

Towards activity -based exposure measures in spatial analysis of pedestrian–motor vehicle crashes

Ni Dong^{1,2,3}, Fanyu Meng^{4,5}, Jie Zhang^{1,2}, S.C. Wong⁶, Pengpeng Xu^{6*}

· School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan, China

· National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu, Sichuan, China

· Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, US

· Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China

· Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China

· Department of Civil Engineering, The University of Hong Kong, Hong Kong, China

*** Correspondence to** Pengpeng Xu

Room LG-208, Composite Building, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Email: pengpengxu@yeah.net Tel: 86-18570366096

1 **Abstract**

2 *Background* Although numerous efforts have been devoted to exploring the effects of area-
3 wide factors on the frequency of pedestrian crashes in neighborhoods over the past two
4 decades, existing studies have largely failed to provide a full picture of the factors that
5 contribute to the incidence of zonal pedestrian crashes, due to the unavailability of reliable
6 exposure data and use of less sound analytical methods.

7 *Methods* Based on a crowdsourced dataset in Hong Kong, we first proposed a procedure
8 to extract pedestrian trajectories from travel-diary survey data. We then aggregated these
9 data to 209 neighborhoods and developed a Bayesian spatially varying coefficients model
10 to investigate the spatially non-stationary relationships between the number of pedestrian-
11 motor vehicle (PMV) crashes and related risk factors. To dissect the role of pedestrian
12 exposure, the estimated coefficients of models with population, walking trips, walking time,
13 and walking distance as the measure of pedestrian exposure were presented and compared.

14 *Results* Our results indicated substantial inconsistencies in the effects of several risk
15 factors between the models of population and activity-based exposure measures. The model
16 using walking trips as the measure of pedestrian exposure had the best goodness-of-fit. We
17 also provided new insights that in addition to the unstructured variability, heterogeneity
18 in the effects of explanatory variables on the frequency of PMV crashes could also arise
19 from the spatially correlated effects. After adjusting for vehicle volume and pedestrian
20 activity, road density, intersection density, bus stop density, and the number of parking
21 lots were found to be positively associated with PMV crash frequency, whereas the
22 percentage of motorways and median monthly income had negative associations with the
23 risk of PMV crashes.

24 *Conclusions*: The use of population or population density as a surrogate for pedestrian
25 exposure when modeling the frequency of zonal pedestrian crashes is expected to produce
26 biased estimations and invalid inferences. Spatial heterogeneity should also not be
27 negligible when modeling pedestrian crashes involving contiguous spatial units.

28 *Keywords*: Pedestrian safety; Crash frequency; Activity-based exposure measures; Spatial
29 correlation; Spatial heterogeneity

1. Introduction

2 Of the active modes of transport, walking has the advantages of reducing traffic congestion,
3 greenhouse gas emissions, and traffic noise. Around the world, walking is also a popular
4 physical and recreational activity, particularly among children and the elderly. Indeed,
5 with the increasing number of short-distance trips, growing levels of traffic congestion, and
6 higher parking costs in metropolitan areas, people are increasingly encouraged to walk
7 more as a viable and sustainable mode of transport (Maibach et al., 2009).

8 Despite the well-documented benefits of walking, pedestrians are among the most
9 vulnerable road users with substantially higher risks of fatality and injury than motorists
10 (Retting et al., 2003; Zegeer and Bushe, 2012; Stoker et al., 2015). This is especially the
11 case in urban areas with a dense population, where walking is indispensable in ensuring
12 affordable and adequate mobilities for most local residents. An in-depth understanding of
13 the factors that contribute to pedestrian crashes is therefore imperative if walking is
14 promoted as a safe and attractive mode of transport. Improvements in safety would also
15 encourage more people to walk on a regular basis for daily travel, thereby fostering a more
16 livable community.

17 Over the past two decades, modeling pedestrian crashes involving contiguous spatial
18 units, such as census tracts and traffic analysis zones, has attracted extensive research
19 interest from traffic safety analysts (see Table A1). This allows local authorities to identify
20 the clustering pattern of pedestrian crashes, to better determine the zonal factors that
21 contribute to the incidence of pedestrian crashes, and to recommend area-wide
22 countermeasures

23 Previous studies have suggested that the number of pedestrian crashes in a
24 neighborhood increased significantly with the increase in traffic volume (LaScala et al.,
25 2000; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Cottrill and Thakuriah, 2010;
26 Dumbaugh and Zhang, 2013; Wang and Kockelman, 2013; DiMaggio, 2015; Lee et al.,
27 2015; Cai et al., 2016, 2017a; Guo et al., 2017; Osama and Sayed, 2017; Tasic et al., 2017;
28 Xie et al., 2017; Goel et al., 2018) and pedestrian volume (Sebert Kuhlmann et al., 2009;
29 Wang and Kockelman, 2013; Cai et al., 2016; Chen and Zhou, 2016; Guo et al., 2017;
30 Osama and Sayed, 2017; Tasic et al., 2017; Lee et al., 2019; Sze et al., 2019). However,
31 unlike vehicle volume which is readily obtained from counting stations, pedestrian volume
32 is mostly surrogated as resident population (LaScala et al., 2000; Noland and Quddus,
33 2004; Wier et al., 2009; Chakravarthy et al., 2010; Ha and Thill, 2011; Ukkusuri et al.,
34 2011, 2012; Siddiqui et al., 2012; Dumbaugh and Zhang, 2013; Graham et al., 2013; Noland
35 et al., 2013; DiMaggio, 2015; Lee et al., 2015; Wang et al., 2016; Goel et al., 2018; Rothman
36 et al., 2020) or population density (Graham and Glaister, 2003; Priyantha Wedagama et
37 al., 2006; Loukaitou-Sideris et al., 2007; Cottrill and Thakuriah, 2010; Gai et al., 2017a)
38 due to data unavailability. This improper representation of pedestrian exposure, however,
39 very likely leads to biased estimations and incorrect inferences (Steinbach et al., 2014).

1 Although a limited number of studies have recently used walking trips (Sebert Kuhlmann
2 et al., 2009; Delmelle et al., 2012; Cai et al., 2016; Chen and Zhou, 2016; Guo et al., 2017;
3 Osama and Sayed, 2017; Tasic et al., 2017; Ding et al., 2018; Sze et al., 2019), walking
4 miles (Wang and Kockelman, 2013), or walking hours (Lee et al., 2019; Sze et al., 2019)
5 to quantify pedestrian activities, the roles played by various exposure measures in the
6 performance of zonal pedestrian crash-frequency models have not been comprehensively
7 investigated and thus remain largely unknown.

8 Road-network characteristics, such as intersection density (Graham and Glaister,
9 2003; Priyantha Wedagama et al., 2006; Guo et al., 2017; Osama and Sayed, 2017; Tasic
10 et al., 2017), intersection type (Ha and Thill, 2011; Ukkusuri et al., 2011, 2012; Cai et al.,
11 2016; Chen and Zhou, 2016; Wang et al., 2016; Tasic et al., 2017; Sze et al., 2019), road
12 density (Graham et al., 2013; Wang et al., 2016; Sze et al., 2019), road function (Graham
13 and Glaister, 2003; Noland and Quddus, 2004; Wier et al., 2009; Ukkusuri et al., 2011,
14 2012; Dumbaugh and Zhang, 2013; Noland et al., 2013; Jermrapai and Srinivasan, 2014;
15 Cai et al., 2016, 2017a; Wang et al., 2016; Tasic et al., 2017), speed limits (Siddiqui et al.,
16 2012; Lee et al., 2015), sidewalk density (Wang and Kockelman, 2013; Cai et al., 2016;
17 Chen and Zhou, 2016; Cai et al., 2017a), and network topology (Guo et al., 2017; Osama
18 and Sayed, 2017; Tasic et al., 2017) were found to be closely related to the frequency of
19 pedestrian crashes in a neighborhood. Land use was also reported to have a significant
20 influence on the incidence of pedestrian crashes. Specifically, higher percentages of
21 commercial (Priyantha Wedagama et al., 2006; Loukaitou-Sideris et al., 2007; Wier et al.,
22 2009; Ukkusuri et al., 2011; Jermrapai and Srinivasan, 2014), residential (Priyantha
23 Wedagama et al., 2006; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Wang and
24 Kockelman, 2013), and industrial (Ukkusuri et al., 2011, 2012; Jermrapai and Srinivasan,
25 2014) land-use were associated with an increased likelihood of pedestrian crashes. Similar
26 conclusions hold true for the effect of land-use intensity (Wang et al., 2016). However,
27 inconsistent results were found for the effect of land-use mix, as Wang and Kockelman
28 (2013) reported a significantly negative relationship between mixed land-use and the
29 frequency of pedestrian crashes, whereas Chen and Zhou (2016), Guo et al. (2017), and
30 Xie et al. (2017) drew the opposite conclusion.

31 In addition, the prevalence of specific facilities, such as bus stops (Ukkusuri et al.,
32 2011; Lee et al., 2015; Xie et al., 2017; Goel et al., 2018), metro stations (Ukkusuri et al.,
33 2011, 2012; Jermrapai and Srinivasan, 2014; Lee et al., 2015), schools (Cottrill and
34 Thakuriah, 2010; Ukkusuri et al., 2011, 2012; Jermrapai and Srinivasan, 2014; Lee et al.,
35 2015), hotels (Lee et al., 2015; Cai et al., 2016), and licensed liquor outlets (Sebert
36 Kuhlmann et al., 2009), was also found to significantly increase the likelihood of pedestrian
37 crashes in neighborhoods.

38 With respect to socio-economic characteristics, neighborhoods with a denser
39 population (LaScala et al., 2000; Graham and Glaister, 2003; Loukaitou-Sideris et al., 2007;
40 Sebert Kuhlmann et al., 2009; Chakravarthy et al., 2010; Cottrill and Thakuriah, 2010;

1 Ha and Thill, 2011; Siddiqui et al., 2012; Graham et al., 2013; Wang and Kockelman, 2013;
2 Jermrapai and Srinivasan, 2014; Cai et al., 2016, 2017a), higher proportions of ethnic
3 minorities (Loukaitou-Sideris et al., 2007; Chakravarthy et al., 2010; Ukkusuri et al., 2011;
4 Lee et al., 2019) and less-educated population (LaScala et al., 2000; Chakravarthy et al.,
5 2010; Ukkusuri et al., 2011; Goel et al., 2018), more children (Graham et al., 2013) and
6 elderly people (Ukkusuri et al., 2012; Dumbaugh and Zhang, 2013; Xie et al., 2017; Lee et
7 al., 2019; Sze et al., 2019), lower vehicle ownership per capita (Cottrill and Thakuriah
8 2010; Noland et al. 2013), a higher unemployment rate (LaScala et al., 2000; Cai et al.,
9 2016; Xie et al., 2017), a higher poverty level (Wier et al., 2009; Chakravarthy et al., 2010;
10 Ha and Thill, 2011; Jermrapai and Srinivasan, 2014; Lee et al., 2015), and a lower
11 household median income (Siddiqui et al., 2012; Noland et al., 2013; Jermrapai and
12 Srinivasan, 2014; Cai et al., 2017a; Rothman et al., 2020) were also associated with more
13 pedestrian crashes.

14 The relationship between the aforementioned explanatory variables and the number
15 of pedestrian crashes can be established using crash prediction models. Traditional Poisson
16 and negative-binomial models have a strong assumption that their observations should be
17 mutually independent (Lord and Mannering, 2010). This fundamental hypothesis is almost
18 always violated (Mannering and Bhat, 2014), particularly because pedestrian crashes
19 collected in contiguous spatial units usually display spatial correlation (Ziakopoulos and
20 Yannis, 2020). A range of spatial statistical techniques have therefore been used to
21 incorporate this spatial dependence into pedestrian crash-frequency modeling. The
22 Bayesian hierarchical models are most prevalent, in which the spatial correlation is
23 typically modeled via the intrinsic conditional autoregressive (CAR) prior proposed by
24 Besag et al. (1991) at the second level of hierarchy (Sebert Kuhlmann et al., 2009; Siddiqui
25 et al., 2012; Graham et al., 2013; Noland et al., 2013; Wang and Kockelman, 2013;
26 DiMaggio, 2015; Lee et al., 2015; Chen and Zhou, 2016; Wang et al., 2016; Guo et al.,
27 2017; Osama and Sayed, 2017; Zeng et al., 2017, 2019, 2020; Goel et al., 2018; Lee et al.,
28 2019; Wen et al., 2019). Alternative CAR specifications were also introduced by
29 Richardson et al. (1992), Cressie (1993), and Leroux et al. (1999). Lee (2011) made a
30 comprehensive comparison and concluded that the model of Leroux et al. (1999) was the
31 most appealing, because it consistently performed well in the presence of spatial
32 independence and strong spatial correlation.

33 Although most safety analysts have attempted to tackle the spatial correlation in
34 model residuals, only a relatively limited number of studies have focused specifically on
35 spatial heterogeneity or spatial non-stationarity. Variables do not usually vary constantly
36 across space, and the relationship between pedestrian crashes and related risk factors may
37 not necessarily be fixed across the study area. The capability of accounting for this spatial
38 heterogeneity by allowing parameters to vary spatially holds considerable promise.
39 Although a few studies have used the random-parameters count-data models to account
40 for the heterogeneous effects in pedestrian crash frequency (Ukkusuri et al., 2012; Sze et

1 al., 2019), the regression coefficients in these random-parameters models typically arise
2 independently from some univariate distributions, and no attention is paid to the locations
3 to which the parameters refer. This hypothesis may be inappropriate, particularly in cases
4 where the unobserved factors are correlated through space (Xu and Huang, 2015; Xu et
5 al., 2017). It is thus not surprising that Sze et al. (2019) reported a significantly negative
6 relationship between vehicle volume and the number of pedestrian crashes. This counter-
7 intuitive finding is very likely attributed to the neglect of spatial correlated effects in their
8 random-parameters models. Xu and Huang (2015) therefore advocated the development of
9 a model based on the principle that the estimated parameters on a geographical surface
10 are related to each other with closer values more similar than distant ones.

