- 1 Recovery of lacustrine ecosystems after the end-Permian
- 2 mass extinction
- 3 Xiangdong Zhao^{1,2§}, Daran Zheng^{1,3§}, Guwei Xie^{4,5,6}, Hugh C. Jenkyns⁷, Chengguo
- 4 Guan¹, Yanan Fang¹, Jing He⁴, Xiaoqi Yuan⁴, Naihua Xue^{1,2}, He Wang^{1,2}, Sha Li¹,
- 5 Edmund A. Jarzembowski^{1,8}, Haichun Zhang¹, and Bo Wang¹*
- 6 ¹State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology
- 7 and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese
- 8 Academy of Sciences, Nanjing 210008, China
- 9 ²[[Department?]]University of Science and Technology of China, Hefei 230026, China.
- ³Department of Earth Sciences, The University of Hong Kong, Hong Kong Special
- 11 Administrative Region, China[[Postal code?]]
- 12 ⁴Institute of Exploration, Development and Research, PetroChina Company Limited,
- 13 Changqing Oilfield Branch, Xi'an SX 710018, China
- ⁵National Engineering Laboratory for Exploration and Development of Low-Permeability
- 15 Oil and Gas Fields, Xi'an SX 710018, China.
- ⁶Department of Geology, Northwest University, Xi'an 710069, China
- ¹⁷ ⁷Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
- 18 ⁸Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
- 19 *E-mail: bowang@nigpas.ac.cn
- 20 [§]These authors contributed equally to this work

21 ABSTRACT

22 The end-Permian mass extinction (EPME; ca. 252 Ma) led to profound changes in 23 lacustrine ecosystems. However, whether or not post-extinction recovery of lacustrine 24 ecosystems was delayed has remained uncertain, due to the apparent rarity of Early and 25 Middle Triassic deep perennial lakes. Here we report on mid–Middle Triassic lacustrine 26 organic-rich shales with abundant fossils and tuff interlayers in the Ordos Basin of China, 27 dated to ca. 242 Ma (around the Anisian-Ladinian boundary of the Middle Triassic). The 28 organic-rich sediments record the earliest known appearance, after the mass extinction, of 29 a deep perennial lake that developed at least 5 m.y. earlier than the globally distributed 30 lacustrine shales and mudstones dated as Late Triassic. The fossil assemblage in the 31 organic-rich sediments is diverse and includes plants, notostracans, ostracods, insects, 32 fishes, and fish coprolites, and thus documents a Mesozoic-type, trophically multileveled 33 lacustrine ecosystem. The results reveal the earliest known complex lacustrine ecosystem 34 after the EPME and suggest that Triassic lacustrine ecosystems took at most 10 m.y. to 35 recover fully, which is consistent with the termination of the "coal gap" that signifies 36 substantial restoration of peat-forming forests.

37 INTRODUCTION

The end-Permian mass extinction (EPME; ca. 252 Ma) was the greatest biological and ecological crisis of the Phanerozoic Eon on Earth, and caused a transformation from Paleozoic to modern evolutionary fauna, which built new ecosystems that have persisted to

41	the present day (Benton and Newell, 2014; Wignall, 2015). Ecosystem recovery after the
42	EPME was seemingly delayed because the subsequent Early Triassic interval was
43	characterized by recurrent, rapid global warming and harsh marine and terrestrial
44	conditions (Algeo et al., 2011; Retallack et al., 2011; Chen and Benton, 2012; Sun et al.,
45	2012). Marine ecosystems are thought to have recovered substantially by the middle to late
46	Anisian, 8–10 m.y. after the EPME (Chen and Benton, 2012), and their restoration was still
47	ongoing in the latest Triassic (Song et al., 2018).
48	The timing and pattern of recovery of marine ecosystems are relatively well known
49	worldwide, but the pattern of recovery of lacustrine ecosystems is still unclear due to the
50	highly fragmentary freshwater fossil record (Benton and Newell, 2014; Hochuli et al.,
51	2016; Nowak et al., 2019; Vajda et al., 2020). Although occupying only a small area, lakes
52	potentially play an important role in the global cycling of dissolved geochemical species
53	(Cohen, 2003). Studies of post-extinction recovery of lacustrine environments can provide
54	a better understanding of how such ecosystems have responded geologically to global
55	warming (Mendonça et al., 2017). However, Lower Triassic and lower Middle Triassic
56	continental records are fluvially dominated successions with only local lacustrine deposits
57	that were shallow, ephemeral, and evaporitic in character (Gierlowski-Kordesch and Kelts,
58	1994; Gall and Grauvogel-Stamm, 2005; Benton and Newell, 2014; Buatois et al., 2016).
59	Until now, the oldest known Mesozoic complex lacustrine ecosystem was dated to the
60	latest Middle Triassic-earliest Late Triassic in China and central Asia (ca. 237 Ma)

