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Abstract
Purpose  P300 component of event related potentials in response to visual and auditory stimulation has been widely used in 
brain–computer interfaces (BCI). In clinical applications, tactile stimulus based on somatosensory electrical stimulation is 
an alternative for patients with impaired vision or hearing. This study presents an online P300 BCI based on somatosensory 
electrical stimulation paradigm. P300 signals were elicited by tactile selective attention of electrical stimuli on four fingers.
Methods  Fifteen healthy subjects participated in this study. Participants’ task was to focus their attention on the target finger 
and count the number. The classification of P300 signals was performed by step-wise linear discriminate analysis.
Results  The average classification accuracy of the somatosensory BCI was 79.81 ± 7.91%, with the information transfer rate 
at 4.9 ± 1.3 bits/min. The BCI performance on different time windows was also evaluated in the present study.
Conclusions  Our results demonstrate the feasibility of employing somatosensory electrical stimuli to build a practical online 
P300 BCI without taxing the visual and auditory channel, providing a wider application prospect in clinical applications 
and daily life. We anticipate our diagram to be a starting point for more explorations on utilizing electrical somatosensory 
stimuli in conjunction with portable BCI for neural rehabilitation.

Keywords  Brain–computer interface (BCI) · P300 · Tactile selective attention · Electrical stimulation · Somatosensory 
evoked potentials (SEP)

1  Introduction

Brain computer interfaces (BCIs) enable users to set up bidi-
rectional connections between the world and their minds 
by translating the brain signals into computer control com-
mands and sending back feedback signals [1–3]. BCIs have 
attracted growing attention from researchers for studying, 
mapping, enhancing, and repairing human cognitive, sen-
sory and motor functions [4]. Due to its non-invasiveness 
and relatively high communication speed, BCIs based on 
electroencephalogram (EEG) have become one of the popu-
lar choices. Among all kinds of EEG potentials suitable for 
BCIs, the P300 wave is a positive EEG deflection in the 
human event-related potentials (ERPs) which occurs around 
300 ms after the target stimulus has been presented. Over 
the past several decades, P300 s are still popular to drive 
BCI systems since they are relatively robust and reliable [5].

The vast majority of P300 based BCI systems have 
used visual and sometimes auditory stimuli to elicit 
P300 potentials [6–9]. Though the fundamental research 
on ERPs mainly focuses on visual and auditory elicited 
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P300 s, somatosensory stimuli can also be an interest-
ing alternative option for general BCI purposes. Muel-
ler–Putz’s group applied tactile stimuli to left/right index 
fingers, and asked the subject to pay attention to one of the 
fingers, different evoked potentials could be detected to 
discriminate target and non-target fingers which confirms 
that somatosensory stimulation is suitable for BCIs [10]. 
Somatosensory modality based BCI has the advantages 
that it only frees the eyes and the ears of the user and not 
require them to literally stare at and pay attention to a 
screen/speaker, but also gets complete involvement of sen-
sory nervous pathways which can be a strength in clinical 
rehabilitation applications. Vision and/or hearing impaired 
users and patients who are experiencing spinal cord/brain 
injuries (e.g. cerebral palsy) can utilize the power of 
somatosensory based P300 BCIs, and for those people, 
the robust and reliability of BCI systems may come for the 
first priority [11]. Hence, somatosensory P300 s can be an 
appropriate candidate for practical BCIs in spite of their 
relatively slow communication speed.

