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Abstract

Background Although numerous efforts have been devoted t@xploring the effects ofarea
wide factors on the frequency of pedestrian crashesin neighborhoodsover the past two
decadesexisting studies have largely failed to provide a full picture of the factors that
contribute to the incidence ofzonal pedestriancrashes, due to the unavailability of reliable
exposure data and use oflesssound analytical methods.

Methods Based on a crowdsourced dataset in Hong Kong, we first proposed a procedure
to extract pedestrian trajectories fromtravel-diary survey data. We then aggregated these
data to 209 neighborhoodsand developed a Bayesian spatially varying coefficients model
to investigate the spatially non-stationary relationships betweenthe number of pedestrian-
motor vehicle (PMV) crashes and related risk factors. To dissect the role of pedestrian
exposure, the estimated coefficients of models with population, walking trip, walking time,
and walking distance as the measure of pedestrian exposure were presented and compared.
Results Our results indicated substantial  inconsistenciesin the effects of several risk
factors between the models of population and activitybasedexposure measures. The model
using walking trips as the measure of pedestrian exposuread the best goodnessof-fit. We
also provided new insights that in addition to the unstructured variability, heterogeneity

in the effects of explanatory variables on the frequency of PMV crashescould also arise
from the spatially correlated effects. After adjusting for vehicle volume and pedestrian
activity, road density, intersection density, bus stop density, and the number of parking
lots were found to be positively associated with PMV crash frequency, whereas the
percentage of motorways and median monthly incomehad negative associations with the
risk of PMV crashes.

Conclusions. The use of population or population density as a surrogate for pedestrian
exposure when modeling the frequency ofzonal pedestrian crashesis expectedto produce
biased estimations and invalid inferences.  Spatial heterogeneity should also not be
negligible when modeling pedestrian crashes involving contiguousspatial units.

Keywords. Pedestrian safety; Crash frequency; Activity -based exposuremeasures Spatial
correlation; Spatial heterogeneity
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1. Introduction

Of the active models of transport, walking has the advantages of reducing traffic congestion,
greenhouse gas emissions, and traffic noise. Around the world, walking is also a popular
physical and recreational activity, particularly among children and the elderly. Indeed,
with the increasing number of shortdistance trips, growing levels of traffic congestion, and
higher parking costs in metropolitan areas, people are increasingly encouraged to walk
more as a viable and sustainable mode of trangort (Maibach et al., 2009).

Despite the well -documented benefits of walking, pedestrians are among the most
vulnerable road userswith substantially higher risks of fatality and injury than motorists
(Retting et al., 2003; Zegeer and Bushe)l2012; Stokeret al., 2015. This is especially the
case in urban areas with a dense population, where walking is indispensablein ensuring
affordable and adequate mobilities for most local residents. An in-depth understanding of
the factors that contribute to  pedestrian crashes is therefore imperative if walking is
promoted as a safe and attractive mode of transport. Improvements in safety would also
encourage more people to walk on a regular basis for daily travel, thereby fostering a more
livable community.

Over the past two decadesmodeling pedestrian crashesinvolving contiguous spatial
units, such as census tracts and traffic analysis zones, has attracted extensive research
interest from traffic safety analysts (see Table A). This allows local authorities to identify
the clustering pattern of pedestrian crashes, to better determine the zonal factors that
contribute to the incidence of pedestrian crashes, and to recommend areawide
countermeasures

Previous studies have suggested that the number of pedestrian crashes in a
neighborhood increa®d significantly with the increase s in traffic volume (LaScala et al.,
2000; Loukaitou-Sideris et al. , 2007; Wier et al. , 2009; Cottrill and Thakuriah , 2010;
Dumbaugh and Zhang, 2013; Wang and Kockelman, 2013; DiMaggio, 2015; Lee et al.
2015; Cai et al,, 2016, 2013; Guo et al., 2017; Osama and Sayed2017; Tasic et al, 2017,
Xie et al., 2017; Goel et al., 2018 and pedestrian volume (Sebert Kuhimann et al., 2009
Wang and Kockelman, 2013; Cai et al., 2016; Chen and Zhou, 2016; Guo et al., 2017;
Osama and Sayed, 2017; Tasic et al., 2017; Lee et al., 2019; Sze et al., 2019). However,
unlike vehicle volume which is readily obtained from counting stations, pedestrian volume
IS mostly surrogated as resident populatio n (LaScala et al., 2000; Noland and Quddus,
2004; Wier et al. , 2009; Chakravarthy et al. , 2010; Ha and Thill , 2011; Ukkusuri et al. ,
2011 2012 Siddiqui et al., 2012; Dumbaugh and Zhang2013; Graham et al, 2013; Noland
et al., 2013; DiMaggiq 2015; Lee et al. 2015; Wang et al, 2016; Goel et al, 2018; Rothman
et al., 2020) or population density ( Graham and Glaister, 2003; Priyantha Wedagama et
al., 2006; Loukaitou-Sideris et al., 2007; Cottrill and Thakuriah , 2010; Gai et al., 2017a)
due to data unavailability . This improper representation of pedestrian exposure, however,
very likely leads to biased estimations and incorrect inferences (Steinbach et al., 2014.
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Although a limited number of studies have recently used walking trips (Sebert K uhlmann
et al., 2009; Delmelle et al., 2012; Cai et al., 2016; Chen and Zhou, 2016; Guo et al., 2017,
Osama and Sayed, 2017; Tasic et al., 2017; Ding et al., 2018; Sze et al., 2019), walking
miles (Wang and K ockelman, 2013), or walking hours (Lee et al., 2019; Sze et al., 2019)
to quantify pedestrian activities, the roles played by various exposure measures in the
performance of zonal pedestrian crash-frequency models have not been comprehensively
investigated and thus remain largely unknown.

R oad-network characteristics, such as intersection density (Graham and Glaister,
2003; Priyantha W edagama et al., 2006; Guo et al., 2017; Osama and Sayed, 2017; T asic
et al., 2017), intersection type (Ha and T hill, 2011; Ukkusuri et al., 2011, 2012; Cai et al.,
2016; Chen and Zhou, 2016; Wang et al., 2016; T asic et al., 2017; Sze et al., 2019), road
density (Graham et al., 2013; Wang et al., 2016; Sze et al., 2019), road function (Graham
and Glaister, 2003; Noland and Quddus, 2004; Wier et al., 2009; Ukkusuri et al., 2011,
2012; Dumbaugh and Zhang, 2013; Noland et al., 2013; Jermprapai and Srinivasan, 2014;
Cai et al., 2016, 2017a; Wang et al., 2016; T asic et al., 2017), speed limits (Siddiqui et al.,
2012; Lee et al., 2015), sidewalk density (Wang and K ockelman, 2013; Cai et al., 2016;
Chen and Zhou, 2016; Cai et al., 2017a), and network topology (Guo et al., 2017; Osama
and Sayed, 2017; Tasic et al., 2017) were found to be closely related to the frequency of
pedestrian crashes in a neighborhood. Land use was also reported to have a significant
influence on the incidence of pedestrian crashes. Specifically, higher percentages of
commercial (Priyantha W edagama et al., 2006; Loukaitou-Sideris et al., 2007; Wier et al.,
2009; Ukkusuri et al., 2011; Jermprapai and Srinivasan, 2014), residential (Priyantha
Wedagama et al., 2006; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Wang and
K ockelman, 2013), and industrial (Ukkusuri et al., 2011, 2012; Jermprapai and Srinivasan,
2014) land-use were associated with an increased likelihood of pedestrian crashes. Similar
conclusions hold true for the effect of land-use intensity (Wang et al., 2016). However,
inconsistent results were found for the effect of land-use mix, as Wang and K ockelman
(2013) reported a significantly negative relationship between mixed land-use and the
frequency of pedestrian crashes, whereas Chen and Zhou (2016), Guo et al. (2017), and
Xie et al. (2017) drew the opposite conclusion.

In addition, the prevalence of specific facilities, such as bus stops (Ukkusuri et al.,
2011; Lee et al., 2015; Xie et al., 2017; Goel et al., 2018), metro stations (Ukkusuri et al.,
2011, 2012; Jermprapai and Srinivasan, 2014; Lee et al., 2015), schools (Cottrill and
T hakuriah, 2010; Ukkusuri et al., 2011, 2012; Jermprapai and Srinivasan, 2014; Lee et al.,
2015), hotels (Lee et al., 2015; Cai et al.,, 2016), and licensed liquor outlets (Sebert
K uhlmann et al., 2009), was also found to significantly increase the likelihood of pedestrian
crashes in neighborhoods.