61	(Buatois et al., 2016; Zheng et al., 2018); older Mesozoic complex lacustrine ecosystems
62	were unknown either because they had not yet evolved or because their sedimentary
63	records had not been found. Here we extend the record of such systems back in time by
64	describing mid-Triassic lacustrine organic-rich shales containing abundant tuff interlayers
65	and fossils (ca. 242 Ma) from three outcrops in the Ordos Basin of northwestern China
66	(Fig. 1). The fossil assemblage reveals a diverse Mesozoic-type, trophically multileveled
67	ecosystem that represents the earliest-known such ecosystem after the EPME and suggests
68	that such ecosystems took as long as 10 m.y. to recover fully.
69	MATERIALS AND METHODS
70	The Ordos Basin is a continental basin developed on the Paleozoic North China
71	craton whose freshwater character without marine influence has been identified on
72	paleontological and geochemical grounds (Qiu et al., 2015; Zheng et al., 2018; Du et al.,
73	2019). The Triassic continental strata in the Ordos Basin include, from bottom to top, the
74	Liujiagou Formation, Heshanggou Formation, Ermaying Formation, Tongchuan
75	Formation, and Yanchang Formation (Deng et al., 2018; Zheng et al., 2018).
76	A well-known section, the 1980-m-thick Qishuihe outcrop (35°14'50.29"N,
77	109°0'45.10"E) was investigated to locate the earliest appearance of a Triassic coal seam.
78	The organic-rich shale was documented in three sections: the 31.2-m-thick Bawangzhuang
79	outcrop (35°14'2.83"N, 109°2'28.86"E), the 31.4-m-thick Mazhuang outcrop
80	(35°19'19.54"N, 109°14'39.37"E), and the 38.9-m-thick Yishicun outcrop

81	(35°11'34.21"N, 108°51'6.04"E). We analyzed the U-Pb isotopic ages of tuffaceous layers
82	(tuff, tuffaceous sandstone, volcanic ash) in these three outcrops to constrain the age of the
83	organic-rich shale and its associated biota (Figs. DR1D–DR1F in the GSA Data
84	Repository ¹). Four samples were collected for dating, including one tuff sample (BW-1)
85	from the Bawangzhuang outcrop, one tuffaceous sandstone sample (MZ-1) from the
86	Mazhuang outcrop, and two volcanic ash samples (YQ-1 and YQ-2) from the Yishicun
87	outcrop. U-Pb isotopic data from zircons were obtained at the Department of Earth
88	Sciences, The University of Hong Kong, using a Nu Instruments multi-collector (MC)
89	inductively coupled plasma mass spectrometer (ICP-MS) with a Resonetics RESOlution
90	M-50-HR excimer laser ablation system. More laboratory details are given in the Data
91	Repository.
91 92	Repository. RESULTS AND DISCUSSION
92	RESULTS AND DISCUSSION
92 93	RESULTS AND DISCUSSION Sedimentology and Paleontology
92 93 94	RESULTS AND DISCUSSION Sedimentology and Paleontology The Ordos Basin is the second-largest sedimentary basin in China (Fig. 1; Qiu et
92 93 94 95	RESULTS AND DISCUSSION Sedimentology and Paleontology The Ordos Basin is the second-largest sedimentary basin in China (Fig. 1; Qiu et al., 2015). The upper part of the Tongchuan Formation and Yanchang Formation are
92 93 94 95 96	RESULTS AND DISCUSSION Sedimentology and Paleontology The Ordos Basin is the second-largest sedimentary basin in China (Fig. 1; Qiu et al., 2015). The upper part of the Tongchuan Formation and Yanchang Formation are particularly rich in organic matter (Du et al., 2019). The lower part of the Tongchuan
92 93 94 95 96 97	RESULTS AND DISCUSSION Sedimentology and Paleontology The Ordos Basin is the second-largest sedimentary basin in China (Fig. 1; Qiu et al., 2015). The upper part of the Tongchuan Formation and Yanchang Formation are particularly rich in organic matter (Du et al., 2019). The lower part of the Tongchuan Formation was long thought to be dominated by sandstone (Zheng et al., 2018). However,

