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Abstract  1 

Background: Although numerous efforts have been devoted to exploring the effects of area-2 
wide factors on the frequency of pedestrian crashes in neighborhoods over the past two 3 
decades, existing studies have largely failed to provide a full picture of the factors that 4 
contribute to the incidence of zonal pedestrian crashes, due to the unavailability of reliable 5 
exposure data and use of less sound analytical methods.  6 
Methods: Based on a crowdsourced dataset in Hong Kong, we first proposed a procedure 7 
to extract pedestrian trajectories from travel-diary survey data. We then aggregated these 8 
data to 209 neighborhoods and developed a Bayesian spatially varying coefficients model 9 
to investigate the spatially non-stationary relationships between the number of pedestrian–10 
motor vehicle (PMV)  crashes and related risk factors. To dissect the role of pedestrian 11 
exposure, the estimated coefficients of models with population, walking trips, walking time, 12 
and walking distance as the measure of pedestrian exposure were presented and compared.  13 
Results: Our results indicated substantial inconsistencies in the effects of several risk 14 
factors between the models of population and activity-based exposure measures. The model 15 
using walking trips as the measure of pedestrian exposure had the best goodness-of-fit. We 16 
also provided new insights that in addition to the unstructured variability, heterogeneity 17 
in the effects of explanatory variables on the frequency of PMV  crashes could also arise 18 
from the spatially correlated effects. After adjusting for vehicle volume and pedestrian 19 
activity, road density, intersection density, bus stop density, and the number of parking 20 
lots were found to be positively associated with PMV crash frequency, whereas the 21 
percentage of motorways and median monthly income had negative associations with the 22 
risk of PMV crashes. 23 
Conclusions: The use of population or population density as a surrogate for pedestrian 24 
exposure when modeling the frequency of zonal pedestrian crashes is expected to produce 25 
biased estimations and invalid inferences. Spatial heterogeneity should also not be  26 
negligible when modeling pedestrian crashes involving contiguous spatial units. 27 
Keywords: Pedestrian safety; Crash frequency; Activity -based exposure measures; Spatial 28 
correlation; Spatial heterogeneity   29 
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1. Introduction  1 

Of the active models of transport, walking has the advantages of reducing traffic congestion, 2 
greenhouse gas emissions, and traffic noise. Around the world, walking is also a popular 3 
physical and recreational activity, particularly among children and the elderly. Indeed, 4 
with the increasing number of short-distance trips, growing levels of traffic congestion, and 5 
higher parking costs in metropolitan areas, people are increasingly encouraged to walk 6 
more as a viable and sustainable mode of transport (Maibach et al., 2009). 7 

Despite the well -documented benefits of walking, pedestrians are among the most 8 
vulnerable road users with  substantially higher risks of fatality and injury than motorists  9 
(Retting et al. , 2003; Zegeer and Bushell, 2012; Stoker et al., 2015). This is especially the 10 
case in urban areas with a dense population, where walking is indispensable in ensuring 11 
affordable and adequate mobilities for most local residents. An in-depth understanding of 12 
the factors that contribute to pedestrian crashes is therefore imperative if walking is 13 
promoted as a safe and attractive mode of transport. Improvements in safety would also 14 
encourage more people to walk on a regular basis for daily travel, thereby fostering a more 15 
livable community.  16 

Over the past two decades, modeling pedestrian crashes involving contiguous spatial 17 
units, such as census tracts and traffic analysis zones, has attracted extensive research 18 
interest from traffic safety analysts (see Table A1). This allows local authorities to identify 19 
the clustering pattern of pedestrian crashes, to better determine the zonal factors that 20 
contribute to the incidence of pedestrian crashes, and to recommend area-wide 21 
countermeasures.  22 

Previous s tudies have suggested that the number of pedestrian crashes in a 23 
neighborhood increased significantly with the increase s in traffic  volume (LaScala et al., 24 
2000; Loukaitou-Sideris et al. , 2007; Wier et al. , 2009; Cottrill and Thakuriah , 2010; 25 
Dumbaugh and Zhang, 2013; Wang and Kockelman, 2013; DiMaggio, 2015; Lee et al. , 26 
2015; Cai et al., 2016, 2017a; Guo et al., 2017; Osama and Sayed, 2017; Tasic et al., 2017; 27 
Xie et al. , 2017; Goel et al., 2018) and pedestrian volume (Sebert Kuhlmann et al. , 2009; 28 
Wang and Kockelman, 2013; Cai et al., 2016; Chen and Zhou, 2016; Guo et al., 2017; 29 
Osama and Sayed, 2017; Tasic et al., 2017; Lee et al., 2019; Sze et al., 2019). However, 30 
unlike vehicle volume which is readily obtained from counting stations, pedestrian volume 31 
is mostly surrogated as resident populatio n ( LaScala et al. , 2000; Noland and Quddus, 32 
2004; Wier et al. , 2009; Chakravarthy et al. , 2010; Ha and Thill , 2011; Ukkusuri et al. , 33 
2011, 2012; Siddiqui et al., 2012; Dumbaugh and Zhang, 2013; Graham et al., 2013; Noland 34 
et al., 2013; DiMaggio, 2015; Lee et al., 2015; Wang et al., 2016; Goel et al., 2018; Rothman 35 
et al., 2020) or population density ( Graham and Glaister, 2003; Priyantha Wedagama et 36 
al., 2006; Loukaitou-Sideris et al., 2007; Cottrill and Thakuriah , 2010; Gai et al., 2017a) 37 
due to data unavailability . This improper representation of pedestrian exposure, however, 38 
very likely leads to biased estimations and incorrect inferences (Steinbach et al. , 2014). 39 
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A lthough a limited number of studies have recently used walking trips ( Sebert K uhlmann 1 

et al. , 2009; Delmelle et al.,  2012; C ai et al. , 2016; C hen and Zhou, 2016; G uo et al. , 2017; 2 

Osama and Sayed, 2017; T asic et al.,  2017; Ding et al.,  2018; Sze et al. ,  2019) , walking 3 

miles (W ang and K ockelman, 2013) , or walking hours ( L ee et al.,  2019; Sze et al. ,  2019)  4 

to quantify pedestrian activities, the roles played by various exposure measures in the 5 

performance of zonal pedestrian crash-frequency models have not been comprehensively 6 

investigated and thus remain largely unknown. 7 

R oad-network characteristics, such as intersection density ( G raham and G laister,  8 

2003; P riyantha W edagama et al. , 2006; G uo et al.,  2017; Osama and Sayed, 2017; T asic 9 

et al.,  2017) , intersection type ( Ha and T hill,  2011; Ukkusuri et al.,  2011, 2012; C ai et al., 10 

2016; C hen and Zhou, 2016; W ang et al. , 2016; T asic et al., 2017; Sze et al.,  2019) , road 11 

density ( G raham et al.,  2013; W ang et al. , 2016; Sze et al. , 2019) , road function ( G raham 12 

and G laister, 2003; Noland and Quddus, 2004; W ier et al., 2009; Ukkusuri et al., 2011, 13 

2012; Dumbaugh and Zhang, 2013; Noland et al. , 2013; J ermprapai and Srinivasan, 2014; 14 

C ai et al., 2016, 2017a; W ang et al. , 2016; T asic et al. , 2017) , speed limits ( Siddiqui et al.,  15 

2012; L ee et al. , 2015) , sidewalk density (W ang and K ockelman, 2013; C ai et al.,  2016; 16 

C hen and Zhou, 2016; C ai et al. ,  2017a) , and network topology ( G uo et al. ,  2017; Osama 17 

and Sayed, 2017; T asic et al., 2017)  were found to be closely related to the frequency of 18 

pedestrian crashes in a neighborhood. L and use was also reported to have a significant 19 

influence on the incidence of pedestrian crashes. Specifically,  higher percentages of 20 

commercial (P riyantha W edagama et al.,  2006; L oukaitou-Sideris et al. , 2007; W ier et al. ,  21 

2009; Ukkusuri et al.,  2011; J ermprapai and Srinivasan, 2014) , residential ( P riyantha 22 

W edagama et al.,  2006; L oukaitou-Sideris et al. , 2007; W ier et al.,  2009; W ang and 23 

K ockelman, 2013) , and industrial ( Ukkusuri et al.,  2011, 2012; J ermprapai and Srinivasan, 24 

2014)  land-use were associated with an increased likelihood of pedestrian crashes. Similar 25 

conclusions hold true for the effect of land-use intensity (W ang et al., 2016) . However, 26 

inconsistent results were found for the effect of land-use mix, as W ang and K ockelman 27 

( 2013)  reported a significantly negative relationship between mixed land-use and the 28 

frequency of pedestrian crashes, whereas C hen and Zhou ( 2016) , G uo et al.  ( 2017) , and 29 

X ie et al.  ( 2017)  drew the opposite conclusion. 30 

I n addition, the prevalence of specific facilities, such as bus stops ( Ukkusuri et al., 31 

2011; L ee et al.,  2015; X ie et al., 2017; G oel et al. , 2018) , metro stations (Ukkusuri et al.,  32 

2011, 2012; J ermprapai and Srinivasan, 2014; L ee et al. , 2015) , schools ( C ottrill and 33 

T hakuriah, 2010; Ukkusuri et al.,  2011, 2012; J ermprapai and Srinivasan, 2014; L ee et al. , 34 

2015) , hotels ( L ee et al. ,  2015; C ai et al. , 2016) , and licensed liquor outlets ( Sebert 35 

K uhlmann et al. , 2009) , was also found to significantly increase the likelihood of pedestrian 36 

crashes in neighborhoods. 37 

W ith respect to socio-economic characteristics, neighborhoods with a denser 38 

population ( L aScala et al.,  2000; G raham and G laister, 2003; L oukaitou-Sideris et al. , 2007; 39 

Sebert K uhlmann et al. , 2009; C hakravarthy et al.,  2010; C ottrill and T hakuriah, 2010; 40 
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Ha and T hill, 2011; Siddiqui et al. , 2012; G raham et al. , 2013; W ang and K ockelman, 2013; 1 

J ermprapai and Srinivasan, 2014; C ai et al. , 2016, 2017a) , higher proportions of ethnic 2 

minorities ( L oukaitou-Sideris et al.,  2007; C hakravarthy et al.,  2010; Ukkusuri et al. , 2011; 3 

L ee et al.,  2019)  and less-educated population ( L aScala et al.,  2000; C hakravarthy et al.,  4 