With respect to socio-economic characteristics, neighborhoods with a denser
population (LaScala et al., 2000; Graham and Glaister, 2003; L oukaitou-Sideris et al., 2007;
Sebert Kuhlmann et al., 2009; Chakravarthy et al., 2010; Cottrill and T hakuriah, 2010;
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Ha and T hill, 2011; Siddiqui et al., 2012; Graham et al., 2013; W ang and K ockelman, 2013;
Jermprapai and Srinivasan, 2014; Cai et al., 2016, 2017a), higher proportions of ethnic
minorities (L oukaitou-Sideris et al., 2007; Chakravarthy et al., 2010; Ukkusuri et al., 2011;
Lee et al., 2019) and less-educated population (LaScala et al., 2000; Chakravarthy et al.,
2010; Ukkusuri et al., 2011; Goel et al., 2018), more children (Graham et al., 2013) and
elderly people (Ukkusuri et al., 2012; Dumbaugh and Zhang, 2013; Xie et al., 2017; Lee et
al., 2019; Sze et al., 2019), lower vehicle ownership per capita (Cottrill and T hakuriah
2010; Noland et al. 2013), a higher unemployment rate (LaScala et al., 2000; Cai et al.,
2016; Xie et al., 2017), a higher poverty level (Wier et al., 2009; Chakravarthy et al., 2010;
Ha and Thill, 2011; Jermprapai and Srinivasan, 2014; Lee et al., 2015), and a lower
household median income (Siddiqui et al., 2012; Noland et al., 2013; Jermprapai and
Srinivasan, 2014; Cai et al., 2017a; Rothman et al., 2020) were also associated with more
pedestrian crashes.

T he relationship between the aforementioned explanatory variables and the number
of pedestrian crashes can be established using crash prediction models. T raditional P oisson
and negative-binomial models have a strong assumption that their observations should be
mutually independent (Lord and Mannering, 2010). T his fundamental hypothesis is almost
always violated (Mannering and Bhat, 2014), particularly because pedestrian crashes
collected in contiguous spatial units usually display spatial correlation (Ziakopoulos and
Y annis, 2020). A range of spatial statistical techniques have therefore been used to
incorporate this spatial dependence into pedestrian crash-frequency modeling. T he
Bayesian hierarchical models are most prevalent, in which the spatial correlation is
typically modeled via the intrinsic conditional autoregressive (CAR) prior proposed by
Besag et al. (1991) at the second level of hierarchy (Sebert K uhlmann et al., 2009; Siddiqui
et al., 2012; Graham et al., 2013; Noland et al., 2013; Wang and K ockelman, 2013;
DiMaggio, 2015; Lee et al., 2015; Chen and Zhou, 2016; Wang et al., 2016; Guo et al.,
2017; Osama and Sayed, 2017; Zeng et al., 2017, 2019, 2020; Goel et al., 2018; Lee et al.,
2019; Wen et al.,, 2019). Alternative CAR specifications were also introduced by
Richardson et al. (1992), Cressie (1993), and Leroux et al. (1999). Lee (2011) made a
comprehensive comparison and concluded that the model of Leroux et al. (1999) was the
most appealing, because it consistently performed well in the presence of spatial
independence and strong spatial correlation.

Although most safety analysts have attempted to tackle the spatial correlation in
model residuals, only a relatively limited number of studies have focused specifically on
spatial heterogeneity or spatial non-stationarity. Variables do not usually vary constantly
across space, and the relationship between pedestrian crashes and related risk factors may
not necessarily be fixed across the study area. T he capability of accounting for this spatial
heterogeneity by allowing parameters to vary spatially holds considerable promise.
Although a few studies have used the random-parameters count-data models to account
for the heterogeneous effects in pedestrian crash frequency (Ukkusuri et al., 2012; Sze et
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al., 2019), the regression coefficients in these random-parameters models typically arise
independently from some univariate distributions, and no attention is paid to the locations
to which the parameters refer. T his hypothesis may be inappropriate, particularly in cases
where the unobserved factors are correlated through space (Xu and Huang, 2015; Xu et
al., 2017). It is thus not surprising that Sze et al. (2019) reported a significantly negative
relationship between vehicle volume and the number of pedestrian crashes. T his counter-
intuitive finding is very likely attributed to the neglect of spatial correlated effects in their
random-parameters models. X u and Huang (2015) therefore advocated the development of
a model based on the principle that the estimated parameters on a geographical surface
are related to each other with closer values more similar than distant ones.

To address the spatially correlated effects in varying coefficients, one promising
approach is the geographically weighted regression model (F otheringham et al., 2002; Y ang
et al., 2020; Zhao et al., 2020). T his method is similar to local linear models, depending on
the calibration of multiple regression models for different geographical entities. R ecent
studies have empirically demonstrated the superiority of the method, with a substantially
improvement in goodness-of-fit and the ability to explore the spatially varying
relationships between crash counts and predictive factors (Hadayeghi et al., 2010; Li et al.,
2013; Pirdavani et al., 2014; Shariat-Mohaymany et al., 2015; Xu and Huang, 2015; Y ao
et al., 2015; Bao et al., 2017; Huang et al., 2018; Gomes et al., 2019; Hezaveh et al., 2019;
Ariannezhad et al., 2020). An alternatively potential method is the Bayesian spatially
varying coefficients (BSV C) models (X u et al., 2017), which has long been used in statistics
to examine the non-constant relationships between variables (Congdon, 1997). Such an
approach fits naturally into the Bayesian paradigm, where all parameters are treated as
stochastic. Obviously, the BSV C model differs from the geographically weighted regression
model in that the former is a single statistical model specified in a hierarchical manner,
whereas the latter is an assembly of local spatial regression models. W heeler and Calder
(2007) conducted a series of simulation studies to evaluate the accuracy of regression
coefficients in these two types of models. T heir evidence suggested that the BSV C model
produced more reliable and easily interpreted inferences, thereby providing more flexibility.
However, to assume that the regression coefficients are spatially clustered solely is a strong
prior belief. In reality, spatial pooling with smoothly varying coefficients over contiguous
areas may exhibit over-smoothness (X u et al., 2017), particularly in the presence of clear
discontinuities (Congdon, 2014). In this vein, a robust model with a mechanism to
collectively accommodate the global and local smoothing would be favorable.

To summarize, despite that numerous research efforts have been devoted to the
development of various predictive models to explore the effects of area-wide factors on the
frequency of pedestrian crashes within the past two decades, existing studies have largely
failed to provide a full picture of the factors that contribute to the incidence of zonal
pedestrian crashes, mainly due to the unavailability of reliable exposure data and use of
less sound analytical methods. Based on a comprehensive dataset of 7,103 pedestrian-
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motor vehicle (PMV) crashes aggregated in 209 tertiary planning units (TPUs) over a 3-
year period in Hong Kong, our study aims to assess the geographical variations of PMV
crashes with respect to land-use, road-network attributes, traffic characteristics, the
presence of public facilities, and socio-demographic characteristics. Specifically, the
objectives of our study are: 1) to propose a procedure to extract pedestrian trajectories
from household travel-diary survey data and to dissect the role of various measures of
pedestrian exposure (i.e., population, walking trips, walking time, and walking distance)
in the performance of zonal PMV crash-frequency models; 2) to extend the fixed-
coefficients approach that is commonly used to model spatially correlated error-terms to
estimate the spatially non-stationary relationships within a full Bayesian context; and 3)
to identify the factors that contribute to the frequency of PMV crashes in neighborhoods
in an urban city. Based on our study, the spatially heterogeneous effects of various factors
on the frequency of PMV crashes are expected to be quantified. Such information is of
paramount importance for policymakers in the formulation and implementation of
multifaceted interventions to reduce environmental hazards and to remove barriers to
walking in targeted neighborhoods. The proposed procedure to extract pedestrian
trajectories from household travel-diary survey data and the developed BSV C model can
also be directly generalized to other regions when modeling the frequency of PMV crashes
to obtain more accurate and reliable estimations.

2. Methods
2.1 Data preparation

Our crash data were obtained from the Traffic Road Accident Database System, which is
maintained by the Hong Kong Police Force and the Hong Kong Transport  Department
(Xu et al., 20199. These data are collected by the police officers at the crash scenelléng
et al., 2017; Xie et al., 2018 ; Zhou et al., 2020). Only crashes that result in injuries are
recorded in the database. With available information on ge  ographical coordinates, the
crashes were first mapped onto an ArcGIS map and geo  -validated using a procedure
developed by Loo (2006). A total of 7 ,381 PMV crashes were reported by the police on
normal weekdays during 2010-2012. Of these, 96.23% were succaully geo-coded. These
crashes were then immediately aggregated at the TPU level, which is the smallest unit for
planning purpose in Hong Kong ( Yao and Loo, 2016. Initially, t he Hong Kong Planning
Department partitioned the whole territory as 289 TPUs in total in 2011 For the purpose
of privacy, 80 TPUs with a sparse population were then merged with their adjacent zones
by the Hong Kong Census Department wheneleasingthe 2011Population CensusReport.
The resulting 209-TPU system, with an average size of 5.31 km? and appromiately one
third of TPUs having an area of less than 1 km 2, was used as the spatial unit system of
our analysis, because itreadily matches the existing population census data and is capable
of quantifying the built environmental fact ors at a relatively fine geographical scale.
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T o assign the boundary crashes, a buffer zone with a radius of 100 ft (i.e. 30.48 m)
was created first around the TP U boundaries. Crashes located within the boundary buffer
were then allocated equally to the adjacent TPUs. T his half-to-half ratio assignment
method was recommended by Washington et al. (2010) and Xu et al. (2017). Other
variables were also spatially attached to their respective TPUs in an analogous manner.
Fig. 1illustrates the spatial distribution of PMV crashes in 209 T P Us on normal weekdays
during 2010-2012 in Hong Kong. The number of PMV crashes across TPUs was 34 on
average, with a minimum value of 0 to a maximum of 292.