101	yielded abundant fossils, including microalgae (Yang et al., 2016), macroalgae (Yang et
102	al., 2016), notostracans (tadpole shrimps; Fig. 3J), ostracods (seed shrimps; Fig. 3I),
103	insects (Figs. 3F and 3G), fishes (Fig. 3H; Fig. DR2), and fish coprolites (Figs. 3A-3E).
104	These fossils show conclusively that the organic-rich shales are lacustrine, consistent with
105	previous interpretations based on paleontological and geochemical evidence (Qiu et al.,
106	2015; Zheng et al., 2018; Du et al., 2019). Tuffs are extremely abundant in the studied
107	sections, especially in the Bawangzhuang outcrop where there are >30 such layers (Fig.
108	DR1).
109	The insect assemblage is dominated by aquatic beetles (Figs. 3F and 3G), which
110	typically have a particularly hard chitinous exoskeleton that gives them a high preservation
111	potential within the sediment. Spirally coiled coprolites are also abundant in the
112	organic-rich shale and display a well-defined heteropolar structure (Figs. 3A-3C). The
113	chitinous mandibles of predatory dipteran larvae are found in phosphatized coprolites.
114	These mandibles are ~ 0.1 mm long, have dark-colored tips (Figs. 3D and 3E), and are
115	broad, strong spines that are very weakly bent in lateral view, similar to those of chaoborid
116	larvae (Richter and Baszio, 2001). The fish coprolites range from 55.6 mm to 77.7 mm in
117	length, suggesting that the fish were large. However, the largest skeletal fragment found so
118	far is estimated to derive from a fish no longer than 250 mm (Fig. DR2). By contrast, the
119	coiled coprolites probably belonged to larger cartilaginous fish predators that have a spiral

120	valve. Importantly, because they occupy the higher trophic guilds in lake food chains, top
121	predators such as large fish are important indicators of the presence of complex food webs.
122	Our U-Pb isotopic ages of tuffaceous layers in three outcrops extend the oldest age
123	of the Triassic organic-rich shale to 242 Ma (Fig. 2), near the Anisian-Ladinian boundary
124	(Cohen et al., 2013), which is consistent with the thermal ionization mass spectrometry
125	(TIMS) zircon U-Pb dating age (241.558 Ma) of the lower part of the Tongchuan
126	Formation near Yishicun (Zhu et al., 2019; Chu et al., 2020). In addition, the result is also
127	supported by the presence of the notostracan Xinjiangiops, which is restricted to the lower
128	part of the Tongchuan Formation (Xie et al., 2015). The age of this Triassic organic-rich
129	shale in the Ordos Basin has been widely thought to lie within the Late Triassic Epoch (Du
130	et al., 2019; Sun et al., 2019). However, our findings reveal that Middle Triassic
131	organic-rich shale is present in three discrete outcrops extending over a lateral distance of
132	40 km. Its absence in the Qishuihe section is probably due to local facies variation, which is
133	common in this area near the southern margin of the basin (Fig. 1). Combined with the
134	results from the southwestern Ordos Basin (Deng et al., 2018), our findings suggest that
135	this distinctive facies may have been widespread in the southern Ordos Basin during the
136	early-middle Ladinian and provide new insight into the Triassic sedimentary history of the
137	area.