2010; Ukkusuri et al. , 2011; G oel et al.,  2018) , more children ( G raham et al. , 2013)  and 5 

elderly people (Ukkusuri et al.,  2012; Dumbaugh and Zhang, 2013; X ie et al. , 2017; L ee et 6 

al., 2019; Sze et al. , 2019) , lower vehicle ownership per capita ( C ottrill and T hakuriah 7 

2010; Noland et al.  2013) , a higher unemployment rate ( L aScala et al. , 2000; C ai et al.,  8 

2016; X ie et al. ,  2017) , a higher poverty level (W ier et al.,  2009; C hakravarthy et al. , 2010; 9 

Ha and T hill,  2011; J ermprapai and Srinivasan, 2014; L ee et al. ,  2015) , and a lower 10 

household median income (Siddiqui et al. , 2012; Noland et al. , 2013; J ermprapai and 11 

Srinivasan, 2014; C ai et al.,  2017a; R othman et al.,  2020)  were also associated with more 12 

pedestrian crashes. 13 

T he relationship between the aforementioned explanatory variables and the number 14 

of pedestrian crashes can be established using crash prediction models. T raditional P oisson 15 

and negative-binomial models have a strong assumption that their observations should be 16 

mutually independent (L ord and M annering, 2010) . T his fundamental hypothesis is almost 17 

always violated ( M annering and B hat, 2014) , particularly because pedestrian crashes 18 

collected in contiguous spatial units usually display spatial correlation ( Ziakopoulos and 19 

Y annis, 2020) . A  range of spatial statistical techniques have therefore been used to 20 

incorporate this spatial dependence into pedestrian crash-frequency modeling. T he 21 

B ayesian hierarchical models are most prevalent, in which the spatial correlation is 22 

typically modeled via the intrinsic conditional autoregressive ( C A R )  prior proposed by 23 

B esag et al. ( 1991)  at the second level of hierarchy (Sebert K uhlmann et al., 2009; Siddiqui 24 

et al. , 2012; G raham et al.,  2013; Noland et al. , 2013; W ang and K ockelman, 2013; 25 

DiM aggio, 2015; L ee et al.,  2015; C hen and Zhou, 2016; W ang et al. , 2016; G uo et al., 26 

2017; Osama and Sayed, 2017; Zeng et al. , 2017, 2019, 2020; G oel et al.,  2018; L ee et al. , 27 

2019; W en et al. , 2019) . A lternative C A R  specifications were also introduced by 28 

R ichardson et al. (1992) , C ressie ( 1993) , and L eroux et al. (1999) . L ee ( 2011)  made a 29 

comprehensive comparison and concluded that the model of L eroux et al. (1999)  was the 30 

most appealing, because it consistently performed well in the presence of spatial 31 

independence and strong spatial correlation. 32 

A lthough most safety analysts have attempted to tackle the spatial correlation in 33 

model residuals, only a relatively limited number of studies have focused specifically on 34 

spatial heterogeneity or spatial non-stationarity. V ariables do not usually vary constantly 35 

across space, and the relationship between pedestrian crashes and related risk factors may 36 

not necessarily be fixed across the study area. T he capability of accounting for this spatial 37 

heterogeneity by allowing parameters to vary spatially holds considerable promise. 38 

A lthough a few studies have used the random-parameters count-data models to account 39 

for the heterogeneous effects in pedestrian crash frequency ( Ukkusuri et al. ,  2012; Sze et 40 
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al., 2019) , the regression coefficients in these random-parameters models typically arise 1 

independently from some univariate distributions, and no attention is paid to the locations 2 

to which the parameters refer. T his hypothesis may be inappropriate, particularly in cases 3 

where the unobserved factors are correlated through space ( X u and Huang, 2015; X u et 4 

al.,  2017) . I t is thus not surprising that Sze et al. ( 2019)  reported a significantly negative 5 

relationship between vehicle volume and the number of pedestrian crashes. T his counter-6 

intuitive finding is very likely attributed to the neglect of spatial correlated effects in their 7 

random-parameters models. X u and Huang (2015)  therefore advocated the development of 8 

a model based on the principle that the estimated parameters on a geographical surface 9 

are related to each other with closer values more similar than distant ones. 10 

T o address the spatially correlated effects in varying coefficients, one promising 11 

approach is the geographically weighted regression model (F otheringham et al., 2002; Y ang 12 

et al. , 2020; Zhao et al. ,  2020) . T his method is similar to local linear models, depending on 13 

the calibration of multiple regression models for different geographical entities. R ecent 14 

studies have empirically demonstrated the superiority of the method, with a substantially 15 

improvement in goodness-of-fit and the ability to explore the spatially varying 16 

relationships between crash counts and predictive factors ( Hadayeghi et al. , 2010; L i et al. ,  17 

2013; P irdavani et al. , 2014; Shariat-M ohaymany et al.,  2015; X u and Huang, 2015; Y ao 18 

et al. ,  2015; B ao et al. ,  2017; Huang et al. ,  2018; G omes et al. ,  2019; Hezaveh et al. ,  2019; 19 

A riannezhad et al. , 2020) . A n alternatively potential method is the B ayesian spatially 20 

varying coefficients ( B SV C )  models (X u et al. , 2017) , which has long been used in statistics 21 

to examine the non-constant relationships between variables ( C ongdon, 1997) . Such an 22 

approach fits naturally into the B ayesian paradigm, where all parameters are treated as 23 

stochastic.  Obviously, the B SV C  model differs from the geographically weighted regression 24 

model in that the former is a single statistical model specified in a hierarchical manner, 25 

whereas the latter is an assembly of local spatial regression models. W heeler and C alder 26 

( 2007)  conducted a series of simulation studies to evaluate the accuracy of regression 27 

coefficients in these two types of models. T heir evidence suggested that the B SV C  model 28 

produced more reliable and easily interpreted inferences, thereby providing more flexibility. 29 

However, to assume that the regression coefficients are spatially clustered solely is a strong 30 

prior belief.  I n reality, spatial pooling with smoothly varying coefficients over contiguous 31 

areas may exhibit over-smoothness ( X u et al. ,  2017) , particularly in the presence of clear 32 

discontinuities ( C ongdon, 2014) . I n this vein, a robust model with a mechanism to 33 

collectively accommodate the global and local smoothing would be favorable. 34 

T o summarize, despite that numerous research efforts have been devoted to the 35 

development of various predictive models to explore the effects of area-wide factors on the 36 

frequency of pedestrian crashes within the past two decades, existing studies have largely 37 

failed to provide a full picture of the factors that contribute to the incidence of zonal 38 

pedestrian crashes, mainly due to the unavailability of reliable exposure data and use of 39 

less sound analytical methods. B ased on a comprehensive dataset of 7,103 pedestrian–40 
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motor vehicle (P M V ) crashes aggregated in 209 tertiary planning units ( T P Us)  over a 3-1 

year period in Hong K ong, our study aims to assess the geographical variations of P M V  2 

crashes with respect to land-use, road-network attributes, traffic characteristics, the 3 

presence of public facilities, and socio-demographic characteristics. Specifically, the 4 

objectives of our study are: 1)  to propose a procedure to extract pedestrian trajectories 5 

from household travel-diary survey data and to dissect the role of various measures of 6 

pedestrian exposure ( i.e., population, walking trips, walking time, and walking distance)  7 

in the performance of zonal P MV  crash-frequency models; 2)  to extend the fixed-8 

coefficients approach that is commonly used to model spatially correlated error-terms to 9 

estimate the spatially non-stationary relationships within a full B ayesian context; and 3) 10 

to identify the factors that contribute to the frequency of P M V  crashes in neighborhoods 11 

in an urban city. B ased on our study, the spatially heterogeneous effects of various factors 12 

on the frequency of P MV  crashes are expected to be quantified. Such information is of 13 

paramount importance for policymakers in the formulation and implementation of 14 

multifaceted interventions to reduce environmental hazards and to remove barriers to 15 

walking in targeted neighborhoods. T he proposed procedure to extract pedestrian 16 

trajectories from household travel-diary survey data and the developed B SV C  model can 17 

also be directly generalized to other regions when modeling the frequency of P M V  crashes 18 

to obtain more accurate and reliable estimations. 19 

2. Methods 20 

2.1 Data preparation 21 

Our crash data were obtained from the Traffic Road Accident Database System, which is 22 
maintained by the Hong Kong Police Force and the Hong Kong Transport Department 23 
(Xu et al., 2019a). These data are collected by the police officers at the crash scenes (Meng 24 
et al., 2017; Xie et al., 2018 ; Zhou et al., 2020 ). Only crashes that result in injuries are 25 
recorded in the database. With available information on ge ographical coordinates, the 26 
crashes were first mapped onto an ArcGIS map and geo -validated using a procedure 27 
developed by Loo (2006). A total of 7 ,381 PMV  crashes were reported by the police on 28 
normal weekdays during 2010–2012. Of these, 96.23% were successfully geo-coded. These 29 
crashes were then immediately aggregated at the TPU level, which is the smallest unit for 30 
planning purpose in Hong Kong ( Yao and Loo, 2016). Initially, t he Hong Kong Planning 31 
Department partitioned the whole territory as 289 TPUs in  total  in 2011. For the purpose 32 
of privacy, 80 TPUs with a sparse population were then merged with their adjacent zones 33 
by the Hong Kong Census Department when releasing the 2011 Population Census Report. 34 
The resulting 209-TPU system, with an average size of 5.31 km2 and appromiately one-35 
third of TPUs having an area of less than 1 km 2, was used as the spatial unit system of 36 
our analysis, because it readily matches the existing population census data and is capable 37 
of quantifying the built environmental fact ors at a relatively fine geographical scale. 38 
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T o assign the boundary crashes, a buffer zone with a radius of 100 ft ( i.e. 30.48 m) 1 

was created first around the T P U boundaries. C rashes located within the boundary buffer 2 

were then allocated equally to the adjacent T P Us. T his half-to-half ratio assignment 3 

method was recommended by W ashington et al.  ( 2010)  and X u et al. ( 2017) . Other 4 

variables were also spatially attached to their respective T P Us in an analogous manner. 5 

F ig. 1 illustrates the spatial distribution of P MV  crashes in 209 T P Us on normal weekdays 6 

during 2010–2012 in Hong K ong. T he number of P M V  crashes across T P Us was 34 on 7 

average, with a minimum value of 0 to a maximum of 292. 8 

T he vehicle flow data were derived from the A nnual T raffic C ensus System, which 9 

is maintained by the Hong K ong T ransport Department. E ach year, the Hong K ong 10 