T he vehicle flow data were derived from the Annual T raffic Census System, which
is maintained by the Hong Kong Transport Department. Each year, the Hong Kong
Transport Department publishes its traffic census reports with the vehicle flow data
recorded by the counting stations. In 2011, approximately 850 counting stations were
surveyed, covering over 85% of trafficable roads in Hong Kong (HKTD, 2012). By
multiplying the reported average annual daily traffic volume by the corresponding length
of road segments, the average daily vehicle kilometers traveled was obtained.

Pedestrian-motor vehicle crashes ) ™ 3 . L N ﬂb

Fig. 1. The spatial distribution of PMV crashes on normal weekdays in Hong Kong during
2010-2012.

To estimate the city-wide pedestrian exposure the 2011 Travel Characteristics
Survey (HKTD, 20149 released by the Hong Kong Transport Department was used.
Between September 2011 and January 2012, a random sample of 35,401 households
(approximately 1.5% of domestic household$ was successfully enumerated. Respondents
were asked to recall all types of activities they had engaged in on the preceding weekday
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(excluding Saturdays, Sundays, and public holidays). For each trip, detailed information
on origin and destination, trip purpose, departure time, arrival time, and trip duration
was recorded accordingly. T he collected trip records were then extrapolated to the entire
population and were further adjusted for underreporting by comparison with independent
transportation statistics (T o et al., 2005). T o estimate pedestrian activities within each
TPU, as illustrated in Fig. 2, all of the walking trips including the walk-only trips and
walking trip legs were first plotted on the ArcGIS map, with the centroid of street blocks
as a trip’s origin or destination. In Hong Kong, the street blocks are the smallest
enumeration units delineated by the Hong Kong Planning Department. T here are 4,993
street blocks across the whole territory, with an average area of 0.22 km’. For inter-zone
trips whose origin and destination were not within the same street block, the shortest
network path was calculated using the Dijkstra algorithm (Dijkstra, 1959). T hese shortest
walking paths were then overlaid with the street block map to extract the part of the
routes within the boundary of each street block. Given the reported trip duration, together
with an assumption that people walked at a constant speed throughout their trips, the
walking time of each inter-zone trip within corresponding street blocks could then be
calculated. Finally, by spatially joining the street blocks with the TPU map, the walking
time within each TPU was obtained. A similar procedure was used to estimate the walking
distance at the TPU level, as detailed in Fig. 3. Here we estimated the walking distance
for intra-zone trips by multiplying the self-reported walking time by average walking speed
stratified by sex and age groups. Age- and sex-specific walking speeds were calculated by
dividing the total distance of shortest walking paths estimated for the inter-zone trips by
corresponding walking time, as presented in T able A2. Compared with Y ao et al. (2015)
who used solely the inter-zone trips to extract pedestrian trajectories, our proposed
procedure is expected to produce more accurate estimates of pedestrian activities within
each neighborhood by an integrated consideration of inter-zone and intra-zone trips. In
total, the 2011 Travel Characteristics Survey estimated approximately 28.71 million
walking trips (including walk-only trips and walking trip legs), corresponding to 2.40
million hours and 10.21 million kilometers walked by Hong K ong residents per weekday
during 2010-2012.

In addition to the estimation of exposure measures, a range of explanatory variables
related to land-use, road-network characteristics, and socio-demographic factors that
potentially contribute to the frequency of PMV crashes were collected from a crowdsourced
dataset in Hong K ong.
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T he digital land-use data were obtained from the Hong K ong Planning Department,
which were categorized into seven types: commercial, residential, industrial, institutional,
recreational, special utilities, and green space. In addition to using the percentage to
indicate the intensity of a particular type of land-use within an area, following W ang and
K ockelman (2013), Chen and Zhou (2016), and Ding et al. (2018), we calculated the
entropy index to quantify the mixture of land-use as Eq. (1):

k .
- In(p))
Entropy = 4% —— 1
9% ink) (1
where p} refers to the percentage of land-use type J(j =12..,7) in TPU

i(i =12..,209). k denotes the number of land-use types in the ith TPU. T he entropy
index varies from 0 to 1, with a value towards 1 associated with a greater extent of mixed
land-use.

However, the aforementioned entropy index implicitly assumes that an area is
perfectly mixed if its land-use types share equal percentage, which seems theoretically
inadequate. T he balance index (Cervero and Duncan, 2003) was therefore introduced here
to measure how different types of land-use interact in balance with each other. Let tj the
percentage of land-use type j within the whole city. Setting the entire area under
investigation as a benchmark with well-balanced land-use, the balance index for the ith
TPU could then be calculated as (Song et al., 2013):

7
Balance =1- 't ‘p; —tj‘ (2)
]

Similar to the entropy, the balance index also ranges from 0 to 1, with higher values
representing more balanced land-use.

T he road-network data were extracted from the node-link road centerline system
provided by the Hong K ong Lands Department and were further adjusted by the shapefile
derived from OpenStreetMap. Various geometric characteristics, namely road density,
intersection density, percentages of road-segment lengths with different functional
classifications, and percentages of different types of intersections, were included. R oad
density here was defined as the length of road segments per square kilometers, while
intersection density was calculated as the number of intersections divided by the length of
road segments.

T he points-of-interest data were grabbed from the Geolnfo Map released by the Hong
Kong SAR Government. Given precise location information, the numbers of various public
facilities, including the bus stops, parking lots, tram stops, metro entrances, petrol stations,
supermarkets, shopping malls, convenience stores, licensed hotels, nursing homes for the
elderly, child care centers, hospitals, clinics, schools, police stations, country parks, libraries,
museums, playgrounds, performing venues, sports centers, and sports grounds, were thus

12
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counted within each TPU. This rich points-of-interest dataset provides us a valuable
opportunity to examine the effects of some previously under-investigated factors, such as

bus-stop density and the prevalence of parking lots, on the frequency of zonal PMV crashes.

Finally, the demographic, educational, economic, and household characteristics were
derived from the 2011 Population Census Report. The variables available for model

development, along with their descriptive statistics, are presented in T able 1.

Table 1. Characteristics of the 209 TPUs under investigation.

Variables Mean SD Min Max

Dependent variable
Number of PMV crasheson working days 33.99 43.09 0.00 292.00
during 2010-2012

Exposure variables
Average daily vehicle kilometers traveled ( < 10%) 127.70  153.79  0.36  1204.05
R esident population ( X 10%) 33.83 41.05 1.02 287.90
Average daily walking trips ( X 10°) 163.78  180.81 0.60 1142.53
Average daily walking time ( < 10® hours) 11.46 13.84 0.02 89.63
Average daily walking distance ( X 10® km) 48.84 60.68  0.07 416.11

Explanatory variables

Land -use
Percentage of commercial landuse 0.04 0.09 0.00 0.53
Percentage of residential landuse 0.22 0.16 0.00 0.81
Percentage of industrial land-use 0.02 0.07 0.00 0.67
Percentage of institutional land -use 0.10 0.10 0.00 0.67
Percentage of recreational landuse 0.08 0.10 0.00 0.47
Percentage of special utilities 0.17 0.14 0.00 0.56
Percentage of green space 0.37 0.34 0.00 0.98
Land-use mix 0.66 0.23 0.01 0.98
Land-use balance 0.67 0.20 0.41 0.99

Road -network  attributes
Road density (km/km ?) 10.52 6.98 0.62 37.49
Percentage of motorways 0.06 0.08 0.00 0.57
Percentage of primary roads 0.05 0.09 0.00 0.69
Percentage of secondary roads 0.11 0.09 0.00 0.36
Percentage of tertiary roads 0.10 0.11 0.00 0.78
Percentage of unclassified roads 0.68 0.17 0.20 1.00
Intersection density (/km) 4.43 1.81 1.00 14.31
Percentage of signalized intersections 0.12 0.12 0.00 0.57
Percentage of roundabouts 0.02 0.02 0.00 0.15
Percentage of threeleg intersections 0.86 0.13 0.24 1.00
Percent of four-leg intersections 0.14 0.12 0.00 0.76
Percent of intersections with five or more legs 0.05 0.01 0.00 0.08

Public facilities
Bus-stop density (/km) 1.36 0.98 0.00 4.69
Number of parking lots 3.11 4.38 0.00 25.00
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Number of tram-stops 0.61 2.21 0.00 14.00