138 **Recovery of Lacustrine Ecosystems after the EPME**

139	This account details the oldest record of lacustrine organic-rich shales after the
140	EPME. Despite the presence of suitable tectonic settings for deep perennial lakes (e.g.,
141	linear rift basins), Early Triassic and early Middle Triassic lacustrine deposits are shallow,
142	ephemeral, and evaporitic, probably due to the high global temperatures and rates of
143	evaporation relative to water input (Benton and Newell, 2014); continental records are
144	fluvially dominated successions. This pattern of sedimentation was also characteristic of
145	the Ordos Basin, with lowest Middle Triassic deposits (Ermaying Formation) being
146	purple-colored fluvially dominated facies (Yang et al., 2016). Post-dating the
147	purple-colored fluvially dominated successions, the organic-rich shale in the lower part of
148	the Tongchuan Formation represents the first known appearance of a deep perennial lake
149	after the EPME, which developed at least 5 m.y. earlier than the worldwide occurrence of
150	deepwater, organic-rich lacustrine shales and mudstones of the Late Triassic (Smith, 1990;
151	Gierlowski-Kordesch and Kelts, 1994).
152	The results provide data on the earliest known Triassic complex lacustrine
153	ecosystem. Primary producers included various micro- and macroalgae, together with
154	some notostracans, ostracods, and insects that fed on algae as primary consumers.
155	Second-level consumers included some predatory insects (such as chaoborid larvae), with
156	higher-order trophic levels being represented by predatory fish. Such an ecosystem is a key
157	character of Mesozoic lakes (Ponomarenko, 1996), which were different from
158	pre-Mesozoic lakes in which dipteran larvae were absent and aquatic beetles were rare

159	(Cohen, 2003). We regard the occurrence of a Mesozoic-type, trophically multileveled
160	lacustrine ecosystem as the hallmark of freshwater ecosystem recovery following the
161	EPME. This transition from pre-Mesozoic to Mesozoic lacustrine ecosystems was partly
162	driven by the radiation of aquatic insects (Zheng et al., 2018), which is thought to have
163	been part of the so-called Mesozoic lacustrine revolution (Buatois et al., 2016).
164	The restoration of a complex lacustrine ecosystem (at ca. 242 Ma) was coincident
165	with the termination of the "coal gap", which was an interval of ~ 10 m.y. when no coals
166	were deposited worldwide (Retallack et al., 1996, 2011). In the Ordos Basin, the oldest
167	known Triassic coal seam occurs in the uppermost part of the Ermaying Formation (Fig. 1;
168	Fig. DR1C), the age of which is slightly greater than that of the organic-rich shale
169	described herein (Yang et al., 2016). The appearance of Triassic coal seams is generally
170	considered to represent the substantial recovery of peat-forming forests following the mass
171	extinction (Retallack et al., 2011; Benton and Newell, 2014; but see McElwain and
172	Punyasena, 2007; Vajda et al., 2020). Therefore, both lake and peat-forming forest
173	ecosystems probably took as long as 10 m.y. to recover, much longer than the period of
174	recovery of plant communities inferred from palynological data (Hermann et al., 2011;
175	Vajda et al., 2020).
176	The hot Early Triassic climate would have limited dissolved oxygen in lakes,
177	potentially hindering ecosystem recovery. A subsequent major increase in marine carbon
178	burial in the Anisian could, however, have caused CO ₂ drawdown and global cooling,

179	improving lacustrine conditions (Chen and Benton, 2012; Sun et al., 2012; Grasby et al.,
180	2016, 2019). In addition, the abundant volcanic ash likely transferred nutrients into the
181	water and probably significantly increased the efficiency of primary productivity in the
182	Ordos Basin (Zeng et al., 2018). Therefore, both the climate cooling and high volcanic
183	nutrient input most likely facilitated development of this complex lake community. The
184	near-coeval recovery of both aquatic and non-aquatic terrestrial ecosystems may suggest
185	that they were tightly linked through biological, physical, and chemical interactions.
186	ACKNOWLEDGMENTS
187	We thank V. Baranov, Zhikun Gai, Guanghui Xu, and Wei Wang for valuable
188	discussions, and J. Schmitt, M. Benton, S.E. Grasby, and one anonymous reviewer for
189	insightful comments. This work was supported by the Strategic Priority Research Program
190	of the Chinese Academy of Sciences (XDB26000000) and the National Natural Science
191	Foundation of China (grants 41688103 and 41730317). This is a Leverhulme Emeritus
192	Fellowship contribution for Jarzembowski.
193	REFERENCES CITED
194	Algeo, T.J., Chen, Z., Fraiser, M.L., and Twitchett, R.J., 2011, Terrestrial-marine
195	teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems:

- 196 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 1–11,
- 197 <u>https://doi.org/10.1016/j.palaeo.2011.01.011</u>.

