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Abstract

Background: MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein
level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in
multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate
prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the
microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known
signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as
our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP).

Results: mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to
produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we
find these signalling pathway networks have significantly more microRNA involvement compared to chance (p,0.05),
suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct
classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs,
which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p,0.0001),
to be more studied (p,0.0002), and to have higher degree in the KEGG cancer pathway (p,0.0001), compared to intra-
pathway microRNAs.

Conclusions: Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We
identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both
within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the
disease level.
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Introduction

MicroRNAs are short, but important non-coding RNA sequences

that regulate gene expression [1]. They are thought to target the 39

Untranslated Regions (UTRs) of mRNA, disrupting their ability to be

translated into proteins, sometimes repressing the expression of the

mRNA itself [2,3,4,5,6,7,8,9]. MicroRNA prediction algorithms

generally pair the seed region of the microRNA (bases 2–8 from the

59 end of the microRNA) to a cognate mRNA sequence. However, this

binding is complicated by many factors, not the least of which is that

imperfect microRNA:mRNA binding occurs, and thus single base-pair

mismatches and G:U wobble base-pairs must be considered.

Discovery of the first microRNA – lin-4 in worm (C. Elegans) [10], its

further characterization in 1989 [11], annotation as a non-coding

RNA in 1993 with a sequence complementary to the lin-14 39 UTR

[1,12], and functional characterization as having a translational

repression effect later that year [13] opened a rich research field. Many

subsequent in vitro experiments and computational predictions aimed at

uncovering microRNA:target relationships to fathom microRNA

effects on gene expression regulation. With the discovery of a second

nematode microRNA – let-7, which targets lin-41 and hbl-1, the

concept of microRNAs made the jump from worms to higher species,

since let-7 had well-known homologues even in humans [14,15,16].

Coining the term ‘‘microRNA’’ for this class of non-coding gene

regulators in three back-to-back Science papers in 2001 [17,18,19], the

discovery of microRNAs had crossed over to the human domain, and

finding microRNA targets became a high priority. After the first

bioinformatics attempt at predicting plant microRNAs [5], many

microRNA prediction algorithms, for both fly (D. melanogaster) and

human (H. sapiens), were developed [20,21,22]. More than 10 public
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databases for microRNA:mRNA target prediction have been created,

all using different algorithms and approaches. Considering varying

degrees of sequence similarity, conservation, site accessibility and

different targeted regions of the mRNA – all databases add a novel

level of complexity to the microRNA question [20,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40].

To visualize and analyze these complex relationships between

different predictions of microRNA:mRNA target mappings, we

borrow ideas from protein-protein interactions and gene regula-

tory networks. We first integrate all databases into a freely

available data portal – mirDIP (microRNA Data Integration

Portal) – and use NAViGaTOR (Network Analysis, Visualization

and Graphing Toronto) [41] to analyze and visualize the resulting

network of microRNA:mRNA target mappings – the microRNA

interaction network (micronome).

Results and Discussion

Characteristics of microRNA predicting databases
There are many characteristics of microRNA:mRNA target

binding that are taken into account - in different combinations -

for each microRNA prediction database. We begin with a review

of these criteria. Table 1 shows all databases considered in this

research. To enable more informed integration of these predic-

tions, we consider characteristics of individual microRNA predic-

tion algorithms in detail, and summarize them in Table 2. All

eleven main groups of features used for prediction are described

below:

(1) Seed Sequence match. All prediction algorithms depend on this

criterion. Allowing for base-pair mismatches and G:U

wobbles, which have been shown to be important in

microRNA binding [42], prediction algorithms look for

high degree of complementarity between the 59 end of the

microRNA and the 39 end of the mRNA target sequence.

Particular attention is paid to the seed region (bases 2–8 from

the microRNA 59 end).

(2) Conservation. Many prediction algorithms take into account

the conservation of the microRNA binding sequence in the

mRNA target. Generally used as a filtering step, a highly

conserved target site is thought to produce a more reliable

prediction. Conservation is not directly used in some

databases (Probability of Interaction by Target Accessibility

(PITA)) [30,34], is not directly incorporated into the score in

others (Targetscan) [24,27,33], and is not used at all in

others (RNA22) [34]. Interestingly, PITA results suggest that

considering site accessibility is analogous to considering

conservation, since accessible 39 UTR microRNA binding

sites tend to fall in conserved regions [30]. To reduce bias in

our analyses, we use both predictions with and without

conservation.

(3) Free Energy of microRNA:mRNA duplex. The Free Energy of the

microRNA:mRNA duplex (DG), is often calculated with the

Vienna Folding package [43,44,45] or RNA hybrid [46]. It

evaluates the energy required for the formation of the

microRNA:mRNA duplex from a completely dissociated

state – a more negative value indicates a larger inclination

for the two RNAs to bind.

(4) Site accessibility. Site accessibility is not considered in many

prediction algorithms. Measured as DDG for use in PITA, it

compares the energy requirement for the already folded 39

UTR to unfold to allow the microRNA accessibility to the

target site, and to refold into the microRNA:mRNA duplex

[30]. A more negative DDG indicates a favourable folding

energy for the microRNA:mRNA configuration.

(5) Contribution of multiple binding sites. Many algorithms reward

microRNAs that have multiple binding sites within the 39

UTR of a particular gene, reasoning that the microRNAs

will be able to exert a dose-dependent effect on target

expression. Binding sites can be for a single microRNA or for

multiple different microRNAs that show co-operativity

resulting in synergistic gene repression [47]. Several studies

have shown that the ideal inter-binding site distance falls

between 8–40 base-pairs [27,48].

(6) Local ALU content. ALU sequences are segments of repetitive

DNA interspersed within the human genome, thought to

have arisen through retro-transposons and so named

because they can be cleaved by the restriction enzyme

Alu1 (reviewed in [49]). Considered in Targetscan’s context

score, Grimson et al. have shown that an enrichment of A or

U base-pairs in the 30 nucleotides up or downstream of the

microRNA binding site in the 39 UTR tends to favorably

associate with repression in target expression [27,33].

(7) Local mRNA sequence. The consideration of sequence sur-

rounding the microRNA binding site on the 39 UTR is

sometimes taken into account. Algorithms may examine

local sequence effect on site accessibility, or examine

sequence content for particular nucleotides [27,30,33].

(8) Ribosomal shadow. Considered in Targetscan, the 15 nucleo-

tides after the stop codon in a 39 UTR form poor microRNA

target binding sites that show little ability to repress

expression. It has been postulated that this is due to a

ribosomal shadow effect [27].