11 To address the spatially correlated effects in varying coefficients, one promising
12 approach is the geographically weighted regression model (Fotheringham et al., 2002; Yang
13 et al., 2020; Zhao et al., 2020). This method is similar to local linear models, depending on
14 the calibration of multiple regression models for different geographical entities. Recent
15 studies have empirically demonstrated the superiority of the method, with a substantially
16 improvement in goodness-of-fit and the ability to explore the spatially varying
17 relationships between crash counts and predictive factors (Hadayeghi et al., 2010; Li et al.,
18 2013; Pirdavani et al., 2014; Shariat-Mohaymany et al., 2015; Xu and Huang, 2015; Yao
19 et al., 2015; Bao et al., 2017; Huang et al., 2018; Gomes et al., 2019; Hezaveh et al., 2019;
20 Ariannezhad et al., 2020). An alternatively potential method is the Bayesian spatially
21 varying coefficients (BSVC) models (Xu et al., 2017), which has long been used in statistics
22 to examine the non-constant relationships between variables (Congdon, 1997). Such an
23 approach fits naturally into the Bayesian paradigm, where all parameters are treated as
24 stochastic. Obviously, the BSVC model differs from the geographically weighted regression
25 model in that the former is a single statistical model specified in a hierarchical manner,
26 whereas the latter is an assembly of local spatial regression models. Wheeler and Calder
27 (2007) conducted a series of simulation studies to evaluate the accuracy of regression
28 coefficients in these two types of models. Their evidence suggested that the BSVC model
29 produced more reliable and easily interpreted inferences, thereby providing more flexibility.
30 However, to assume that the regression coefficients are spatially clustered solely is a strong
31 prior belief. In reality, spatial pooling with smoothly varying coefficients over contiguous
32 areas may exhibit over-smoothness (Xu et al., 2017), particularly in the presence of clear
33 discontinuities (Congdon, 2014). In this vein, a robust model with a mechanism to
34 collectively accommodate the global and local smoothing would be favorable.

35 To summarize, despite that numerous research efforts have been devoted to the
36 development of various predictive models to explore the effects of area-wide factors on the
37 frequency of pedestrian crashes within the past two decades, existing studies have largely
38 failed to provide a full picture of the factors that contribute to the incidence of zonal
39 pedestrian crashes, mainly due to the unavailability of reliable exposure data and use of
40 less sound analytical methods. Based on a comprehensive dataset of 7,103 pedestrian-

1 motor vehicle (PMV) crashes aggregated in 209 tertiary planning units (TPUs) over a 3-
2 year period in Hong Kong, our study aims to assess the geographical variations of PMV
3 crashes with respect to land-use, road-network attributes, traffic characteristics, the
4 presence of public facilities, and socio-demographic characteristics. Specifically, the
5 objectives of our study are: 1) to propose a procedure to extract pedestrian trajectories
6 from household travel-diary survey data and to dissect the role of various measures of
7 pedestrian exposure (i.e., population, walking trips, walking time, and walking distance)
8 in the performance of zonal PMV crash-frequency models; 2) to extend the fixed-
9 coefficients approach that is commonly used to model spatially correlated error-terms to
10 estimate the spatially non-stationary relationships within a full Bayesian context; and 3)
11 to identify the factors that contribute to the frequency of PMV crashes in neighborhoods
12 in an urban city. Based on our study, the spatially heterogeneous effects of various factors
13 on the frequency of PMV crashes are expected to be quantified. Such information is of
14 paramount importance for policymakers in the formulation and implementation of
15 multifaceted interventions to reduce environmental hazards and to remove barriers to
16 walking in targeted neighborhoods. The proposed procedure to extract pedestrian
17 trajectories from household travel-diary survey data and the developed BSV model can
18 also be directly generalized to other regions when modeling the frequency of PMV crashes
19 to obtain more accurate and reliable estimations.

20 **2. Methods**

21 **2.1 Data preparation**

22 Our crash data were obtained from the Traffic Road Accident Database System, which is
23 maintained by the Hong Kong Police Force and the Hong Kong Transport Department
24 ([Xu et al., 2019a](#)). These data are collected by the police officers at the crash scene ([Meng et al., 2017](#); [Xie et al., 2018](#) ; [Zhou et al., 2020](#)). Only crashes that result in injuries are
25 recorded in the database. With available information on geographical coordinates, the
26 crashes were first mapped onto an ArcGIS map and geo-validated using a procedure
27 developed by [Loo \(2006\)](#). A total of 7 ,381 PMV crashes were reported by the police on
28 normal weekdays during 2010-2012. Of these, 96.23% were successfully geo-coded. These
29 crashes were then immediately aggregated at the TPU level, which is the smallest unit for
30 planning purpose in Hong Kong ([Yao and Loo, 2016](#)). Initially, the Hong Kong Planning
31 Department partitioned the whole territory as 289 TPUs in total in 2011. For the purpose
32 of privacy, 80 TPUs with a sparse population were then merged with their adjacent zones
33 by the Hong Kong Census Department when releasing the 2011 Population Census Report.
34 The resulting 209-TPU system, with an average size of 5.31 km² and approximately one-
35 third of TPUs having an area of less than 1 km², was used as the spatial unit system of
36 our analysis, because it readily matches the existing population census data and is capable
37 of quantifying the built environmental factors at a relatively fine geographical scale.
38

To assign the boundary crashes, a buffer zone with a radius of 100 ft (i.e. 30.48 m) was created first around the TPU boundaries. Crashes located within the boundary buffer were then allocated equally to the adjacent TPUs. This half-to-half ratio assignment method was recommended by Washington et al. (2010) and Xu et al. (2017). Other variables were also spatially attached to their respective TPUs in an analogous manner. Fig. 1 illustrates the spatial distribution of PMV crashes in 209 TPUs on normal weekdays during 2010–2012 in Hong Kong. The number of PMV crashes across TPUs was 34 on average, with a minimum value of 0 to a maximum of 292.

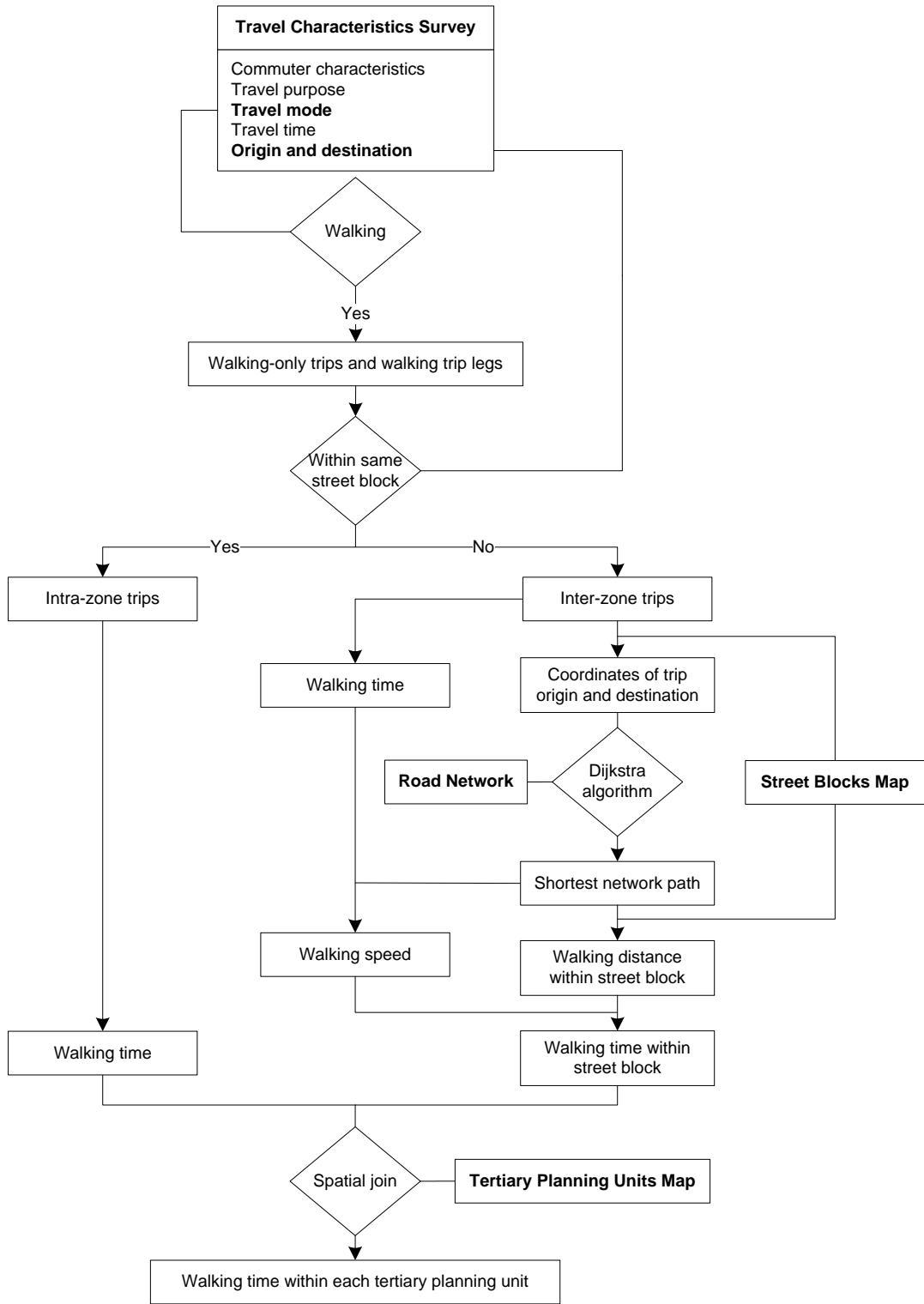
The vehicle flow data were derived from the Annual Traffic Census System, which is maintained by the Hong Kong Transport Department. Each year, the Hong Kong Transport Department publishes its traffic census reports with the vehicle flow data recorded by the counting stations. In 2011, approximately 850 counting stations were surveyed, covering over 85% of trafficable roads in Hong Kong (HKTD, 2012). By multiplying the reported average annual daily traffic volume by the corresponding length of road segments, the average daily vehicle kilometers traveled was obtained.

Fig. 1. The spatial distribution of PMV crashes on normal weekdays in Hong Kong during 2010–2012.

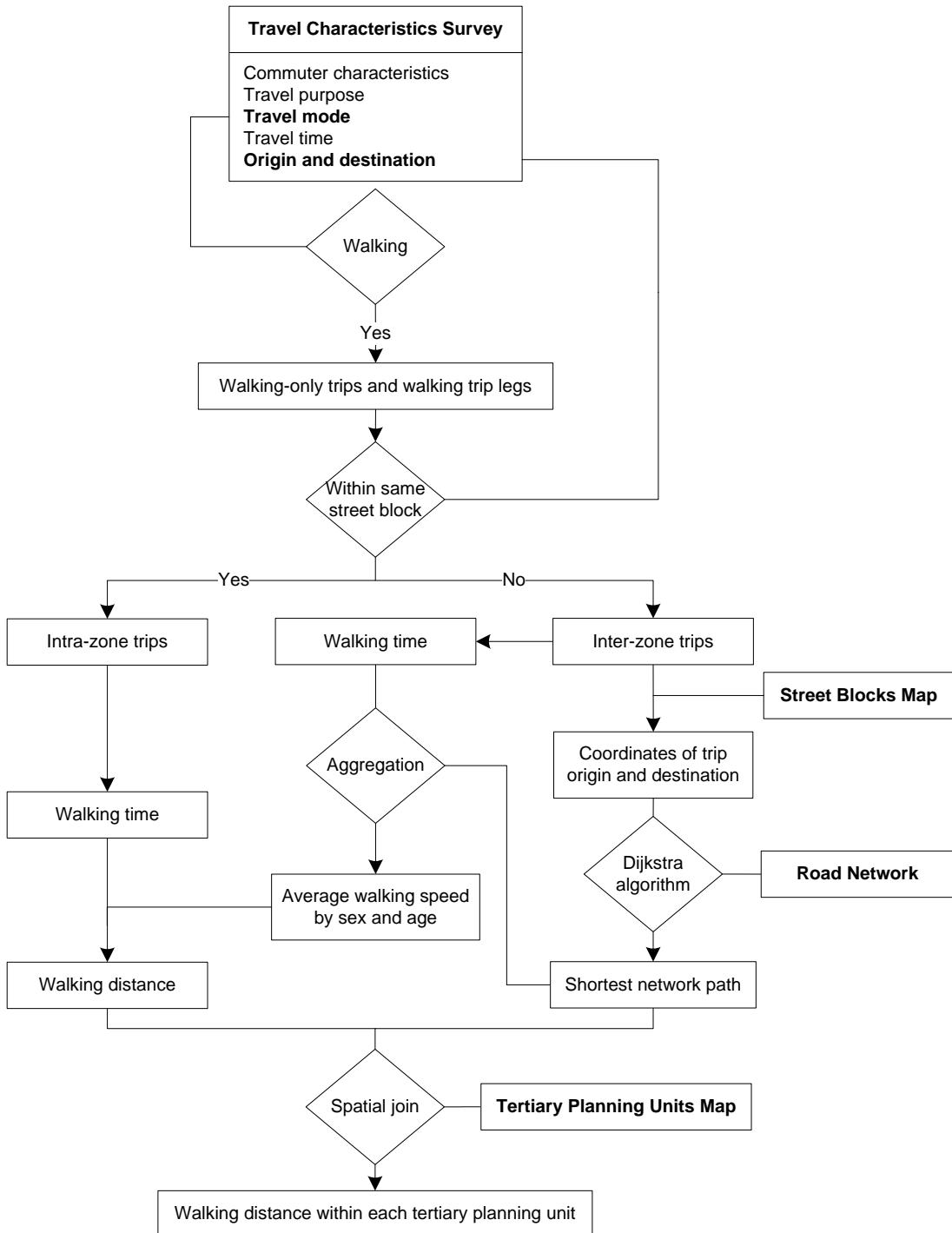
To estimate the city-wide pedestrian exposure the 2011 Travel Characteristics Survey (HKTD, 2014) released by the Hong Kong Transport Department was used. Between September 2011 and January 2012, a random sample of 35,401 households (approximately 1.5% of domestic households) was successfully enumerated. Respondents were asked to recall all types of activities they had engaged in on the preceding weekday

1 (excluding Saturdays, Sundays, and public holidays). For each trip, detailed information
2 on origin and destination, trip purpose, departure time, arrival time, and trip duration
3 was recorded accordingly. The collected trip records were then extrapolated to the entire
4 population and were further adjusted for underreporting by comparison with independent
5 transportation statistics (To et al., 2005). To estimate pedestrian activities within each
6 TPU, as illustrated in Fig. 2, all of the walking trips including the walk-only trips and
7 walking trip legs were first plotted on the ArcGIS map, with the centroid of street blocks
8 as a trip's origin or destination. In Hong Kong, the street blocks are the smallest
9 enumeration units delineated by the Hong Kong Planning Department. There are 4,993
10 street blocks across the whole territory, with an average area of 0.22 km². For inter-zone
11 trips whose origin and destination were not within the same street block, the shortest
12 network path was calculated using the Dijkstra algorithm (Dijkstra, 1959). These shortest
13 walking paths were then overlaid with the street block map to extract the part of the
14 routes within the boundary of each street block. Given the reported trip duration, together
15 with an assumption that people walked at a constant speed throughout their trips, the
16 walking time of each inter-zone trip within corresponding street blocks could then be
17 calculated. Finally, by spatially joining the street blocks with the TPU map, the walking
18 time within each TPU was obtained. A similar procedure was used to estimate the walking
19 distance at the TPU level, as detailed in Fig. 3. Here we estimated the walking distance
20 for intra-zone trips by multiplying the self-reported walking time by average walking speed
21 stratified by sex and age groups. Age- and sex-specific walking speeds were calculated by
22 dividing the total distance of shortest walking paths estimated for the inter-zone trips by
23 corresponding walking time, as presented in Table A2. Compared with Yao et al. (2015)
24 who used solely the inter-zone trips to extract pedestrian trajectories, our proposed
25 procedure is expected to produce more accurate estimates of pedestrian activities within
26 each neighborhood by an integrated consideration of inter-zone and intra-zone trips. In
27 total, the 2011 Travel Characteristics Survey estimated approximately 28.71 million
28 walking trips (including walk-only trips and walking trip legs), corresponding to 2.40
29 million hours and 10.21 million kilometers walked by Hong Kong residents per weekday
30 during 2010–2012.