- 198 Benton, M.J., and Newell, A.J., 2014, Impacts of global warming on Permo-Triassic
- 199 terrestrial ecosystems: Gondwana Research, v. 25, p. 1308–1337,
- 200 <u>https://doi.org/10.1016/j.gr.2012.12.010</u>.
- 201 Buatois, L.A., Labandeira, C.C., Mángano, M.G., Cohen, A., and Voigt, S., 2016, The
- 202 Mesozoic Lacustrine Revolution, *in* Mángano, M.G., and Buatois, L.A., eds., The
- 203 Trace-Fossil Record of Major Evolutionary Events, Volume 2: Mesozoic and
- 204 Cenozoic: Dordrecht, Springer, Topics in Geobiology, v. 40, p. 179–263,
- 205 <u>https://doi.org/10.1007/978-94-017-9597-5_4</u>.
- 206 Chen, Z.Q., and Benton, M.J., 2012, The timing and pattern of biotic recovery following
- 207 the end-Permian mass extinction: Nature Geoscience, v. 5, p. 375–383,
- 208 <u>https://doi.org/10.1038/ngeo1475</u>.
- 209 Chu, R.J., Wu, H.C., Zhu, R.K., Fang, Q., Deng, S.H., Cui, J.W., Yang, T.S., Li, H.Y.,
- 210 Gao, L.W., and Zhang, S.H., 2020, Orbital forcing of Triassic megamonsoon activity
- 211 documented in lacustrine sediments from Ordos Basin, China: Palaeogeography,
- 212 Palaeoclimatology, Palaeoecology, v. 541, 109542,
- 213 <u>https://doi.org/10.1016/j.palaeo.2019.109542</u>.
- 214 Cohen, A.S., 2003, Paleolimnology: The History and Evolution of Lake Systems: Oxford,
- 215 UK, Oxford University Press, 528 p.

- 216 Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.X., 2013, The ICS International
- 217 Chronostratigraphic Chart: Episodes, v. 36, p. 199–204,
- 218 <u>https://doi.org/10.18814/epiiugs/2013/v36i3/002</u>.
- 219 Deng, S.H., Lu, Y.Z., Luo, Z., Fan, R., Li, X., Zhao, Y., Ma, X.Y., Zhu, R.K., and Cui,
- J.W., 2018, Subdivision and age of the Yanchang Formation and the Middle/Upper
- 221 Triassic boundary in Ordos Basin, North China: Science China: Earth Sciences, v. 61,
- 222 p. 1419–1439, <u>https://doi.org/10.1007/s11430-017-9215-3</u>.
- 223 Du, J.M., Zhao, Y.D., Wang, Q.C., Yu, Y.Q., Xiao, H., Xie, X.K., Du, Y.G., and Su, Z.M.,
- 224 2019, Geochemical characteristics and resource potential analysis of Chang 7
- organic-rich black shale in the Ordos Basin: Geological Magazine, v. 156, p. 1131–
- 226 1140, <u>https://doi.org/10.1017/S0016756818000444</u>.
- 227 Gall, J.-C., and Grauvogel-Stamm, L., 2005, The early Middle Triassic 'Grès à Voltzia'
- Formation of eastern France: Comptes Rendus Palévol, v. 4, p. 637–652,
- 229 https://doi.org/10.1016/j.crpv.2005.04.007.
- 230 Gierlowski-Kordesch, E., and Kelts, K., 1994, Global Geological Record of Lake Basins,
- 231 Volume 1: Cambridge, UK, Cambridge University Press, 427 p.
- 232 Grasby, S.E., Beauchamp, B., and Knies, J., 2016, Early Triassic productivity crises
- delayed recovery from world's worst mass extinction: Geology, v. 44, p. 779–782
- 234 <u>https://doi.org/10.1130/G38141.1</u>.

235	[[Update?]]Grasby, S.E., Knies, J., Beauchamp, B., Bond, D.P.G., Wignall, P., and Sun,
236	Y.D., 2019, Global warming leads to Early Triassic nutrient stress across northern
237	Pangea: Geological Society of America Bulletin, <u>https://doi.org/10.1130/B32036.1</u> (in
238	press).
239	Hermann, E., Hochuli, P.A., Bucher, H., Brühwiler, T., Hautmann, M., Ware, D., and
240	Roohi, G., 2011, Terrestrial ecosystems on North Gondwana in the aftermath of the
241	end-Permian mass extinction: Gondwana Research, v. 20, p. 630-637,
242	https://doi.org/10.1016/j.gr.2011.01.008.
243	Hochuli, P.A., Sanson-Barrera, A., Schneebeli-Hermann, E., and Bucher, H., 2016,
244	Severest crisis overlooked—Worst disruption of terrestrial environments postdates the
245	Permian-Triassic mass extinction: Scientific Reports, v. 6, 28372,
246	https://doi.org/10.1038/srep28372.
247	McElwain, J.C., and Punyasena, S.W., 2007, Mass extinction events and the plant fossil
248	record: Trends in Ecology & Evolution, v. 22, p. 548-557,
249	https://doi.org/10.1016/j.tree.2007.09.003.
250	Mendonça, R., Müller, R.A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L.J., and
251	Sobek, S., 2017, Organic carbon burial in global lakes and reservoirs: Nature
252	Communications, v. 8, 1694, https://doi.org/10.1038/s41467-017-01789-6.