T ransport Department publishes its traffic census reports with the vehicle flow data 11 

recorded by the counting stations. I n 2011, approximately 850 counting stations were 12 

surveyed, covering over 85% of trafficable roads in Hong K ong ( HK T D, 2012) . B y 13 

multiplying the reported average annual daily traffic volume by the corresponding length 14 

of road segments, the average daily vehicle kilometers traveled was obtained. 15 

 16 
Fig. 1. The spatial distribution of PMV  crashes on normal weekdays in Hong Kong during 17 
2010–2012. 18 

To estimate the city -wide pedestrian exposure, the 2011 Travel Characteristics 19 
Survey (HKTD , 2014) released by the Hong Kong Transport Department was used. 20 
Between September 2011 and January 2012, a random sample of 35,401 households 21 
(approximately 1.5% of domestic households) was successfully enumerated. Respondents 22 
were asked to recall all types of activities they had engaged in on the preceding weekday 23 
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( excluding Saturdays, Sundays, and public holidays) . F or each trip, detailed information 1 

on origin and destination, trip purpose, departure time, arrival time, and trip duration 2 

was recorded accordingly. T he collected trip records were then extrapolated to the entire 3 

population and were further adjusted for underreporting by comparison with independent 4 

transportation statistics ( T o et al.,  2005) . T o estimate pedestrian activities within each 5 

T P U, as illustrated in F ig. 2, all of the walking trips including the walk-only trips and 6 

walking trip legs were first plotted on the A rcG I S map, with the centroid of street blocks 7 

as a trip’s origin or destination. I n Hong K ong, the street blocks are the smallest 8 

enumeration units delineated by the Hong K ong P lanning Department. T here are 4,993 9 

street blocks across the whole territory, with an average area of 0.22 km2. F or inter-zone 10 

trips whose origin and destination were not within the same street block, the shortest 11 

network path was calculated using the Dijkstra algorithm ( Dijkstra, 1959) . T hese shortest 12 

walking paths were then overlaid with the street block map to extract the part of the 13 

routes within the boundary of each street block. G iven the reported trip duration, together 14 

with an assumption that people walked at a constant speed throughout their trips, the 15 

walking time of each inter-zone trip within corresponding street blocks could then be 16 

calculated. F inally, by spatially joining the street blocks with the T P U map, the walking 17 

time within each T P U was obtained. A  similar procedure was used to estimate the walking 18 

distance at the T P U level, as detailed in F ig. 3. Here we estimated the walking distance 19 

for intra-zone trips by multiplying the self-reported walking time by average walking speed 20 

stratified by sex and age groups. A ge- and sex-specific walking speeds were calculated by 21 

dividing the total distance of shortest walking paths estimated for the inter-zone trips by 22 

corresponding walking time, as presented in T able A 2. C ompared with Y ao et al. (2015)  23 

who used solely the inter-zone trips to extract pedestrian trajectories, our proposed 24 

procedure is expected to produce more accurate estimates of pedestrian activities within 25 

each neighborhood by an integrated consideration of inter-zone and intra-zone trips. I n 26 

total, the 2011 T ravel C haracteristics Survey estimated approximately 28.71 million 27 

walking trips ( including walk-only trips and walking trip legs) , corresponding to 2.40 28 

million hours and 10.21 million kilometers walked by Hong K ong residents per weekday 29 

during 2010–2012. 30 

I n addition to the estimation of exposure measures, a range of explanatory variables 31 

related to land-use, road-network characteristics, and socio-demographic factors that 32 

potentially contribute to the frequency of P M V  crashes were collected from a crowdsourced 33 

dataset in Hong K ong. 34 
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 1 
Fig. 2.  Flowchart used to estimate walking time at TPU level based on the 2011 Hong 2 

K ong T ravel C haracteristics Survey data.  3 
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 1 
Fig. 3.  Flowchart used to estimate walking distance at TPU level based on 2011 Hong 2 

K ong T ravel C haracteristics Survey data.  3 
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T he digital land-use data were obtained from the Hong K ong P lanning Department, 1 

which were categorized into seven types: commercial,  residential,  industrial,  institutional,  2 

recreational,  special utilities, and green space. I n addition to using the percentage to 3 

indicate the intensity of a particular type of land-use within an area, following W ang and 4 

K ockelman ( 2013) , C hen and Zhou ( 2016) , and Ding et al. ( 2018) , we calculated the 5 

entropy index to quantify the mixture of land-use as E q. ( 1) : 6 

                                          =

−
=
∑

1
ln( )

Entropy
ln( )

ik
i i
j j

j
i

i

p p

k
                                        ( 1)  7 

where 
i
jp  refers to the percentage of land-use type =( 1,2,...,7)j j  in T P U 8 

=( 1,2,...,209)i i .  ik  denotes the number of land-use types in the thi  T P U. T he entropy 9 

index varies from 0 to 1, with a value towards 1 associated with a greater extent of mixed 10 

land-use. 11 

However, the aforementioned entropy index implicitly assumes that an area is 12 

perfectly mixed if its land-use types share equal percentage, which seems theoretically 13 

inadequate. T he balance index ( C ervero and Duncan, 2003)  was therefore introduced here 14 

to measure how different types of land-use interact in balance with each other. L et jt  the 15 

percentage of land-use type j  within the whole city. Setting the entire area under 16 

investigation as a benchmark with well-balanced land-use, the balance index for the thi  17 

T P U could then be calculated as (Song et al.,  2013) : 18 

                                                             = − −∑
7

Balance 1 i
i j j j

j

t p t                                        ( 2)  19 

Similar to the entropy, the balance index also ranges from 0 to 1, with higher values 20 

representing more balanced land-use. 21 

T he road-network data were extracted from the node-link road centerline system 22 

provided by the Hong K ong L ands Department and were further adjusted by the shapefile 23 

derived from OpenStreetM ap. V arious geometric characteristics, namely road density, 24 

intersection density, percentages of road-segment lengths with different functional 25 

classifications, and percentages of different types of intersections, were included. R oad 26 

density here was defined as the length of road segments per square kilometers, while 27 

intersection density was calculated as the number of intersections divided by the length of 28 

road segments. 29 

T he points-of-interest data were grabbed from the G eoI nfo M ap released by the Hong 30 

K ong SA R  G overnment. G iven precise location information, the numbers of various public 31 

facilities, including the bus stops, parking lots, tram stops, metro entrances, petrol stations, 32 

supermarkets, shopping malls, convenience stores, licensed hotels,  nursing homes for the 33 

elderly, child care centers, hospitals, clinics, schools, police stations, country parks, libraries, 34 

museums, playgrounds, performing venues, sports centers, and sports grounds, were thus 35 
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counted within each T P U. T his rich points-of-interest dataset provides us a valuable 1 

opportunity to examine the effects of some previously under-investigated factors, such as 2 

bus-stop density and the prevalence of parking lots, on the frequency of zonal P M V  crashes. 3 

F inally, the demographic, educational,  economic, and household characteristics were 4 

derived from the 2011 P opulation C ensus R eport. T he variables available for model 5 

development, along with their descriptive statistics, are presented in T able 1. 6 

Table 1. Characteristics of the 209 TPUs under investigation. 7 
Variables Mean SD Min  Max 
Dependent variable 
   Number of PMV  crashes on working days  
   during 2010–2012  

33.99 43.09 0.00 292.00 

Exposure variables 
   Average daily vehicle kilometers traveled ( × 103)  127.70 153.79 0.36 1204.05 
   R esident population ( × 103)  33.83 41.05 1.02 287.90 
   A verage daily walking trips ( × 103)  163.78 180.81 0.60 1142.53 
   A verage daily walking time ( × 103 hours)  11.46 13.84 0.02 89.63 
   A verage daily walking distance ( × 103 km)  48.84 60.68 0.07 416.11 
Explanatory variables     
Land -use     
   Percentage of commercial land-use 0.04 0.09 0.00 0.53 
   Percentage of residential land-use 0.22 0.16 0.00 0.81 
   Percentage of industrial land-use 0.02 0.07 0.00 0.67 
   Percentage of institutional land -use 0.10 0.10 0.00 0.67 
   Percentage of recreational land-use 0.08 0.10 0.00 0.47 
   Percentage of special utilities 0.17 0.14 0.00 0.56 
   Percentage of green space 0.37 0.34 0.00 0.98 
   Land-use mix 0.66 0.23 0.01 0.98 
   Land-use balance 0.67 0.20 0.41 0.99 
Road -network  attributes      
   Road density (km/km 2) 10.52 6.98 0.62 37.49 
   Percentage of motorways 0.06 0.08 0.00 0.57 
   Percentage of primary roads 0.05 0.09 0.00 0.69 
   Percentage of secondary roads 0.11 0.09 0.00 0.36 
   Percentage of tertiary roads 0.10 0.11 0.00 0.78 
   Percentage of unclassified roads 0.68 0.17 0.20 1.00 
   Intersection density (/km)  4.43 1.81 1.00 14.31 
   Percentage of signalized intersections 0.12 0.12 0.00 0.57 
   Percentage of roundabouts 0.02 0.02 0.00 0.15 
   Percentage of three-leg intersections 0.86 0.13 0.24 1.00 
   Percent of four-leg intersections 0.14 0.12 0.00 0.76 
   Percent of intersections with five or more legs 0.05 0.01 0.00 0.08 
Public facilities      
   Bus-stop density (/km)  1.36 0.98 0.00 4.69 
   Number of parking lots  3.11 4.38 0.00 25.00 
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   Number of tram-stops 0.61 2.21 0.00 14.00 
   Number of metro entrances 2.45 4.08 0.00 19.00 
   Number of petrol stations 0.82 1.22 0.00 5.00 
   Number of supermarkets 3.23 3.44 0.00 15.00 
   Number of shopping malls 3.27 4.48 0.00 26.00 
   Number of convenience stores 6.45 7.83 0.00 49.00 
   Number of licensed hotels 5.93 24.60 0.00 294.00 
   Number of nursing homes for the elderly 0.78 1.29 0.00 8.00 
   Number of child care centers 0.06 0.23 0.00 1.00 
   Number of hospitals 0.21 0.64 0.00 4.00 
   Number of clinics 1.18 2.04 0.00 11.00 
   Number of schools 13.11 17.09 0.00 122.00 
   Number of police stations 0.22 0.46 0.00 3.00 
   Number of country parks 0.11 0.40 00.0 3.00 
   Number of libraries 0.89 1.25 0.00 9.00 
   Number of museums 0.09 0.45 0.00 5.00 
   Number of playgrounds 0.30 0.63 0.00 3.00 
   Number of performing venues 0.08 0.31 0.00 2.00 
   Number of sports centers 0.49 0.80 0.00 4.00 
   Number of sports grounds 0.13 0.34 0.00 1.00 
Demographic characteristics      
   Proportion of male population  0.47 0.04 0.36 0.85 
   Proportion of population aged less than 15 0.12 0.03 0.00 0.21 
   Proportion of population aged between 15 and 24 0.11 0.03 0.02 0.27 
   Proportion of population aged between 25 and 44 0.33 0.05 0.21 0.57 
   Proportion of population aged between 45 and 64 0.30 0.04 0.15 0.44 
   Proportion of population aged 65 or above 0.13 0.06 0.00 0.44 
   Proportion of population of Chinese ethnicity  0.88 0.12 0.43 0.99 
Educational characteristics (highest level attended)  
   Proportion of population with primary education  
   or below 