Number of metro entrances 2.45 4.08 0.00 19.00
Number of petrol stations 0.82 1.22 0.00 5.00
Number of supermarkets 3.23 3.44  0.00 15.00
Number of shopping malls 3.27 4.48  0.00 26.00
Number of convenience stores 6.45 7.83 0.00 49.00
Number of licensed hotels 5.93 24.60 0.00 294.00
Number of nursing homes for the elderly 0.78 1.29  0.00 8.00
Number of child care centers 0.06 0.23 0.00 1.00
Number of hospitals 0.21 0.64  0.00 4.00
Number of clinics 1.18 2.04 0.00 11.00
Number of schools 13.11 17.09 0.00 122.00
Number of police stations 0.22 0.46  0.00 3.00
Number of country parks 0.11 0.40  00.0 3.00
Number of libraries 0.89 1.25 0.00 9.00
Number of museums 0.09 0.45 0.00 5.00
Number of playgrounds 0.30 0.63 0.00 3.00
Number of performing venues 0.08 0.31 0.00 2.00
Number of sports centers 0.49 0.80  0.00 4.00
Number of sports grounds 0.13 0.34 0.00 1.00
Demographic characteristics
Proportion of male population 0.47 0.04 0.36 0.85
Proportion of population aged less than 15 0.12 0.03 0.00 0.21
Proportion of population aged between 15 and 24 0.11 0.03 0.02 0.27
Proportion of population aged between 25 and 44 0.33 0.05 0.21 0.57
Proportion of population aged between 45 and 64 0.30 0.04 0.15 0.44
Proportion of population aged 65 or above 0.13 0.06 0.00 0.44
Proportion of population of Chinese ethnicity 0.88 0.12 0.43 0.99
Educational characteristics (highest level attended)
Proportion of population with primary education 0.28 0.08 0.07 0.61
or below
Proportion of population with secondary education 0.45 0.07 0.17 0.84
Proportion of population with post -secondary 0.27 0.13 0.00 0.75
education
Economic characteristics
Labor-force participation rate 0.60 0.08 0.00 0.88
Proportion of working population 0.51 0.72 0.00 0.83
Proportion of working population with place of 0.12 0.10 0.00 0.51
work at home
Median monthly income ( X 10°) 13.86 568  0.00 40.00
Household characteristics
Household density (< 10%km 2?) 10.66 12.74 0.00 58.09
Average household size 2.93 0.38 1.60 4.10
Proportion of households with three or more persons 0.56 0.12 0.00 0.82
Median monthly household income ( x 10%) 33.43 29.73 0.00 170.80
Median monthly household rent ( x 10°) 8.06 11.71  0.00 76.00
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Median rent to income ratio 0.19 0.11 0.00 0.53

P roportion of population in public rental housing 0.16 0.24  0.00 1.00
P roportion of population in subsidized home 0.08 0.14  0.00 0.78
ownership housing

P roportion of population in permanent housing 0.72 0.32 0.00 1.00
P roportion of population in non-domestic housing 0.01 0.06  0.00 0.85
Proportion of population in temporary housing 0.03 0.08  0.00 0.53

2.2 Model specification

We modeled the frequency of PMV crashes consistent with previous studies ( Sebert
Kuhlmann et al., 2009; Wang and Kockelman, 2013; DiMaggio, 2015; Lee et al2015; Guo
etal., 2017; Osama and Sayed, 2017; Goel et al., 201&et Y, denote the number of PMV
crashes in the ith TPU on working days during 2010-2012. T he use of aggregate crash data
over a 3-year period helps to avoid confounding effects and the regression-to-the-mean
phenomenon (Cheng and W ashington, 2005). V, and P, refer to the vehicle and pedestrian
volumes, respectively, and X is the kth explanatory variable related to zone-specific
attributes. Given the potential non-linear relationship between PMV crashes and traffic
volumes (E lvik and Goel, 2019), we have:
Y. ~ Poisson(l ,)
$ (3)
In(l i) = b1 + bzln(\/i) + b3|n(Pi) + Zbkxik +U +S

k=4
where 4 is the parameter of the P oisson model (i.e., the expected number of PMV crashes
in the ith TPU; g is the intercept; g (k=2..,p) refers to the kth regression
coefficients to be estimated; u, denotes the unstructured effect, which is specified as an
exchangable normal prior with a mean of 0 and a variance of s?, i.e, u ~ Normal(0,s?);
and s is the spatially structured or spatially correlated effect.

One commonly used joint density for s,s,, ) is formulated in terms of

cer Sy
pairwise differences in errors and a variance term of sj (Besag et al., 1991):

P(S,:S,--:8,) & exp[-0.5s2)* D c, (s -5,) ] (4)

T his results in a normal conditional prior for s :
Z'Cijsj 52
S Bia~ Normal(&=21+, <) (5)

' C. C.
i I

where Cij represents the non-normalized weight, e.g., Cij =1if TPU ; is adjacent to
TPU j , otherwise C; = 0. In our study, geographically non-contiguous zones were also
considered as neighbors if they were directly connected by cross-harhor tunnels, bridges,
or ferries. s’ is the variance parameter, controlling the amount of extra variations due to
spatial correlation.

Although the unvirate conditional prior distribution in Eq. (5) is well defined, the
corresponding joint prior distribution for S is improper with undefined mean and infinite

15



A W N =

10
11
12
13
14
15

16

17

18
19
20
21

22

23
24
25
26

27
28
29
30
31
32
33

variance (Sun et al., 1999). T his fact probably leads to problems in convergence and
identifiability (E berly and Carlin, 2000).

An alternative strategy to gain properity is based on the strength of a single set of
random effects v(v,,v,,...,v,):

p
In(Ii):bl+bzln(\/i)+b3In(Pi)+Zkaik+vi (6)
k=4

Following Lee (2011), v here is specified as the CAR prior proposed by Leroux et al.

(1999):
2
DNN S, ) )
1-r + rvzj c, l-r,+ rvzjc”.

where r (0<r <1) is the spatial correlation parameter, with r = 0 simplifying to an
independently and identically distributed normal prior, and a value closer to 1 indicating
a stronger spatial correlation. Accordingly, setting r =1 corresponds to the intrinsic
CAR, asin Eq. (5).

Based on the factorization theorem, V results in a joint multivariate Gaussian

V. ‘v ~ Normal(

i

distribution:

v ~MVN(O c’[p,K +(1- p)IT) (8)
where | isan N XN matrix, and the elements of K are calculated as:
o G ifi=j )
. —C. ifi#]

ij
Although the covariance structure in Eqg. (6) incorporates the local relationships, the
outputs from the preceding models still consist of a set of global parameter estimates.
Intuitively, the local variations can be addressed by setting the regression coefficients as
random effects, allowing the effects of covariates to vary spatially:

ln(/ll):ﬂl+ﬂi2|n(\/i)+ﬁi3ln(Pi)+iﬂikxik+Vi (10)

where g is the coefficient of the kth explanatory variable for TPU ; .

T o account for both the unstructured and spatially structured variations in model
regression coefficients, following Xu et al. (2017), we have:

B, ~ MVN(n,, o[p,K + (1 - p)IT™) (1)

Unlike Eq. (8), Eq. (11) has a constant non-zero mean w, (4,..., 4,), in which 4 is the
overall estimate of the regression slope, representing the average of the posterior estimates
of B (B By Poe) - T he precision matrix is now given by p K +(1-p)I, which is a
weighted average of spatially correlated and independent structures denoted as K and | ,
respectively. T his specification is capable of accounting for a range of weak and strong
spatial correlation in regression coefficients, with p_ = 0 reducing to spatially independent
random effects only, while an increase in ptoward 1 represnts more spatial smoothing.
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A ccordingly, the univariate full conditional distribution for Eq. (11) is:

pkzj uﬂ]k (1 pk)luk sz

1 pk+'0k JI] 'l p+pk ]IJ

Specifically, the conditonal expectation of g, is a weighted average of the random

,Blk ,B ~ Normal( (12)

effects at neighboring zones and the overall mean y . When g  exhibits a strong spatial
. . - . 2 .
correlation, p, is close to 1 and the conditional variance approaches Gk/ZjCij . This

variance configuration recognizes that in the presence of strong spatial correlation, the
more neighbors a neighborhood has, the more information the data contain on the value
of its random effects. In comparison, if the random effect is spatially independent, the
conditional variance becomes o”. Evidently, the parameter p (0 < p, <1) serves as an
indicator to assess the relative strength of spatial and unstructured variations in the
estimated coefficients. In addition, if there is no significant heterogeneity in B, o7
becomes dispersive with the mean of its posterior distribution lower than the standard
deviation (Barua et al., 2015; Xu et al., 2017). In this case, the regression slopes are better
modeled as fixed effects.

Obtaining the full Bayesian posterior estimates requires the specification of prior
distributions. Prior distributions are typically used to reflect prior knowledge about the
parameters of interest. If such information is available, it is encouraged to formulate the
so-called informative priors (Y u and Abdel-Aty, 2013; Heydari et al., 2014). In the absence
of sufficient prior knowledge, non-informative priors, were applied to model the parameters
here (Dong et al., 2016):

B, ~ Normal(0, 1000)
4, ~ Normal(0,1000)

Consistent with Congdon (2008), the spatial correlation parameters p and p_ were
assigned as uniform(0,1). A uniform(0,10) was also specified for o, and o,
following Gelman (2006), Lee (2011), and Xu et al. (2017).