Somatosensory stimuli can be delivered by electrical 
stimulators and tactile vibrators. Several previous reports 
present the potential use of vibro-tactile stimulus for P300 
BCIs [12–14]. Either graspable oscillating objects or a set 
of grouped vibrators on an adjustable vest or belt was used 
in their studies. In alternative, electrical somatosensory 
stimuli can be used for BCI purpose due to its advantages 
in flexible stimulation protocols design and simplified 
hardware design. Electrical somatosensory stimulation 
has been commonly used in clinical rehabilitations [15, 
16]. It has higher power efficiency than vibrators and can 
be easily generated by small chips under the precise timing 
control of various BCI systems. By changing stimulation 
frequency, duration, and intensity, we can easily provide 
personal tactile stimulation protocol for individual users. 
Recently studies showed that application of BCI can be 
used to greatly improve the efficiency of neural rehabili-
tation [11, 17–20]. The rationale behind the use of the 
electric somatosensory BCI is that it involves somatosen-
sory neural circuits during the rehabilitation, which can 
improve the neural plasticity of nerve system, while visual 
or auditory stimuli do not have such function.

This paper is to propose a P300 based online BCI sys-
tem by using electrical somatosensory stimulation. In this 
study, electrical stimuli were sent separately to different 
fingers of the participants who would selectively pay atten-
tion to the chosen ‘target’ finger. Our hypothesis is that 
electrical somatosensory stimuli on different target/non-
target body locations could evoke detectable and consist-
ent P300 s which were differentiable. In addition, different 
time windows for online data analysis were evaluated to 
optimize the classification performance.

2 � Methods

2.1 � Participants

In total, fifteen healthy subjects from university aged 
23–29 years (8 male, 7 female) were participated in this 
study. All subjects had normal or corrected to normal vision, 
normal hearing and normal somatosensory functions. None 
of them reported a clinical history of psychiatric conditions 
or brain diseases. All subjects were instructed about the 
experiment before the start of the recordings. This study 
was carried out in accordance with the recommendations of 
The Research Ethics Committee of academy with written 
informed consent from all subjects. All subjects gave writ-
ten informed consent in accordance with the Declaration of 
Helsinki. The protocol was approved by The Research Ethics 
Committee of academy.

2.2 � Recording Technologies

EEG activity was acquired at Fz, C3, Cz, and C4 electrode 
sites of the 10–20 system. A ground electrode was attached 
to the forehead. The EEG electrodes were referenced to 
linked right mastoid electrodes and the impedances of all 
electrodes were below 5 kΩ. EEG data were sampled with a 
frequency of 1000 Hz and filtered before storage by a 0.1 Hz 
high pass, a 100 Hz low pass and a 50 Hz notch filter. The 
experiment was controlled by Psychophsics Toolbox Ver-
sion 3 running on Matlab platform (The Math Works, Inc.).

2.3 � Stimulation

The tactile selective attention task was conducted using elec-
trical stimuli. The electrical stimuli were generated by elec-
trical muscle stimulation device (Shenhe medical instrument 
corporation, Zhuhai, China), delivered through flexible patch 
electrodes placed on a subject’s fingers. A trigger signal was 
collected to synchronize the stimulation and record the EEG 
in responding to event types. The time duration of electri-
cal stimulation was set to 1 ms, and the stimuli interval was 
800 ms.

2.4 � Experimental Protocol

The experiment was conducted in an electrically shielded 
room, by using a somatosensory BCI system (Fig.  1). 
Before the experiment, participants were asked to take a 
test to verify the sensory threshold to the electrical soma-
tosensory stimuli, making subjects a sense of comfort at the 
same time. The intensity of stimulus was range from 1.3 to 
1.7 mA (two times of sensory threshold) among subjects. 
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Then the experimental procedure was explained to the par-
ticipants, with their task being to concentrate on the target 
and to ignore the distracters. Thereafter, participants were 
asked to sit in a comfortable chair in front of a screen, and to 
limit any other movements during stimulus session. A stimu-
lus sequence starts when a random picture displays on the 
screen with the target finger labelled ‘T’. Then a sequence 
of electrical stimulus is applied randomly to four fingers 
(the index and little fingers of both hands). Participants are 
asked to focus their attention on the target finger and count 
the times of target finger. The feedback of which finger des-
ignated as the target one (red band) is only shown on screen 
in the test block. This experimental paradigm is shown in 
Fig. 2.