0.28 0.08 0.07 0.61 

   Proportion of population with secondary  education 0.45 0.07 0.17 0.84 
   Proportion of population with post -secondary  
   education 

0.27 0.13 0.00 0.75 

Economic characteristics      
   Labor-force participation rate  0.60 0.08 0.00 0.88 
   Proportion of working population  0.51 0.72 0.00 0.83 
   Proportion of working population with place of  
   work at home 

0.12 0.10 0.00 0.51 

   Median monthly income ( × 103)  13.86 5.68 0.00 40.00 
Household characteristics      
   Household density (× 103/km 2) 10.66 12.74 0.00 58.09 
   Average household size 2.93 0.38 1.60 4.10 
   Proportion of households with three or more persons 0.56 0.12 0.00 0.82 
   Median monthly household income ( × 103) 33.43 29.73 0.00 170.80 
   Median monthly household rent ( × 103) 8.06 11.71 0.00 76.00 
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   M edian rent to income ratio 0.19 0.11 0.00 0.53 
   P roportion of population in public rental housing 0.16 0.24 0.00 1.00 
   P roportion of population in subsidized home  
   ownership housing 

0.08 0.14 0.00 0.78 

   P roportion of population in permanent housing 0.72 0.32 0.00 1.00 
   P roportion of population in non-domestic housing 0.01 0.06 0.00 0.85 
   P roportion of population in temporary housing 0.03 0.08 0.00 0.53 

2.2 Model specification 1 

We modeled the frequency of PMV  crashes consistent with previous studies ( Sebert 2 
Kuhlmann et al., 2009; Wang and Kockelman, 2013; DiMaggio, 2015; Lee et al., 2015; Guo 3 
et al., 2017; Osama and Sayed, 2017; Goel et al., 2018). Let iY  denote the number of P M V  4 

crashes in the thi  T P U on working days during 2010–2012. T he use of aggregate crash data 5 

over a 3-year period helps to avoid confounding effects and the regression-to-the-mean 6 

phenomenon ( C heng and W ashington, 2005) . iV  and iP  refer to the vehicle and pedestrian 7 

volumes, respectively, and ikX  is the thk  explanatory variable related to zone-specific 8 

attributes. G iven the potential non-linear relationship between P M V  crashes and traffic 9 

volumes (E lvik and G oel, 2019) , we have: 10 

                                     
1 2 3

4

~ Poisson( )

ln( ) ln( ) ln( )

i i
p

i i i k ik i i
k

Y

V P X u s
=

= + + + + +∑

l

l b b b b                       ( 3)  11 

where λi  is the parameter of the P oisson model ( i.e. , the expected number of P M V  crashes 12 

in the thi  T P U; β1  is the intercept; =β ( 2,..., )k k p  refers to the thk  regression 13 

coefficients to be estimated; iu  denotes the unstructured effect, which is specified as an 14 

exchangable normal prior with a mean of 0 and a variance of 2
us ,  i.e. , 2~ Normal(0, )i uu s ;  15 

and is  is the spatially structured or spatially correlated effect.  16 

One commonly used joint density for 1 2 209( , , ..., )s s ss  is formulated in terms of 17 

pairwise differences in errors and a variance term of 2
ss  ( B esag et al. , 1991) : 18 

                                               ∝ ∑ 22 -1
1 2

~
( , , ..., ) exp[-0.5( ) ( - ) ]n s ij i j

i j

P s s s c s ss                            ( 4)  19 

T his results in a normal conditional prior for is :  20 

                                      ≠

∑
∑ ∑

2

~ Normal( , )i j jj s
i j i

i j i jj j

c s
s s

c c
s

                                   ( 5)  21 

where i jc  represents the non-normalized weight, e.g., = 1i jc  if T P U i  is adjacent to 22 

T P U j ,  otherwise = 0i jc .  I n our study, geographically non-contiguous zones were also 23 

considered as neighbors if they were directly connected by cross-harhor tunnels, bridges, 24 

or ferries. 2
ss  is the variance parameter, controlling the amount of extra variations due to 25 

spatial correlation. 26 

A lthough the unvirate conditional prior distribution in E q. ( 5)  is well defined, the 27 

corresponding joint prior distribution for s is improper with undefined mean and infinite 28 
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variance ( Sun et al. , 1999) . T his fact probably leads to problems in convergence and 1 

identifiability (E berly and C arlin, 2000) . 2 

A n alternative strategy to gain properity is based on the strength of a single set of 3 

random effects 1 2 209( , , ..., )v v vv :  4 

                                           
=

= + + + +∑1 2 3
4

ln( ) ln( ) ln( )
p

i i i k ik i
k

V P X vl b b b b                           ( 6)  5 

F ollowing L ee (2011) , iv  here is specified as the C A R  prior proposed by L eroux et al. 6 

( 1999) : 7 

                                      ≠ − + − +
∑

∑ ∑
2

~ Normal( , )
1 1

v ij jj v
i j i

v v i j v v i jj j

c v
v v

c c

r s
r r r r

                       ( 7)  8 

where ≤ ≤(0 1)v vr r  is the spatial correlation parameter, with = 0vr  simplifying to an 9 

independently and identically distributed normal prior, and a value closer to 1 indicating 10 

a stronger spatial correlation. A ccordingly, setting = 1vr  corresponds to the intrinsic 11 

C A R , as in E q. ( 5) . 12 

B ased on the factorization theorem, v  results in a joint multivariate G aussian 13 

distribution: 14 

                                                       −+ −σ ρ ρ2 1~ MVN( , [ (1 ) ] )v v vv 0 K I                                   (8)  15 

where I  is an ×n n  matrix, and the elements of K  are calculated as: 16 

                                                                 
 == − ≠

∑ if
if  

i jj
i j

i j

c i j
K

c i j                                                             ( 9)  17 

A lthough the covariance structure in E q. (6)  incorporates the local relationships, the 18 

outputs from the preceding models still consist of a set of global parameter estimates. 19 

I ntuitively, the local variations can be addressed by setting the regression coefficients as 20 

random effects, allowing the effects of covariates to vary spatially: 21 

                             
=

= + + + +∑λ β β β β1 2 3
4

ln( ) ln( ) ln( )
p

i i i i i ik ik i
k

V P X v                            ( 10) 22 

where βik  is the coefficient of the thk  explanatory variable for T P U i .  23 

T o account for both the unstructured and spatially structured variations in model 24 

regression coefficients, following X u et al.  ( 2017) , we have: 25 

                                                     −+ −β μ σ ρ ρ2 1~ MVN( , [ (1 ) ] )k k kk k K I                              (11)  26 

Unlike E q. ( 8) , E q. (11)  has a constant non-zero mean μ µ µ( ,..., )k kk ,  in which µk  is the 27 

overall estimate of the regression slope, representing the average of the posterior estimates 28 

of β β β β1 2 209( , , ..., )k k kk .  T he precision matrix is now given by + −ρ ρ(1 )k kK I ,  which is a 29 

weighted average of spatially correlated and independent structures denoted as K  and I ,  30 

respectively. T his specification is capable of accounting for a range of weak and strong 31 

spatial correlation in regression coefficients, with =ρ 0k  reducing to spatially independent 32 

random effects only, while an increase in ρk  toward 1 represnts more spatial smoothing.  33 
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 1 

A ccordingly, the univariate full conditional distribution for E q. ( 11)  is: 2 

                    
+ −

− + − +
∑

∑ ∑
ρ β ρ µ σ

β β
ρ ρ ρ ρ

2(1 )
~ Normal( , )

1 1
k ij jk k kj k

ik jk
k k i j k k i jj j

c

c c
                ( 12)  3 

Specifically,  the conditonal expectation of βik  is a weighted average of the random 4 

effects at neighboring zones and the overall mean µk .  W hen βik  exhibits a strong spatial 5 

correlation, ρk  is close to 1 and the conditional variance approaches ∑σ 2
k ijj

c .  T his 6 

variance configuration recognizes that in the presence of strong spatial correlation, the 7 

more neighbors a neighborhood has, the more information the data contain on the value 8 

of its random effects. I n comparison, if the random effect is spatially independent, the 9 

conditional variance becomes σ 2
k .  E vidently, the parameter ≤ ≤ρ ρ(0 1)k k  serves as an 10 

indicator to assess the relative strength of spatial and unstructured variations in the 11 

estimated coefficients. I n addition, if there is no significant heterogeneity in βk ,  σ 2
k  12 

becomes dispersive with the mean of its posterior distribution lower than the standard 13 

deviation ( B arua et al.,  2015; X u et al. ,  2017) . I n this case, the regression slopes are better 14 

modeled as fixed effects. 15 

Obtaining the full B ayesian posterior estimates requires the specification of prior 16 

distributions. P rior distributions are typically used to reflect prior knowledge about the 17 

parameters of interest.  I f such information is available, it is encouraged to formulate the 18 

so-called informative priors ( Y u and A bdel-A ty, 2013; Heydari et al., 2014) . I n the absence 19 

of sufficient prior knowledge, non-informative priors, were applied to model the parameters 20 

here ( Dong et al. , 2016) : 21 

                                             
β
µ

~ Normal(0,1000)
~ Normal(0,1000)

k

k

                                          ( 13)  22 

C onsistent with C ongdon ( 2008) , the spatial correlation parameters ρv  and ρk  were 23 

assigned as uniform(0,1) .  A  uniform(0,10)  was also specified for σv  and σk ,  respectively, 24 

following G elman ( 2006) , L ee ( 2011) , and X u et al.  ( 2017) . 25 

2.3 Model-performance comparison measures 26 

For model comparison, three commonly used measures were adopted here, i.e., the mean 27 
absolute deviance (MAD), mean squared prediction error (MSPE), and deviance 28 
information criterion (DIC).  29 