31 In addition to the estimation of exposure measures, a range of explanatory variables
32 related to land-use, road-network characteristics, and socio-demographic factors that
33 potentially contribute to the frequency of PMV crashes were collected from a crowdsourced
34 dataset in Hong Kong.



1
2 **Fig. 2.** Flowchart used to estimate walking time at TPU level based on the 2011 Hong
3 Kong Travel Characteristics Survey data.



1

2 **Fig. 3.** Flowchart used to estimate walking distance at TPU level based on 2011 Hong
3 Kong Travel Characteristics Survey data.

1 The digital land-use data were obtained from the Hong Kong Planning Department,
 2 which were categorized into seven types: commercial, residential, industrial, institutional,
 3 recreational, special utilities, and green space. In addition to using the percentage to
 4 indicate the intensity of a particular type of land-use within an area, following [Wang and](#)
 5 [Kockelman \(2013\)](#), [Chen and Zhou \(2016\)](#), and [Ding et al. \(2018\)](#), we calculated the
 6 entropy index to quantify the mixture of land-use as Eq. (1):

$$7 \quad \text{Entropy}_i = \frac{-\sum_{j=1}^{k_i} p_j^i \ln(p_j^i)}{\ln(k_i)} \quad (1)$$

8 where p_j^i refers to the percentage of land-use type $j (j = 1, 2, \dots, 7)$ in TPU
 9 $i (i = 1, 2, \dots, 209)$. k_i denotes the number of land-use types in the i th TPU. The entropy
 10 index varies from 0 to 1, with a value towards 1 associated with a greater extent of mixed
 11 land-use.

12 However, the aforementioned entropy index implicitly assumes that an area is
 13 perfectly mixed if its land-use types share equal percentage, which seems theoretically
 14 inadequate. The balance index ([Cervero and Duncan, 2003](#)) was therefore introduced here
 15 to measure how different types of land-use interact in balance with each other. Let t_j the
 16 percentage of land-use type j within the whole city. Setting the entire area under
 17 investigation as a benchmark with well-balanced land-use, the balance index for the i th
 18 TPU could then be calculated as ([Song et al., 2013](#)):

$$19 \quad \text{Balance}_i = 1 - \sum_j^7 t_j |p_j^i - t_j| \quad (2)$$

20 Similar to the entropy, the balance index also ranges from 0 to 1, with higher values
 21 representing more balanced land-use.

22 The road-network data were extracted from the node-link road centerline system
 23 provided by the Hong Kong Lands Department and were further adjusted by the shapefile
 24 derived from OpenStreetMap. Various geometric characteristics, namely road density,
 25 intersection density, percentages of road-segment lengths with different functional
 26 classifications, and percentages of different types of intersections, were included. Road
 27 density here was defined as the length of road segments per square kilometers, while
 28 intersection density was calculated as the number of intersections divided by the length of
 29 road segments.

30 The points-of-interest data were grabbed from the Geolinfo Map released by the Hong
 31 Kong SAR Government. Given precise location information, the numbers of various public
 32 facilities, including the bus stops, parking lots, tram stops, metro entrances, petrol stations,
 33 supermarkets, shopping malls, convenience stores, licensed hotels, nursing homes for the
 34 elderly, child care centers, hospitals, clinics, schools, police stations, country parks, libraries,
 35 museums, playgrounds, performing venues, sports centers, and sports grounds, were thus

1 counted within each TPU. This rich points-of-interest dataset provides us a valuable
 2 opportunity to examine the effects of some previously under-investigated factors, such as
 3 bus-stop density and the prevalence of parking lots, on the frequency of zonal PMV crashes.

4 Finally, the demographic, educational, economic, and household characteristics were
 5 derived from the 2011 Population Census Report. The variables available for model
 6 development, along with their descriptive statistics, are presented in [Table 1](#).

7 **Table 1.** Characteristics of the 209 TPUs under investigation.

Variables	Mean	SD	Min	Max
Dependent variable				
Number of PMV crashes on working days during 2010–2012	33.99	43.09	0.00	292.00
Exposure variables				
Average daily vehicle kilometers traveled ($\times 10^3$)	127.70	153.79	0.36	1204.05
Resident population ($\times 10^3$)	33.83	41.05	1.02	287.90
Average daily walking trips ($\times 10^3$)	163.78	180.81	0.60	1142.53
Average daily walking time ($\times 10^3$ hours)	11.46	13.84	0.02	89.63
Average daily walking distance ($\times 10^3$ km)	48.84	60.68	0.07	416.11
Explanatory variables				
<i>Land-use</i>				
Percentage of commercial landuse	0.04	0.09	0.00	0.53
Percentage of residential land-use	0.22	0.16	0.00	0.81
Percentage of industrial land-use	0.02	0.07	0.00	0.67
Percentage of institutional land-use	0.10	0.10	0.00	0.67
Percentage of recreational landuse	0.08	0.10	0.00	0.47
Percentage of special utilities	0.17	0.14	0.00	0.56
Percentage of green space	0.37	0.34	0.00	0.98
Land-use mix	0.66	0.23	0.01	0.98
Land-use balance	0.67	0.20	0.41	0.99
<i>Road-network attributes</i>				
Road density (km/km ²)	10.52	6.98	0.62	37.49
Percentage of motorways	0.06	0.08	0.00	0.57
Percentage of primary roads	0.05	0.09	0.00	0.69
Percentage of secondary roads	0.11	0.09	0.00	0.36
Percentage of tertiary roads	0.10	0.11	0.00	0.78
Percentage of unclassified roads	0.68	0.17	0.20	1.00
Intersection density (/km)	4.43	1.81	1.00	14.31
Percentage of signalized intersections	0.12	0.12	0.00	0.57
Percentage of roundabouts	0.02	0.02	0.00	0.15
Percentage of threeleg intersections	0.86	0.13	0.24	1.00
Percent of four-leg intersections	0.14	0.12	0.00	0.76
Percent of intersections with five or more legs	0.05	0.01	0.00	0.08
<i>Public facilities</i>				
Bus-stop density (/km)	1.36	0.98	0.00	4.69
Number of parking lots	3.11	4.38	0.00	25.00

Number of tram-stops	0.61	2.21	0.00	14.00
Number of metro entrances	2.45	4.08	0.00	19.00
Number of petrol stations	0.82	1.22	0.00	5.00
Number of supermarkets	3.23	3.44	0.00	15.00
Number of shopping malls	3.27	4.48	0.00	26.00
Number of convenience stores	6.45	7.83	0.00	49.00
Number of licensed hotels	5.93	24.60	0.00	294.00
Number of nursing homes for the elderly	0.78	1.29	0.00	8.00
Number of child care centers	0.06	0.23	0.00	1.00
Number of hospitals	0.21	0.64	0.00	4.00
Number of clinics	1.18	2.04	0.00	11.00
Number of schools	13.11	17.09	0.00	122.00
Number of police stations	0.22	0.46	0.00	3.00
Number of country parks	0.11	0.40	0.00	3.00
Number of libraries	0.89	1.25	0.00	9.00
Number of museums	0.09	0.45	0.00	5.00
Number of playgrounds	0.30	0.63	0.00	3.00
Number of performing venues	0.08	0.31	0.00	2.00
Number of sports centers	0.49	0.80	0.00	4.00
Number of sports grounds	0.13	0.34	0.00	1.00
<i>Demographic characteristics</i>				
Proportion of male population	0.47	0.04	0.36	0.85
Proportion of population aged less than 15	0.12	0.03	0.00	0.21
Proportion of population aged between 15 and 24	0.11	0.03	0.02	0.27
Proportion of population aged between 25 and 44	0.33	0.05	0.21	0.57
Proportion of population aged between 45 and 64	0.30	0.04	0.15	0.44
Proportion of population aged 65 or above	0.13	0.06	0.00	0.44
Proportion of population of Chinese ethnicity	0.88	0.12	0.43	0.99
<i>Educational characteristics (highest level attended)</i>				
Proportion of population with primary education or below	0.28	0.08	0.07	0.61
Proportion of population with secondary education	0.45	0.07	0.17	0.84
Proportion of population with post -secondary education	0.27	0.13	0.00	0.75
<i>Economic characteristics</i>				
Labor-force participation rate	0.60	0.08	0.00	0.88
Proportion of working population	0.51	0.72	0.00	0.83
Proportion of working population with place of work at home	0.12	0.10	0.00	0.51
Median monthly income (× 10 ³)	13.86	5.68	0.00	40.00
<i>Household characteristics</i>				
Household density (× 10 ³ /km ²)	10.66	12.74	0.00	58.09
Average household size	2.93	0.38	1.60	4.10
Proportion of households with three or more persons	0.56	0.12	0.00	0.82
Median monthly household income (× 10 ³)	33.43	29.73	0.00	170.80
Median monthly household rent (× 10 ³)	8.06	11.71	0.00	76.00

Median rent to income ratio	0.19	0.11	0.00	0.53
Proportion of population in public rental housing	0.16	0.24	0.00	1.00
Proportion of population in subsidized home ownership housing	0.08	0.14	0.00	0.78
Proportion of population in permanent housing	0.72	0.32	0.00	1.00
Proportion of population in non-domestic housing	0.01	0.06	0.00	0.85
Proportion of population in temporary housing	0.03	0.08	0.00	0.53

2.2 Model specification

We modeled the frequency of PMV crashes consistent with previous studies (Sebert Kuhlmann et al., 2009; Wang and Kockelman, 2013; DiMaggio, 2015; Lee et al 2015; Guo et al., 2017; Osama and Sayed, 2017; Goel et al., 2018). Let Y_i denote the number of PMV crashes in the i th TPU on working days during 2010–2012. The use of aggregate crash data over a 3-year period helps to avoid confounding effects and the regression-to-the-mean phenomenon (Cheng and Washington, 2005). V_i and P_i refer to the vehicle and pedestrian volumes, respectively, and X_{ik} is the k th explanatory variable related to zone-specific attributes. Given the potential non-linear relationship between PMV crashes and traffic volumes (Elvik and Goel, 2019), we have:

$$Y_i \sim \text{Poisson}(l_i)$$

$$\ln(l_i) = \beta_0 + \beta_1 \ln(V_i) + \beta_2 \ln(P_i) + \sum_{k=3}^p \beta_k X_{ik} + u_i + s_i \quad (3)$$

where λ_i is the parameter of the Poisson model (i.e., the expected number of PMV crashes in the i th TPU; β_0 is the intercept; $\beta_k (k = 2, \dots, p)$ refers to the k th regression coefficients to be estimated; u_i denotes the unstructured effect, which is specified as an exchangeable normal prior with a mean of 0 and a variance of s_u^2 , i.e., $u_i \sim \text{Normal}(0, s_u^2)$; and s_i is the spatially structured or spatially correlated effect.

One commonly used joint density for $\mathbf{s}(s_1, s_2, \dots, s_{209})$ is formulated in terms of pairwise differences in errors and a variance term of s_s^2 (Besag et al., 1991):

$$P(s_1, s_2, \dots, s_n) \propto \exp[-0.5(s_s^2)^{-1} \sum_{i \sim j} c_{ij} (s_i - s_j)^2] \quad (4)$$

This results in a normal conditional prior for s_i :

$$s_i | s_{j \neq i} \sim \text{Normal}\left(\frac{\sum_j c_{ij} s_j}{\sum_j c_{ij}}, \frac{s_s^2}{\sum_j c_{ij}}\right) \quad (5)$$

where c_{ij} represents the non-normalized weight, e.g., $c_{ij} = 1$ if TPU i is adjacent to TPU j , otherwise $c_{ij} = 0$. In our study, geographically non-contiguous zones were also considered as neighbors if they were directly connected by cross-harbor tunnels, bridges, or ferries. s_s^2 is the variance parameter, controlling the amount of extra variations due to spatial correlation.

Although the univariate conditional prior distribution in Eq. (5) is well defined, the corresponding joint prior distribution for \mathbf{s} is improper with undefined mean and infinite

1 variance (Sun et al., 1999). This fact probably leads to problems in convergence and
2 identifiability (Eberly and Carlin, 2000).

3 An alternative strategy to gain property is based on the strength of a single set of
4 random effects $\mathbf{v}(v_1, v_2, \dots, v_{209})$:

5

$$\ln(I_i) = b_1 + b_2 \ln(V_i) + b_3 \ln(P_i) + \sum_{k=4}^p b_k X_{ik} + v_i \quad (6)$$

6 Following Lee (2011), v_i here is specified as the CAR prior proposed by Leroux et al.
7 (1999):

8

$$v_i | v_{j \neq i} \sim \text{Normal}\left(\frac{r_v \sum_j c_{ij} v_j}{1 - r_v + r_v \sum_j c_{ij}}, \frac{s_v^2}{1 - r_v + r_v \sum_j c_{ij}}\right) \quad (7)$$

9 where $r_v (0 \leq r_v \leq 1)$ is the spatial correlation parameter, with $r_v = 0$ simplifying to an
10 independently and identically distributed normal prior, and a value closer to 1 indicating
11 a stronger spatial correlation. Accordingly, setting $r_v = 1$ corresponds to the intrinsic
12 CAR, as in Eq. (5).

