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Abstract: Parametric spectro-temporal analyzer (PASTA) has been demonstrated as a 
powerful tool for ultrafast spectrum measurement with superior frame rate and resolution. 
Compared with other time-stretch-based counterparts, the temporal focusing mechanism 
enlarges the initial condition and enables the observation of arbitrary waveform, especially 
the emission spectrum. However, due to the limited conversion bandwidth of the parametric 
mixing–based time-lens, the observation bandwidth of PASTA is constrained within the C 
(conventional) band, which hinders its practical applications. To overcome this constraint, 
both stokes and anti-stokes conversions of the parametric mixing process are leveraged, and 
the concept of time division multiplexing (TDM) is introduced to ensure their separability. 
Therefore, the TDM-based PASTA system successfully demultiplexes the C band and L 
(long) band spectra in two adjacent temporal frames. It is capable of reconstructing the 
wavelength-to-time sequence for arbitrary waveform over a record 58-nm observation 
bandwidth, which can be further improved by optimizing the filters and amplifiers. 
Meanwhile, both of these two bands achieve 20-pm resolution, 10-MHz frame rate, and –30-
dBm sensitivity. Moreover, this TDM concept can also be applied to other parametric 
mixing–based temporal imaging systems to enlarge the working wavelength band, such as 
temporal magnification. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

With the rapidly increasing of communication capacity, the research on ultrafast phenomenon 
is getting more and more attention [1–4]. Among numerous research methods, real-time 
optical spectrum analysis occupies an indispensable position. However, the most conventional 
optical spectrum analyzer (OSA) is based on the monochromator. Its mechanical scanning 
process limits the frame rate (~5 Hz) and cannot capture some spectral dynamics, such as the 
state evolution of a laser cavity, real-time chemical or physical reaction, etc [5,6]. 
Polychromator based on the charge-coupled device (CCD) sensor enables faster operation 
(usually less than 1 kHz), but significantly compromises its accuracy [7]. Alternatively, 
dispersive Fourier transformation (DFT) technology has been introduced and demonstrated in 
many ultrafast applications [8–11]. Leveraging the large bandwidth of the single-pixel 
detector, the DFT based spectroscopy achieves MHz range frame rate, and has played an 
important role in studying some non-repetitive and statistically rare phenomena that occur on 
short timescales [12,13]. Nevertheless, some constraints still exist. First, its input condition is 
confined to short pulses, which makes it usually operate as an absorption spectroscopy [14]. 
Second, despite the loss along the dispersive medium can be compensated by amplification 
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Schematic of the TDM based PASTA is shown in Fig. 1. According to Fourier optics, the 
spatial frequency spectrum of the incident light can be obtained at the focal plane of a 
converging lens, which is described as the spatial Fourier transform process. The PASTA 
system is the time domain counterpart based on the space-time duality. Different optical 
frequency components will focus on different temporal positions at the focal time axis, 
resulting in wavelength-to-time mapping. Here, the input signal is described as E0(t), and an 
ideal time lens is realized by temporal quadratic phase modulation, with the transfer function 
of tf(t) = exp(–it2/4Фf), where Фf is the focal group delay dispersion (GDD). As the frequency 
chirp is obtained from the differential of the phase term of tf(t), the converged optical field 
becomes a linear swept-source when E0(t) is a continuous-wave (CW) source. Then, the 
swept-source will be focused by a dispersive fiber, which adds a quadratic phase modulation 
in the frequency domain: Go(ω) = exp (–iΦo ω

2/2), with the output GDD Фo = Фf. Detailed 
derivation can be found in our previous work [15], and the focused optical field E1(t) can be 
expressed as: 

 ( )
2

1 0

1
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22 f ff

t t
E t i E

iπ
   

=       Φ ΦΦ    
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where Ē0(ω) is the Fourier transform of the input optical field E0(t). From Eq. (1), it is easy to 
find that the output optical filed is the Fourier transform of input signal, and the extra phase 
item can be ignored after the square law detector. The wavelength-to-time mapping relation 
can also be obtained: 
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It describes the basic function of PASTA, which maps the spectra information into temporal 
domain and enables the real-time spectrum analysis. However, limited by the FWM 
conversion bandwidth and amplification bandwidth, the original PASTA can only operate in 
C band. To enlarge the observation bandwidth within the amplification bandwidth, the two 
conversion bands of the FWM process attract our attention, and it corresponds to the C-band 
and L-band, respectively. However, if the signal of both C-band and L-band are launched into 
the PASTA system simultaneously, as shown in Fig. 1(a), their newly generated idlers and 
original signal will overlapped with each other, and cannot be separated in the output time 
axis. To circumvent this problem, the TDM technology is introduced here: in two temporal 
adjacent frames, only single band is remained within each frame; therefore, different 
wavelength bands are observed in difference temporal windows, as shown in Figs. 1(b) and 
1(c). It is noted that, the observation bandwidth is almost doubled in this scheme, from 30 to 
58 nm, without introducing any tailor-made amplifiers or parametric mixing medium. 
Although the frame rate of this spectroscopy is halved accordingly, the enlarged observation 
bandwidth will definitely enable more applications. 

3. Experimental results and discussion 

Figure 2 gives the detailed signal flow graph of the proposed TDM based PASTA. The signal 
under test contains both C-band and L-band, which are first separated into two channels by a 
wavelength splitter, as shown in Fig. 2(b). To prevent the mixing with the newly generated 
idlers, the TDM is applied here, and includes two steps: the pulse picking Fig. 2(c) and the 
wavelength dependent time delay Fig. 2(d) by a frame period (Δτ = 50 ns, corresponds to the 
frame rate of 20 MHz). Then, the wideband signal in the TDM format is prepared for the 
conventional PASTA measurement, and the parametric mixing based time-lens is performed 
in Fig. 2(e). Here, the 1-nm chirped pump centered at 1561.5 nm is stretched by a spool of 
single mode fiber with a GDD of 2Φf (Φf = –1791.6 ps2), and it is acted as the pump of the 
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bandwidth. To overcome this constraint, in this paper, the TDM technology is introduced, 
which enables bidirectional conversion of the parametric mixing process, and the signal from 
C-band and L-band will be observed in time sequence. As a result, the TDM based PASTA 
extended the observation bandwidth to 58 nm, ranging from 1527.8 to 1554.8 nm and 1566.8 
to 1597.8 nm. It can be further improved with larger bandwidth amplifiers and more suitable 
filters. In addition, it has a spectral resolution of 20 pm, a sensitivity of –30 dBm (1 μW), and 
a frame rate of 10 MHz. It is believed that this TDM based PASTA is promising for a wider 
applications in ultrafast spectroscopy. 
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