The MAD was calculated as follows (Xu et al., 2015; Yao et al., 2015): 30 

                                            µ209

1

1MAD
209

i i
i

Y Y
=

= −∑                                         ( 14)  31 
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where µiY  denotes the predicted number of P M V  crashes estimated by the fitted models. 1 

A  smaller value of MA D suggests that on average the model predicts the observed data 2 

better. 3 

T he M SP E  was also used to provide a measure of model predictive performance (Y ao 4 

et al.,  2015) , which was formulated as: 5 

                                          
µ209

2

1

1MSPE ( )
209

i i
i

Y Y
=

= −∑                                      ( 15)  6 

Similar to the MA D, models with a lower value of M SP E  indicate a better predictive 7 

performance. 8 

M eanwhile, as a penalized goodness-of-fit measure, the DI C  was used here to take 9 

model complexity into account: 10 

                                         = + = +θDIC ( ) 2 D DD p D p                                      ( 16)  11 

where θ( )D  is the deviance evaluated at θ ,  the posterior means of the parameters; Dp  is 12 

the effective number of parameters in the model; and D  is the posterior mean of the 13 

deviance statistic θ( )D .  T he lower the DI C  value, the better the model fit. I n general,  for 14 

a pair of models with a difference in DI C  value of more than 10, the model with a higher 15 

DI C  value is definitely ruled out; model pairs with DI C  differences between 5 and 10 are 16 

considered substantially different; and a difference of less than 5 indicates that the two 17 

models are not statistically different ( Spiegelhalter et al. , 2002) . 18 

3. Results and discussion 19 

The freeware WinBUGS (Spiegelhalter et al., 2005) was used to calibrate the models. 20 
Three parallel chains with diverse starting points were tracked. The first 50,000 iterations 21 
were discarded as burn -ins, and then 5,000 iterations were performed for each chain, 22 
resulting in a sample distribution of 15,000 for each parameter. The model’s convergence 23 
was monitored by the Brooks-Gelman-Rubin statistic ( Brooks and Gelman, 1998), visual 24 
examination of the Markov chain Monte Carlo chains, and the ratios of Monte Carlo errors 25 
relative to the respective standard deviations of the estimates. As a rule of thumb, these 26 
ratios should be less than 0.05. 27 

For model specification, a co rrelation test was conducted first to ensure the non -28 
inclusion of strongly correlated variables. Our correlation analysis indicated a strong 29 
correlation between percentage of land-use categorized as special utilities and road density, 30 
between labor force participation rate and proportion of working population, and between 31 
average household size and proportion of population in permanent housing, with the 32 
estimated Spearman’s correlation parameters (Washington et al., 2011) greater than 0.70. 33 
Likewise, the proportion of working population with place of work at home, median 34 
monthly income, median monthly household income, and median monthly household rent 35 
were also highly correlated, suggesting that these four variables should not be 36 
simultaneously added to the models. Similar conclusions hold true for the variables of the 37 
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number of supermarkets, the number of shopping malls, and the number of convenience 1 

stores, given their Spearman’s correlation parameters all greater than 0.80. Other variables 2 

showed weak collinearity, as their Spearman’s correlation parameters were less than 0.50. 3 

I n the initial model, we included all of the uncorrelated variables ( X ie et al.,  2018; Zhou 4 

et al. , 2020) . T he DI C  was then used to compare alternative models with different covariate 5 

subsets. T he model producing a lower DI C  value was considered statistically superior.  6 

F or comparison purposes, in addition to the B SV C  model, we developed the B ayesian 7 

spatially fixed coefficients (B SF C )  model with a spatially correlated error term. T o 8 

highlight the role of pedestrian exposure, models with population, walking trips, walking 9 

time, and walking distance as the exposure measure, respectively, were estimated and 10 

compared. A s such, eight models were calibrated. T he performance of these models is 11 

presented below, followed by the presentation and interpretation of the parameter 12 

estimates. 13 

3.1 Model-performance comparison 14 

Table 2 shows the results of goodness-of-fit measures for the calibrated models. The values 15 
of MAD, MSPE, and DIC in t he BSVC models were not substantially different from those 16 
derived from the BSFC models, indicating that our data were fairly robust to model 17 
configuration. More specifically, the BSVC model with walking trips as the measure of 18 
pedestrian exposure performed best, given the lowest value of DIC. Based on a similar 19 
dataset but aggregating pedestrian crashes to 26 districts in Hong Kong, Sze et al. (2019) 20 
also reported that the model using walking frequency as the proxy for pedestrian exposure 21 
was superior to the other two counterparts using zonal population and walking time. 22 
Although population information is readily available as it is routinely reported by lo cal 23 
authorities, the use of  such an aggregated data as a surrogate for pedestrian exposure 24 
completely neglects the variations in pedestrian activities within an area of interest. This 25 
negligence may produce biased results for central business districts wit h a sparse resident 26 
population but a prevalance of pedestrian activities during workday rush-hours. 27 

Table 2. Goodness-of-fit measures for BSFC and BSVC models for the frequency of PMV  28 
crashes in 209 TPUs in Hong Kong during 2010–2012. 29 
Model type Description Pedestrian exposure MAD  MSPE DIC  
BSFC-1 

Bayesian spatially 
fixed coefficients 
model 

Population 5.53 68.05 1318.36 
BSFC-2 Walking trips  5.52 67.91 1314.36 
BSFC-3 Walking time  5.54 68.01 1323.28 
BSFC-4 Walking distance 5.54 68.10 1322.31 
BSVC-1 

Bayesian spatially 
varying coefficients 
model 

Population 5.54 68.10 1320.27 
BSVC-2 Walking trips  5.52 67.86 1313.66 
BSVC-3 Walking time  5.54 68.23 1324.51 
BSVC-4 Walking distance 5.54 68.20 1322.81 
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M A D, M SP E , and DI C : mean absolute deviance, mean squared prediction error,  and deviance information 1 

criterion, respectively. 2 

A mong the three activity-based exposure measures, the model of walking trips seems 3 

to better account for the cross-sectional variability in zonal counts of P MV  crashes. One 4 

plausible explanation is that due to the self-reported nature of travel-diary data, 5 

information on waking trips is more reliable than that on walking time, given the potential 6 

recall bias and inconsistency of time perception among individual respondents. L ikewise, 7 

the estimated walking distance in our study depends on a strong assumption that 8 

pedestrians chose the shortest path. I n reality, the route choice of pedestrians, however, is 9 

considerably complex and dynamic, because people do not always choose the shortest path 10 

when walking from one place to another ( G uo and L oo, 2013) . A s a consequence, the 11 

measurement-errors introduced in the process of estimating walking time and walking 12 

distance probably lead to the reduced model performance. 13 

3.2 Parameter estimates 14 

Tables 3 and 4 summarize the parameter estimates in the BSFC and BSVC models applied 15 
to the frequency of PMV  crashes in 209 TPUs in Hong Kong, respectively. A 5% level of 16 
significance was used as the threshold to determine whether the parameters differed 17 
significantly from 0. Variables insignificant in all eight models were then excluded. 18 

Several general observations are worthy of mention. First, the significant variables 19 
were not entirely identical between the models of population and activity -based exposure 20 
measures. For example, the percentage of residential land -use and the percentage of 21 
roundabouts were statistically significant in the models of population, but became totally 22 
insignificant in the models of activity -based exposure measures. The same holds true for 23 
the variable of median monthly income, as this variable was only significant in the models 24 
of activity -based exposure measures. Second, relative to the models of resident population, 25 
the effects of several risk factors, i.e., road density, the percentage of motorways, and the 26 
number of parking lots, changed substantially in the models of activity -based exposure 27 
measures. Specifically, the coefficient of road density in the BSVC model decreased sharply 28 
from 0.52 to 0.37 once the number of walking trips was used as the exposure measure. 29 
Similar results were also observed for the effects of the percentage of motorways and the 30 
number of parking lots. These findings raise an alarm that the extensive use of population 31 
or population density to represent pedestrian exposure in previous studies (LaScala et al., 32 
2000; Graham and Glaister, 2003; Noland and Quddus, 2004; Priyantha Wedagama et al., 33 
2006; Loukaitou-Sideris et al., 2007; Wier et al., 2009; Chakravarthy et al. , 2010; Cottrill 34 
and Thakuriah, 2010; Ha and Thill, 2011; Ukkusuri et al., 2011, 2012; Siddiqui et al., 2012; 35 
Dumbaugh and Zhang, 2013; Graham et al., 2013; Noland et al., 2013; DiMaggio, 2015; 36 
Lee et al., 2015; Wang et al., 2016; Gai et al., 2017a; Goel et al. , 2018; Rothman et al. , 37 
2020)  has very likely resulted in biased estimates and incorrect inferences.  38 
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Table 3. Results of the BSFC model with a spatially correlated error term for the frequency of PMV  crashes in 209 TPUs in Hong Kong during 1 
2010–2012. 2 
 BSFC-1  BSFC-2  BSFC-3  BSFC-4 
Variables Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI 
Intercept –3.62* 0.49 (–4.61, –2.65) –4.41* 0.61 (–5.82, –3.32) –2.45* 0.39 (–3.23, –1.73) –3.06* 0.48 (–4.07, –2.13) 
Ln (vehicle km traveled) 0.39* 0.05 (0.29, 0.50) 0.34* 0.06 (0.21, 0.45) 0.36* 0.06 (0.25, 0.47) 0.37* 0.06 (0.26, 0.48) 
Ln (population)  0.48* 0.05 (0.38, 0.59)          
Ln (walking trips)     0.51* 0.06 (0.40, 0.64)       
Ln (walking time)        0.43* 0.05 (0.34, 0.52)    
Ln (walking distance)           0.43* 0.05 (0.33, 0.53) 
Residential land-use (%) –0.25* 0.05 (–0.36, –0.15)   –0.06 0.05 (–0.15, 0.04)   –0.06 0.05 (–0.16, 0.03)   –0.06 0.05 (–0.16, 0.03) 
Road density 0.51* 0.05 (0.41, 0.61) 0.31* 0.05 (0.21, 0.42) 0.34* 0.05 (0.23, 0.44) 0.33* 0.06 (0.23, 0.44) 
Motorways (%)  –0.18* 0.05 (–0.27, –0.08) –0.14* 0.05 (–0.24, –0.04) –0.16* 0.05 (–0.26, –0.06) –0.18* 0.05 (–0.28, –0.08) 
Intersection density 0.23* 0.06 (0.12, 0.34) 0.15* 0.06 (0.04, 0.26) 0.15* 0.06 (0.03, 0.27) 0.14* 0.06 (0.03, 0.26) 
Roundabouts (%) –0.12* 0.05 (–0.22, –0.03)   –0.08 0.05 (–0.17, 0.01)   –0.09 0.05 (–0.18, 0.01)   –0.08 0.05 (–0.18, 0.01) 
Bus-stop density 0.21* 0.05 (0.11, 0.31) 0.16* 0.05 (0.05, 0.27) 0.18* 0.05 (0.08, 0.29) 0.18* 0.06 (0.07, 0.29) 
Number of parking lots  0.19* 0.05 (0.10, 0.28) 0.12* 0.05 (0.02, 0.22) 0.13* 0.05 (0.02, 0.22) 0.12* 0.05 (0.01, 0.22) 
Median monthly income   0.01 0.05 (–0.11, 0.09) –0.13* 0.05 (–0.23, –0.04) –0.11* 0.05 (–0.21, –0.02) –0.11* 0.05 (–0.21, –0.01) 
µσ