13 Based on the factorization theorem, \mathbf{v} results in a joint multivariate Gaussian
14 distribution:

15

$$\mathbf{v} \sim \text{MVN}(\mathbf{0}, \sigma_v^2 [\rho_v \mathbf{K} + (1 - \rho_v) \mathbf{I}]^{-1}) \quad (8)$$

16 where \mathbf{I} is an $n \times n$ matrix, and the elements of \mathbf{K} are calculated as:

17

$$K_{ij} = \begin{cases} \sum_j c_{ij} & \text{if } i = j \\ -c_{ij} & \text{if } i \neq j \end{cases} \quad (9)$$

18 Although the covariance structure in Eq. (6) incorporates the local relationships, the
19 outputs from the preceding models still consist of a set of global parameter estimates.
20 Intuitively, the local variations can be addressed by setting the regression coefficients as
21 random effects, allowing the effects of covariates to vary spatially:

22

$$\ln(\lambda_i) = \beta_1 + \beta_{i2} \ln(V_i) + \beta_{i3} \ln(P_i) + \sum_{k=4}^p \beta_{ik} X_{ik} + v_i \quad (10)$$

23 where β_{ik} is the coefficient of the k th explanatory variable for TPU i .

24 To account for both the unstructured and spatially structured variations in model
25 regression coefficients, following Xu et al. (2017), we have:

26

$$\beta_k \sim \text{MVN}(\mu_k, \sigma_k^2 [\rho_k \mathbf{K} + (1 - \rho_k) \mathbf{I}]^{-1}) \quad (11)$$

27 Unlike Eq. (8), Eq. (11) has a constant non-zero mean $\mu_k (\mu_1, \dots, \mu_k)$, in which μ_k is the
28 overall estimate of the regression slope, representing the average of the posterior estimates
29 of $\beta_k (\beta_{1k}, \beta_{2k}, \dots, \beta_{209k})$. The precision matrix is now given by $\rho_k \mathbf{K} + (1 - \rho_k) \mathbf{I}$, which is a
30 weighted average of spatially correlated and independent structures denoted as \mathbf{K} and \mathbf{I} ,
31 respectively. This specification is capable of accounting for a range of weak and strong
32 spatial correlation in regression coefficients, with $\rho_k = 0$ reducing to spatially independent
33 random effects only, while an increase in ρ_k toward 1 represents more spatial smoothing.

1 Accordingly, the univariate full conditional distribution for Eq. (11) is:

2

$$\beta_{ik} | \beta_{jk} \sim \text{Normal}\left(\frac{\rho_k \sum_j c_{ij} \beta_{jk} + (1 - \rho_k) \mu_k}{1 - \rho_k + \rho_k \sum_j c_{ij}}, \frac{\sigma_k^2}{1 - \rho_k + \rho_k \sum_j c_{ij}}\right) \quad (12)$$

3

4 Specifically, the conditional expectation of β_{ik} is a weighted average of the random
 5 effects at neighboring zones and the overall mean μ_k . When β_{ik} exhibits a strong spatial
 6 correlation, ρ_k is close to 1 and the conditional variance approaches $\sigma_k^2 / \sum_j c_{ij}$. This
 7 variance configuration recognizes that in the presence of strong spatial correlation, the
 8 more neighbors a neighborhood has, the more information the data contain on the value
 9 of its random effects. In comparison, if the random effect is spatially independent, the
 10 conditional variance becomes σ_k^2 . Evidently, the parameter ρ_k ($0 \leq \rho_k \leq 1$) serves as an
 11 indicator to assess the relative strength of spatial and unstructured variations in the
 12 estimated coefficients. In addition, if there is no significant heterogeneity in β_k , σ_k^2
 13 becomes dispersive with the mean of its posterior distribution lower than the standard
 14 deviation (Barua et al., 2015; Xu et al., 2017). In this case, the regression slopes are better
 15 modeled as fixed effects.

16 Obtaining the full Bayesian posterior estimates requires the specification of prior
 17 distributions. Prior distributions are typically used to reflect prior knowledge about the
 18 parameters of interest. If such information is available, it is encouraged to formulate the
 19 so-called informative priors (Yu and Abdel-Aty, 2013; Heydari et al., 2014). In the absence
 20 of sufficient prior knowledge, non-informative priors, were applied to model the parameters
 21 here (Dong et al., 2016):

22

$$\begin{aligned} \beta_k &\sim \text{Normal}(0, 1000) \\ \mu_k &\sim \text{Normal}(0, 1000) \end{aligned} \quad (13)$$

23 Consistent with Congdon (2008), the spatial correlation parameters ρ_v and ρ_k were
 24 assigned as $\text{uniform}(0, 1)$. A $\text{uniform}(0, 10)$ was also specified for σ_v and σ_k , respectively,
 25 following Gelman (2006), Lee (2011), and Xu et al. (2017).

26 2.3 Model-performance comparison measures

27 For model comparison, three commonly used measures were adopted here i.e., the mean
 28 absolute deviance (MAD), mean squared prediction error (MSPE), and deviance
 29 information criterion (DIC).

30 The MAD was calculated as follows (Xu et al., 2015; Yao et al., 2015):

31

$$\text{MAD} = \frac{1}{209} \sum_{i=1}^{209} \left| \hat{Y}_i - Y_i \right| \quad (14)$$

1 where \hat{Y}_i denotes the predicted number of PMV crashes estimated by the fitted models.
2 A smaller value of MAD suggests that on average the model predicts the observed data
3 better.

4 The MSPE was also used to provide a measure of model predictive performance (Yao
5 et al., 2015), which was formulated as:

$$6 \quad \text{MSPE} = \frac{1}{209} \sum_{i=1}^{209} (\hat{Y}_i - Y_i)^2 \quad (15)$$

7 Similar to the MAD, models with a lower value of MSPE indicate a better predictive
8 performance.

9 Meanwhile, as a penalized goodness-of-fit measure, the DIC was used here to take
10 model complexity into account:

$$11 \quad \text{DIC} = D(\bar{\theta}) + 2p_D = \bar{D} + p_D \quad (16)$$

12 where $D(\bar{\theta})$ is the deviance evaluated at $\bar{\theta}$, the posterior means of the parameters; p_D is
13 the effective number of parameters in the model; and \bar{D} is the posterior mean of the
14 deviance statistic $D(\theta)$. The lower the DIC value, the better the model fit. In general, for
15 a pair of models with a difference in DIC value of more than 10, the model with a higher
16 DIC value is definitely ruled out; model pairs with DIC differences between 5 and 10 are
17 considered substantially different; and a difference of less than 5 indicates that the two
18 models are not statistically different (Spiegelhalter et al., 2002).

19 3. Results and discussion

20 The freeware WinBUGS (Spiegelhalter et al., 2005) was used to calibrate the models.
21 Three parallel chains with diverse starting points were tracked. The first 50,000 iterations
22 were discarded as burn-ins, and then 5,000 iterations were performed for each chain,
23 resulting in a sample distribution of 15,000 for each parameter. The model's convergence
24 was monitored by the Brooks-Gelman-Rubin statistic (Brooks and Gelman, 1998), visual
25 examination of the Markov chain Monte Carlo chains, and the ratios of Monte Carlo errors
26 relative to the respective standard deviations of the estimates. As a rule of thumb, these
27 ratios should be less than 0.05.

28 For model specification, a correlation test was conducted first to ensure the non-
29 inclusion of strongly correlated variables. Our correlation analysis indicated a strong
30 correlation between percentage of landuse categorized as special utilities and road density,
31 between labor force participation rate and proportion of working population, and between
32 average household size and proportion of population in permanent housing, with the
33 estimated Spearman's correlation parameters (Washington et al., 2011) greater than 0.70.
34 Likewise, the proportion of working population with place of work at home, median
35 monthly income, median monthly household income, and median monthly household rent
36 were also highly correlated, suggesting that these four variables should not be
37 simultaneously added to the models. Similar conclusions hold true for the variables of the

1 number of supermarkets, the number of shopping malls, and the number of convenience
2 stores, given their Spearman's correlation parameters all greater than 0.80. Other variables
3 showed weak collinearity, as their Spearman's correlation parameters were less than 0.50.
4 In the initial model, we included all of the uncorrelated variables (Xie et al., 2018; Zhou
5 et al., 2020). The DIC was then used to compare alternative models with different covariate
6 subsets. The model producing a lower DIC value was considered statistically superior.

7 For comparison purposes, in addition to the BSVC model, we developed the Bayesian
8 spatially fixed coefficients (BSFC) model with a spatially correlated error term. To
9 highlight the role of pedestrian exposure, models with population, walking trips, walking
10 time, and walking distance as the exposure measure, respectively, were estimated and
11 compared. As such, eight models were calibrated. The performance of these models is
12 presented below, followed by the presentation and interpretation of the parameter
13 estimates.

14 **3.1 Model-performance comparison**

15 Table 2 shows the results of goodness-of-fit measures for the calibrated models. The values
16 of MAD, MSPE, and DIC in the BSVC models were not substantially different from those
17 derived from the BSFC models, indicating that our data were fairly robust to model
18 configuration. More specifically, the BSVC model with walking trips as the measure of
19 pedestrian exposure performed best, given the lowest value of DIC. Based on a similar
20 dataset but aggregating pedestrian crashes to 26 districts in Hong Kong, Sze et al. (2019)
21 also reported that the model using walking frequency as the proxy for pedestrian exposure
22 was superior to the other two counterparts using zonal population and walking time.
23 Although population information is readily available as it is routinely reported by local
24 authorities, the use of such an aggregated data as a surrogate for pedestrian exposure
25 completely neglects the variations in pedestrian activities within an area of interest. This
26 negligence may produce biased results for central business districts with a sparse resident
27 population but a prevalence of pedestrian activities during workday rush-hours.

28 **Table 2.** Goodness-of-fit measures for BSFC and BSVC models for the frequency of PMV
29 crashes in 209 TPUs in Hong Kong during 2010-2012.

Model type	Description	Pedestrian exposure	MAD	MSPE	DIC
BSFC-1	Bayesian spatially	Population	5.53	68.05	1318.36
BSFC-2	fixed coefficients	Walking trips	5.52	67.91	1314.36
BSFC-3	model	Walking time	5.54	68.01	1323.28
BSFC-4		Walking distance	5.54	68.10	1322.31
BSVC-1	Bayesian spatially	Population	5.54	68.10	1320.27
BSVC-2	varying coefficients	Walking trips	5.52	67.86	1313.66
BSVC-3	model	Walking time	5.54	68.23	1324.51
BSVC-4		Walking distance	5.54	68.20	1322.81

1 MAD, MSPE, and DIC: mean absolute deviance, mean squared prediction error, and deviance information
2 criterion, respectively.

3 Among the three activity-based exposure measures, the model of walking trips seems
4 to better account for the cross-sectional variability in zonal counts of PMV crashes. One
5 plausible explanation is that due to the self-reported nature of travel-diary data,
6 information on waking trips is more reliable than that on walking time, given the potential
7 recall bias and inconsistency of time perception among individual respondents. Likewise,
8 the estimated walking distance in our study depends on a strong assumption that
9 pedestrians chose the shortest path. In reality, the route choice of pedestrians, however, is
10 considerably complex and dynamic, because people do not always choose the shortest path
11 when walking from one place to another (Guo and Loo, 2013). As a consequence, the
12 measurement-errors introduced in the process of estimating walking time and walking
13 distance probably lead to the reduced model performance.

14 **3.2 Parameter estimates**

15 Tables 3 and 4 summarize the parameter estimates in the BSFC and BSVC models applied
16 to the frequency of PMV crashes in 209 TPUs in Hong Kong, respectively. A 5% level of
17 significance was used as the threshold to determine whether the parameters differed
18 significantly from 0. Variables insignificant in all eight models were then excluded.

19 Several general observations are worthy of mention. First, the significant variables
20 were not entirely identical between the models of population and activity -based exposure
21 measures. For example, the percentage of residential land -use and the percentage of
22 roundabouts were statistically significant in the models of population, but became totally
23 insignificant in the models of activity -based exposure measures. The same holds true for
24 the variable of median monthly income, as this variable was only significant in the models
25 of activity -based exposure measures. Second, relative to the models of resident population,
26 the effects of several risk factors, i.e., road density, the percentage of motorways, and the
27 number of parking lots, changed substantially in the models of activity -based exposure
28 measures. Specifically, the coefficient of road density in the BSVC model decreased sharply
29 from 0.52 to 0.37 once the number of walking trips was used as the exposure measure.
30 Similar results were also observed for the effects of the percentage of motorways and the
31 number of parking lots. These findings raise an alarm that the extensive use of population
32 or population density to represent pedestrian exposure in previous studies (LaScala et al.,
33 2000; Graham and Glaister, 2003; Noland and Quddus, 2004; Priyantha Wedagama et al.,
34 2006; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Chakravarthy et al., 2010; Cottrill
35 and Thakuriah, 2010; Ha and Thill, 2011; Ukkusuri et al., 2011, 2012; Siddiqui et al., 2012;
36 Dumbaugh and Zhang, 2013; Graham et al., 2013; Noland et al., 2013; DiMaggio, 2015;
37 Lee et al., 2015; Wang et al., 2016; Gai et al., 2017a; Goel et al., 2018; Rothman et al.,
38 2020) has very likely resulted in biased estimates and incorrect inferences.

1 **Table 3.** Results of the BSFC model with a spatially correlated error term for the frequency of PMV crashes in 209 TPUs in Hong Kong during
 2 2010-2012.

Variables	BSFC-1			BSFC-2			BSFC-3			BSFC-4		
	Mean	SD	95% BCI									
Intercept	-3.62 [*]	0.49	(-4.61, -2.65)	-4.41 [*]	0.61	(-5.82, -3.32)	-2.45 [*]	0.39	(-3.23, -1.73)	-3.06 [*]	0.48	(-4.07, -2.13)
Ln (vehicle km traveled)	0.39 [*]	0.05	(0.29, 0.50)	0.34 [*]	0.06	(0.21, 0.45)	0.36 [*]	0.06	(0.25, 0.47)	0.37 [*]	0.06	(0.26, 0.48)
Ln (population)	0.48 [*]	0.05	(0.38, 0.59)									
Ln (walking trips)				0.51 [*]	0.06	(0.40, 0.64)						
Ln (walking time)							0.43 [*]	0.05	(0.34, 0.52)			
Ln (walking distance)										0.43 [*]	0.05	(0.33, 0.53)
Residential land-use (%)	-0.25 [*]	0.05	(-0.36, -0.15)	-0.06	0.05	(-0.15, 0.04)	-0.06	0.05	(-0.16, 0.03)	-0.06	0.05	(-0.16, 0.03)
Road density	0.51 [*]	0.05	(0.41, 0.61)	0.31 [*]	0.05	(0.21, 0.42)	0.34 [*]	0.05	(0.23, 0.44)	0.33 [*]	0.06	(0.23, 0.44)
Motorways (%)	-0.18 [*]	0.05	(-0.27, -0.08)	-0.14 [*]	0.05	(-0.24, -0.04)	-0.16 [*]	0.05	(-0.26, -0.06)	-0.18 [*]	0.05	(-0.28, -0.08)
Intersection density	0.23 [*]	0.06	(0.12, 0.34)	0.15 [*]	0.06	(0.04, 0.26)	0.15 [*]	0.06	(0.03, 0.27)	0.14 [*]	0.06	(0.03, 0.26)
Roundabouts (%)	-0.12 [*]	0.05	(-0.22, -0.03)	-0.08 [*]	0.05	(-0.17, 0.01)	-0.09 [*]	0.05	(-0.18, 0.01)	-0.08 [*]	0.05	(-0.18, 0.01)
Bus-stop density	0.21 [*]	0.05	(0.11, 0.31)	0.16 [*]	0.05	(0.05, 0.27)	0.18 [*]	0.05	(0.08, 0.29)	0.18 [*]	0.06	(0.07, 0.29)
Number of parking lots	0.19 [*]	0.05	(0.10, 0.28)	0.12 [*]	0.05	(0.02, 0.22)	0.13 [*]	0.05	(0.02, 0.22)	0.12 [*]	0.05	(0.01, 0.22)
Median monthly income	0.01 [*]	0.05	(-0.11, 0.09)	-0.13 [*]	0.05	(-0.23, -0.04)	-0.11 [*]	0.05	(-0.21, -0.02)	-0.11 [*]	0.05	(-0.21, -0.01)
μ_v^2	0.31 [*]	0.09	(0.20, 0.55)	0.30 [*]	0.09	(0.19, 0.53)	0.33 [*]	0.10	(0.20, 0.58)	0.35 [*]	0.11	(0.21, 0.62)
μ_v	0.08	0.07	(0.00, 0.26)	0.07	0.06	(0.00, 0.25)	0.08	0.07	(0.00, 0.27)	0.09	0.08	(0.00, 0.30)

3 BSFC: Bayesian spatially fixed coefficients model.

4 SD: standard deviation.

5 BCI: Bayesian credible interval.

6 · denotes significance at 95% CI.

