parsimonious the model. The set of candidate

models in each case included models with both additive and
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maternal effects included and excluded. In order for a more

complex model to be favored over a more parsimonious one, the

difference between DIC-values of the two models (DDIC) should

not exceed 10 [34]. The reported estimates of heritability, variance

components, sex differences, and the effect of vertebral number on

body size are based on the univariate analyses, whereas the

estimates of genetic and environmental correlations are from the

multivariate analysis. Unless otherwise noted, the estimates are

reported as posterior means and 95% highest posterior density

intervals (95% HPDIs).

For comparative purposes we also report heritability estimates

and genetic, maternal and environmental correlations between

body size and vertebral number as obtained from standard

generalized mixed model analysis implemented in the

MCMCglmm package. Sire and dam (nested within sire) effects

were treated as random effects, and sex and block as fixed effects.

A single multivariate model was fitted, and again commonly used

prior specification for variance components (V = diag(2) * 0.02,

nu = 3) was used. One chain with 600,000 iterations–first 100,000

of which discarded as burnin–was run. The chain was thinned by

100, resulting in 5,000 samples from posterior distribution. In this

analysis the variance component attributable to sire effect is J VA

( = additive genetic variance) and the variance component

attributable to dam is the sum of J VA, J VD ( = dominance

variance) and VM ( = maternal effect variance, including common

environment effects [13]). If we assume that VD = 0, then

subtracting the sire component from the dam component gives

us an estimate of maternal (including common environment) effect

component. Genetic correlation was estimated following equation

19.3 in Falconer and Mackay [13].
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19. Leinonen T, Cano JM, Merilä J (2011) Genetics of body shape and armour

variation in threespine sticklebacks. J Evol Biol 24: 206–218.

20. Snyder RJ (1991) Quantitative genetic analysis of life histories of two freshwater

populations of the threespine stickleback. Copeia 1991: 526–529.

21. Mousseua TA, Roff DA (1987) Natural selection and the heritability of fitness

components. Heredity 59: 181–197.
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