2
v   0.31* 0.09 (0.20, 0.55)  0.30* 0.09 (0.19, 0.53)  0.33* 0.10 (0.20, 0.58)  0.35* 0.11 (0.21, 0.62)  

µρ v     0.08 0.07 (0.00, 0.26)    0.07 0.06 (0.00, 0.25)     0.08 0.07 (0.00, 0.27)    0.09 0.08 (0.00, 0.30)  

B SF C : B ayesian spatially fixed coefficients model.  3 

SD: standard deviation. 4 

B C I : B ayesian credible interval. 5 
* denotes significance at 95% C I .  6 
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Table 4. Results of the BSVC model for the frequency of PMV  crashes in 209 TPUs in Hong Kong during 2010–2012. 1 
 BSFC-1  BSFC-2†  BSFC-3  BSFC-4 
Variables Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI Mean SD 95% BCI 
Intercept –3.89* 0.51 (–4.84, –2.92) –4.37* 0.55 (–5.48, –3.34) –2.46* 0.41 (–3.28, –1.66) –2.97* 0.45 (–3.86, –2.09) 
Ln (vehicle km traveled)  0.42* 0.06 (0.31, 0.54) 0.33* 0.05 (0.24, 0.44) 0.36* 0.05 (0.26, 0.47) 0.37* 0.05 (0.27, 0.49) 
Ln (population)  0.50* 0.05 (0.40, 0.60)          
Ln (walking trips)     0.50* 0.05 (0.40, 0.61)       
Ln (walking time)        0.43* 0.05 (0.34, 0.53)    
Ln (walking distance)           0.42* 0.05 (0.32, 0.51) 
Residential land-use (%) –0.24* 0.05 (–0.35, –0.13)   –0.08 0.05 (–0.18, 0.02)   –0.09 0.05 (–0.19, 0.01)   –0.09 0.05 (–0.19, 0.01) 
Road density 0.52* 0.05 (0.42, 0.63) 0.37* 0.08 (0.22, 0.54) 0.39* 0.08 (0.24, 0.56) 0.40* 0.08 (0.23, 0.57) 
µσ

2
Road density   ——* —— ————— 0.15* 0.12 (0.01, 0.44) 0.16* 0.12 (0.01, 0.48) 0.17* 0.13 (0.01, 0.49) 

µρRoad density   ——* —— ————— 0.47* 0.29 (0.02, 0.98) 0.45* 0.29 (0.01, 0.98) 0.46* 0.29 (0.02, 0.97) 

Motorways (%)  –0.26* 0.08 (–0.42, –0.10) –0.16* 0.05 (–0.26, –0.06) –0.18* 0.05 (–0.28, –0.08) –0.19* 0.05 (–0.29, –0.10) 
µσ

2
motorways   0.21* 0.16 (0.01, 0.63) ——* —— ————— —— —— ————— —— —— ————— 

µρmotorways   0.37* 0.28 (0.01, 0.95) ——* —— ————— —— —— ————— —— —— ————— 
Intersection density 0.21* 0.06 (0.10, 0.32) 0.14* 0.06 (0.04, 0.26) 0.15* 0.06 (0.03, 0.27) 0.14* 0.06 (0.03, 0.26) 
Roundabouts (%) –0.16* 0.05 (–0.27, –0.06)   –0.08 0.05 (–0.17, 0.01)   –0.09 0.05 (–0.18, 0.01)   –0.09 0.05 (–0.18, 0.01) 
Bus-stop density 0.17* 0.05 (0.07, 0.28) 0.17* 0.05 (0.06, 0.27) 0.19* 0.05 (0.08, 0.29) 0.19* 0.05 (0.08, 0.29) 
Number of parking lots  0.20* 0.05 (0.11, 0.29) 0.13* 0.05 (0.04, 0.22) 0.13* 0.05 (0.03, 0.22) 0.13* 0.05 (0.03, 0.22) 
Median monthly income   0.01 0.05 (–0.09, 0.11) –0.12* 0.05 (–0.21, –0.03) –0.10* 0.05 (–0.19, –0.01) –0.10* 0.05 (–0.19, –0.01) 
µσ

2
v   0.27* 0.11 (0.12, 0.54)  0.25* 0.09 (0.13, 0.48)  0.29* 0.11 (0.15, 0.59)  0.30* 0.12 (0.15, 0.60)  

µρ v     0.15 0.16 (0.00, 0.62)    0.10 0.10 (0.00, 0.38)     0.13 0.13 (0.00, 0.49)     0.14 0.14 (0.00, 0.52)  

B SV C : B ayesian spatially fixed coefficients model.  2 

SD: standard deviation. 3 

B C I : B ayesian credible interval. 4 
* denotes significance at 95% C I . 5 
† Detailed W inB UG S code for the B SV C -2 model was presented in the A ppendix.6 
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M ore importantly, unlike the B SF C  models whose coefficients were restricted to be 1 

constant, the B SV C  models allowed the regression coefficients to vary spatially. Hence, 2 

using B SF C  approach, a single model was applied for the entire area, whereas different 3 

coefficients could be estimated for each neighborhood by virtue of the B SV C  model. I t is 4 

also interesting to observe that the error variability ( σ 2
v )  decreased slightly when 5 

variations were introduced to the regression coefficients. T his result is intuitively 6 

reasonable, because the heterogeneity in the regression slopes can capture some of the 7 

extra variations previously explained by the random effects in the error term ( X u et al.,  8 

2017) . 9 

G iven that the B SV C  model with walking trips as the measure of pedestrian exposure 10 

performed best, we chose it to interpret our results in the subsequent section. A s T able 4 11 

shows, eight variables had a significant association with the frequency of P MV  crashes: 12 

vehicle kilometers traveled, walking trips, road density, percentage of motorways, junction 13 

density, bus-stop density, number of parking lots, and median monthly income. T he signs 14 

of these parameters were generally consistent with empirical judgments and the results of 15 

previous studies ( C hen and Zhou, 2016; G uo et al. , 2017; T asic et al. , 2017) . 16 

B oth vehicle kilometers traveled and walking trips were significant and positive, with 17 

coefficients estimated at 0.33 and 0.50, respectively. T his nonlinear relationship between 18 

pedestrian volume and the number of P MV  crashes has been widely reported ( G eyer et 19 

al.,  2006; Schneider et al. ,  2010; M iranda-M oreno et al.,  2011; E lvik et al. ,  2013; E lvik, 20 

2016; M ooney et al. , 2016; G uo et al., 2017; Osama and Sayed, 2017; T asic et al., 2017; 21 

X ie et al.,  2018; Sze et al. ,  2019; Stipancic et al.,  2020) , suggesting that as the number of 22 

pedestrians increases, the absolute number of P MV  crashes also increases, whereas the risk 23 

of collisions by motor vehicles for each individual pedestrian decreases. T his is known as 24 

the “ safety-in-numbers”  effect ( J acobsen, 2003; E lvik and B jørnskau, 2017; E lvik and G oel, 25 

2019; X u et al.,  2019b; C ai et al. ,  2020) . One plausible explanation is that motorists adjust 26 

their behavior when they encounter a group of people walking. T his hypothesis is evidenced 27 

by the greater visibility of pedestrians in greater numbers ( J acobsen et al. ,  2015) . A s 28 

motorists is less likely to collide with pedestrians when more people are walking, policies 29 

that encourage walking are claimed as effective measures to improve the safety of 30 

pedestrians ( J acobsen, 2003; Osama and Sayed, 2017) . However, this conclusion based on 31 

a cross-sectional research design should be interpreted with great caution, because it is 32 

impossible to determine whether this safety-in-numbers effect is a causal relationship or 33 

merely a statistical association (B hatia and W ier, 2011; X u et al.,  2019b) . B hatia and W ier 34 

( 2011)  also cautioned that treating the promotion of walking as a safety intervention would 35 

mask efforts to create an inherently safe environment for all pedestrians. F urther efforts 36 

are therefore warranted to investigate the underlying mechanisms. 37 

I nstead of simply encouraging people to walk in groups to draw motorists’  notice, an 38 

alternatively sound measure to improve pedestrian safety would be to restrict the usage of 39 

motor vehicles. I n addition to the benefits of less congestion, fewer emissions of pollutants, 40 
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and less traffic noise, the strategies to reduce vehicle volume would lower both the number 1 

of P MV  crashes and the crash risk for pedestrians. A ccording to our results, all things 2 

being equal, a neighrborhood halving its vehicle kilometers traveled would expect an 3 

approximately 20% decrease in P MV  crashes (
0.331-0.50 = 0.20 ) . T herefore, a modal shift 4 

from motor vehicles to other travel modes, such as public transit and walking, should be 5 

vigorously advocated, especially in dense urban settings. 6 

I nterestingly, road density had a spatially varying coefficient with a posterior mean 7 

of 0.37 and a variance of 0.15. T he magnitude of this coefficient ranged from –0.01 to 0.60, 8 

as shown in F ig. 4. G iven these distributional parameters, almost all of the T P Us ( i.e. , 208 9 

out of 209)  exhibited a positive association between road density and the frequency of 10 