(9) Uses miRanda. miRanda [20,29] is the first microRNA

alignment algorithm, is similar to the Smith-Waterman

algorithm for sequence alignment and uses rules of thumb

previously established in sequence alignment [50,51,52]. It

forms the basis of several microRNA prediction algorithms.

miRanda considers several features described below:

Table 1. MicroRNA Prediction Databases.

Database Details
Mapped
Interactions MicroRNAs

Unique
Mapped
Targets

Targetscan Conservation 189,075 675 16,512

Targetscan No Cons. 1,457,484 677 17,678

RNA22 39 UTR 264,630 313 14,949

RNA22 59 UTR 53,405 313 7,333

RNA22 CDS 487,110 313 19,766

Microrna.org Conservation 956,664 677 16,875

mirBase Conservation 568,099 711 21,111

PITA Top Hits 208,937 677 10,143

PITA* All Hits 4,010,548 677 16,942

PicTar* 4-way 56,229 178 6,792

PicTar 5-way 17,224 129 2,534

microT$ v3.0 1,434,406 555 17,585

*Not used in all comparisons, nor the construction of microRNA interaction
networks since it is a superset of the top database predictions.
$Not used in all comparisons, nor the construction of microRNA interaction
networks since it was not available for bulk download at the time of data
curation.

doi:10.1371/journal.pone.0017429.t001

mirDIP Identifies Pathway-Specific MicroRNAs
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N Sequence match – a reward of +5 for a G = C or A = U

match, +2 for G:U wobble. A penalty of 22 for a Gap

Extension and 28 for a Gap Opening. The cutoff for S, the

result of these sequence matches is generally S.80 (flies),

S.50 (humans).

N Scaling – Matches in positions 1–11 of the microRNA (from

the 59 end) are given twice the weight of matches elsewhere

to reflect the asymmetry of microRNA binding [29].

N Four empirical rules:

N No mismatch in bases 2–4;

N ,5 mismatches in bases 3–12;

N At least 1 mismatch in bases 9 to (Length-5);

N ,2 mismatches in the final 5 base-pairs.

N Vienna Package Folding assumes the microRNA is linked to

the 39 UTR by 8 –x– base-pairs that cannot bind anything.

This single structure is then folded. The DG cutoff is usually

set as DG,214 kcal/mol for flies and DG,217 kcal/mol

for humans.

(9) The final score is the total energy and total score of all hits

between those of a microRNA and a 39 UTR.

N Conservation – a filtering step requiring 90% conservation

or more between human and rat or mouse and 80%

conservation between D. melanogaster and D. pseudoobscura or

A. gambiae.

(10) Position effects. Positional effects reward microRNA target sites

that fall within the first quartile of the 39 UTR after the stop

codon (+15 base-pairs) or within the final quartile of the 39

UTR, near the poly(AAAA) tail. This effect is more

pronounced in long UTRs [27].

(11) 39 Pairing. Aside from strong seed region pairing, many

algorithms that aren’t based on miRanda also require nucleotide

binding between the microRNA and the target mRNA between

bases 12–17 of the 39 end of the microRNA [27].

MicroRNA prediction database similarities
Since microRNA:mRNA target prediction algorithms use

different combinations of features to perform the same task, it is

useful to analyze the distribution of these predictions across

databases. There is an expected trend – with far fewer predictions

being made that transcend six or more databases than those that are

present in just one database. We count over 2 million predictions

present in only one database, falling off to a surprisingly small 18

predictions identified in 8 of the 9 databases considered (As

indicated in Table 1, we do not consider PITA All Targets nor

picTar 4-way in this part of our analysis to avoid double-counting.

Nor do we consider microT, since bulk download was not available

at the time of data curation) (Figure 1A). Figure 1B compares all

database predictions to microRNA.org – indicating that although

we see low total overlap among all databases, in reference to the

largest conservation-considering database there is considerable

similarity between at least five database prediction schemes.

Although DIANA microT v3.0 [39,40] was not included in our

extended database analysis and comparison, since it was not

available for bulk download when our study began, we have

included it in this figure for the sake of comparison.

Although most databases consider conservation, they each handle

it differently. Bartel’s Targetscan publishes dual lists of targets based

on either conserved or non-conserved sites. Thirty-one percent of

these microRNA:mRNA target predictions are shared by both lists

(Figure 1C, left panel), demonstrating that there is a strong tendency

for genes to contain both conserved and non-conserved microRNA

binding sites along the length of their 39 UTR. On the other hand,

picTar considers grades of conservation in their prediction algorithm.

Publishing both a 4-way and 5-way conservation scheme (human,

mouse, rat, dog vs. human, mouse, rat, dog, chicken) picTar suggests

degree of conservation correlates with robustness of prediction. In this

case we can see that one list is clearly a subset of the other, and

moving from a less conserved setting to a more conserved setting

reduced the number of predicted targets by 30% (Figure 1C, right

panel). When combining datasets, Figure 1D shows the percentage of

predictions preserved per prediction scheme when requiring a

microRNA:mRNA target prediction to occur in at least three

Table 2. Characteristics of MicroRNA Prediction Databases.

Targetscan
Conserved

Targetscan
Non-
Conserved

RNA22
39 UTR

RNA22
59 UTR

RNA22
CDS

micro-
RNA.
org

microCosm
(formerly
mirBase)

PITA
Top Hits

PITA
All Hits

picTar
4-way

picTar
5-way

DIANA
microT

Conservation X* X X 1 1 X X X

Site Accessibility X X

Local AU content X X

Multiple Binding Sites
(1 microRNA)

X X X X X X X X X

Multiple Binding Sites
(.1 microRNA)

X¥ X¥

Uses miRanda X X

Free Energy of Duplex X X X X X X X

Examines surrounding
Sequence

X X X X

Weighted 59 end or
considers seed type

X X X X X

*Targetscan Conserved uses conservation, but it is not integrated into the context score.
1PITA does not explicitly use conservation in scoring targets. However, accessible microRNA binding sites tend to show high conservation.
¥picTar does have predictions for multiple microRNAs binding to a single 39 UTR; however, that data was not used in this study.
doi:10.1371/journal.pone.0017429.t002
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databases. Targetscan and PITA Top Hits have the most remaining

interactions after applying this filter.