(13)

o, respectively,

2.3 Model-performance comparison measures

For model comparison, three commonly used measures weradopted hereg i.e., the mean
absolute deviance (MAD), mean squared prediction error (MSPE), and deviance
information criterion (DIC).

The MAD was calculated as follows (Xu et al., 2015; Yao et al., 2015):

209
MAD = ——_ HJ Y‘
209 & (14)
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where Y denotes the predicted number of PMV crashes estimated by the fitted models.
A smaller value of MAD suggests that on average the model predicts the observed data
better.

The MSPE was also used to provide a measure of model predictive performance (Y ao
et al., 2015), which was formulated as:

1 209
MSPE = — 3 (F _y Y2
zogiZ_ll(\“ ) (15)

Similar to the MAD, models with a lower value of MSPE indicate a better predictive
performance.

Meanwhile, as a penalized goodness-of-fit measure, the DIC was used here to take
model complexity into account:

DIC =D(6) +2p, =D +p, (16)

where D(6) is the deviance evaluated at @, the posterior means of the parameters; p, is
the effective number_of parameters in the model; and b is the posterior mean of the
deviance statistic D(). T he lower the DIC value, the better the model fit. In general, for
a pair of models with a difference in DIC value of more than 10, the model with a higher
DIC value is definitely ruled out; model pairs with DIC differences between 5 and 10 are
considered substantially different; and a difference of less than 5 indicates that the two
models are not statistically different (Spiegelhalter et al., 2002).

3. Results and discussion

The freeware WinBUGS (Spiegelhalter et al., 2005) was used to calibrate the models.
Three parallel chains with diverse starting points were tracked. The first 50,000 iterations
were discarded as burn -ins, and then 5,000 iterations were performed for each chain,
resulting in a sample distribution of 15,000 for each parameter. The model’'s convergence
was monitored by the Brooks-Gelman-Rubin statistic ( Brooks and Gelman, 1998, visual
examination of the Markov chain Monte Carlo chains, and the ratios of Monte Carlo errors
relative to the respective standard deviations of the estimates. As a rule of thumb, these
ratios should be less than 0.05.

For model specification, a co rrelation test was conducted first to ensure the non -
inclusion of strongly correlated variables. Our correlation analysis indicated a strong
correlation between percentage of landise categorized as special utilities and road density,
between labor force marticipation rate and proportion of working population, and between
average household size and proportion of population in permanent housing, with the
estimated Spearman’s correlation parameters (Vashington et al., 2011) greater than 0.70.
Likewise, the proportion of working population with place of work at home, median
monthly income, median monthly household income, and median monthly household rent
were also highly correlated, suggesting that these four variables should not be
simultaneously added to the models. Similar conclusions hold true for the variables of the
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number of supermarkets, the number of shopping malls, and the number of convenience
stores, given their Spearman’s correlation parameters all greater than 0.80. Other variables
showed weak collinearity, as their Spearman’s correlation parameters were less than 0.50.
In the initial model, we included all of the uncorrelated variables (Xie et al., 2018; Zhou
et al., 2020). T he DIC was then used to compare alternative models with different covariate
subsets. T he model producing a lower DIC value was considered statistically superior.

F or comparison purposes, in addition to the BSV C model, we developed the Bayesian
spatially fixed coefficients (BSFC) model with a spatially correlated error term. To
highlight the role of pedestrian exposure, models with population, walking trips, walking
time, and walking distance as the exposure measure, respectively, were estimated and
compared. As such, eight models were calibrated. T he performance of these models is
presented below, followed by the presentation and interpretation of the parameter
estimates.

3.1 Model-performance comparison

Table 2 shows the results of goodnessf-fit measures for the calibrated models. The values
of MAD, MSPE, and DIC int he BSVC models were not substantially different from those
derived from the BSFC models, indicating that our data were fairly robust to model
configuration. More specifically, the BSVC model with walking trips as the measure of
pedestrian exposure performed best, given the lowest value of DIC. Based on a similar
dataset but aggregatingpedestrian crashes to 26 districts in Hong Kong, Sze et al. (2019)
alsoreported that the model using walking frequency as the proxy for pedestrian exposure
was superior to the other two counterparts using  zonal population and walking time.
Although population information is readily available as it is routinely reported by lo cal
authorities, the use of such an aggregated data as a surrogate for pedestrian exposure
completely neglects the variations in pedestrian activities within an area of interest. This
negligencemay produce biased resultsfor central business districts with a sparse resident
population but a prevalance of pedestrian activities during workday rush-hours.

Table 2. Goodnessof-fit measures for BSFC and BSVC modelsfor the frequency of PMV
crashes in 209 TPUs in Hong Kong during 2016-2012.

Model type Description Pedestrian exposure MAD MSPE DIC

BSFC-1 , i Population 5.53 68.05 1318.36
Bayesian spatially ) ,

BSFC-2 _ . Walking trips 5.52 67.91 1314.36
fixed coefficients L

BSFC-3 model Walking time 5.54 68.01 1323.28

BSFC-4 Walking distance 5.54 68.10 1322.31

BSVC-1 , i Population 5.54 68.10 1320.27
Bayesian spatially ) ,

BSVC-2 _ . Walking trips 5.52 67.86 1313.66
varying coefficients L

BSVC-3 model Walking time 5.54 68.23 1324.51

BSVC-4 Walking distance 5.54 68.20 1322.81
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MAD, MSPE, and DIC: mean absolute deviance, mean squared prediction error, and deviance information

criterion, respectively.

Among the three activity-based exposure measures, the model of walking trips seems
to better account for the cross-sectional variability in zonal counts of PMV crashes. One
plausible explanation is that due to the self-reported nature of travel-diary data,
information on waking trips is more reliable than that on walking time, given the potential
recall bias and inconsistency of time perception among individual respondents. Likewise,
the estimated walking distance in our study depends on a strong assumption that
pedestrians chose the shortest path. In reality, the route choice of pedestrians, however, is
considerably complex and dynamic, because people do not always choose the shortest path
when walking from one place to another (Guo and Loo, 2013). As a consequence, the
measurement-errors introduced in the process of estimating walking time and walking
distance probably lead to the reduced model performance.

3.2 Parameter estimates

Tables 3 and 4 summarize the parameter estimates in the BSFC and BSVC models applied
to the frequencyof PMV crashes in 209 TPUs in Hong Kong, respectively. A 5% level of
significance was used as the threshold to determine whether the parameters differed
significantly from 0. Variables insignificant in all eight models were then excluded.

Several general observéions are worthy of mention. First, the significant variables
were not entirely identical between the models of population and activity -based exposure
measures. For example, the percentage of residential land -use and the percentage of
roundabouts were statistically significant in the models of population, but became totally
insignificant in the models of activity -based exposure measures. The saméolds true for
the variable of median monthly income, as this variable was only significant in the models
of activity -based exposure measureSecond, relative to the models of resident population,
the effects of several risk factors, i.e., road density, the percentage of motorways, and the
number of parking lots, changed substantially in the models of activity  -basel exposure
measures. Specifically, the coefficient of road density in the BSVC model decreased sharply
from 0.52 to 0.37 once the number of walking trips was used as the exposure measure.
Similar results were also observed for the effects of the percentageof motorways and the
number of parking lots. These findings raise an alarm that the extensiveuse of population
or population density to representpedestrian exposure in previous studies l(aScala et al,
2000; Graham and Glaister, 2003;Noland and Quddus 2004; Priyantha Wedagama et al,
2006; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Chakravarthy et al., 2010; Cottrill
and Thakuriah, 2010; Ha and Thill, 2011; Ukkusuri et al, 2011, 2012 Siddiqui et al., 2012;
Dumbaugh and Zhang, 2013; Graham et al., 2013; Noland et al., 2013; DiMaggio, 2015;
Lee et al., 2015; Wang et al., 2016; Gai et al., 2017a; Goel et al., 2018; Rothman et al.,
2020) has very likely resulted in biased estimates and incorrect inferences.
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Table 3. Results of the BSFC model with a spatially correlated error term for the