1 **Table 4.** Results of the BSVC model for the frequency of PMV crashes in 209TPUs in Hong Kong during 2010–2012.

Variables	BSFC-1			BSFC-2 [†]			BSFC-3			BSFC-4		
	Mean	SD	95% BCI	Mean	SD	95% BCI	Mean	SD	95% BCI	Mean	SD	95% BCI
Intercept	-3.89 [*]	0.51	(-4.84, -2.92)	-4.37 [*]	0.55	(-5.48, -3.34)	-2.46 [*]	0.41	(-3.28, -1.66)	-2.97 [*]	0.45	(-3.86, -2.09)
Ln (vehicle km traveled)	0.42 [*]	0.06	(0.31, 0.54)	0.33 [*]	0.05	(0.24, 0.44)	0.36 [*]	0.05	(0.26, 0.47)	0.37 [*]	0.05	(0.27, 0.49)
Ln (population)	0.50 [*]	0.05	(0.40, 0.60)									
Ln (walking trips)				0.50 [*]	0.05	(0.40, 0.61)						
Ln (walking time)							0.43 [*]	0.05	(0.34, 0.53)			
Ln (walking distance)										0.42 [*]	0.05	(0.32, 0.51)
Residential land-use (%)	-0.24 [*]	0.05	(-0.35, -0.13)	-0.08	0.05	(-0.18, 0.02)	-0.09	0.05	(-0.19, 0.01)	-0.09	0.05	(-0.19, 0.01)
Road density	0.52 [*]	0.05	(0.42, 0.63)	0.37 [*]	0.08	(0.22, 0.54)	0.39 [*]	0.08	(0.24, 0.56)	0.40 [*]	0.08	(0.23, 0.57)
$\beta_{\text{Road density}}^2$	—	—	—	0.15 [*]	0.12	(0.01, 0.44)	0.16 [*]	0.12	(0.01, 0.48)	0.17 [*]	0.13	(0.01, 0.49)
$\beta_{\text{Road density}}$	—	—	—	0.47 [*]	0.29	(0.02, 0.98)	0.45 [*]	0.29	(0.01, 0.98)	0.46 [*]	0.29	(0.02, 0.97)
Motorways (%)	-0.26 [*]	0.08	(-0.42, -0.10)	-0.16 [*]	0.05	(-0.26, -0.06)	-0.18 [*]	0.05	(-0.28, -0.08)	-0.19 [*]	0.05	(-0.29, -0.10)
$\beta_{\text{motorways}}^2$	0.21 [*]	0.16	(0.01, 0.63)	—	—	—	—	—	—	—	—	—
$\beta_{\text{motorways}}$	0.37 [*]	0.28	(0.01, 0.95)	—	—	—	—	—	—	—	—	—
Intersection density	0.21 [*]	0.06	(0.10, 0.32)	0.14 [*]	0.06	(0.04, 0.26)	0.15 [*]	0.06	(0.03, 0.27)	0.14 [*]	0.06	(0.03, 0.26)
Roundabouts (%)	-0.16 [*]	0.05	(-0.27, -0.06)	-0.08	0.05	(-0.17, 0.01)	-0.09	0.05	(-0.18, 0.01)	-0.09	0.05	(-0.18, 0.01)
Bus-stop density	0.17 [*]	0.05	(0.07, 0.28)	0.17 [*]	0.05	(0.06, 0.27)	0.19 [*]	0.05	(0.08, 0.29)	0.19 [*]	0.05	(0.08, 0.29)
Number of parking lots	0.20 [*]	0.05	(0.11, 0.29)	0.13 [*]	0.05	(0.04, 0.22)	0.13 [*]	0.05	(0.03, 0.22)	0.13 [*]	0.05	(0.03, 0.22)
Median monthly income	0.01	0.05	(-0.09, 0.11)	-0.12 [*]	0.05	(-0.21, -0.03)	-0.10 [*]	0.05	(-0.19, -0.01)	-0.10 [*]	0.05	(-0.19, -0.01)
β_v^2	0.27 [*]	0.11	(0.12, 0.54)	0.25 [*]	0.09	(0.13, 0.48)	0.29 [*]	0.11	(0.15, 0.59)	0.30 [*]	0.12	(0.15, 0.60)
β_v	0.15	0.16	(0.00, 0.62)	0.10	0.10	(0.00, 0.38)	0.13	0.13	(0.00, 0.49)	0.14	0.14	(0.00, 0.52)

2 BSVC: Bayesian spatially fixed coefficients model.

3 SD: standard deviation.

4 BCI: Bayesian credible interval.

5 * denotes significance at 95% CI.

6 Detailed WinBUGS code for the BSVC-2 model was presented in the Appendix.

1 More importantly, unlike the BSFC models whose coefficients were restricted to be
2 constant, the BSV model allowed the regression coefficients to vary spatially. Hence,
3 using BSFC approach, a single model was applied for the entire area, whereas different
4 coefficients could be estimated for each neighborhood by virtue of the BSV model. It is
5 also interesting to observe that the error variability (σ_v^2) decreased slightly when
6 variations were introduced to the regression coefficients. This result is intuitively
7 reasonable, because the heterogeneity in the regression slopes can capture some of the
8 extra variations previously explained by the random effects in the error term (Xu et al.,
9 2017).

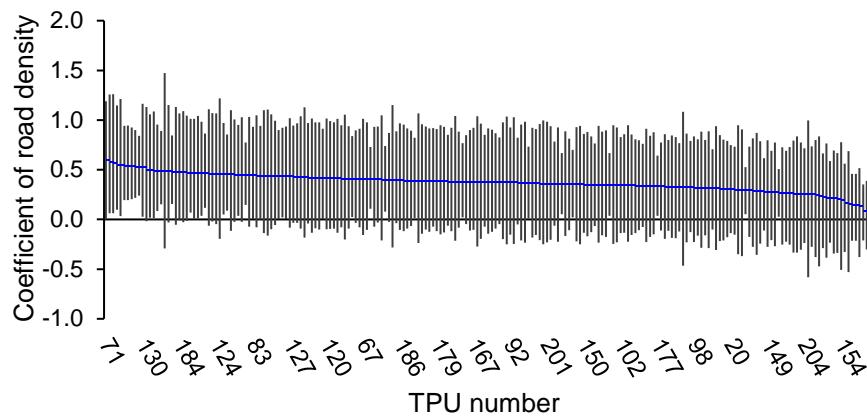
10 Given that the BSV model with walking trips as the measure of pedestrian exposure
11 performed best, we chose it to interpret our results in the subsequent section. As Table 4
12 shows, eight variables had a significant association with the frequency of PMV crashes:
13 vehicle kilometers traveled, walking trips, road density, percentage of motorways, junction
14 density, bus-stop density, number of parking lots, and median monthly income. The signs
15 of these parameters were generally consistent with empirical judgments and the results of
16 previous studies (Chen and Zhou, 2016; Guo et al., 2017; Tasic et al., 2017).

17 Both vehicle kilometers traveled and walking trips were significant and positive, with
18 coefficients estimated at 0.33 and 0.50, respectively. This nonlinear relationship between
19 pedestrian volume and the number of PMV crashes has been widely reported (Geyer et
20 al., 2006; Schneider et al., 2010; Miranda-Moreno et al., 2011; Elvik et al., 2013; Elvik,
21 2016; Mooney et al., 2016; Guo et al., 2017; Osama and Sayed, 2017; Tasic et al., 2017;
22 Xie et al., 2018; Sze et al., 2019; Stipancic et al., 2020), suggesting that as the number of
23 pedestrians increases, the absolute number of PMV crashes also increases, whereas the risk
24 of collisions by motor vehicles for each individual pedestrian decreases. This is known as
25 the "safety-in-numbers" effect (Jacobsen, 2003; Elvik and Bjørnskau, 2017; Elvik and Goel,
26 2019; Xu et al., 2019b; Cai et al., 2020). One plausible explanation is that motorists adjust
27 their behavior when they encounter a group of people walking. This hypothesis is evidenced
28 by the greater visibility of pedestrians in greater numbers (Jacobsen et al., 2015). As
29 motorists are less likely to collide with pedestrians when more people are walking, policies
30 that encourage walking are claimed as effective measures to improve the safety of
31 pedestrians (Jacobsen, 2003; Osama and Sayed, 2017). However, this conclusion based on
32 a cross-sectional research design should be interpreted with great caution, because it is
33 impossible to determine whether this safety-in-numbers effect is a causal relationship or
34 merely a statistical association (Bhatia and Wier, 2011; Xu et al., 2019b). Bhatia and Wier
35 (2011) also cautioned that treating the promotion of walking as a safety intervention would
36 mask efforts to create an inherently safe environment for all pedestrians. Further efforts
37 are therefore warranted to investigate the underlying mechanisms.

38 Instead of simply encouraging people to walk in groups to draw motorists' notice, an
39 alternatively sound measure to improve pedestrian safety would be to restrict the usage of
40 motor vehicles. In addition to the benefits of less congestion, fewer emissions of pollutants,

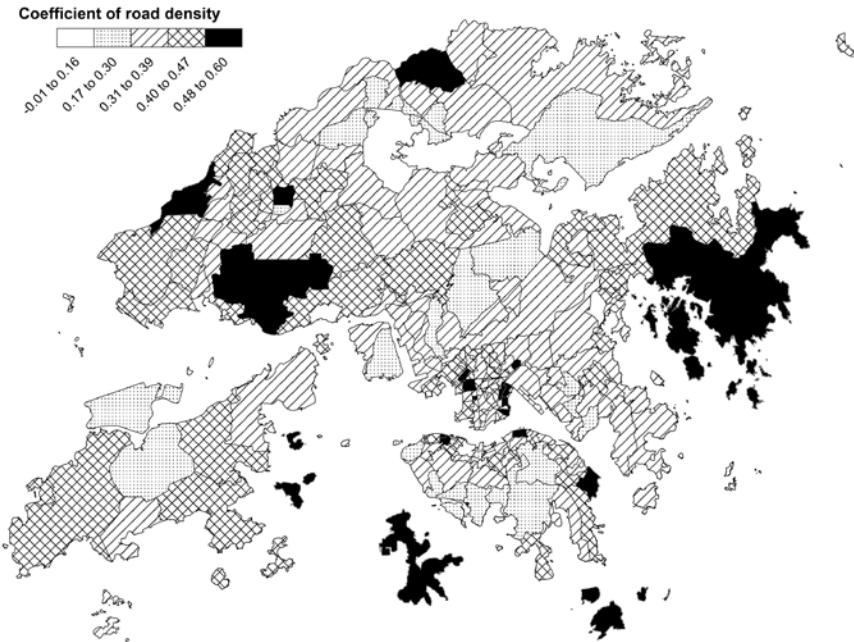
1 and less traffic noise, the strategies to reduce vehicle volume would lower both the number
 2 of PMV crashes and the crash risk for pedestrians. According to our results, all things
 3 being equal, a neighborhood halving its vehicle kilometers traveled would expect an
 4 approximately 20% decrease in PMV crashes ($1 - 0.50^{0.33} = 0.20$). Therefore, a modal shift
 5 from motor vehicles to other travel modes, such as public transit and walking, should be
 6 vigorously advocated, especially in dense urban settings.

7 Interestingly, road density had a spatially varying coefficient with a posterior mean
 8 of 0.37 and a variance of 0.15. The magnitude of this coefficient ranged from -0.01 to 0.60,
 9 as shown in Fig. 4. Given these distributional parameters, almost all of the TPU (i.e., 208
 10 out of 209) exhibited a positive association between road density and the frequency of
 11 PMV crashes. This heterogeneous effect is likely to reflect the variations in road conditions
 12 across neighborhoods and may result partially from some unobserved factors, such as
 13 topology of road networks, speed limits, and the presence of pedestrian facilities. In
 14 addition, the spatial correlation parameter $\rho_{\text{Road density}}$ produced a posterior estimate with
 15 a mean of 0.47 and a standard deviation of 0.29, implying that a moderate proportion of
 16 heterogeneity was explained by the spatially correlated effects. The corresponding 95% CI
 17 was (0.02, 0.98), which significantly differed from both 0 and 1. This finding demonstrated
 18 the presence of both unstructured and spatially structured variations in the effects of
 19 related risk factors on the frequency of zonal PMV crashes.



20
 21 **Fig. 4.** Mean and 95% Bayesian credible interval for the variable of road density, estimated
 22 by the BSVC model with walking trips as the measure of pedestrian exposure (ranked in
 23 descending order by mean values; dots: mean; solid line: 95% Bayesian credible interval).

24 One major advantage of the BSVC model is its capability to explain spatially non -
 25 stationary relationships. A mapping of local parameters would therefore help local
 26 authorities to explicitly identify neighborhoods where a particular risk factor has a greater
 27 influence on the frequency of PMV crashes. To illustrate, Fig . 5 identifies the overall
 28 pattern of the regression coefficients of road density as spatial clustering. Special attention
 29 should be paid to rural areas located in the New Territories, as road density in these
 30 neighborhoods was found to be highly significant, resulting in a more pronounced effect.