For each subject, there were two blocks (one training 
block and one test block). The training block was performed 
before the experiment to train the classifier, and the training 
model was applied to the test block to classify the subject’s 
EEG data. Each block consisted of four sequences of electri-
cal stimuli. Each of the four sequences consisted of electrical 
pulses on each finger 18 times in a random order. Partici-
pants took a 3–5 min breaks between blocks.

2.5 � Classification and Analysis

The classification method employed in the present study 
was step-wise linear discriminate analysis (SWLDA) [21, 
22]. And the classification models are built after the training 
block. The decision hyper-plane for SWLDA is defined by:

where w is the weight vector, x the feature vector and b is 
the bias term. Using a combination of forward and backward 
stepwise regression, a maximum of 60 predictor variables 
are selected from original features. It started with no initial 
model terms. The most significant predictor variable (p < 
0.1) is added to the model in every forward regression. Then 
the least significant variables (p > 0.15) are removed using a 
backward regression. This process repeats until no variable 
entry or removal, or until the model included the predeter-
mined number of 60. In the test block, the predicted target 
finger is determined as the maximum of the scores:

where x̄i is the mean values of all epochs of a finger in a 
sequence.

(1)� ⋅ � + b = 0

(2)p_tar = arg max [w ⋅ �̄i],

Fig. 1   The block diagram of our 
online P300 BCI system

Fig. 2   Experiment protocol. 
Black band: Stimulation elec-
trode position. Red band: Feed-
back of Stimulating electrode. 
T: the target position
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To generate features for the classification analysis, con-
tinuous EEG data from each participant was first down sam-
pled with a factor of four and then low-pass filtered at 30 Hz. 
Individual channel data was segmented into epochs, starting 
at the stimuli onset and ending at 800 ms after the stimulus 
onset. The activity from -200 ms to 0 was used as a baseline. 
To evaluate and find the optimized time window for classifi-
cation, we extracted EEG data from two different windows: 
(1) 0–800 ms (whole length), (2) 250–550 ms (typical P300 
time range from pre-experiments).

To evaluate the BCI performance, the information trans-
fer rate (ITR) or bitrate [23] was calculated as follows:

where M is the average number of decision per minute and B 
is the number of bits transmitted per decision. N is the num-
ber of possible targets and P is the accuracy probability. Sta-
tistical comparisons between two conditions were performed 
to evaluate classification accuracy and ITR by using t test.

3 � Results

3.1 � BCI Classification

The classification accuracy and individual ITR for each 
window conditions are shown in Fig. 3. The classification 
accuracy across all subjects was well above chance level 
(25%) for both of conditions. In average, the classification 
accuracy was 79.81 ± 7.91% for 250–550 ms window and 
67.04 ± 8.35% for 0–800 ms window. A comparison of clas-
sification accuracy revealed significantly difference of two 

(3)
B = log 2N + P log 2P + (1 − P) log 2[(1 − P)∕(N − 1)]

(4)Bitrate = BM

time windows by paired t test (p < 0.001). It is suggested 
that the features extracted from 250 to 550 ms window could 
yield a better classifier better than using all features from 
0 to 800 ms window. Moreover, the ITR result also shows 
that 250–550 ms time window was significantly better than 
0–800 ms window (4.9 ± 1.3 bits/min vs. 2.9 ± 1.1 bits/
min, p < 0.001).

3.2 � Event‑Related Potentials

Figure 4 shows an illustration of P300 amplitude and latency 
in targets and non-targets cases. In the current study, the 
tactile selective attention paradigm based on somatosensory 

Fig. 3   The comparison of 
classification accuracy (a) and 
information transfer rate (b) 
between 250–550 and 0–800 ms 
time window. Blue shadow: 
The standard deviation (STD). 
Red shadow: The standard error 
of the mean (SEM). Red line: 
Mean value. Each dot presents 
data from one subject