Comparing microRNA prediction databases to the truth
MicroRNA target filtering is vital. To examine whether a

combination of microRNA prediction databases would outperform

any one source, data from 15 publicly available microRNA over-

expression/knockdown experiments followed by microarray [53,54,

55,56,57,58,59,60,61] was assembled (Table 3). As discussed in the

Methods section, when comparing microRNA target predictions to

actual microRNA targets (as determined by microarray experi-

ments) two filtering steps were performed to increase the suitability

Figure 1. MicroRNA prediction database characteristics. Panel A: Distribution of microRNA:target predictions by number of predicting databases.
Panel B: Overlap of microRNA prediction databases with microRNA.org. Panel C: Overlap of microRNA prediction databases Targetscan and picTar, since both
consider degree of conservation as part of their scoring scheme. Panel D: Percentage of overlapping microRNA predictions across two or more databases.
doi:10.1371/journal.pone.0017429.g001

mirDIP Identifies Pathway-Specific MicroRNAs
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of the target predictions for the data – filtering by both microarray

and by cell type. Filtering by microarray (Table 3 column 3)

eliminates targets not present on the particular chip in the

experiment, and thus having no chance of appearing in the final

target set. Filtering by cell type (Table 3 column 4) eliminates genes

expressed at only low levels in the cell line (which would reduce their

chances of showing a knock-down effect). This two-step filtering

drastically changes the predictions. As illustrated in Figure 2A,

beginning with an identical set of mir-1 predicted targets across all

databases and filtering by cell type and chip type to make the target

predictions suitable for comparison to 2 different experiments

results in significantly different final prediction sets – with

overlapping targets numbering only 60% of the sets – clearly

demonstrating the need to tailor predictions to the setting in which

the experiment was done before any comparisons are undertaken.

This filtering exercise shows how critical it is to consider tissue

specificity when examining microRNAs of interest. Clearly, with the

availability of more in vitro and in vivo data, it will become crucial to

ensure that data is organized in a tissue-specific manner to enable

more accurate modelling of the interactions present in particular

settings.

High-throughput target validation experiments are not

always in agreement. Ideally, high-throughput experiments

would provide clear and concise answers in simple over-expression

experiments. Unfortunately, we have not found that to be entirely

the case. Examining the filtered results for the 2 microRNAs with

high-throughput experimental results by multiple groups – there is

remarkably little overlap between reported targets. Using mir-124

over-expression as an example, comparing the Baek et al. [53],

Lim et al. [57] and Wang et al. [60] data sets – at the least

stringent confidence level for targets, allowing the overlap between

experiments to be maximal – we see only 10 common targets

between all 3 lists, 3.7% of the smallest target list (Figure 2B).

Expanding the overlap to include ‘‘true’’ targets predicted on 2 in

vitro lists improves the situation, yet covers less than 50% of the

smallest dataset. Similar results are seen in duplicate mir-1

experiments putting the overlap at 8%. One possible explanation

for such observations is over-dosing with transfections, resulting in

deregulation of gene expression due to a massive influx of

microRNA molecules [62].

Comparing predictions to ground truth. PITA Top

Targets, picTar 5-way Conservation and TargetScan Conserved

Targets are all suitable candidates for top microRNA prediction

database. Not only do they retain many predictions passing

through a filter requiring predictions to be present in 3 or more

databases (79%, 64%, 57% respectively) (Figure 1D), they also

perform well when evaluating database performance on both

precision and recall when compared to publicly available high-

throughput microarray data (Figure 2C). While all three databases

have many retained cross-database predicted targets, PITA and

Targetscan Conserved do tend to outperform picTar 5-way when

both precision and recall are considered – that is, when we require

database prediction sets to not only contain many true positives,

but also to predict many of the actual true targets. Examining the

least stringent in vitro ‘‘ground truth’’ data: PITA Top Targets,

picTar 5-way Conservation and Targetscan Conserved have

precision and recall values of: 30%, 9%; 38%, 2%; 32%, 12%

respectively. This demonstrates that although many of picTar 5-

way’s predictions are true, it performs exceptionally poorly when

measuring the number of real targets that picTar actually predicts.

In the balance between precision and recall one might suggest

using these databases as follows: 1) when looking for confirmatory

evidence of a particular interaction between a microRNA and a

specific target – it is better to use a database with superior recall

such as Targetscan Conserved, Targetscan Non-Conserved or

microCosm (formerly mirBase), which are more likely to include a

target prediction if one exists; 2) when identifying any possible

target for a particular microRNA to form the basis for in vitro or in

vivo experiments, it would be best to consult picTar 5-way; 3) when

finding in silico evidence for an interaction of a microRNA and a

gene of a certain family or function, it is best to use a database with

a more even balance between precision and recall such as PITA

Top Targets.

Comparing predictions to Tarbase. Tarbase [63], curated

by the DIANA Lab, provides a running list of microRNA interactions

that have been shown to be true or false by either microarray

experiments, pSILAC experiments or some other manner of specific

probing for a particular microRNA:target interaction. Although

Tarbase does not represent a non-biased list of microRNA targets, it

is interesting to compare our list of 2+DB microRNA interactions to

those present in their database. Thirty-nine percent of Tarbase-

reported True mRNA repression targets, 48% of Tarbase-reported

True mRNA cleavage targets, 67% of Tarbase-reported targets of

unknown effect, 32% of Tarbase-reported pSILAC tested interac-

tions and 62% of Tarbase-reported microarray tested interactions

were present in our 2+DB set of interactions.

Since microRNAs act through translational inhibition more

frequently than they do through mRNA degradation, it is obvious

that examining microarray data is not the perfect setting in which

to evaluate microRNA targets. The subset of targets that have

been transcribed but not translated will still be expressed in the

data and as such they will be missed. However, it has been shown

that proteins repressed by more than 30% also tend to destabilize

at the transcript level [53] – meaning that examination of

expression levels is a reasonable surrogate for large translational

repressions. Another possible source for incorrect predictions

includes off-target effects. MicroRNA overexpression is thought to

produce some false positives, perhaps due to dosage issues [62].

However, these off-target effects will occur less frequently than in

synthetic siRNA overexpression systems.

Table 3. Characteristics of High-throughput Experiments.