frequency of PMV crashes in 209 TPUs in Hong Kong during

2010-2012.
BSFC-1 BSFC-2 BSFC-3 BSFC-4

Variables Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI
Intercept 362 049 (461,265 -441 061 (-582,-3.32) 245 039 (-3.23,-1.79 -3.06 048 (-4.07,-2.13
Ln (vehicle km traveled) 0.3 0.05  (0.29, 0.50) 0.34 006 (0.21,0.45) 0.36 0.06 (0.25,0.47) 0.37 0.06 (0.26,0.48)
Ln (population) 0.48 0.05 (0.38,0.59)
Ln (walking trips) 0.5 0.06 (0.40, 0.64)
Ln (walking time) 0.43 0.05 (0.34,0.52)
Ln (walking distance) 043 0.05 (0.33,0.53)
Residential land-use (%) -0.25 0.05 (-0.36,-0.15 -0.06 0.05 (-0.15,0.09 -0.06 005 (-0.16,003 -0.06 005 (-0.16,0.03
Road density 051 0.05 (0.41,0.61) 03T 0.05 (0.21,0.42) 0.34 005 (0.23,0.44) 033 0.06 (0.23,0.44)
Motorways (%) -0.18 005 (-0.27,-0.08 -0.14 0.05 (-0.24,-0.04 -0.16 0.05 (-0.26,-0.0§ -0.18 0.05 (-0.28,-0.09
Intersection density 023 006 (0.12,0.34) 0.15 0.06 (0.04,0.26) 0.15 0.06 (0.03,0.27) 0.14 0.06 (0.03,0.26)
Roundabouts (%) 012 005 (-0.22,-0.03 -0.08 005 (-0.17,00) -0.09 005 (-0.18,0.0) -0.08 005 (-0.18, 0.0)
Bus-stop density 021 0.05 (0.11,0.31) 0.16 0.05 (0.05,0.27) 0.18 0.05 (0.08,0.29) 0.18 0.06 (0.07,0.29)
Number of parking lots 019 0.05 (0.10, 0.28) 012 0.05 (0.02,0.22) 0.13 0.05 (0.02,0.22) 012 0.5 (0.01,0.22)
Median monthly income 0.0l 0.05 (-0.11,0.09 -0.13 0.05 (-0.23,-0.04) -0.1T 0.05 (-0.21,-0.03 -0.1T 0.05 (-0.21,-0.01
Hj 0.31"  0.09 (0.20, 0.55) 0.30° 0.09 (0.19, 0.53) 0.33" 0.10 (0.20, 0.58) 0.35° 0.1 (0.21, 0.62)
H\, 0.08 0.07 (0.00, 0.26) 0.07 0.06 (0.00, 0.25) 0.08 0.07 (0.00, 0.27) 0.09 0.08 (0.00, 0.30)

BSF C: Bayesian spatially fixed coefficients model.

SD: standard deviation.

BCl: Bayesian credible interval.

- denotes significance at 95% Cl.
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Table 4. Results of the BSVC model for the frequency of PMV crashes in 209TPUs in Hong Kong during 2010-2012.

BSFC-1 BSFC-2' BSFC-3 BSFC-4
Variables Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI
Intercept 389 051 (484 -292 -437 055 (-5.48 -3.34) -2.46 041 (-3.28,-166) -2.97 045 (-3.86 —2.09)
Ln (vehicle km traveled) 042 0.06 (0.3 0.54) 033 0.05 (0.24,0.44) 036 0.05 (0.26 0.47) 037 0.05 (0.27,0.49)
Ln (population) 050 0.05 (0.40, 0.60)
Ln (walking trips) 0.500 0.06 (0.40, 0.61)
Ln (walking time) 043 0.05 (0.34,0.:3)
Ln (walking distance) 0.42° 0.05 (0.32, 0.51)
Residential land-use (%) -0.24° 0.05 (-0.35, -0.13) -0.08 0.05 (-0.18,0.02) -0.09 0.05 (-0.19,0.01) -0.09 0.05 (-0.19, 0.01)
Road density 052 0.05 (0.42 0.63) 0.37 0.08 (0.2, 0.54) 0.39° 0.08 (0.24, 0.56) 040 0.08 (0.23 0.57)
oty 015 012 (001,044) 016 012 (001,048 017 013 (0.01 049
B dnsity 047 029 (0.02 0.98) 045 029 (0.01,0.98) 046 029 (0.02 0.97)
Motorways (%) -026 0.08 (-0.42 -010) -0.16 0.05 (-0.26,-0.05) -0.18 0.05 (-0.28,-0.08) -0.19° 0.05 (=0.29, —0.10)
B s 021 016 (0.01, 0.63)
- 037 028 (0.01, 0.95)
Intersection density 0.2' 0.06 (0.10, 0.32) 0.14 0.06 (0.04,0.26) 0.15 0.06 (0.03,0.27) 0.14 0.06 (0.03,0.26)
Roundabouts (%) -0.16 0.05 (-0.27,-0.06) -0.08 005 (-0.17,0.0) -0.09 005 (-0.18,0.0) -0.09 005 (-0.18, 0.0)
Bus-stop density 017 0.5 (0.07 0.29) 0.17 0.05 (0.06,0.27) 0.19 0.05 (0.08,0.29) 0.19 0.05 (0.08,0.29)
Number of parking lots 020 0.05 (0.11, 0.29) 0.13 0.05 (0.04,0.22) 0.13 0.05 (0.03 0.22) 0.13 0.05 (0.03,0.22)
Median monthly income 0.0l 0.05 (-0.090.11) -0.12° 0.05 (-0.21,-0.03) -0.100 0.05 (-0.19 -0.01) -0.100 0.05 (-0.19 -0.01)
glf 0.27° 0.1 (0.12, 0.54) 0.25° 0.09 (0.13, 0.48) 0.29° 0.1 (0.15, 0.59) 0.30° 0.12 (0.15, 0.60)
b{, 0.15 0.16 (0.00, 0.62) 0.10 0.10 (0.00, 0.38) 0.13 0.13 (0.00, 0.49) 0.14 0.14 (0.00, 0.52)

BSV C: Bayesian spatially fixed coefficients model.

SD: standard deviation.

BCl: Bayesian credible interval.

- denotes significance at 95% Cl.

*Detailed WinBUGS code for the BSV C-2 model was presented in the Appendix.
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More importantly, unlike the BSFC models whose coefficients were restricted to be
constant, the BSVC models allowed the regression coefficients to vary spatially. Hence,
using BSFC approach, a single model was applied for the entire area, whereas different
coefficients could be estimated for each neighborhood by virtue of the BSVC model. It is
also interesting to observe that the error variability ( o?) decreased slightly when
variations were introduced to the regression coefficients. This result is intuitively
reasonable, because the heterogeneity in the regression slopes can capture some of the
extra variations previously explained by the random effects in the error term (Xu et al.,
2017).

Given that the BSV C model with walking trips as the measure of pedestrian exposure
performed best, we chose it to interpret our results in the subsequent section. As T able 4
shows, eight variables had a significant association with the frequency of PMV crashes:
vehicle kilometers traveled, walking trips, road density, percentage of motorways, junction
density, bus-stop density, number of parking lots, and median monthly income. T he signs
of these parameters were generally consistent with empirical judgments and the results of
previous studies (Chen and Zhou, 2016; Guo et al., 2017; T asic et al., 2017).

B oth vehicle kilometers traveled and walking trips were significant and positive, with
coefficients estimated at 0.33 and 0.50, respectively. T his nonlinear relationship between
pedestrian volume and the number of PMV crashes has been widely reported (Geyer et
al., 2006; Schneider et al., 2010; Miranda-Moreno et al., 2011; Elvik et al., 2013; Elvik,
2016; Mooney et al., 2016; Guo et al., 2017; Osama and Sayed, 2017; T asic et al., 2017;
Xie et al., 2018; Sze et al., 2019; Stipancic et al., 2020), suggesting that as the number of
pedestrians increases, the absolute number of PMV crashes also increases, whereas the risk
of collisions by motor vehicles for each individual pedestrian decreases. T his is known as
the “safety-in-numbers” effect (Jacobsen, 2003; E Ivik and Bjernskau, 2017; Elvik and G oel,
2019; Xu et al., 2019b; Cai et al., 2020). One plausible explanation is that motorists adjust
their behavior when they encounter a group of people walking. T his hypothesis is evidenced
by the greater visibility of pedestrians in greater numbers (Jacobsen et al., 2015). As
motorists is less likely to collide with pedestrians when more people are walking, policies
that encourage walking are claimed as effective measures to improve the safety of
pedestrians (Jacobsen, 2003; Osama and Sayed, 2017). However, this conclusion based on
a cross-sectional research design should be interpreted with great caution, because it is
impossible to determine whether this safety-in-numbers effect is a causal relationship or
merely a statistical association (B hatia and Wier, 2011; Xu et al., 2019b). B hatia and Wier
(2011) also cautioned that treating the promotion of walking as a safety intervention would
mask efforts to create an inherently safe environment for all pedestrians. Further efforts
are therefore warranted to investigate the underlying mechanisms.

Instead of simply encouraging people to walk in groups to draw motorists’ notice, an
alternatively sound measure to improve pedestrian safety would be to restrict the usage of
motor vehicles. In addition to the benefits of less congestion, fewer emissions of pollutants,

23



O 00 N O L1 h W N =

S S S G
O 00 N O i A W N = O

20
21

22
23

24
25
26
27
28
29
30

and less traffic noise, the strategies to reduce vehicle volume would lower both the number
of PMV crashes and the crash risk for pedestrians. According to our results, all things
being equal, a neighrborhood halving its vehicle kilometers traveled would expect an
approximately 20% decrease in PMV crashes (1-0.50°%= 0.20). T herefore, a modal shift
from motor vehicles to other travel modes, such as public transit and walking, should be
vigorously advocated, especially in dense urban settings.