Fig. 4   Definitions of P300 amplitude and latency. The P300 ampli-
tude: the maximum voltage within 250–500 ms after stimulus onset. 
The P300 latency: the time between stimulus onset and the peak of 
the P300
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electrical stimulation could elicit stable P300 wave. The 
morphology of ERP recordings in target and non-target cases 
looks in similar pattern. But the somatosensory ERP elicited 
by target stimuli presented later latency and higher P300 
amplitude than that elicited by non-target stimuli. Figure 5 
shows ERP grand averages of four electrodes in response to 
targets and non-targets. The brain electrical activity mapping 
of target at 300 ms also showed a typical P300 topography. 
The distinct difference between targets and non-targets in 
P300 wave at central and frontal electrode sites were use-
ful for classification. The result of t test taken for each time 
point for the target and non-target events showed significant 
difference (p<0.05). It suggested that the distinct difference 
between targets and non-targets in P300 amplitude was con-
sistent enough for classification in our experiment.

4 � Discussion

The present study is aimed at building an online P300 BCI 
system based on tactile selective attention paradigm by using 
somatosensory electrical stimulations. The classification 
results of our proposed BCI paradigm were very encourag-
ing. Our results show that the electrical stimulation can pro-
duce remarkable P300 component amplitudes, moreover, the 
differences between targets and non-targets in P300 wave are 
clear. Therefore, the paradigm using somatosensory electri-
cal stimulation can be a practical candidate for P300 based 
BCI.

Over the last several decades, EEG based BCI have been 
widely used in the fields of neural engineering, clinical reha-
bilitation, and the fundamental research of neuroscience [1]. 
In practical BCI systems, many modalities can be chosen as 

the BCI inputs, for example, pictures and shapes as visual 
input, sounds and music as auditory input [24–26]. Among 
these modalities, visual and auditory modalities become 
popular for their high speeds, high accuracies, and low 
amount of training time. However, somatosensory modality 
can also be an interesting option as it not only frees the eyes 
and ears of the user and is less noticeable in daily life usage 
scenarios but also shows great potentials in clinical reha-
bilitation training. Few literatures have thoroughly depicted 
and verified the usefulness of somatosensory modality as an 
input of BCI system. Here, we propose a simple but practical 
electrical stimulation paradigm in somatosensory modality.

In the current study, the ERP waveform morphology in 
response to target stimuli showed typical P300 waveform, 
while similar and smaller waveform during 200–300 ms 
could be seen in ERP recording in response to non-target 
stimuli. Such presentation of non-target ERP can be seen in 
several previous reports in auditory [6], visual [7] and tactile 
paradigm [14]. By contrast, we found that another visual 
[9] and auditory [8] did not produce any P300 s for non-
target cases. It would be interesting to further investigate 
the waveform morphology in response to non-target stimuli 
under different paradigms. However, this study focuses on 
the ability and performance of BCI based on somatosensory 
electrical stimulation paradigm. Although somatosensory 
ERP shows similar patterns in target and non-target cases, 
our results suggest that the difference in amplitude might 
be practical enough for distinguishing. It also demonstrates 
that somatosensory P300 elicited by electrical stimulation 
on different body locations could serve as the classification 
features in BCI applications.

Previously, a somatosensory paradigm based on vibro-
tactile stimuli around the waist was proposed in [14]. Our 

Fig. 5   Grand averaged ERP 
evoked by target (a) and non-
targets (b). Targets evoke a rela-
tively larger positive response, 
peaking at 300 ms
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method explores the possibility of using electrical stimuli 
to elicit ERP components. Besides, electrical stimulation 
has several advantages: (1) the general implementation of 
electrical stimulator is simpler, easier, and smaller than 
vibrators; (2) the energy consumption of electrical stimula-
tion generator is optimal. Therefore, for practical BCI sys-
tems, our paradigm is supposed to be better in portability 
and wearability. For its involvement of sensory pathways, 
electrical somatosensory stimulation is preferably used to 
improve sensory function after spinal cord and brain inju-
ries, for example, the spastic hands. Hence, the electrical 
somatosensory stimuli paradigm proposed here shows great 
potential for clinical usage: Firstly, the electrical stimulation 
protocols can be set up based on extensive clinical experi-
ence to optimize the outcome. Secondly, most patients suf-
fered from central nervous system injuries may experience 
difficulties when they were asked to do typical visual/audi-
tory tasks in classical BCI systems. For example, the patients 
may lose the ability to see/listen clearly, to move their heads 
voluntarily after stroke. In this situation, our method not 
only provides an effective way to bridge the communication 
between the human brain and machines, but also useful for 
rehabilitation trainings. Besides, for other users, this para-
digm will allow the user to operate BCI tasks less noticeably 
than traditional visual/auditory paradigms, and it is not tax-
ing normal routine visual and auditory systems.