P M V  crashes. T his heterogeneous effect is likely to reflect the variations in road conditions 11 

across neighborhoods and may result partially from some unobserved factors, such as 12 

topology of road networks, speed limits, and the presence of pedestrian facilities. I n 13 

addition, the spatial correlation parameter µρRoad density  produced a posterior estimate with 14 

a mean of 0.47 and a standard deviation of 0.29, implying that a moderate proportion of 15 

heterogeneity was explained by the spatially correlated effects. T he corresponding 95% C I  16 

was ( 0.02, 0.98) , which significantly differed from both 0 and 1. T his finding demonstrated 17 

the presence of both unstructured and spatially structured variations in the effects of 18 

related risk factors on the frequency of zonal P MV  crashes. 19 

 20 
Fig. 4. Mean and 95% Bayesian credible interval for the variable of road density, estimated 21 
by the BSVC model with walking trips as the measure of pedestrian exposure (ranked in 22 
descending order by mean values; dots: mean; solid lines: 95% Bayesian credible interval). 23 

One major advantage of the BSVC model is its capability to explain spatially non -24 
stationary relationships. A mapping of local parameters would therefore help local 25 
authorities to explicitly identify neighborhoods where a particular risk factor has a greater 26 
influence on the frequency of PMV  crashes. To illustrate, Fig . 5 identifies the overall 27 
pattern of the regression coefficients of road density as spatial clustering. Special attention 28 
should be paid to rural areas located in the New Territories, as road density in these 29 
neighborhoods was found to be highly significant, resulting in a more pronounced effect. 30 
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 1 
Fig. 5. Spatial distribution of the coefficients for the variable of road density, estimated 2 
by the BSVC model with walking trips as the measure of pedestrian exposure. 3 

Road functional classification also had a significant influence on the frequency of 4 
PMV crashes. According to our results, neighborhoods with a higher percentage of 5 
motorways were associated with a lower risk of PMV  crashes. This result is highly expected, 6 
because as limited -access roads, motorways mainly serve fast -moving vehicles while 7 
pedestrians are prohibited (Tasic et al., 2017). 8 

Intersections are well-known as hazardous locations in road networks. Given equal 9 
road length, more intersections impl y less continuous road networks and more conflict 10 
points between pedestrians and motor vehicles. It is therefore not surprising that 11 
intersection density had a significantly positive relationship with the frequency of PMV 12 
crashes. Similar findings were also reported by Priyantha Wedagama et al. (2006), Guo et 13 
al. (2017), Osama and Sayed (2017), and Tasic et al. (2017). 14 

With respect to the variables related to public facilities, bus -stop density was 15 
associated with an increased risk of PMV  crashes. A visual examination via Google Street 16 
View suggests that traffic conditions near bus stops in Hong Kong are fairly complicated 17 
and mixed, as various road users share the same activity spaces. A previous study by Lam 18 
et al. (2014) reported that pedestrians were more likely to jaywalk to board buses without 19 
noticing the approaching vehicles. The stationary buses at bus stops may also obscure the 20 
visibility of pedestrians when crossing the road (Chen and Zhou, 2016). As a consequence, 21 
the frequent interactions between pedestrians and motor vehicles near bus stops inevitably 22 
increase the risk of collisions (Retting et al. , 2003; Zegeer and Bushell, 2012; Stoker et al., 23 
2015; Goel et al. , 2018). Similar explanations hold true for the effect of the number of 24 
parking lots. 25 
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F inally, area deprivation level is closely associated with safety awareness, driving 1 

behavior, and road facilities, and thus has an indirect influence on the frequency of P M V  2 

crashes. C onsistent with Siddiqui et al.  ( 2012) , Noland et al.  (2013) , J ermprapai and 3 

Srinivasan (2014) , C ai et al. (2017a) , and R othman et al.  ( 2020) , the negative relationship 4 

between median monthly income and the frequency of P MV  crashes found in our study is 5 

very likely attributable to two causes. F irst,  people with higher incomes may have better 6 

awareness of safe walking. Second, deprived neighborhoods probably have fewer favorable 7 

pedestrian facilities such as marked crosswalks, overpasses or underpasses, and refuge 8 

islands to completely separate pedestrians from motor vehicles on roads (R othman et al. , 9 

2020) . 10 

4. Conclusions 11 

This study  sought to investigate the factors that contribute to the frequency of PMV  12 
crashes at zonal levels, using a rich dataset collected in 209 TPUs in Hong Kong over a 3-13 
year period. Detailed activity -based exposure data were integrated with land -use, road-14 
network features, accessibility of public facilities, and socio-demographic characteristics to 15 
construct our dataset. A procedure was proposed to extract pedestrian trajectories from 16 
publicly available travel -diary survey data. A BSVC model was then developed to account 17 
for the spatially heterogeneous effects of risk factors. To hig hlight the role of exposure, 18 
models with population, walking trips, walking time, and walking distance as the measure 19 
of pedestrian exposure, respectively, were calibrated and compared. 20 

Several key findings are worthy of note. First , although pedestrian vo lume is 21 
indispensable in determining the incidence of pedestrian crashes, the major challenge lies 22 
in the unavailability of reliable pedestrian activity  data for the whole area under 23 
investigation. Fortunately, t he household travel-diary survey provides a straightforward  24 
and invaluable means to estimate territory -wide pedestrian activities. Given the rich trip 25 
information recorded in the survey, by virtue of  an integrated use of crowdsourced datasets, 26 
pedestrian trajectories can be easily estimated based on our proposed procedure. By 27 
incorporating these activity -based exposure measures into PMV  crash-frequency models, 28 
we explicitly demonstrate that the use of population or population density as a surrogate 29 
for pedestrian exposure when modeling the frequency of zonal PMV  crashes will  lead to 30 
biased estimations and incorrect inferences, as our empirical results indeed indicated 31 
substantial inconsistencies in the the effects of several risk factors between the models of 32 
population and activity -based exposure measures. 33 

Second, among the three activity -based exposure measures, walking trips were 34 
empirically proved adequate in accounting for the spatial variations in zonal counts of 35 
PMV  crashes. Although the model using walking trips as the measure of pedestrain 36 
exposure resulted in a slightly better goodness-of-fit, the models of walking distance and 37 
walking time could also help in the evaluation of safety effects of specific transport policies, 38 
such as quantifying the safety benefits associated with a modal shift from motor vehicles 39 
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to walking for short-distance trips in metropolitan areas. I ndeed, only when we understand 1 

the differences in how much people walk, will we be able to measure how safe walking is, 2 

and further evaluate the effectiveness of specific countermeasures in improving pedestrian 3 

safety.  4 

T hird, by virtue of the B SV C  model, we add new insights to existing studies that in 5 

addition to the unstructured variability, the heterogeneity in the effects of explanatory 6 

variables on the frequency of P MV  crashes can also arise from spatially correlated effects. 7 

T he developed B SV C  model provides a sound methodological alternative to investigate 8 

the spatially non-stationary relationships, as the varying regression coefficients are 9 

modeled via a single set of random effects and a spatial correlation parameter, with extreme 10 

values corresponding to pure unstructured or pure spatially correlated random effects. 11 

G iven that pedestrian crash data are typically collected in spatial proximity, we expect 12 

our study to promote the awareness among traffic professionals that spatial heterogeneity 13 

should not be neglected when modeling pedestrian crashes involving contiguous spatial 14 

units. 15 

E ight variables were ultimately found to have a significant association with the 16 

frequency of P M V  crashes in neighborhoods. T he nonlinear relationship between 17 

pedestrian volume and the frequency of P M V  crashes was confirmed, with an estimated 18 

coefficient of 0.50, 0.43, and 0.42 for walking trips, walking time, and walking distance, 19 

respectively. V ehicle kilometers traveled, road density, intersection density, bus-stop 20 

density, and the number of parking lots were found to be positively associated with P MV  21 

crash frequency, whereas the percentage of motorways and median monthly income had 22 

negative effects on the risk of P MV  crashes. T hese findings are expected to assist local 23 

authorities in the formulation of effective strategies to improve walkability and pedestrian 24 

safety in neighborhoods. Such countermeasures may include restricting the use of motor 25 

vehicles, promotion of a shift from motor vehicles to walking for walkable-distance trips, 26 

traffic calming in residential neighborhoods, updating of pedestrian facilities to completely 27 

separate pedestrians from motor vehicles on very busy roads, reducing conflicts between 28 

pedestrians and motor vehicles particularly near bus stops and at entrances of parking lots, 29 

and publicity on safe road-crossing behaviors. 30 

Our study is not without limitations. T he T P Us used in our analysis are delineated 31 

mainly for planning purposes and may not be the optimal spatial units for zonal pedestrian 32 

crash analysis. G iven the potential of the modifiable areal unit problem (X u et al. , 2014; 33 

L ee et al.,  2014; C ai et al. ,  2017b; X u et al.,  2018; Obelheiro et al. , 2020) , more efforts are 34 

warranted to validate the robustness of our findings via aggregation of data at various 35 

spatial resolutions. I n addition, although the neighborhood-level analysis is useful to 36 

investigate the effects of area-wide variables on the frequency of P M V  crashes, pedestrian 37 

safety is actually a microscopic concern, because P MV  crashes are usually caused by 38 

interactions between pedestrian and motor vehicles ( Y ue et al. , 2020) . F uture studies 39 

towards an integration of cross-sectional research designs with in-depth crash-causation 40 
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investigations and accident-reconstruction simulations are highly recommended to achieve 1 

deeper insights into the causes of pedestrian crashes. 2 
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Appendix 1 
Table A1. Studies of factors that influence the frequency of pedestrian crashes at zonal levels over the past two decades. 2 

Authors  
Study 
region 

Study 
period 

Observations 
Research 
method 

Exposure measures  Risk factors included 

Motor 
vehicles 

Pedestrians 
Land-

use 
Road 

network 
POI 

Population 
census 

Climate 

LaScala et al. 
(2000) 

San Francisco, 
US 

1990 
149 census 

tracts 

Spatial lag model 
and spatial error 

model 

Average 
daily traffic  

Population      

G raham and 
G laister (2003)  

UK  1999–2000 8,413 wards 
Negative-binomial 

model 
 

P opulation 
density 

     

Noland and 
Quddus (2004)  

UK  1979–1998 
11 standard 

statistical 
regions 

Negative-binomial 
model 

T otal 
number of 

vehicles 
registered 

P opulation      

P riyantha 
Wedagama et 

al.  (2006)  

Newcastle 
upon T yne, 

UK  
1998–2001 

185 
enumeration 

districts 

Negative-binomial 
model 

R oad length 
P opulation 

density 
     

L oukaitou-
Sideris et al.  