1
2 **Fig. 5.** Spatial distribution of the coefficients for the variable of road density, estimated
3 by the BSVC model with walking trips as the measure of pedestrian exposure.

4 Road functional classification also had a significant influence on the frequency of
5 PMV crashes. According to our results, neighborhoods with a higher percentage of
6 motorways were associated with a lower risk of PMV crashes. This result is highly expected,
7 because as limited-access roads, motorways mainly serve fast-moving vehicles while
8 pedestrians are prohibited (Tasic et al., 2017).

9 Intersections are well-known as hazardous locations in road networks. Given equal
10 road length, more intersections imply less continuous road networks and more conflict
11 points between pedestrians and motor vehicles. It is therefore not surprising that
12 intersection density had a significantly positive relationship with the frequency of PMV
13 crashes. Similar findings were also reported by Priyantha Wedagama et al. (2006), Guo et
14 al. (2017), Osama and Sayed (2017) and Tasic et al. (2017).

15 With respect to the variables related to public facilities, bus stop density was
16 associated with an increased risk of PMV crashes. A visual examination via Google Street
17 View suggests that traffic conditions near bus stops in Hong Kong are fairly complicated
18 and mixed, as various road users share the same activity spaces. A previous study by Yam
19 et al. (2014) reported that pedestrians were more likely to jaywalk to board buses without
20 noticing the approaching vehicles. The stationary buses at bus stops may also obscure the
21 visibility of pedestrians when crossing the road (Chen and Zhou, 2016). As a consequence,
22 the frequent interactions between pedestrians and motor vehicles near bus stops inevitably
23 increase the risk of collisions (Retting et al., 2003; Zegeer and Bushell, 2012; Stoker et al.,
24 2015; Goel et al., 2018). Similar explanations hold true for the effect of the number of
25 parking lots.

1 Finally, area deprivation level is closely associated with safety awareness, driving
2 behavior, and road facilities, and thus has an indirect influence on the frequency of PMV
3 crashes. Consistent with [Siddiqui et al. \(2012\)](#), [Noland et al. \(2013\)](#), [Jermrapai and](#)
4 [Srinivasan \(2014\)](#), [Cai et al. \(2017a\)](#), and [Rothman et al. \(2020\)](#), the negative relationship
5 between median monthly income and the frequency of PMV crashes found in our study is
6 very likely attributable to two causes. First, people with higher incomes may have better
7 awareness of safe walking. Second, deprived neighborhoods probably have fewer favorable
8 pedestrian facilities such as marked crosswalks, overpasses or underpasses, and refuge
9 islands to completely separate pedestrians from motor vehicles on roads ([Rothman et al.,](#)
10 [2020](#)).

11 4. Conclusions

12 This study sought to investigate the factors that contribute to the frequency of PMV
13 crashes at zonal levels, using a rich dataset collected in 209 TPUs in Hong Kong over a 3
14 year period. Detailed activity-based exposure data were integrated with land-use, road-
15 network features, accessibility of public facilities, and socio-demographic characteristics to
16 construct our dataset. A procedure was proposed to extract pedestrian trajectories from
17 publicly available travel-diary survey data. A BSVC model was then developed to account
18 for the spatially heterogeneous effects of risk factors. To highlight the role of exposure,
19 models with population, walking trips, walking time, and walking distance as the measure
20 of pedestrian exposure, respectively, were calibrated and compared.

21 Several key findings are worthy of note. First, although pedestrian volume is
22 indispensable in determining the incidence of pedestrian crashes, the major challenge lies
23 in the unavailability of reliable pedestrian activity data for the whole area under
24 investigation. Fortunately, the household travel-diary survey provides a straightforward
25 and invaluable means to estimate territory-wide pedestrian activities. Given the rich trip
26 information recorded in the survey, by virtue of an integrated use of crowdsourced datasets,
27 pedestrian trajectories can be easily estimated based on our proposed procedure. By
28 incorporating these activity-based exposure measures into PMV crash-frequency models,
29 we explicitly demonstrate that the use of population or population density as a surrogate
30 for pedestrian exposure when modeling the frequency of zonal PMV crashes will lead to
31 biased estimations and incorrect inferences, as our empirical results indeed indicated
32 substantial inconsistencies in the effects of several risk factors between the models of
33 population and activity-based exposure measures.

34 Second among the three activity-based exposure measures, walking trips were
35 empirically proved adequate in accounting for the spatial variations in zonal counts of
36 PMV crashes. Although the model using walking trips as the measure of pedestrian
37 exposure resulted in a slightly better goodness-of-fit, the models of walking distance and
38 walking time could also help in the evaluation of safety effects of specific transport policies,
39 such as quantifying the safety benefits associated with a modal shift from motor vehicles

1 to walking for short-distance trips in metropolitan areas. Indeed, only when we understand
2 the differences in how much people walk, will we be able to measure how safe walking is,
3 and further evaluate the effectiveness of specific countermeasures in improving pedestrian
4 safety.

5 Third, by virtue of the BSVC model, we add new insights to existing studies that in
6 addition to the unstructured variability, the heterogeneity in the effects of explanatory
7 variables on the frequency of PMV crashes can also arise from spatially correlated effects.
8 The developed BSVC model provides a sound methodological alternative to investigate
9 the spatially non-stationary relationships, as the varying regression coefficients are
10 modeled via a single set of random effects and a spatial correlation parameter, with extreme
11 values corresponding to pure unstructured or pure spatially correlated random effects.
12 Given that pedestrian crash data are typically collected in spatial proximity, we expect
13 our study to promote the awareness among traffic professionals that spatial heterogeneity
14 should not be neglected when modeling pedestrian crashes involving contiguous spatial
15 units.

16 Eight variables were ultimately found to have a significant association with the
17 frequency of PMV crashes in neighborhoods. The nonlinear relationship between
18 pedestrian volume and the frequency of PMV crashes was confirmed, with an estimated
19 coefficient of 0.50, 0.43, and 0.42 for walking trips, walking time, and walking distance,
20 respectively. Vehicle kilometers traveled, road density, intersection density, bus-stop
21 density, and the number of parking lots were found to be positively associated with PMV
22 crash frequency, whereas the percentage of motorways and median monthly income had
23 negative effects on the risk of PMV crashes. These findings are expected to assist local
24 authorities in the formulation of effective strategies to improve walkability and pedestrian
25 safety in neighborhoods. Such countermeasures may include restricting the use of motor
26 vehicles, promotion of a shift from motor vehicles to walking for walkable-distance trips,
27 traffic calming in residential neighborhoods, updating of pedestrian facilities to completely
28 separate pedestrians from motor vehicles on very busy roads, reducing conflicts between
29 pedestrians and motor vehicles particularly near bus stops and at entrances of parking lots,
30 and publicity on safe road-crossing behaviors.

31 Our study is not without limitations. The TPU's used in our analysis are delineated
32 mainly for planning purposes and may not be the optimal spatial units for zonal pedestrian
33 crash analysis. Given the potential of the modifiable areal unit problem (Xu et al., 2014;
34 Lee et al., 2014; Cai et al., 2017b; Xu et al., 2018; Obelheiro et al., 2020), more efforts are
35 warranted to validate the robustness of our findings via aggregation of data at various
36 spatial resolutions. In addition, although the neighborhood-level analysis is useful to
37 investigate the effects of area-wide variables on the frequency of PMV crashes, pedestrian
38 safety is actually a microscopic concern, because PMV crashes are usually caused by
39 interactions between pedestrian and motor vehicles (Yue et al., 2020). Future studies
40 towards an integration of cross-sectional research designs with in-depth crash-causation

1 investigations and accident-reconstruction simulations are highly recommended to achieve
2 deeper insights into the causes of pedestrian crashes.

3 **Acknowledgments** We would like to thank the Hong Kong Police Force and the Hong
4 Kong Transport Department for providing access to the database used in this study. The
5 views expressed are the authors' own and do not necessarily represent the views of the
6 Hong Kong Police Force and the Hong Kong Transport Department.

7 **Funding:** This work was supported by the grants from the Natural Science Foundation of
8 China (Project No. 71601163), National Key R&D Program of China (2016YFC0802208),
9 and Sichuan Science and Technology Program (Project No. 2020YFH0035; 2020YJ0268;
10 2020YJ025; 2020JDR0032). Pengpeng Xu was supported by the Y S and Christabel
11 Lung Postgraduate Scholarship and a Research Postgraduate Studentship from the
12 University of Hong Kong. The funders had no role in study design, data collection and
13 analysis, decision to publish, or preparation of the manuscript.

14 **Competing interests:** We declare that no competing interests exist.

15 **References**

16 Ariannezhad, A., Karimpour, A., Wu, Y., 2020. Incorporating mode choice into safety
17 analysis at the macroscopic level. *Journal of Transportation Engineering, Part A: Systems* 146(4), 04020022.

18 Bao, J., Liu, P., Yu, H., Xu, C., 2017. Incorporating twitter -based human activity
19 information in spatial analysis of crashes in urban areas. *Accident Analysis and
20 Prevention* 106, 358-369.

21 Barua, S., El-Basyouny, K., Islam, M.T., 2015. Effects of spatial correlation in random
22 parameter collision count-data models. *Analytic Methods in Accident Research* 5-6,
23 28-42.

24 Besag, J., York, J., Molli, E.A., 1991. Bayesian image restoration with two applications in
25 spatial statistics. *Annals of the Institute of Statistical Mathematics* 43(1), 1-59.

26 Bhatia, R., Wier, M., 2011. "Safety in Numbers" re -examined: Can we make valid or
27 practical inferences from available inference? *Accident Analysis and Prevention* 43(1),
28 235-240.

29 Brooks, S.P., Gelman, A., 1998. General methods for monitoring convergence of iterative
30 simulations. *Journal of Computational and Graphical Statistics* 7(4), 434-455.

31 Cai, Q., Abdel-Aty, M., Lee, J., 2017 a. Macro-level vulnerable road users crash analysis:
32 A Bayesian joint modeling approach of frequency and proportion. *Accident Analysis
33 and Prevention* 107, 11-19.

34 Cai, Q., Abdel-Aty, M., Lee, J., Eluru, N., 2017 b. Comparative analysis of zonal systems
35 for macro-level crash modeling. *Journal of Safety Research* 61, 157-166.

36 Cai, Q., Abdel-Aty, M., Castro, S., 2020. Explore effects of bicycle facilities and exposure
37 on bicycle safety at intersections. *International Journal of Sustainable Transportation*
38
39 DOI: [10.1080/15568318.2020.1772415](https://doi.org/10.1080/15568318.2020.1772415)

1 Cai, Q., Lee, J., Eluru, N., Abdel-Aty, M., 2016. Macro-level pedestrian and bicycle crash
2 analysis: Incorporating spatial spillover effects in dual state count models. *Accident
3 Analysis and Prevention* 93, 14–22.

4 Cervero, R., Duncan, M., 2003. Walking, bicycling, and urban landscapes: Evidence from
5 the San Francisco Bay Area. *American Journal of Public Health* 93(9), 1478–1483.

6 Chakravarthy, B., Anderson, C.L., Ludlow, J., Lotfipour, S., Vaca, F.E., 2010. The
7 relationship of pedestrian injuries to socioeconomic characteristics in a large southern
8 California county. *Traffic Injury Prevention* 11(5), 508–513.

9 Chen, P., Zhou, J., 2016. Effects of the built environment on automobile -involved
10 pedestrian crash frequency and risk. *Journal of Transport and Health* 3(4), 448–456.

11 Cheng, W., Washington, S.P., 2005. Experimental evaluation of hotspot identification
12 methods. *Accident Analysis and Prevention* 37(5), 870–881.

13 Congdon, P., 1997. Bayesian models for spatial incidence: A case study of suicide using
14 the BUGS program. *Health and Place* 3(4), 229–247.

15 Congdon, P., 2008. A spatially adaptive conditional autoregressive prior for area health
16 data. *Statistical Methodology* 5(6), 552–563.

17 Congdon, P., 2014. *Applied Bayesian Modelling (2nd edition)* . John Wiley & Sons,
18 Chichester, UK.

19 Cottrill, C.D., Thakuriah, P., 2010. Evaluating pedestrian crashes in areas with high low -
20 income or minority populations. *Accident Analysis and Prevention* 42(6), 1718–1728.

21 Cressie, N., 1993. *Statistics for Spatial Data*. John Wiley & Sons, New York, US.

22 Delmelle, E.C., Thill, J.C., Ha, H.H., 2012. Spatial epidemiology analysis of relative
23 collision risk factors among urban bicyclists and pedestrians. *Transportation* 39(2),
24 433–448.

25 Dijkstra, E., 1959. A note on two problems in connection with graphs. *Numerische
26 Mathematik* 1(1), 269–271.

27 DiMaggio, C., 2015. Small-area spatiotemporal analysis of pedestrian and bicyclist injuries
28 in New York City. *Epidemiology* 26(2), 247–254.

29 Ding, C., Chen, P., Jiao, J., 2018. Non -linear effects of the built environment on
30 automobile-involved pedestrian crash frequency: A machine learning approach.
31 *Accident Analysis and Prevention* 111, 116–126.

32 Dong, N., Huang, H., Lee, J., Gao, M., Abdel -Aty, M., 2016. Macroscopic hotspots
33 identification: A Bayesian spatio -temporal interaction a pproach. *Accident Analysis
34 and Prevention* 92, 256–264.

35 Dumbaugh, E., Zhang, Y., 2013. The relationship between community design and crashes
36 involving older drivers and pedestrians. *Journal of Planning Education Research* 33(1),
37 83–95.

38 Eberly, L., Carlin, B. , 2000. Identifiability and convergence issues for Markov chain Monto
39 Carlo fitting of spatial models. *Statistics in Medicine* 19(17–18), 2279–2294.

1 Elvik, R., Sørensen, M.W.J., Nævestad, T.O., 2013. Factors influencing safety in a sample
2 of marked pedestrian crossing selected for safety inspections in the city of Oslo.
3 *Accident Analysis and Prevention* 59, 64–70.

4 Elvik, R., 2016. Safety-in-numbers: Estimates based on a sample of pedestrian crossings in
5 Norway. *Accident Analysis and Prevention* 91, 175–182.

6 Elvik, R., Bjørnskau, T., 2017. Safety-in-numbers: A systematic review and meta-analysis
7 of evidence. *Safety Science* 92, 274–282.

8 Elvik, R., Goel, R., 2019. Safety -in-numbers: An updated meta -analysis of estimates.
9 *Accident Analysis and Prevention* 129, 136–147.

10 Fotheringham, A.S., Brunsdon, C., Charlton, M.E., 2002. *Geographically Weighted
11 Regression: The Analysis of Spatially Varying Relationship* Wiley, Chichester, UK.