Study microRNA Platform Cell Type

Lim et al., 2005 hsa-mir-1 Rosetta 25 k v2.2.1 HeLa

Baek et al., 2008 hsa-mir-1 Agilent Whole
Genome 4644 k

HeLa

Linsley et al., 2007 hsa-mir-106b Rosetta/Merck 44 k 1.1 HeLa

Lim et al., 2005 hsa-mir-124 Rosetta 25 k v2.2.1 HeLa

Wang et al., 2006 hsa-mir-124 Affymetrix U133 plus2 HepG2

Baek et al., 2008 hsa-mir-124 Agilent Whole
Genome 4644 k

HeLa

Ceppi et al., 2009 hsa-mir-155 Affymetrix U133 plus2 MDDS

Linsley et al., 2007 hsa-mir-16 Rosetta/Merck 44 k 1.1 HeLa

Baek et al., 2008 hsa-mir-181 Agilent Whole
Genome 4644 k

HeLa

Gennarino et al., 2009 hsa-mir-26b Affymetrix U133 2 HeLa

Tavazoie et al., 2008 hsa-mir-335 Affymetrix U133 plus2 LM2

Huang et al., 2008 hsa-mir-373 Wistar Illumina V6 MCF-7

Huang et al., 2008 hsa-mir-520c Wistar Illumina V6 MCF-7

Webster et al., 2009 hsa-mir-7 Affymetrix U133 plus2 A549

Gennarino et al., 2009 hsa-mir-98 Affymetrix U133 2 HeLa

doi:10.1371/journal.pone.0017429.t003
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PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e17429



Figure 2. MicroRNA target prediction processing and evaluation. Panel A: Identification of microRNA targets is highly dependent on the
experimental setup. Filtering by cell type and microarray platform on an identical initial prediction set can cause a divergence of up to 40% in the
final target lists. Panel B: MicroRNA over-expression in different experimental settings results in poor overlap of identified targets. Venn diagram of
discrepancy between in vitro microRNA over-expression experiments of mir-124. Panel C: Comparison of precision and recall across microRNA
prediction databases, measured by computing the average values for all microRNA predictions by a particular database compared to their matched
low stringency ‘‘ground truths’’. Panel D: The percentage of remaining predictions by considering overlap across 2, 3, 4, and 5 prediction databases.
Panel E: Precision measurements for microRNA:target predictions by number of prediction databases, indicating the percentage of predicted targets
that were shown to be true across in vitro experiments. Stringency levels refer to confidence in the microarray data and were determined by either
p-value or percentage knockdown as discussed in the methods. Panel F: Recall measurements for microRNA:target predictions by number of

mirDIP Identifies Pathway-Specific MicroRNAs
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High-throughput proteomics approaches such as pSILAC

experiments are exciting new techniques that are emerging at

the forefront of microRNA target research, and which allow the

direct comparison of the proteomes of two different samples.

Although an improvement on expression analyses for microRNA

target research, examinations at the protein level will still suffer

from the inability to distinguish primary from secondary effects.

Furthermore, they are neither as high-throughput as expression

analyses nor as time-efficient to run, and the set-up costs to

run mass spectrometry experiments are far higher than micro-

arrays at the present time. Optimal microRNA target analysis

would require experiments where it can be shown that actual

microRNA:mRNA binding is occurring with an associated

reduction in mRNA or protein expression. Only then could we

be certain an interaction is occurring – and such high-throughput

experiment series remain a future challenge.

Integrating prediction databases in mirDIP. Due to the

massive amount of genomic information being deciphered on a

daily basis, there is an inevitable bottleneck between

computational prediction and identification of binding sites, and

the in vitro or in vivo validation of such interactions. Clearly, it

would be useful to be able to prioritize microRNA:mRNA target

predictions to reduce excessive false leads and unnecessary

experiments. It has been previously shown, and confirmed here

that none of the microRNA prediction databases does a perfect job

of target identification [53,64], although they are all suitable to

provide an initial prediction. Integrating multiple databases

improves accuracy or coverage of predictions by balancing out

the precision and recall. Comparing microRNA predictions made

by a minimum of either two or three databases to all truth files,

enables us to retain 24% and 8% of filtered target predictions

(Figure 2D), and obtain precision and recall values of 25%, 19%;

29%, 11% respectively (Figures 2E, 2F), providing a more

balanced precision:recall ratio.

To enable this analysis, we introduce mirDIP – the microRNA

Data Integration Portal – a free and publicly available data portal

integrating up-to-date microRNA target predictions from eleven

individual source prediction databases [20,23–35]. Similar to our

Interologous Interaction Database (I2D) maintenance program,

we will update it at minimum twice a year to ensure that the latest

microRNA:target prediction data from all sources is available to

users. Importantly, to ensure consistency and enable accurate re-

analysis in the future using new and older data, we keep track of

versions of individual resources, and all mirDIP releases will be

able to search the most current, or older versions.

Similar to mirGator, which amalgamates three microRNA

databases (miRanda, picTar and TargetScan) with expression data

while also providing enrichment analysis [65], mirDIP allows the

user to take more control over the prediction data that they

consider. Not only does our resource conveniently integrate eleven

different prediction databases in one place, it allows users to

choose which combinations of databases they would like to

consider – refining options by database or by database charac-

teristics – when selecting prediction data. This empowers users to

capitalize on their knowledge of the workings of different

databases, compensating for strengths and weaknesses of individ-

ual databases – choosing to focus on schemes considering different

variables to create a customized prediction set based on the user’s

preferences and tailored to application-specific tasks, taking into

account the need for either high precision or high recall as

discussed above. File S1 introduces the mirDIP interface (Figure

S1) and describes several search scenarios. Figures S2, S3, S4, S5

display screenshots of the mirDIP search parameters. Finally, in

the sections that follow, we describe how mirDIP can be used

along with NAViGaTOR [41] – a scalable, network analysis and

visualization system – to perform novel microRNA:target predic-

tion visualization.

Construction of microRNA interaction networks
For the construction of microRNA interaction networks based

on gene signalling pathways, we have refrained from using only

targets from in vitro or in vivo experiments due to the obvious bias

present in such data. Rather, we have chosen to use interactions

appearing at two different confidence levels – those present in at

least 2, or at least 3 microRNA prediction databases (2+DB,

3+DB) as a threshold for robust microRNA:target predictions.

Further, drawing from nine of the twelve databases indicated in

Table 1 to determine the 2+DB and 3+DB datasets (eliminating

the risk of double-counting by omitting the PITA All Targets and

picTar 4-way databases and not including microT), we draw from

4/9 databases using conservation as a target site algorithm

criterion and 5/9 databases not considering it. As such, we ensure

that the requirement of sequence conservation does not influence

the construction of microRNA networks in either direction.

Beginning with the well-known Phosphoinositide 3-Kinase

(PI3K) pathway, we examined two aspects of this pathway with

respect to microRNA involvement, garnering our pathway

information from reviews discussing member-genes [66,67,68,69].

PI3K subunit regulation. To examine the relevance of

mapping microRNAs into signalling pathways, we chose to

examine 2 separate coordinate signalling scenarios in the PI3K

pathway. Well known for its control of a broad range of down-

stream effector genes, the PI3K pathway is involved in cell growth,

proliferation, differentiation, cell death, motility and survival.

Implicated in many cancers, not only does it count as members

many oncogenes, at the top of the pathway lies the most potent

breast cancer oncogene known to date – receptor tyrosine kinase

HER2 (also known as ERBB2) – a key receptor at the top of the

signal transduction chain.