We showed that somatosensory electrical stimulation 
based on tactile selective attention on different body loca-
tions could produce remarkable P300 waves. The results 
have confirmed that electrical somatosensory stimuli can 
be an interesting option for BCI inputs alternatively to com-
monly used visual stimuli. Currently, our paradigm is less 
accurate and slower than visual paradigms. Though, in clini-
cal rehabilitation scenarios, the accuracy is less important 
than reliability, our method still achieves a relatively accept-
able performance. In the experimental design, we only select 
channel Cz, C3, C4 and Fz from the cap, for the considera-
tion that our primary goal is to demonstrate the feasibility 
of electrical somatosensory stimulation in BCI application, 
especially for neural rehabilitation purpose. Therefore, we 
strictly select few channel and commonly-used simple classi-
fication algorithms. However, the relatively low performance 
may be improved by developing new stimulation scheme and 
new classification algorithm.

In the present study, we used a simple and classical SWLDA 
classifier. One of the key problems in classification is to find 
proper features of epochs to discriminate target and non-tar-
gets. We compared two types of time windows in our experi-
ment. First we expected that using more data could increase 
classification performance. On the contrary, the time window 
of 250–550 ms was better in classification accuracy and ITR. 
It was apparent that P300 elicited by tactile selective attention 
of electrical stimuli was clear enough to distinction target and 

non-targets. An explanation could be that amplitude of P300 
was relatively more significant and stable in 250–550 ms win-
dow and the classification model might use these features to 
steadily classify target and non-targets. As in the ERP results 
(Fig. 4), the majority of typical P300 features were clustered 
around 300 ms which felt in the range of 250–550 ms. Nev-
ertheless, the time window of 0–800 ms might contain abun-
dant EEG information which could disturb the classifier. In 
our study, the P300 feature was significant in 250 ms-550 ms 
after stimuli onset for all subjects. Possibly, factors like gender 
and age could have varied individual difference in response 
to electrical stimulation. To further improve the performance 
of our BCI paradigm, adaptive parameter selection for time 
window should be considered.

The current study also shows some deficiencies in several 
aspects. Firstly, our paradigm still has a long way toward per-
formance improvements. Better stimulation scheme and adap-
tive classifier can be introduced. Single-trial extraction method 
may contribute as well. Secondly, here we used computer 
screen to send instructions to participants which is still occu-
pying the visual channel of sensory system. Another future 
research direction will be to adapt the paradigm so that the 
subject can actively appoint targets instead of passively receive 
targets, which can be more suitable for real-world scenarios.

5 � Conclusion

In this paper, an online BCI system based on electrical soma-
tosensory stimulation was proposed. The somatosensory P300 
elicited by attention to specific fingers was demonstrated to 
be an effective input for BCI, suggesting that a larger com-
mand set could be achieved by extending the stimulation loca-
tions on the body. The feasibility of a BCI in somatosensory 
modality was demonstrated by the bitrate at a medium speed 
of 4.9 ± 1.3 bits/min. BCI based on somatosensory modality 
brings the involvement of sensory nervous pathways during 
usage. It will not affect visual and audial function when using 
somatosensory BCI. Future study may further improves the 
BCI performance by optimizing the stimulation sequence and 
classification algorithm.
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