12 Gelman, A., 2006. Prior distributions for variance parameters in hierarchical models.
13 *Bayesian Analysis* 1, 515–533.

14 Geyer, J., Raford, N., Pham, T., Ragland, D.R., 2006. Safety in numbers: Data from
15 Oakland, California. *Transportation Research Record: Journal of the Transportation
16 Research Board* 1982, 150–154.

17 Goel, R., Jain, P., Tiwari, G., 2018. Correlates of fatality risk of vulnerable road users in
18 Delhi. *Accident Analysis and Prevention* 111, 86–93.

19 Gomes, M.M., Pirdavani, A., Brijs, T., Pitombo, C.S., 2019. Assessing the impacts of
20 enriched information on c rashes prediction performance. *Accident Analysis and
21 Prevention* 122, 162–171.

22 Graham, D.J., Glaister, S., 2003. Spatial variation in road pedestrian casualties: The role
23 of urban scale, density and land-use mix. *Urban Studies* 40(8), 1591–1607.

24 Graham, D.J. , McCoy, E.J., Stephen, D.A., 2013. Quantifying the effect of area
25 deprivation on child pedestrian casualties by using longitudinal mixed models to adjust
26 for confounding, interference and spatial dependence. *Journal of the Royal Statistical
27 Society: Series A (Statistics in Society)* 176(4), 931–950.

28 Guo, Q., Xu, P., Pei, X., Wong, S.C., Yao, D., 2017. The effect of road network patterns
29 on pedestrian safety: A zone -based Bayesian spatial modeling approach. *Accident
30 Analysis and Prevention* 99, 114–124.

31 Guo, Z., Loo, B.P.Y., 2013. Pedestrian environment and route choice: Evidence from New
32 York City and Hong Kong. *Journal of Transport Geography* 28, 124–136.

33 Ha, H.H., Thill, J.C., 2011. Analysis of traffic hazard intensity: A spatial epidemiology
34 case study of urban pedestrians. *Computers, Environment, and Urban System* 35(3),
35 230–240.

36 Hadayeghi, A., Shalaby, A.S., Persaud, B.N., 2010. Development of planning level
37 transportation safety tools using geographically weighted Poisson regression *Accident
38 Analysis and Prevention* 42(2), 676–688.

1 Heydari, S., Miranda-Moreno, L.F., Lord, M., Fu, L., 2014. Bayesian methodology to
2 estimate and update safety performance functions under limited data conditions: A
3 sensitivity analysis. *Accident Analysis and Prevention* 64, 41–51.

4 Hezaveh, A.M., Arvin, R., Cherry, C.R., 2019. A geographically weighted regression to
5 estimate the comprehensive cost of traffic crashes at a zonal level. *Accident Analysis*
6 and *Prevention* 131, 15–24.

7 Hong Kong Transport Department, 2012. *The Annual Traffic Census 2011* .
8 https://www.td.gov.hk/en/publications_and_press_releases/publications/free_publications/the_annual_traffic_census_2011/index.html .

10 Hong Kong Transport Department, 2014. *Travel Characteristics Survey 2011 Final Report*
11 https://www.td.gov.hk/filemanager/en/content_4652/tcs2011_eng.pdf .

12 Huang, Y., Wang, X., Patton, D., 2018. Examining spatial relationships between crashes
13 and the built environment: A geographically weighted regression approach. *Journal of*
14 *Transport Geography* 69, 221–233.

15 Jacobsen, P.L., 2003. Safety in numbers: More walkers and bicyclists, safer walking and
16 bicycling. *Injury Prevention* 9(3), 205–209.

17 Jacobsen, P.L., Ragland, D.R., Komanoff, C., 2015. Safety in numbers for walkers and
18 bicyclists: Exploring the mechanisms. *Injury Prevention* 21(4), 217–220.

19 Jermpapai, K., Srinivasan, S., 2014. Planning-level model for assessing pedestrian safety.
20 *Transportation Research Record: Journal of the Transportation Research Board* 2464,
21 109–117.

22 Lam, W.W.Y., Yao, S., Loo, B.P.Y., 2014. Pedestrian exposure measures: A timespace
23 framework. *Travel Behaviour and Society* 1(1), 22–30.

24 LaScala, E.A., Gerber, D., Gruenewald, P.J., 2000. Demographic and environmental
25 correlated of pedestrian injury collisions: A spatial analysis. *Accident Analysis and*
26 *Prevention* 32(5), 651–658.

27 Lee, D., 2011. A comparison of conditional autoregressive models used in Bayesian disease
28 mapping. *Spatial and Spatio-Temporal Epidemiology* 2(2), 79–89.

29 Lee, J., Abdel-Aty, M., Jiang, X., 2014. Development of zone system for macro-level traffic
30 safety analysis. *Journal of Transport Geography* 38, 13–21.

31 Lee, J., Abdel-Aty, M., Choi, K., Huang, H., 2015. Multi-level hot zone identification for
32 pedestrian safety. *Accident Analysis and Prevention* 76, 64–73.

33 Lee, J., Abdel-Aty, M., Huang, H., Cai, Q., 2019. Transportation safety planning approach
34 for pedestrians: An integrated framework of modeling walking duration and pedestrian
35 fatalities. *Transportation Research Record: Journal of the Transportation Research Board* 2673(4), 898–906.

37 Leroux, B., Lei, X., Breslow, N., 1999. Estimation of disease rates in small areas: A new
38 mixed model for spatial dependence. In Halloran, M., Berry, D., (eds), *Statistical*
39 *Models in Epidemiology, the Environment and Clinical Trials* . New York: Springer -
40 Verlag, 135–178.

1 Li, Z., Wang, W., Liu, P., Bigham, J.M., Ragland, D.R., 2013. Using geographically
2 weighted Poisson regression for county -level crash modeling in California. *Safety
3 Science*58, 89–97.

4 Loo, B.P.Y., 2006. Validating cr ash locations for quantitative spatial analysis: A GIS -
5 based approach. *Accident Analysis and Prevention* 38(5), 879–886.

6 Lord, D., Mannerling, F., 2010. The statistical analysis of crash -frequency data: A review
7 and assessment of methodological alternatives. *Transportation Research Part A:
8 Policy and Practice* 44(5), 291–305.

9 Loukaitou-Sideris, A., Liggett, R., Sung, H., 2007. Death on the crosswalk: A study of
10 pedestrian-automobile collisions in Log Angeles. *Journal of Planning Education and
11 Research*26(3), 338–351.

12 Maibach, E., Steg, L., Anable, J., 2009. Promoting physical activity and reducing climate
13 change: Opportunities to replace short car trips with active transportation. *Preventive
14 Medicine* 49(4), 325–327.

15 Mannerling, F.L., Bhat, C.R., 2014. Analytic m ethods in accident research: Methodological
16 frontier and future directions. *Analytic Methods in Accident Research* 1, 1–22.

17 Meng, F., Xu, P., Wong, S.C., Huang, H., Li, Y.C., 2017. Occupant -level injury severity
18 analyses for taxis in Hong Kong: A Bayesian s pacetime logistic model. *Accident
19 Analysis and Prevention* 108, 297–307.

20 Miranda-Moreno, L.F., Morency, P., El -Geneidy, A.M., 2011. The link between built
21 environment, pedestrian activity and pedestrian -vehicle collision occurrence at
22 signalized intersectbns. *Accident Analysis and Prevention* 43(5), 1624–1634.

23 Mooney, S.J., DiMaggio, C.J., Lovasi, G.S., Neckerman, K.M., Bader, M.D., Teitler, J.O.,
24 Sheehan, D.M., Jack, D.W., Rundle, A.G., 2016. Use of Google Street View to assess
25 environmental contributions to pedestrian injury. *American Journal of Public Health*
26 106(3), 462–469.

27 Noland, R.B., Quddus, M.A., 2004. Analysis of pedestrian and bicycle casualties with
28 regional panel data. *Transportation Research Record: Journal of the Transportation
29 Research Board*1897, 28–33.

30 Noland, R.B., Klein, N.J., Tulach, N.K., 2013. Do lower income areas have more pedestrian
31 casualties? *Accident Analysis and Prevention* 59, 337–345.

32 Obelheiro, M.R., da Silva, A.R., Nodari, C.T., Cybis, H.B.B., Lindau, L.A., 2020. A new
33 zone system to analyze the spatial relationships between the built environment and
34 traffic safety. *Journal of Transport Geography* 84, 102699.

35 Osama, A., Sayed, T., 2017. Evaluating the impact of connectivity, continuity, and
36 topology of sidewalk network on pedestrian safety. *Accident Analysis and Prevention*
37 107, 117–125.

38 Pirdavani, A., Bellemans, T., Brijs, T., Kochan, B., Wets, G., 2014. Assess ing the road
39 safety impacts of a teleworking policy by means of geographically weighted regression
40 method. *Journal of Transport Geography* 39, 96–110.

1 Priyantha Wedagama, D.M., Bird, R.N., Metcalfe, A.V., 2006. The influence of urban
2 land-use on non-motorised transport casualties. *Accident Analysis and Prevention*
3 38(6), 1049-1057.

4 Retting, R.A., Ferguson, S.A., McCartt, A.T., 2003. A review of evidence -based traffic
5 engineering measures designed to reduce pedestrian motor vehicle crashes. *American*
6 *Journal of Public Health* 93(9), 1456-1463.

7 Richardson, S., Guihenneuc, C., Lasserre, V., 1992. Spatial linear models with
8 autocorrelated error structure. *The Statistician* 41(5), 539-557.

9 Rothman, L., Cloutier, M., Manaugh, K., Howard, A.W., Macpherson, A.K., Macarthur, C., 2020. Spatial distribution of roadway environment features related to child
10 pedestrian safety by census tract income in Toronto, Canada. *Injury Prevention* 26,
11 229-233.

12 Schneider, R.J., Diogenes, M.C., Arnold, L.S., Attaset, V., Griswold, J., Ragland, D.R.,
13 2010. Association between roadway intersection characteristics and pedestrian crash
14 risk in Alameda County, California. *Transportation Research Record: Journal of the*
15 *Transportation Research Board* 2198, 41-51.

16 Sebert Kuhlmann, A.K., Brett, J., Thomas, D., Sain, S.R., 2009. Environmental
17 characteristics associated with pedestrian-motor vehicle collisions in Denver, Colorado.
18 *American Journal of Public Health* 99(9), 1632-1637.

19 Shariat-Mohaymany, A., Shahri, M., Mirbagheri, B., Matkan, A.A., 2015. Exploring
20 spatial non-stationarity and varying relationships between crash data and related
21 factors using geographically weighted Poisson regression. *Transactions in GIS* 19(2),
22 321-337.

23 Siddiqui, C., Abdel-Aty, M., Choi, K., 2012. Macroscopic spatial analysis of pedestrian
24 and bicycle crashes. *Accident Analysis and Prevention* 45, 382-391.

25 Song, Y., Merlin, L., Rodriguez, D., 2013. Comparing measures of urban land use mix.
26 *Computers, Environment, and Urban System* 42, 1-13.

27 Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002. Bayesian measures
28 of model complexity and fit. *Journal of the Royal Statistical Society. Series B*
29 *(Statistical Methodology)* 64(4), 583-639.

30 Spiegelhalter, D.J., Thomas, A., Best, N., Lunn, D., 2005. *WinBUGS User Manual*. MRC
31 Biostatistics Unit, Cambridge, UK.

32 Steinbach, R., Edwards, P., Green, J., 2014. Controlling for exposure changes the
33 relationship between ethnicity, deprivation and injury: A n observational study of child
34 pedestrian injury rates in London. *Injury Prevention* 20(3), 159-166.

35 Stipancic, J., Miranda-Moreno, L., Strauss, J., Labbe, A., 2020. Pedestrian safety at
36 signalized intersections: Modelling spatial effects of exposure, geometry and
37 signalization in a large urban network. *Accident Analysis and Prevention* 134, 105265.

1 Stoker, P., Garfinkel-Castro, A., Khayesi, M., Odero, W., Mwangi, M.N., Peden, M.,
2 Ewing, R., 2015. Pedestrian safety and the built environment: A review of the risk
3 factors. *Journal of Planning Literature* 30(4), 377–392.

4 Sun, D., Tsutakawa, R., Speckman, P.L., 1999. Bayesian inference for CAR(1) models
5 with noninformative priors. *Biometrika* 86(2), 341–350.

6 Sze, N.N., Su, J., Bai, L., 2019. Exposure to pedestrian crash based on household survey
7 data: Effect of trip purpose. *Accident Analysis and Prevention* 128, 17–24.

8 Tasic, I., Elvik, R., Brewer, S., 2017. Exploring the safety in numbers effect for vulnerable
9 road users on a macroscopic scale. *Accident Analysis and Prevention* 109, 36–46.

10 To, D.K.B., Yau, K.T., Lam, A., 2005. Travel characteristics survey –method of expanding
11 household interview survey data. *Transportmetrica* 1(3), 247–260.

12 Ukkusuri, S., Hasan, S., Aziz, H.M.A., 2011. Random parameter model used to explain
13 effects of built environment characteristics on pedestrian crash frequency.
14 *Transportation Research Record: Journal of the Transportation Research Board* 2237,
15 98–106.

16 Ukkusuri, S., Miranda-Moreno, L.F., Ramadurai, G., Isa-Tavarez, J., 2012. The role of
17 built environment on pedestrian crash frequency. *Safety Science* 50(4), 1141–1151.

18 Wang, X., Yang, J., Lee, C., Ji, Z., You, S., 2016. Macrolevel safety analysis of pedestrian
19 crashes in Shanghai, China. *Accident Analysis and Prevention* 96, 12–21.

20 Wang, Y., Kockelman, K.M., 2013. A Poisson-lognormal conditional-autoregressive model
21 for multivariate spatial analysis of pedestrian crash counts across neighborhoods.
22 *Accident Analysis and Prevention* 60, 71–84.

23 Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2011. *Statistical and Economic
24 Methods for Transportation Data Analysis (2nd Edition)*. CRC Press, New York, US.

25 Washington, S.P., Van Schalkwyk, I., You, D., Shin, K., Samuelson, J.P., 2010.
26 *Forecasting the Safety Impacts of Socio-demographic Changes and Safety
27 Countermeasures*. Transportation Research Board, Washington, DC., US.

28 Wen, H., Zhang, X., Zeng, Q., Sze, N., 2019. Bayesian spatial-temporal model for the main
29 and interaction effects of roadway and weather characteristics on freeway crash
30 incidence. *Accident Analysis and Prevention* 132, 105249.

31 Wheeler, D.C., Calder, C.A., 2007. An assessment of coefficient accuracy in linear
32 regression models with spatially varying coefficients. *Journal of Geographical Systems*
33 9(2), 145–166.