The PI3K family is divided into 3 classes. Members of each class

of PI3K molecules comprise 2 subunits – a regulatory subunit and

a catalytic subunit. These subunits are distinct proteins coded in

different regions of the genome as either distinct genes or splice

variants transcribed out of a similar locus producing translated

proteins of varying sizes. The particular assembled combination of

the 2 subunits of PI3K determine the molecule’s structure and

function, and varying combinations of subunits are active in

entirely different cellular settings [69]. Using interactions at the

3+DB robustness level, we map the microRNAs targeting genes

involved in the assembly of Class 1 PI3K (Figure 3). Immediately,

it becomes evident that the possibility for PI3K subunit regulation

at a post-transcriptional level is real. The network resulting from

the input of all Class 1 PI3K subunit genes (PIK3CA/B/C/D,

PIK3R1/2/3/4/5/6) contains five primary nodes (the other

subunit genes are missing due to the lack of microRNAs targeting

them in a sufficient number of databases), 181 secondary nodes

and 206 interactions. Permutation analysis of randomly selected 5-

node networks confirmed that this provides a significant

prediction databases, indicating the percentage of in vitro targets covered by predictions. Stringency levels refer to confidence in the microarray data
and were determined by either p-value or percentage knockdown as discussed in the methods.
doi:10.1371/journal.pone.0017429.g002
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enrichment (p,0.05) for number of nodes and interactions in the

network. The most striking feature of the network is the

participation of primary nodes in interactions with at minimum

two other nodes – indicating that this network is significantly more

connected through microRNAs than one would expect by chance

alone (p,0.01).

Regulation of PI3K signalling. To further examine

microRNA involvement in this pathway, we use a model of the

downstream signalling components of this pathway as indicated in

a recent review [66]. Here we unveil a second highly-connected

microRNA network (Figure 4) (based on 2000 permutations:

p,0.05 for number of nodes in the network, p,0.05 for number

of interactions in the network, p,0.05 for number of nodes with

degree $4). It is quite surprising to see the number of microRNAs

that can co-target potent tumour suppressors and oncogenes. We

find a microRNA – hsa-mir-19b – that concurrently targets

PTEN-TSC1-PI3KCA-TP53, and others that co-target RPS6-

KB1-PDK1-TSC1-PTEN and PTEN-RPS6KB1-FOXO3-TSC1.

In addition, there are many microRNAs that target pairs of

elements of this pathway: 15 microRNAs target RPS6KB1 and

PTEN, 8 microRNAs target both RPS6KB1 and TSC1, and 4

microRNAs target both EIF4E and RPS6KB1. Clearly, we are

only beginning to understand the level of regulation possible with

microRNAs co-targeting many different genes, but it is becoming

increasingly evident that this level of network complexity governs

some interesting and previously hidden relationships between

potent oncogenes and tumour suppressors in the cell.

Examination of KEGG and Reactome pathway-based
microRNA networks

Basic Network Parameters. After initially testing our

hypothesis on the PI3 Kinase pathway, we decided to undertake

a more extensive and rigorous examination of signalling pathways

within the cell. Since pathway definitions have not been

unanimously settled and there is still much debate as to which

resource defines a signalling pathway most accurately and

comprehensively, we decided to use pathways delineated by the

Kyoto Encyclopedia of Genes and Genomes database (KEGG)

[70,71] and pathways defined by the Reactome [72,73,74]

database to further support the microRNA networks built based

on expert-curated pathway reviews in the previous section.

Examining interactions predicted at 2 threshold levels: 2+DB

and 3+DB, we created microRNA networks for both the canonical

signalling pathways and for 2000 permutations of pathways

created with the same number of primary node genes. Our

findings showed a similar trend for most interaction sets and

signalling pathways that we examined. We found that true

signalling pathways tend to involve more microRNAs and

contain more interactions, as well as having more high degree

nodes (degree $4) than pathways created out of a random set of

starting nodes. We examined 9 KEGG pathways and 12

Reactome pathways at the 2+DB and 3+DB interaction

thresholds. The pathways with the lowest average p-values (that

is the average of p-values across the 4 measured parameters -

number of network interactions, number of network microRNAs,

Figure 3. MicroRNA interaction network for assembly of PI3K subunits. Mapping PI3K subunits to microRNA interactions produces a
network that is significantly more connected than at random (p,0.05). Green nodes are regulatory subunits and yellow nodes are catalytic subunits.
doi:10.1371/journal.pone.0017429.g003
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number of network nodes with degree $4 and network density)

were KEGG pathways: ERBB signalling pathway (hsa04012)

(2+DB), mTOR signalling pathway (hsa04150) (2+DB), Wnt

signalling pathway (hsa04310) (2+DB), MAPK signalling pathway

(hsa04010) (3+DB) and Pathways in cancer (hsa05200) (3+DB) with

average p-values of p,0.0006, p,0.0009, p,0.002, p,0.002,

p,0.007, respectively (Figure 5). Of the pathways described in both

the KEGG and Reactome databases (NOTCH, VEGF and WNT),

WNT results were the least conserved across both databases –

showing significance in KEGG (average p-values of p,0.002 and

p,0.036 for 2+DB and 3+DB respectively), but not in Reactome

(average p-values of p,0.64 and p,0.68 for 2+DB and 3+DB

Figure 4. MicroRNA interaction network for elements of the PI3K pathway. Mapping the elements of the PI3K pathway based on a
literature review [66], produces a network where many genes are targeted by common microRNAs suggesting a novel microRNA role of pathway
regulation.
doi:10.1371/journal.pone.0017429.g004
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respectively), while NOTCH measured parameters were the most

likely to be consistent across the two databases (average p-values of

p,0.102 and p,0.105 for 2+DB and 3+DB respectively in KEGG

and average p-values of p,0.256 and p,0.139 for 2+DB and

3+DB respectively in Reactome). We found that some pathways had

greater tendencies than others to show significance – for example

the FGFR and Cell Cycle Genes pathways (which, it could be

argued, is not a signalling pathway and hence does not fit within this

study and hence acts as our negative control) described only by the

Reactome database had a tendency towards higher p-values than

other pathways examined (Reactome FGFR pathway average p-

values of p,0.35 and p,0.4 for 2+DB and 3+DB respectively and

Reactome Cell Cycle Genes average p-values of p,0.78 and

p,0.45 for 2+DB and 3+DB respectively). The measured

parameters found to be most frequently significant across all

studied scenarios were the number of microRNA nodes in the

network with degree $4 (significant at p,0.05 in 30/42 tested

scenarios), and the number of total microRNA:target interactions in

the network (significant at p,0.05 in 27/42 tested scenarios). As

highlighted in Figure 5 – one can find enrichments that are

supported by both pathway databases, while other enrichments are

highlighted in the analysis using one or the other pathway database.