253 Nowak, H., Schneebeli-Hermann, E., and Kustatscher, E., 2019, No mass extinction for 254 land plants at the Permian–Triassic transition: Nature Communications, v. 10, 384, 255 https://doi.org/10.1038/s41467-018-07945-w. 256 Ponomarenko, A.G., 1996, Evolution of continental aquatic ecosystems: Paleontological 257 Journal, v. 30, p. 705–709. 258 Qiu, X.W., Liu, C.Y., Mao, G.Z., Deng, Y., Wang, F.F., and Wang, J.Q., 2015, Major, 259 trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot 260 shales in the Ordos basin, Central China: Applied Geochemistry, v. 53, p. 42–52, 261 https://doi.org/10.1016/j.apgeochem.2014.11.028. 262 Retallack, G.J., Veevers, J.J., and Morante, R., 1996, Global coal gap between 263 Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants: 264 Geological Society of America Bulletin, v. 108, p. 195–207, 265 https://doi.org/10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2. 266 Retallack, G.J., Sheldon, N.D., Carr, P.F., Fanning, M., Thompson, C.A., Williams, M.L., 267 Jones, B.G., and Hutton, A., 2011, Multiple Early Triassic greenhouse crises impeded 268 recovery from Late Permian mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 233–251, https://doi.org/10.1016/j.palaeo.2010.09.022. 269 Richter, G., and Baszio, S., 2001, Traces of a limnic food web in the Eocene Lake 270 271 Messel—A preliminary report based on fish coprolite analyses: Palaeogeography,

- 272 Palaeoclimatology, Palaeoecology, v. 166, p. 345–368,
- 273 <u>https://doi.org/10.1016/S0031-0182(00)00218-2</u>.
- 274 Smith, M.A., 1990, Lacustrine oil shale in the geologic record, in Katz, B.J., ed.,
- 275 Lacustrine Basin Exploration: Case Studies and Modern Analogues: American
- Association of Petroleum Geologists Memoir 50, p. 43–60,
- 277 https://doi.org/10.1306/M50523C3.
- 278 Song, H.J., Wignall, P.B., and Dunhill, A.M., 2018, Decoupled taxonomic and ecological
- 279 recoveries from the Permo-Triassic extinction: Science Advances, v. 4, eaat5091,
- 280 https://doi.org/10.1126/sciadv.aat5091.
- 281 Sun, Y.D., Joachimski, M.M., Wignall, P.B., Yan, C.B., Chen, Y.L., Jiang, H.S., Wang,
- L.N., and Lai, X.L., 2012, Lethally hot temperatures during the Early Triassic
- 283 greenhouse: Science, v. 338, p. 366–370, <u>https://doi.org/10.1126/science.1224126</u>.
- 284 [[Update?]]Sun, Y.W., Li, X., Liu, Q.Y., Zhang, M.D., Li, P., Zhang, R., and Shi, X.,
- 285 2019, In search of the inland Carnian Pluvial Event: Middle–Upper Triassic transition
- 286 profile and U-Pb isotopic dating in the Yanchang Formation in Ordos Basin, China:
- 287 Geological Journal, <u>https://doi.org/10.1002/gj.3691</u> (in press).
- 288 Vajda, V., McLoughlin, S., Mays, C., Frank, T.D., Fielding, C.R., Tevyaw, A., Lehsten,
- 289 V., Bocking, M., and Nicoll, R.S., 2020, End-Permian (252 Mya) deforestation,
- 290 wildfires and flooding—An ancient biotic crisis with lessons for the present: Earth and