34 Wier, M., Weintraub, J., Humphreys, E.H., Seto, E., Bhatia, R., 2009. An area-level model
35 of vehicle-pedestrian injury collisions with implications for land use and transportation
36 planning. *Accident Analysis and Prevention* 41(1), 137–145.

37 Xie, K., Ozbay, K., Kurkcu, A., Yang, H., 2017. Analysis of traffic crashes involving
38 pedestrians using big data: Investigation of contributing factors and identification of
39 hotspots. *Risk Analysis* 37(8), 1459–1467.

1 Xie, S.Q., Dong, N., Wong, S.C., Xu, P., 2018. Bayesian approach to model pedestrian
2 crashes at signalized intersections with measurement errors in exposure. *Accident
3 Analysis and Prevention* 121, 295-294.

4 Xu, P., Dong, N., Wong, S.C., Huang, H., 2019a. Cyclists injured in traffic crashes in Hong
5 Kong: A call for action. *PLOS ONE* 14(8), e0220785.

6 Xu, P., Huang, H., 2015. Modeling crash spatial heterogeneity: Random parameter versus
7 geographically weighting. *Accident Analysis and Prevention* 75, 16-25.

8 Xu, P., Huang, H., Dong, N., 2018. The modifiable areal unit problem in traffic safety:
9 Basic issue, potential solutions and future research. *Journal of Traffic and
10 Transportation Engineering (English Edition)* 5(1), 73-82.

11 Xu, P., Huang, H., Dong, N., Abdel-Aty, M., 2014. Sensitivity analysis in the context of
12 regional safety modeling: Identifying and assessing the modifiable areal unit problem.
13 *Accident Analysis and Prevention* 70, 110-120.

14 Xu, P., Huang, H., Dong, N., Wong, S.C., 2017. Revisiting crash spatial heterogeneity: A
15 Bayesian spatially varying coefficients approach. *Accident Analysis and Prevention* 98,
16 330-337.

17 Xu, P., Xie, S., Dong, N., Wong, S.C., Huang, H. 2019b. Rethinking safety in numbers:
18 Are intersections with more crossing pedestrians really safer? *Injury Prevention* 25,
19 20-25.

20 Yang, L., Chau, K.W., Szeto, W.Y., Cui, X., Wang, X., 2020. Accessibility to transit, by
21 transit, and property prices: Spatially varying relationships. *Transportation Research
22 Part D: Transport and Environment* 85, 102387.

23 Yao, S., Loo, B.P.Y., 2016. Safety in numbers for cyclists beyond national-level and city-
24 level data: A study on the non-linearity of risk within the city of Hong Kong. *Injury
25 Prevention* 22(6), 379-395.

26 Yao, S., Loo, B.P.Y., Lam, W.W.Y., 2015. Measures of activity-based pedestrian exposure
27 to the risk of vehicle-pedestrian collisions: Spacetime path vs. potential path tree
28 methods. *Accident Analysis and Prevention* 75, 320-332.

29 Yu, R., Abdel-Aty, M., 2013. Investigating different approaches to develop informative
30 priors in hierarchical Bayesian safety performance functions. *Accident Analysis and
31 Prevention* 75, 16-25.

32 Yue, L., Abdel-Aty, M., Wu, Y., Zheng, O., Yuan, J., 2020. In-depth approach for
33 identifying crash causation patterns and its implications for pedestrian crash
34 prevention. *Journal of Safety Research* 73, 119-132.

35 Zegeer, C.V., Bushell, M., 2012. Pedestrian crash trends and potential countermeasures
36 from around the world. *Accident Analysis and Prevention* 44(1), 3-11.

37 Zeng, Q., Wen, H., Huang, H., Abdel-Aty, M., 2017. A Bayesian spatial random
38 parameters Tobit model for analyzing crash rates on roadway segments. *Accident
39 Analysis and Prevention* 100, 37-43.

1 Zeng, Q., Guo, Q., Wong, S.C., Wen, H., Huang, H., Pei, X., 2019. Jointly modeling area-
2 level crash rates by severity: a Bayesian multivariate random-parameters spatio-
3 temporal Tobit regression. *Transportmetrica A: Trans port Science* 15(2), 1867–1884.

4 Zeng, Q., Wen, H., Wong, S.C., Huang, H., Guo, Q., Pei, X., 2020. Spatial joint analysis
5 for zonal daytime and nighttime crash frequencies using a Bayesian bivariate
6 conditional autoregressive model. *Journal of Transportation Safety & Security* 12(4),
7 566–585.

8 Zhao, R., Zhan, L., Yao, M., Yang, L., 2020. A geographically weighted regression model
9 augmented by Geodetector analysis and principal component analysis for the spatial
10 distribution of PM2.5. *Sustainable Cities and Society* 56, 102106s

11 Zhou, H., Yuan, C., Dong, N., Wong, S.C., Xu, P., 2020. Severity of passenger injuries on
12 public buses: A comparative analysis of collision injuries and non-collision injuries.
13 *Journal of Safety Research* [DOI: 10.1016/j.jsr.2020.04.003](https://doi.org/10.1016/j.jsr.2020.04.003)

14 Ziakopoulos, A., Yannis, G., 2020. A review of spatial approaches in road safety *Accident*
15 *Analysis and Prevention* 135, 105323.

1 Appendix

2 **Table A1.** Studies of factors that influence the frequency of pedestrian crashes at zonal levels over the past two decades.

Authors	Study region	Study period	Observations	Research method	Exposure measures		Risk factors included				
					Motor vehicles	Pedestrians	Land-use	Road network	POI	Population census	Climate
LaScala et al. (2000)	San Francisco, US	1990	149 census tracts	Spatial lag model and spatial error model	Average daily traffic	Population	✗	✓	✓	✓	✗
Graham and Glaister (2003)	UK	1999–2000	8,413 wards	Negative-binomial model	✗	Population density	✗	✓	✗	✓	✓
Noland and Quddus (2004)	UK	1979–1998	11 standard statistical regions	Negative-binomial model	Total number of vehicles registered	Population	✗	✓	✗	✓	✗
Priyantha Wedagama et al. (2006)	Newcastle upon Tyne, UK	1998–2001	185 enumeration districts	Negative-binomial model	Road length	Population density	✓	✓	✗	✓	✗
Loukaitou-Sideris et al. (2007)	Los Angeles, US	1994–2001	860 census tracts	Multiple linear model	Average annual daily traffic	Population density and employment density	✓	✗	✗	✓	✗
Sebert Kuhlmann et al. (2009)	Denver, US	2000–2003	134 census tracts	Bayesian spatial model with CAR prior	Population density	Commuting by walking	✓	✗	✗	✓	✗
Wier et al. (2009)	San Francisco, US	2001–2005	176 census tracts	Multiple linear model	Average daily traffic	Population	✓	✓	✗	✓	✗
Chakravarthy et al. (2010)	Orange County, California, US	2000–2004	577 census tracts	Negative-binomial model	✗	Population	✗	✗	✗	✓	✗
Cottrill and Thakuriah (2010)	Chicago, US	2005	1,832 census tracts	Poisson-lognormal model with exogenous underreporting	Annual average daily traffic	Population density	✓		✓	✓	✗

Ha and T hill (2011)	Buffalo, US	2003–2004	90 census tracts	Spatial lag model and spatial error model	✗	Population	✗	✓	✓	✓	✗
Ukkusuri et al. (2011)	New York City, US	2002–2006	2216 census tracts	Random- parameters negative-binomial model	✗	Population	✓	✓	✓	✓	✗
Delmelle et al. (2012)	Buffalo, US	2003–2004	90 census tracts	Spatial error model	✗	Commuting by walking	✗	✓	✓	✓	✗
Siddiqui et al. (2012)	Florida (District Seven), US	2005–2006	1,479 traffic analysis zones	Bayesian spatial model with CAR prior	✗	Population	✗	✓	✗	✓	✗
Ukkusuri et al. (2012)	New York City, US	2002–2006	180 ZIP codes 2216 census tracts	Generalized negative-binomial model	✗	Population	✓	✓	✓	✓	✗
Dumbaugh and Zhang (2013)	San Antonio, US	2003–2007	938 census block groups	Negative-binomial model	Vehicle miles traveled	Population	✓	✓	✗	✓	✗
Graham et al. (2013)	UK	2001–2007	1,820 wards	Bayesian spatial longitudinal generalized linear mixed model	✗	Population	✗	✓	✗	✓	✗
Noland et al. (2013)	New Jersey, US	2003–2007	6,460 census block groups	Bayesian spatial model with CAR prior	✗	Population	✗	✓	✗	✓	✗
Wang and Kockelman (2013)	Austin, US	2007–2009	218 census tracts	Bayesian multivariate CAR model	Vehicle miles traveled	Walking miles	✓	✓	✗	✓	✗
Jermrapai and Srinivasan (2014)	Florida, US	2005–2009	11,390 census block groups	Negative-binomial model	Work trips per week	✗	✓	✓	✓	✓	✗

DiMaggio (2015)	New York City, US	2001–2010	1,908 census tracts	Bayesian hierarchical model with space-time interaction effects	Vehicle kilometers traveled per day per square kilometer	Population	✗	✗	✗	✓	✗
Lee et al. (2015)	Florida, US	2009–2011	983 ZIP codes	Bayesian simultaneous equations model with CAR prior	Vehicle miles traveled	Population	✗	✓	✓	✓	✗
Cai et al. (2016)	Florida, US	2010–2012	8,518 traffic analysis zones	Bayesian dual-state model with spatial spillover effects	Vehicle miles traveled	Commuting by walking	✗	✓	✗	✓	✗
Chen and Zhou (2016)	Seattle, US	2008–2012	863 traffic analysis zones	Bayesian spatial model with CAR prior	Total number of trips	Walking trips	✓	✓	✓	✓	✗
Wang et al. (2016)	Shanghai, China	2009	263 traffic analysis zones	Bayesian spatial model with CAR prior	✗	Population	✓	✓	✗	✓	✗
Cai et al. (2017a)	Florida, US	2010–2012	594 traffic analysis districts	Bayesian joint model of frequency and proportion	Vehicle miles traveled	Population density	✗	✓	✗	✓	✗
Guo et al. (2017)	Hong Kong, China	2011	131 traffic analysis zones	Bayesian spatial model with CAR prior	Vehicle hours traveled	Walk-only trips	✓	✓	✗	✓	✗
Osama and Sayed (2017)	Vancouver, Canada	2009–2013	134 traffic analysis zones	Bayesian spatial model with CAR prior	Vehicle kilometers traveled	Walking trips	✗	✓	✗	✗	✗
Tasic et al. (2017)	Chicago, US	2005–2012	801 census tracts	Generalized additive model	Vehicle miles traveled	Walking trips	✓	✓	✓	✓	✗
Xie et al. (2017)	Manhattan, New York City, US	2008–2012	6,204 grid cells	Tobit model	Vehicle miles traveled	✗	✓	✓	✗	✓	✗

Ding et al. (2018)	Seattle, US	2008–2012	863 traffic analysis zones	Multiple additive Poisson regression tree model	Total number of trips	Walking mode share	✓	✓	✓	✗	✗
Goel et al. (2018)	Delhi, India	2011–2012	282 wards	Bayesian spatial model with CAR prior	Vehicle kilometers traveled	Population	✗	✓	✗	✓	✗
Lee et al. (2019)	US	2014–2016	47 metropolitan statistical areas	Bayesian integrated model	✗	Walking hours	✗	✗	✗	✓	✓
Sze et al. (2019)	Hong Kong, China	2011–2015	26 broad districts	Random-parameters negative-binomials model	Annual average hourly traffic	Population	✗	✓	✗	✓	✗
Rothman et al. (2020)	Toronto, Canada	2001–2010	102 census tracts	Multivariate logistic regression model	Roadway length	Population	✗	✓	✗	✓	✗

1 POI: points of interest.

2 CAR: conditional autoregressive prior.

3

4 **Table A2.** Walking speeds estimated for Hong Kong residents based on the 2011 Hong Kong Travel Characteristics Survey data, stratified by
5 sex and age groups (unit: m/s).

Age groups	≤ 14	15–24	25–34	35–44	45–54	55–64	≥ 65
Male	1.00	1.01	0.92	0.91	1.05	1.00	0.91
Female	1.06	1.14	1.05	0.99	0.96	1.00	0.82

6

```

1 The WinBUGS code for the B SVC-2 model:
2 Model
3 {
4 for (i in 1:209) {
5     y[i] ~ dpois(lambda[i])
6     log(lambda[i]) <- beta[1]+beta[2]*LnVKT[i]+beta[3]*LnW_trp[i]+beta[4]*
7     P_Res_LU[i]+beta5[i]*D_Rd[i]+beta[6]*P_Mt_Rd[i]+beta[7]*D_Jun[i]+beta[8]*
8     P_Rad_Jun[i]+ beta[9]*D_Bus[i]+beta[10]*Parking[i]+beta[11]*MINC[i]+s[i]
9     beta5[i] <- beta[5]+phi5[i]
10    ypred[i] ~ dpois(lambda[i]) # Predictive value based on the complete data
11    PPL[i] <- abs(ypred[i]-y[i])
12    PPL2[i] <- pow(ypred[i]-y[i],2)
13 }
14 MAD <- mean(PPL[])
15 MSPE <- mean(PPL2[])
16 # Proper CAR prior of Leroux et al. \(1999\). Detailed explanations for the specification
17 of this CAR prior should be referred to Congdon \(2014; page 337–343\).
18 for (i in 1:209) {
19     s[i] ~ dnorm(s.bar[i],tau[i])
20     s.bar[i] <- rho.s*sum(W_sp.s[cumsum[i]+1:cumsum[i+1]])/(1-rho.s+rho.s*num[i])
21     tau[i] <- tau.s*(1-rho.s+rho.s*num[i])
22     phi5[i] ~ dnorm(phi5.bar[i],tau.phi5[i])
23     phi5.bar[i] <- rho.5*sum(W_sp.5[cumsum[i]+1:cumsum[i+1]])/(1-rho.5+rho.5*num[i])
24     tau.phi5[i] <- tau.5*(1-rho.5+rho.5*num[i])
25 }
26 for (i in 1:sumNumNeigh) { # sumNumNeigh refers to the length of adj[]
27     W_sp.s[i] <- s[adj[i]]
28     W_sp.5[i] <- phi5[adj[i]]
29 }
30 rho.s ~ dunif(0,1) # Correlation parameter
31 tau.s <- pow(sig.s,-2)
32 var.s <- pow(sig.s,2)
33 sig.s ~ dunif(0,10)
34 rho.5 ~ dunif(0,1)
35 tau.5 <- pow(sig.5,-2)
36 var.5 <- pow(sig.5,2)
37 sig.5 ~ dunif(0,10)
38 for (k in 1:11) {beta[k] ~ dnorm(0.0,1.0E-5)}
39 }

```