Interestingly, road density had a spatially varying coefficient with a posterior mean
of 0.37 and a variance of 0.15. T he magnitude of this coefficient ranged from -0.01 to 0.60,
as shown in Fig. 4. Given these distributional parameters, almost all of the TPUs (i.e., 208
out of 209) exhibited a positive association between road density and the frequency of
PMYV crashes. T his heterogeneous effect is likely to reflect the variations in road conditions
across neighborhoods and may result partially from some unobserved factors, such as
topology of road networks, speed limits, and the presence of pedestrian facilities. In
addition, the spatial correlation parameter bJ'Road dgensty Produced a posterior estimate with
a mean of 0.47 and a standard deviation of 0.29, implying that a moderate proportion of
heterogeneity was explained by the spatially correlated effects. T he corresponding 95% CI
was (0.02, 0.98), which significantly differed from both 0 and 1. T his finding demonstrated
the presence of both unstructured and spatially structured variations in the effects of
related risk factors on the frequency of zonal PMV crashes.
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Fig. 4. Mean and 95%Bayesian credible intervalfor the variable of road density, estimated
by the BSVC model with walking trips as the measure of pedestrian exposure (ranked in
descending order by mean values; dots: mean; solid line®5% Bayesian credible interval).
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One major advantage of the BSVC model is its capability to explain spatially non -
stationary relationships. A mapping of local parameters would  therefore help local
authorities to explicitly identify neighborhoods where a particular risk factor has a greater
influence on the frequency of PMV crashes. To illustrate, Fig . 5 identifies the overall
pattern of the regression coefficients of road density as spatial clustering. Special attention
should be paid to rural areas located in the New Territories, as road density in these
neighborhoods wasfound to be highly significant, resulting in a more pronounced effect.
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Fig. 5. Spatial distribution of the coefficients for the variable of road density, estimated
by the BSVC model with walking trips as the measure of pedestrian exposure.

Road functional classification also had a significant influence on the  frequency of
PMV crashes. According to our results, neighborhoods with a higher percentage of
motorways were associated with a lower risk @MV crashes. This result is highly expected,
because as limited -access roads, motorways mainly serve fast -moving vehicles while
pedestrians are prohibited (Tasic et al., 2017).

Intersections are well-known as hazardous locations in road networks. Given equal
road length, more intersections impl y less continuous road networks and more conflict
points between pedestrians and motor vehicles. It is therefore not surprising that
intersection density had a significantly positive relationship with the  frequency of PMV
crashes. Similar findings were also reported byPriyantha Wedagama et al. (2006), Guo et
al. (2017), Osama and Sayed (2017)and Tasic et al. (2017).

With respect to the variables related to public facilities, bus -stop density was
associated with an increasedrisk of PMV crashes. A visual examination via Google Street
View suggess that traffic conditions near bus stops in Hong Kong are fairly complicated
and mixed, as various road users share the same activity spaces. A previous study Hyam
et al. (2014) reported that pedestrians were more likely to jaywalk to board buses without
noticing the approaching vehicles.The stationary buses at bus stops may also obscure the
visibility of pedestrians when crossing the road Chen and Zhou 2016. As a consajuence,
the frequent interactions between pedestrians andanotor vehiclesnear bus stops inevitably
increase the risk of collisions(Retting et al., 2003; Zegeer and Bushe|l2012; Stoker et al,
2015; Goel et al., 2018. Similar explanations hold true for the effect of the number of
parking lots.
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Finally, area deprivation level is closely associated with safety awareness, driving
behavior, and road facilities, and thus has an indirect influence on the frequency of PMV
crashes. Consistent with Siddiqui et al. (2012), Noland et al. (2013), Jermprapai and
Srinivasan (2014), Cai et al. (2017a), and R othman et al. (2020), the negative relationship
between median monthly income and the frequency of PMV crashes found in our study is
very likely attributable to two causes. First, people with higher incomes may have better
awareness of safe walking. Second, deprived neighborhoods probably have fewer favorable
pedestrian facilities such as marked crosswalks, overpasses or underpasses, and refuge
islands to completely separate pedestrians from motor vehicles on roads (R othman et al.,
2020).

4. Conclusions

This study sought to investigate the factors that contribute to the frequency of PMV
crashes at zonal levels, using a rich dataset collected in 209 TPUs in Hong Kong over a-3
year period. Detailed activity -based exposure datawere integrated with land -use, road
network features, accessibility of public facilities, and socio-demographic claracteristics to
construct our dataset. A procedure was proposed to extract pedestrian trajectories from
publicly available travel-diary survey data. A BSVC model was then developed to account
for the spatially heterogeneous effects of risk factors. To hig hlight the role of exposure,
models with population, walking trips, walking time, and walking distance as the measure
of pedestrian exposure, respectively, were calibrated and compared.

Several key findings are worthy of note. First , although pedestrian vo lume is
indispensable in determining the incidence of pedestrian crashes, the majorchallengelies
in the unavailability of reliable pedestrian activity data for the whole area under
investigation. Fortunately, t he household travel-diary survey provides a straightforward
and invaluable means to estimate territory -wide pedestrian activities. Given the rich trip
information recorded in the survey, by virtue of an integrated use of crowdsourced datasets,
pedestrian trajectories can be easily estimated based on our proposed procedure By
incorporating these activity -based exposure measures intdPMV crashfrequency models,
we explicitly demonstrate that the use of population or population density as a surrogate
for pedestrian exposure when modeling the frequency of zonal PMV crasheswill lead to
biased estimations and incorrect inferences, as our empirical results indeed indicated
substantial inconsistendes in the the effects of several risk factors between the models of
population and activity -based exposuraneasures

Second among the three activity -based exposure measures, walking trips were
empirically proved adequate in accounting for the spatial variations in zonal counts of
PMV crashes. Although the model using walking trips as the measure of pedestrain
exposure resulted in a slightly better goodness-of-fit, the models of walking distance and
walking time could also helpin the evaluation of safety effects of specific transport policies,
such as quantifying the safety benefits associated with a modal shift from motor vehicles
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to walking for short-distance trips in metropolitan areas. Indeed, only when we understand
the differences in how much people walk, will we be able to measure how safe walking is,
and further evaluate the effectiveness of specific countermeasures in improving pedestrian
safety.

T hird, by virtue of the BSV C model, we add new insights to existing studies that in
addition to the unstructured variability, the heterogeneity in the effects of explanatory
variables on the frequency of PMV crashes can also arise from spatially correlated effects.
T he developed BSVC model provides a sound methodological alternative to investigate
the spatially non-stationary relationships, as the varying regression coefficients are
modeled via a single set of random effects and a spatial correlation parameter, with extreme
values corresponding to pure unstructured or pure spatially correlated random effects.
Given that pedestrian crash data are typically collected in spatial proximity, we expect
our study to promote the awareness among traffic professionals that spatial heterogeneity
should not be neglected when modeling pedestrian crashes involving contiguous spatial
units.

Eight variables were ultimately found to have a significant association with the
frequency of PMV crashes in neighborhoods. The nonlinear relationship between
pedestrian volume and the frequency of PMV crashes was confirmed, with an estimated
coefficient of 0.50, 0.43, and 0.42 for walking trips, walking time, and walking distance,
respectively. Vehicle kilometers traveled, road density, intersection density, bus-stop
density, and the number of parking lots were found to be positively associated with PMV
crash frequency, whereas the percentage of motorways and median monthly income had
negative effects on the risk of PMV crashes. T hese findings are expected to assist local
authorities in the formulation of effective strategies to improve walkability and pedestrian
safety in neighborhoods. Such countermeasures may include restricting the use of motor
vehicles, promotion of a shift from motor vehicles to walking for walkable-distance trips,
traffic calming in residential neighborhoods, updating of pedestrian facilities to completely
separate pedestrians from motor vehicles on very busy roads, reducing conflicts between
pedestrians and motor vehicles particularly near bus stops and at entrances of parking lots,
and publicity on safe road-crossing behaviors.

Our study is not without limitations. The TPUs used in our analysis are delineated
mainly for planning purposes and may not be the optimal spatial units for zonal pedestrian
crash analysis. Given the potential of the modifiable areal unit problem (Xu et al., 2014;
Lee et al., 2014; Cai et al., 2017b; Xu et al., 2018; Obelheiro et al., 2020), more efforts are
warranted to validate the robustness of our findings via aggregation of data at various
spatial resolutions. In addition, although the neighborhood-level analysis is useful to
investigate the effects of area-wide variables on the frequency of PMV crashes, pedestrian
safety is actually a microscopic concern, because PMV crashes are usually caused by
interactions between pedestrian and motor vehicles (Y ue et al., 2020). Future studies
towards an integration of cross-sectional research designs with in-depth crash-causation
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investigations and accident-reconstruction simulations are highly recommended to achieve
deeper insights into the causes of pedestrian crashes.
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Table Al. Studies of factors that influence the frequency of pedestrian crashes at zonal levels over the past two decades.