Examining expert-curated pathways, KEGG pathways and

Reactome pathways with similar findings gives us confidence that

this phenomenon is in fact real.

Centrality Measures. We further examined network

betweenness centrality (using Brandes’ algorithm [75] in R [76]

using the RBGL package [77,78]) as well as the average

betweenness centrality of the top 10 genes and microRNAs by

degree, and the average shortest path length between the top 10

genes. In general, these measures were not found to be

significantly different in true signalling pathways from the

random networks across most pathways. For the KEGG 3+DB

signalling pathways network betweenness centrality – a measure of

the difference between the node with the highest betweenness

centrality (the node on the most shortest paths) to all other nodes

in the network – we did see a small trend towards pathway

networks having lower betweenness centrality (p,0.0001 (WNT

pathway) to p,0.837 (VEGF pathway). This trend suggests that

true signalling pathways have a more balanced centrality structure

with fewer ‘‘hub’’ nodes than random networks do. However, we

did not see any difference in the betweenness centrality of the top

ten microRNAs by degree or the top ten genes by degree in the

signalling pathways (p,0.089 to p,0.687 for microRNAs and

p,0.37 to p,0.987 for genes). Further, due to the distributions of

the network values for average and maximum shortest paths

(measured with Dijkstra’s algorithm [79]) between the top 10

genes we were unable to conclusively evaluate these parameters

(95% of average shortest path values were 3 and almost 75% of

maximum shortest path values were infinite). This lack of

Figure 5. MicroRNA interaction network characteristics. Examination of four microRNA interaction network characteristics across well-known
signalling pathways using KEGG (panels A and B) and Reactome pathway databases (panels C and D). Signalling pathways tend to be enriched for the
number of microRNAs, the number interactions and the number of high degree nodes mapped.
doi:10.1371/journal.pone.0017429.g005
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conclusive significance in centrality measures can be explained by

the fact that we did not model interactions between proteins in our

networks, choosing to examine only interactions between genes

and microRNAs. Thus, our networks tended to have a particular

structure requiring all pathways to alternate between gene and

microRNA due to the lack of protein-protein connections.

Integration of protein-protein interactions with microRNA-target

interactions in a network could be re-examined at a later date.

Network Hubs. We also examined the possibility that hubs

in these microRNA networks might be more likely to be date or

party hubs as defined in Han et al.’s paper [80]. Using our I2D

database [81,82] we examined known human protein-protein

interactions for a binomial distribution to define such hubs, and

failed to find such a distribution, hence we are unable to further

study any such relationship.

Universe and Intra-pathway microRNAs. Upon realizing

that microRNAs play a large role within signalling pathways – we

produced a road map to delineate the inter-pathway connections

(Figure 6). It quickly became clear that there are distinct classes of

microRNAs. Examining microRNAs with degree greater than two

in any signalling pathway, we were able to identify 77 microRNAs

that act only in an intra-pathway manner, affecting multiple

targets but only within one single pathway. These microRNAs

tend to target the ERBB, mTOR, MAPK, WNT and Jak-STAT

pathways and no intra-pathway microRNAs appear to target the

VEGF, NOTCH and PI3K pathways. We further identified 61

microRNAs targeting all 8 KEGG pathways that we examined at

the 3+DB level. In attempts to validate this classification of

microRNAs into intra-pathway and universe classes, we went to

the literature. Searching for total PubMed articles, we see a

significant difference between universe and intra-pathway

microRNAs (p,0.0002) – with universe microRNAs discussed

more frequently (Figure 7A). Further, the most discussed

microRNAs, hsa-mir-15a, hsa-mir-16 and hsa-mir-34a have high

degree in the many pathways in which they are involved (hsa-mir-

15a has intra-pathway ranking of 2(ERBB), 1(Jak-STAT),

2(MAPK), 3(VEGF), 4(mTOR), 1(WNT), 27(NOTCH)). This

observation makes sense when one considers that many decisions

regarding the selection of microRNAs to study are based on high-

throughput experiments, through over-expression of a library of

microRNAs and examination of several simple read-out

conditions. It follows that microRNAs with involvement in many

pathways – universe microRNAs – might be able to produce large

changes within the cell, resulting in measurable outcomes

compared to controls. As such, these microRNAs might be

selected for further study, resulting in more PubMed articles.

When constructing the microRNA road map from known

signalling pathways in KEGG, we did not include the Pathways

in Cancer gene network, since it is not a signalling pathway in its

own right. Overlaying universe and intra-pathway microRNAs

with the Pathways in Cancer Network built for Figure 5, we see

that universe microRNAs have much higher degree than intra-

Figure 6. Micronome Roadmap. Network based on KEGG signalling pathways built on 3+DB microRNA interaction data. Universe microRNAs are
shown in red and intra-pathway microRNAs are in blue.
doi:10.1371/journal.pone.0017429.g006
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pathway microRNAs in the Pathways in Cancer network

(p,0.0001) (Figure 7B). Considering that this type of effect

could have been induced by our filtering methods, we examined

our 3+DB interaction set for the number of targets predicted for

both universe and intra-pathway microRNAs. We did see

significantly more predicted targets for universe microRNAs

than for intra-pathway microRNAs (p,0.0001). However, this

distribution was replicated in TargetScan predicted targets

(p,0.0001), PITA predicted targets (p,0.0001) and picTar

predicted targets (p,0.0001) (Figure 7C). Since this distribution

transcends any filters that we have applied and it holds for these

individual database prediction sets we suggest that universe

microRNAs simply tend to have more targets, and are therefore

able to exert a broader program of control over the cell than are

intra-pathway microRNAs.

At this point, we would like to address the issue of bias in the

data and distinguish microRNA interaction sets from protein

interaction datasets. There is one large and obvious difference

between protein and microRNA interactions. Protein-protein

interactions are often curated through highly-biased information

gathering methods; literature searches, which are biased towards

highly-studied proteins, and high-throughput experiments focusing

on finding all partners for one protein of interest, while considering

a library of potential partners. Although useful interaction

generating techniques, they cannot be relied open to uncover

protein-protein interactions evenly across the proteome. Micro-

RNA:target relationships are different. The information upon

which our study is built is entirely sequence-based. The databases

considered do use different algorithms to make their predictions;

however, the predictions are free from bias due to the ground truth

that everything studied is sequence-based. Conservation of a

binding site, binding site accessibility and presence or absence of a

seed-region depend entirely on the coded gene, its transcribed

RNA and the sequence of the microRNA that might bind to it,

freeing us from the requirement to compensate for any bias in

microRNA:target predictions. That being said, one possible bias

that we cannot decouple from our current analysis is the

relationship of the length of a given gene’s 39 UTR and the

number of microRNAs that target it. It remains unclear if the fact

that genes with long 39 UTRs tend to have more predicted

targeting microRNAs is due to the fact that this is the way that the

biology works or if it is simply related to the odds of having more

binding sites in longer UTRs.