(2007)  

L os A ngeles, 

US 
1994–2001 

860 census 
tracts 

M ultiple linear 
model 

A verage 
annual daily 

traffic 

P opulation 
density and 
employment 

density 

     

Sebert 
K uhlmann et 

al.  (2009)  

Denver, 

US 
2000–2003 

134 census 
tracts 

B ayesian spatial 
model with C A R  

prior 

P opulation 
density 

C ommuting 
by walking 

     

W ier et al.  
(2009)  

San Francisco, 
US 

2001–2005 
176 census 

tracts 
M ultiple linear 

model 
A verage 

daily traffic 
P opulation      

C hakravarthy 
et al.  (2010)  

Orange 
C ounty, 

C alifornia,  

US 

2000–2004 
577 census 

tracts 
Negative-binomial 

model 
 P opulation      

C ottrill and 
T hakuriah 

(2010)  

C hicago, 

US 
2005 

1,832 census 
tracts 

P oisson-lognormal 
model with 
exogenous 

underreporting 

A nnual 
average daily 

traffic 

P opulation 
density 

     
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Ha and T hill 
(2011)  

B uffalo,  

US 
2003–2004 

90 census 
tracts 

Spatial lag model 
and spatial error 

model 
 P opulation      

Ukkusuri et al.  
(2011)  

New Y ork 
C ity, US 

2002–2006 
2216 census 

tracts 

R andom-
parameters 

negative-binomial 
model 

 P opulation      

Delmelle et al.  
(2012)  

B uffalo, 

US 
2003–2004 

90 census 
tracts 

Spatial error model  
C ommuting 
by walking 

     

Siddiqui et al.  
(2012)  

F lorida 
(District 

Seven) , US 
2005–2006 

1,479 traffic 
analysis 

zones 

B ayesian spatial 
model with C A R  

prior 
 P opulation      

Ukkusuri et al.  
(2012)  

New Y ork 
C ity, US 

2002–2006 

180 ZI P  
codes G eneralized 

negative-binomial 
model 

 P opulation      
2216 census 

tracts 

Dumbaugh 
and Zhang 

(2013)  

San A ntonio, 

US 
2003–2007 

938 census 
block groups 

Negative-binomial 
model 

V ehicle miles 
traveled 

P opulation      

G raham et al.  
(2013)  

UK  2001–2007 1,820 wards 

B ayesian spatial 
longitudinal 

generalized linear 
mixed model 

 P opulation      

Noland et al.  
(2013)  

New J ersey, 

US 
2003–2007 

6,460 census 
block groups 

B ayesian spatial 
model with C A R  

prior 
 P opulation      

Wang and 
K ockelman 

(2013)  

A ustin, 

US 
2007–2009 

218 census 
tracts 

B ayesian 
multivariate C A R  

model 

V ehicle miles 
traveled 

Walking 
miles 

     

J ermprapai 
and Srinivasan 

(2014)  

F lorida,  

US 
2005–2009 

11,390 
census block 

groups 

Negative-binomial 
model 

Work trips 
per week 

      
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DiM aggio 
(2015)  

New Y ork 
C ity, US 

2001–2010 
1,908 census 

tracts 

B ayesian 
hierarchical model 

with space-time 
interaction effects 

V ehicle 
kilometers 

traveled per 
day per 
square 

kilometer 

P opulation      

L ee et al.  
(2015)  

F lorida,  

US 
2009–2011 

983 ZI P  
codes 

B ayesian 
simultaneous 

equations model 
with C A R  prior 

V ehicle miles 
traveled 

P opulation      

C ai et al.  
(2016)  

F lorida,  

US 
2010–2012 

8,518 traffic 
analysis 

zones 

B ayesian dual-state 
model with spatial 

spillover effects 

V ehicle miles 
traveled 

C ommuting 
by walking 

     

C hen and 
Zhou (2016)  

Seattle,  

US 
2008–2012 

863 traffic 
analysis 

zones 

B ayesian spatial 
model with C A R  

prior 

T otal 
number of 

trips 

Walking 
trips 

     

Wang et al.  
(2016)  

Shanghai, 

C hina 
2009 

263 traffic 
analysis 

zones 

B ayesian spatial 
model with C A R  

prior 
 P opulation      

C ai et al.  
(2017a)  

F lorida,  

US 
2010–2012 

594 traffic 
analysis 
districts 

B ayesian joint 
model of frequency 

and proportion 

V ehicle miles 
traveled 

P opulation 
density 

     

G uo et al.  

(2017)  

Hong K ong, 

C hina 
2011 

131 traffic 
analysis 

zones 

B ayesian spatial 
model with C A R  

prior 

V ehicle hours 
traveled  

Walk-only 
trips 

     

Osama and 
Sayed (2017)   

V ancouver,  

C anada 
2009–2013 

134 traffic 
analysis 

zones 

B ayesian spatial 
model with C A R  

prior 

V ehicle 
kilometers 

traveled 

Walking 
trips 

     

T asic et al.  
(2017)  

C hicago, 

US 
2005–2012 

801 census 
tracts 

G eneralized 
additive model 

V ehicle miles 
traveled 

Walking 
trips 

     

X ie et al.  

(2017)  

M anhattan, 
New Y ork 
C ity, US 

2008–2012 
6,204 grid 

cells 
T obit model 

V ehicle miles 
traveled 

      
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Ding et al.  
(2018)  

Seattle,  

US 
2008–2012 

863 traffic 
analysis 

zones 

M ultiple additive 
P oisson regression 

tree model 

T otal 
number of 

trips 

Walking 
mode share 

     

G oel et al.  

(2018)  

Delhi, 

I ndia 
2011–2012 282 wards 

B ayesian spatial 
model with C A R  

prior 

V ehicle 
kilometers 

traveled 
P opulation      

L ee et al.  
(2019)  

US 2014–2016 

47 
metropolitan 

statistical 
areas 

B ayesian 
integrated model 

 
Walking 

hours 
     

Sze et al.   

(2019)  

Hong K ong, 

C hina 
2011–2015 

26 broad 
districts 

R andom-
parameters 

negative-binomials 
model 

A nnual 
average 

hourly traffic 

P opulation 

     
Walking 

frequency 

Walking 
time 

R othman et al.  
(2020)  

T oronto, 

C anada 
2001–2010 

102 census 
tracts 

M ultivariate 
logistic regression 

model 

R oadway 
length 

P opulation      

P OI : points of interest. 1 
C A R : conditional autoregressive prior.  2 

 3 

Table A2. Walking speeds estimated for Hong Kong residents based on the 2011 Hong Kong Travel Characteristics Survey data, stratified by 4 
sex and age groups (unit: m/s).  5 
Age groups ≤ 14 15–24 25–34 35–44 45–54 55–64 ≥ 65 

M ale 1.00 1.01 0.92 0.91 1.05 1.00 0.91 

F emale 1.06 1.14 1.05 0.99 0.96 1.00 0.82 

 6 
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T he W inB UG S code for the B SV C -2 model: 1 

M odel 2 

{  3 

for ( i in 1:209)  {  4 

     y[i] ~ dpois( lambda[i])  5 

     log( lambda[i])  < - beta[1]+ beta[2]*L nV K T [i]+ beta[3]*L nW _ trp[i]+ beta[4]* 6 

P _ R es_ L U[i]+ beta5[i]*D_ R d[i]+ beta[6]*P _ Mt_ R d[i]+ beta[7]*D_ J un[i]+ beta[8]* 7 

P _ R ad_ J un[i]+  beta[9]*D_ B us[i]+ beta[10]*P arking[i]+ beta[11]*M I NC [i]+ s[i]         8 

     beta5[i] < - beta[5]+ phi5[i] 9 

     ypred[i] ~ dpois( lambda[i])  #  P redictive value based on the complete data 10 

     P P L [i] < - abs( ypred[i]-y[i])  11 

     P P L 2[i] < - pow( ypred[i]-y[i],2)  12 

}  13 

M A D < - mean(P P L [])  14 

M SP E  < - mean(P P L 2[])  15 

#  P roper C A R  prior of L eroux et al.  ( 1999) . Detailed explanations for the specification 16 

of this C A R  prior should be referred to C ongdon ( 2014; page 337–343) . 17 

for ( i in 1:209)  {  18 

      s[i] ~ dnorm( s.bar[i],tau[i])  19 

      s.bar[i] < - rho.s*sum( W sp.s[cumsum[i]+ 1:cumsum[i+ 1]]) / (1-rho.s+ rho.s*num[i])  20 

      tau[i] < - tau.s*( 1-rho.s+ rho.s*num[i])  21 

      phi5[i] ~ dnorm( phi5.bar[i],tau.phi5[i])  22 

      phi5.bar[i] < - rho.5*sum(W sp.5[cumsum[i]+ 1:cumsum[i+ 1]])/ ( 1-rho.5+ rho.5*num[i])  23 

      tau.phi5[i] < - tau.5*( 1-rho.5+ rho.5*num[i])  24 

}  25 

for ( i in 1:sumNumNeigh)  {  #  sumNumNeigh refers to the length of adj[] 26 

     W sp.s[i] < - s[adj[i]] 27 

     W sp.5[i] < - phi5[adj[i]] 28 

}  29 

rho.s ~ dunif( 0,1)  #  C orrelation parameter 30 

tau.s < - pow( sig.s,-2)  31 

var.s < - pow( sig.s,2)  32 

sig.s ~ dunif( 0,10)  33 

rho.5 ~ dunif( 0,1)  34 

tau.5 < - pow( sig.5,-2)  35 

var.5 < - pow( sig.5,2)  36 

sig.5 ~ dunif(0,10)  37 

for (k in 1:11)  { beta[k] ~ dnorm( 0.0,1.0E -5) }  38 

}                                                                                              39 