- 291 Planetary Science Letters, v. 529, 115875,
- 292 <u>https://doi.org/10.1016/j.epsl.2019.115875</u>.
- 293 Wignall, P.B., 2015, The Worst of Times: How Life on Earth Survived Eighty Million
- 294 Years of Extinction: Princeton, New Jersey, Princeton University Press, 224 p.
- Xie, G.W., Ye, M.F., Feng, S.B., Yuan, X.Q., and He, J., 2015, Lake Triassic triops from
- 296 Chang 7 member, Yanchang Formation of Yijun County, Shanxi Province and its
- scientific significance: Acta Palaeontologica Sinica, v. 54, p. 381–386 (in Chinese
- with English abstract).
- 299 Yang, H., Fu, J., and Yuan, X., 2016, Atlas of Geological Sections of Southern Margin of
- 300 Ordos Basin: Beijing, Petroleum Industry Press, 503 p.
- 301 Zeng, Z.R., Pike, M., Tice, M.M., Kelly, C., Marcantonio, F., Xu, G.J., and Maulana, I.,
- 302 2018, Iron fertilization of primary productivity by volcanic ash in the Late Cretaceous
- 303 (Cenomanian) Western Interior Seaway: Geology, v. 46, p. 859–862,
- 304 <u>https://doi.org/10.1130/G45304.1</u>.
- 305 Zheng, D.R., Chang, S.C., Wang, H., Fang, Y., Wang, J., Feng, C.Q., Xie, G.W.,
- 306 Jarzembowski, E.A., Zhang, H.C., and Wang, B., 2018, Middle-Late Triassic insect
- 307 radiation revealed by diverse fossils and isotopic ages from China: Science Advances,
- 308 v. 4, eaat1380, <u>https://doi.org/10.1126/sciadv.aat1380</u>.
- 309 Zhu, R.K., Cui, J.W., Deng, S.H., Luo, Z., Lu, Y.Z., and Qiu, Z., 2019, High-precision
- 310 dating and geological significance of Chang 7 tuff zircon of the Triassic Yanchang

311	Formation, Ordos Basin in central China: Acta Geologica Sinica, v. 93, p. 1823–1834,
312	https://doi.org/10.1111/1755-6724.14329.
313	FIGURE CAPTIONS
314	Figure 1. Geographic map of study area. (A) Location of Ordos Basin in northwestern
315	China (modified from Sun et al., 2019). Gray area represents North China plate. (B)
316	Locations of four outcrops, enlarged from red inset in A. Numbers represent road numbers.
317	[[In the figure, on scale bars, insert a space between the numeric value and units of
318	measure; in lat/lon labels, move "N" and "E" to the end of the label]]
319	
320	Figure 2. Stratigraphic columns showing lithologies, fossiliferous horizons, sample points,
321	and age results (see Fig. 1 for locations). Lower Ladinian organic-rich shale is absent from
322	Qishuihe outcrop, but is well developed in other three outcrops.
323	[[In the figure, there appear to be a couple of lithologic symbols used in the columns
324	that are not shown in the legend (near the bottom of Qishuihe, green with single dots
325	[sandstone]; near the top of Bawangzhuang, brown with double dots [siltstone]) –
326	please check/fix; in height measurements, insert a space between the numeric value
327	and units of measure]]
328	
329	Figure 3. Representative fossils from organic-rich shale and mudstone of the Tongchuan
330	Formation (Ordos Basin, China). (A–C) Fish coprolites from Bawangzhuang outcrop. (D)

331	Sliced photomicrograph showing chitinous mandibles of predatory dipteran larvae in fish
332	coprolite. (E) Enlargement from blue inset in D. (F,G) Beetle (Insecta: Coleoptera) from
333	Mazhuang outcrop. (H) Fish (Neopterygii) from Mazhuang outcrop. (I) Tungchuania sp.
334	(Limnocytheridae) from Mazhuang outcrop. (J) Xinjiangiops sp. (Triopsidae) from
335	Mazhuang outcrop. Scale bars: 20 mm (A–C), 10 mm (H–J), 5 mm (G), 2 mm (F), 0.2 mm
336	(D), and 0.1 mm (E).
337	
338	¹ GSA Data Repository item 2020xxx, supplementary figures and data tables, is available
339	online at http://www.geosociety.org/datarepository/2020/, or on request from

340 editing@geosociety.org.