Finally, we examined the differences between universe and

intra-pathway microRNAs in a disease setting. First, we examined

the cumulative number of Online Mendelian Inheritance in Man

(OMIM) database [83] hits for all targets of each microRNA

(Figure 7D Top Panel). Arranging them in decreasing order we

show that universe microRNAs have many more OMIM hits than

do intra-pathway microRNAs. It should be noted here that we did

not normalize for number of targets per microRNA. The lower

panel shows the universe microRNAs having significantly more

cancer hits for each microRNA in the PhenomiR database [84]

compared to intra-pathway microRNAs (p,0.0001). We see a

strong distinction between universe microRNAs and intra-

pathway microRNAs for disease association, again supporting

our hypothesis that universe microRNAs are a subset of

microRNAs that can target many genes within the cell, acting as

master controls.

As further explanation for why universe microRNAs have been

more studied than intra-pathway microRNAs, a comparison of

microRNA ‘‘number’’ - their unique identifying IDs, which were

assigned in approximate order of discovery - shows that universe

microRNAs have a lower average identifying number than intra-

pathway microRNAs (mean ID for universe microRNAs = 51 vs

intra-pathway microRNAs = 84, p,0.0001).

This may be either because universe microRNAs have been

discovered earlier purely by chance and thus were more studied,

or they may truly be more universal and thus were easier to

discover under many conditions. To provide additional evidence

to answer this question, we considered expression of microRNAs

across a panel of tissues from Landgraf et al. [85]. Figure 8 shows a

heatmap comparing universe and intra-pathway microRNA

expression across tissues, confirming that universe microRNAs

are more widely expressed than intra-pathway microRNAs. Thus,

it is more likely that universe microRNAs are more broadly

affecting varying cell types, and through their misexpression,

universe microRNAs have the opportunity to create a more global

change quickly by affecting genes in many different pathways. To

further understand their role in human disease thus warrants

further research.

This work in microRNA interaction networks provides more

evidence for the possibility that microRNAs are in fact working in

a coordinated fashion with each other and within signalling

pathways. It has been previously noted that many microRNAs

might co-bind to a UTR [2,31,48,85], and perhaps our results

support that view, since genes in a common pathway share many

more common microRNAs than one would expect by chance

(p,0.0035 to p,0.365 for KEGG 2+DB). This thinking opens the

door for many exciting in vitro experiments to examine this co-

regulation and co-binding, and raises the questions, how many

microRNAs might actually be occupying a 39 UTR at once? Is it a

sequential or a parallel microRNA process? Future work to

determine the layout of such microRNA binding sites in the

untranslated regions might provide further insight here – and a

within pathway study of the degree of overlap and layout of

microRNA binding sites on interacting genes would provide

insight into the microRNA regulatory network. Another interest-

ing expansion of this work would be to determine predicted

binding sites in 59 UTRs and coding regions of target genes, and

integrate them with RNA22 predictions already included in

mirDIP to allow cross-database comparisons. While the majority

of confirmed microRNA binding sites fall into 39UTRs, fuctional

binding sites have been shown in other regions [86,87,88] and

attempts to include them in mirDIP would result in a more

complete representation of true microRNA target genes within the

cell.

The identification of two distinct classes of microRNAs –

universe and intra-pathway microRNAs – lays the frame work for

possibly hierarchical organization of pathway- and gene-level

control and execution of gene regulation. Using PhenomiR, we

provide the first disease-associated evidence that universe micro-

Figure 7. Comparison of universe and intra-pathway microRNAs. Panel A: Universe microRNAs have a significantly larger number of PubMed
papers compared to intra-pathway microRNAs (p = 0.0002). Panel B: Universe microRNAs have significantly higher degree in the KEGG Pathways in
Cancer 3+DB network (p,0.0001). Panel C: Universe microRNAs have significantly more predicted target interactions than intra-pathway microRNA
across several different microRNA prediction databases (p,0.0001). Panel D: Top – Universe microRNA targets (red) tend to have more OMIM hits
than intra-pathway microRNAs (blue). Bottom – Universe microRNAs themselves have more ‘‘cancer’’ PhenomiR hits than intra-pathway microRNAs
(p,0.0001), supporting the result in panel B.
doi:10.1371/journal.pone.0017429.g007
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RNAs may be more likely to be involved in cancer specifically –

showing significantly more involvement in breast (p,0.07),

ovarian (p,0.005) and lung cancers (p,0.05) and in carcinogensis

overall (p,0.0001) while also showing involvement in human

disease in general (p,0.0001), and this information will allow us to

focus our disease-driven microRNA-associated research towards a

smaller subset of these potent cellular regulators.

Conclusions
MicroRNA Prediction Databases. Similar to work done by

other groups, we have examined microRNA prediction databases

to determine that PITA Top, picTar 5-way and Targetscan

Conserved provide the most accurate microRNA:target

predictions. Using different prediction algorithms, individual

predictions overlap only partially and they differ in their

precision and recall when compared to in vitro truth data.

However, each has a particular application where it might be

best suited for use. We have further examined the importance of

filtering target predictions before making microRNA database

comparisons, and have determined that filtering by both

experiment cell type and microarray chip type are crucial steps

that alter gene prediction sets by up to 40%. We suggest that when

searching for true microRNA targets, it is useful to consider such

steps.

mirDIP. We have presented a unique database to aid

researchers in determining the optimal microRNA prediction

databases to use for application-specific microRNA:target

searches. mirDIP allows users to focus their searches on any

Figure 8. Expression of universe and intra-pathway microRNAs. Universe microRNAs are expressed in a broader panel of tissues than intra-
pathway microRNAs [96].
doi:10.1371/journal.pone.0017429.g008
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subset of microRNA prediction databases, in either ‘‘high

precision’’ or ‘‘high recall’’ databases depending on their path of

study.