Appendix

Exposure measures

Risk factors included

Study Study . Research -
Authors . . Observations Motor . Land- Road Population .
region period method . Pedestrians Climate
vehicles use network census
. Spatial lag model
LaScala et al. San Francisco, 149 census . Average .
1990 and spatial error . ) Population X v 4 X
(2000) us tracts daily traffic
model
Graham and Negative-binomial Population
_ UK 1999-2000 8,413 wards 9 x puta x v v v
Glaister (2003) model density
Total
11 standard . . .
Noland and L Negative-binomial number of .
UK 1979-1998 statistical ) P opulation X 4 v X
Quddus (2004) . model vehicles
regions .
registered
Priyantha Newcastle 185 . . . .
. Negative-binomial Population
Wedagama et upon Tyne, 1998-2001  enumeration R oad length . v v v X
o model density
al. (2006) UK districts
. Population
L oukaitou- . . Average .
o Los Angeles, 860 census Multiple linear ) density and
Sideris et al. 1994-2001 annual daily v X v X
us tracts model ) employment
(2007) traffic .
density
Sebert B ayesian spatial . .
Denver, 134 census . P opulation Commuting
K uhlmann et 2000-2003 model with CAR ) ) 4 X 4 X
us tracts . density by walking
al. (2009) prior
Wier et al. San Francisco, 176 census Multiple linear Average
2001-2005 P . g . P opulation 4 v 4 X
(2009) us tracts model daily traffic
Orange
Chakravarthy County, 577 census Negative-binomial .
e 2000-2004 X Population X X v X
et al. (2010) California, tracts model
us
P oisson-lognormal
Cottrill and . g . Annual .
) Chicago, 1,832 census model with . Population
T hakuriah Us 2005 tracts exOgeNOUS average daily densit 4 v X
(2010) 9 traffic 4

underreporting




Spatial lag model

Ha and T hill B uffalo, 90 census . .
2003-2004 and spatial error X Population
(2011) us tracts
model
R andom-
Ukkusuri et al. New Y ork 2216 census parameters .
] 2002-2006 . ] . X P opulation
(2011) City, US tracts negative-binomial
model
Delmelle et al. B uffalo, 90 census . Commuting
2003-2004 Spatial error model X .
(2012) us tracts by walking
o Florida 1,479 traffic Bayesian spatial
Siddiqui et al. L . . .
(2012) (District 2005-2006 analysis model with CAR X P opulation
Seven), US zones prior
180 ZIP . e
eneraliz
Ukkusuri et al. New Y ork codes T )
) 2002-2006 negative-binomial X P opulation
(2012) City, US 2216 census
model
tracts
Dumbaugh
9 San Antonio, 938 census Negative-binomial ~ Vehicle miles .
and Zhang 2003-2007 Population
us block groups model traveled
(2013)
Bayesian spatial
Graham et al. longitudinal .
UK 2001-2007 1,820 wards . . X Population
(2013) generalized linear
mixed model
Bayesian spatial
Noland et al. New Jersey, 6,460 census y . P .
2003-2007 model with CAR pd Population
(2013) us block groups .
prior
Wang and Bayesian
9 Austin, 218 census . y. Vehicle miles Walking
K ockelman 2007-2009 multivariate CAR .
us tracts traveled miles
(2013) model
Jermprapai . 11,390 . . . .
.p. P Florida, Negative-binomial Work trips
and Srinivasan 2005-2009  census block X
us model per week

(2014)

groups
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Vehicle

Bayesian kilometers
DiMaggio New York 1,908 census  hierarchical model traveled per .
. 2001-2010 . . Population
(2015) City, US tracts with space-time day per
interaction effects square
kilometer
B ayesian
Lee et al. Florida, 983 ZIP simultaneous Vehicle miles .
2009-2011 . Population
(2015) us codes equations model traveled
with CAR prior
. . 8,518 traffic  Bayesian dual-state . . .
Cai et al. Florida, ) . . Vehicle miles Commuting
2010-2012 analysis model with spatial .
(2016) us . traveled by walking
zones spillover effects
863 traffic Bayesian spatial Total
Chen and Seattle, . y . P Walking
2008-2012 analysis model with CAR number of .
Zhou (2016) us . . trips
zones prior trips
263 traffic B ayesian spatial
Wang et al. Shanghai, . Y ) P .
; 2009 analysis model with CAR X P opulation
(2016) China .
zones prior
594 traffic Bayesian joint
Cai et al. Florida, . y J Vehicle miles  Population
2010-2012 analysis model of frequency )
(2017a) us o ) traveled density
districts and proportion
131 traffic B ayesian spatial
Guo et al. Hong K ong, . y . P Vehicle hours Walk-only
. 2011 analysis model with CAR .
(2017) China . traveled trips
zones prior
134 traffic B ayesian spatial Vehicle
Osama and Vancouver, . y . P . Walking
2009-2013 analysis model with CAR kilometers .
Sayed (2017) Canada . trips
zones prior traveled
Tasic et al. Chicago, 2005-2012 801 census Generalized Vehicle miles Walking
(2017) us tracts additive model traveled trips
. Manhattan, . . .
Xie et al. 6,204 grid . Vehicle miles
New York 2008-2012 Tobit model X
(2017) . cells traveled
City, US
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. 863 traffic Multiple additive Total .
Ding et al. Seattle, . ) . Walking
2008-2012 analysis P oisson regression number of
(2018) us . mode share
zones tree model trips
Goel et al. Delhi, Bayesiar? spatial .Vehicle .
. 2011-2012 282 wards model with CAR kilometers P opulation
(2018) India .
prior traveled
47
Leeet al. metropolitan Bayesian Walking
us 2014-2016 o . X
(2019) statistical integrated model hours
areas
Population
R andom- A | Walki
nnua alkin
Sze et al. Hong K ong, 26 broad parameters 9
2011-2015 L . . . average frequency
(2019) China districts negative-binomials hourly traffic — .
u i ;
model y Walking
time
Multivariate
Rothman et al. Toronto, 102 census o . R cadway .
2001-2010 logistic regression P opulation
(2020) Canada tracts length

model

POI: points of interest.

g b~ W N =

CAR: conditional autoregressive prior.

Table A2. Walking speeds estimated for Hong Kong residentsbased on the 2011 Hong Kong Travel Characteristics Survey data, stratified by
sex and age groupg unit: m/s).

Age groups <14 15-24 25-34 35-44 45-54 55-64 =65
Male 1.00 1.01 0.92 0.91 1.05 1.00 0.91
F emale 1.06 1.14 1.05 0.99 0.96 1.00 0.82
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The WinBUGS code for the BSV C-2 model:
Model
{
for (i in 1:209) {
y[i]l ~ dpois(lambdali])
log(lambdalil) <- beta[1]+ beta[2]*LnV K T [i]+ beta[3]*L nW _ trpli]+ beta[4]*
P_Res_LU[il+ beta5[i1*D_ Rd[il+ beta[6]*P _ Mt_ Rd[i]+ beta[71*D_ Junl[i]+ beta[8]*
P_Rad_Jun[il+ beta[9]*D_ B us[il+ beta[10]*P arking[i]+ beta[11]*MINCI[i]+ s[il
beta5[i] <- beta[5]+ phi5l[i]
ypred[i] ~ dpois(lambdal[il) # Predictive value based on the complete data
PPLIi] <- abs(ypredlil-y[il)
PPL2[i] <- pow(ypredlil-y[i],2)
}
MAD <- mean(PPLI])
MSPE <- mean(PPL2[])
# Proper CAR prior of Leroux et al. (1999). Detailed explanations for the specification
of this CAR prior should be referred to Congdon (2014; page 337-343).
for (i in 1:209) {
s[li] ~ dnorm(s.barli],taulil)
s.bar[i] <- rho.s*sum(W sp.s[cumsum[i]l+ 1:cumsum[i+ 1]])/ (1-rho.s+ rho.s* num[i])
tauli] <- tau.s*(1-rho.s+ rho.s* numiil)
phi5[i] ~ dnorm(phi5.bar[i],tau.phi5[i])
phi5.bar[i] <- rho.5*sum(W sp.5[cumsumli]+ T:cumsumli+ 1]1)/ (1-rho.5+ rho.5* numli])
tau.phi5[i] < - tau.5*(1-rho.5+ rho.5* numli])
}
for (i in 1:sumNumNeigh) { # sumNumNeigh refers to the length of adj[]
W sp.sli] <- s[ad;jlil]
W sp.5[i] <- phi5[adjli]]
}
rho.s ~ dunif(0,1) # Correlation parameter
tau.s <- pow(sig.s,-2)
var.s <- pow(sig.s,2)
sig.s ~ dunif(0,10)
rho.5 ~ dunif(0,1)
tau.5 <- pow(sig.5,-2)
var.5 <- pow(sig.5,2)
sig.5 ~ dunif(0,10)
for (k in 1:11) {betalk] ~ dnorm(0.0,1.0E-5)}
}

41