Discovery of Universe and Intra-pathway microRNAs in

Interaction Networks. Using data from mirDIP, we found

that microRNAs are significantly more involved in known

signalling pathways compared to random chance, producing

networks with more interactions (p,0.1 in 76% of tested

pathways). Signalling pathways contain many microRNAs that

target multiple elements of the pathway, perhaps suggesting a level

of transcriptional regulation not previously described. Our data

suggest a possible co-regulation of signalling proteins at the post-

transcriptional level – whether concurrent or sequential – which

opens new line of research to study hierarchical organization of

microRNAs. Further, we have identified two novel classes of

microRNAs: universe and intra-pathway microRNAs, which are

significantly differentiated by the degree of their involvement in

signalling pathways within the cell and their association with

cancer (p,0.0001) and human disease (p,0.0001). Universe

microRNAs are involved in regulation of many known signalling

pathways, while intra-pathway microRNAs are pathway-specific

and do not appear to play a global role in cellular regulation.

Materials and Methods

MicroRNA predictions were downloaded from the individual

microRNA prediction sites:

N http://microrna.org (Sept. 2008)

N http://microrna.sanger.ac.uk/targets/v5/(ver. 5) (now http://

ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/)

N http://genie.weizmann.ac.il (ver. 6 Aug. 2008)

N http://cbcsrv.watson.ibm.com/rna22.html (Aug. 2007)

N http://targetscan.org (Release 5.0 Dec. 2008)

N http://pictar.mdc-berlin.de/(Mar. 2007)

N http://diana.cslab.ece.ntua.gr/microT/(V3.0)

Target Prediction Files
All target prediction files were processed to contain the same

information in the same format. The UCSC Genome Browser

(http://genome.ucsc.edu/) [89,90,91] and Galaxy [92,93] were

used to convert all files to include HUGO gene names for all

interactions according to human genome version hg18. RNA22,

picTar and DIANA microT required intermediate mapping steps

using Ens54 [94] and RefSeq May 2006 [95] assemblies. All files

were then combined to produce one file of all predictions. A

filtering step produced the interaction files for NAViGaTOR –

eliminating all interactions present in less than 2 or 3 microRNA

prediction databases. To avoid double-counting interactions

present in 2 databases from the same source compiled with

different stringency requirements, only the most stringent PITA

and picTar microRNA prediction files were used as inputs into the

integration and filtering steps.

microRNA microarray Truth Files
Files used to compare microRNA prediction files to truths were

obtained from the following GEO Datasets: GSE2075 [57],

GSM306946 [53], GSE6838/GSM155064 [58], GSE6207 [60],

GSM302945 [53], GSE13296 [54], GSE6838 [58], GSM302995

[53], GSE12091 [55], GSE9586 [59], GSE9742 [56], GSE14507,

GSE12092 [55]. Thresholds for low-, med- and high- confidence

truths were established using p-values of p,0.1, p,0.05, p,0.01,

where replicates were present, and otherwise at three step-wise

incremental knockdown or over-expression thresholds dependent

on the distribution of target knockdown – 50%-25%-10% for mir-

335 (GSE9586) and mir-7 (GSE14507) (in this case – since there

were only 2 replicates, we also required the replicates to be within

15% of each other), 75%-25%-10% for mir-155 (GSE13296) and

25%-20%-10% for mir-124 (GSE6207).

Target Filtering
To filter target predictions prior to prediction database

comparison, we used genes present in the bottom quartile of the

control cell line microarray experiment. In most cases, one or

more negative control sample values were present and those values

were averaged and then ranked by intensity value. When filtering

by experimental cell type, only genes not present in this bottom

quartile passed through our filter. In the few cases where it was not

possible to extract the control cell line values from the experiment

(mir-1 Lim et al. [5] and mir-124 Lim et al. [5]), filtering genes

from the negative controls from a microarray experiment in the

same cell line were used (mir-98 negative controls Gennarino et al.

[53]). We further filtered by the presence of the predicted target

gene on the microarray chip used in the experiment, information

available at GEO datasets.

NAViGaTOR Networks
NAViGaTOR networks [81,82] were built based on the

microRNA:target interaction files discussed above, with two

levels of robustness: interactions present in two or more databases

(2+DB) or interactions present in three or more databases

(3+DB). Note that out of the eleven databases examined in the

first section, only nine are used for the microRNA interaction

networks due to the fact that PITA Top Targets (used) is a subset

of PITA All Targets (not used) and picTar 5-way (used) is a subset

of picTar 4-way (not used). Using groups of Associated Genes of

interest (as determined by well known sub-units [69], pathways

extracted from the literature [66] and KEGG [70,71] and

Reactome [72,73,74] databases) as primary nodes – networks

were built to examine the interactions between the given

associated gene set at the microRNA level. Associated gene

network significance was evaluated based on four characteristics:

1) the number of nodes in the network, 2) the number of

interactions in the network, 3) the number of nodes with degree

greater than three, and 4) the measured network density, and

compared to values obtained from 2000 random networks

constructed from the same number of primary nodes (genes

randomly selected from the interaction file, hence genes that have

been identified as participating in a microRNA interaction by at

least two or three prediction databases). KEGG pathway HUGO

IDs were used to create networks, while Reactome Swiss Protein

IDs were mapped in the UCSC Genome Browser to HUGO IDs

before networks were built. Networks were built using the graph

(ver. 1.24.1) [78] and RBGL (ver. 1.22.0) packages [77] of the R

Statistical Package software (ver. 2.8.1) [76]. When comparing

pathways represented in both KEGG and Reactome databases,

comparisons were made between the differences of the sums of

the p-values of the four network parameters. All analysis was

done using NAViGaTOR ver. 2.1.13 [1] (http://ophid.utoronto.

ca/navigator).

Examination of Date and Party Hub Nodes
In our examination of human protein-protein interactions to

determine whether a bimodal date and party hub distribution was

present, I2D human source interactions were used [81,82].
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Universe and Intra-pathway microRNAs
Using NAViGaTOR ver. 2.1.13 to display the microRNA:path-

way interactions from the KEGG 3+DB study, we laid out the

micronome roadmap to identify universe and intra-pathway

microRNAs. Comparisons between the two classes of microRNAs

and number of associated PubMed articles were done using

biopython (v1.50) (http://biopython.org). OMIM [83] hits and

PhenomiR (v1.0) [84] hits were drawn from their respective sources

(http://www.ncbi.nlm.nih.gov/omim/(accessed Feb. 2010) and

http://mips.helmholtz-muenchen.de/phenomir/).

Tarbase Comparison
We used Tarbase V5.0 [63] to compare our 2+DB interaction set

to the best curated set of microRNA interactions existing. We used

only human interactions, eliminated the support_type = FALSE

interactions and mapped by the HGNC column.

Details about mirDIP can be found in Methods S1.
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