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Abstract

The rail-wheel interaction can induce train and track vibrations and consequently lead to noise impact,
passengers’ discomfort, high maintenance cost, etc. Due to the complexity of the rail-wheel
interaction and the high cost of field tests, as well as the difficulties in data collection, numerical
analyses have been widely resorted to for predicting the train and track vibrations, for which
numerous numerical models have been developed. According to track modeling approaches, the
numerical models can be generally divided into two categories, i.e., beam models and continuum
finite element (FE) models. In this paper, these two models are systematically compared and
discussed. First, a typical beam model of Wu and Thompson (2004) is introduced, based on which a
modified model is then established. Second, a plane continuum FE model with high mesh quality is
established, in which the transition mesh generation, contact treatment and element size determination
are presented. Numerical tests are conducted to validate the proposed plane FE model. Finally, both
the beam and the plane continuum FE models are examined through typical rail-wheel interaction
examples, in which the linear response of the track as well as the rail-wheel vibrations under both a
single rolling wheel and two rolling wheels are analyzed. The results show that most of the vibration
trends obtained from the two models agree well with each other. Nevertheless, it is noteworthy that
the continuum FE model has superiorities, especially for analyzing vibrations at higher frequencies.
The present study can be of considerable help for designers and engineers in the railway industry to
achieve the trade-off between the simulation demands and the computational cost.
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1. Introduction

Railway transportation, which is an efficient way to relieve road transportation pressure, has
developed rapidly in recent years for both intercity and urban passenger transport. When the train is
running, both the train and the track vibrate, which can lead to noise impact, passengers’ discomfort,
high maintenance cost, etc. Various theories and methods have been developed to investigate and
predict the vibrations of the train and the track, among which numerical simulations have proven to
be an effective and efficient tool, with many numerical models having been established in the
literature.1, 2 According to the track modeling approaches, these numerical models can be generally
divided into two categories: beam models and continuum finite element (FE) models.3, 4

Due to their simplicity and efficiency, beam models are widely used to predict rail vibrations.
The Euler-Bernoulli beam (EB) model, which neglects shear deformation, was employed in the early
years. In 1976, Remington et al.5 developed an EB model to predict the rolling noise due to the rail-
wheel interaction, in which the rail was approximated as a beam lying upon a continuous elastic
foundation. Later, the effects of discrete supports provided by sleepers were taken into consideration
in the EB models by researchers such as Munhal et al.6 and Grassie et al.7 Wu and Yang8-10 developed
several train-rail-bridge interaction models, where the rail is modeled as an EB model to simulate the
vehicle and bridge responses as well as the rail-wheel contact forces. Based on EB theory, the
vibration of the train under braking conditions and the vibration of the track considering rail weld
irregularities were also examined.11, 12 On the other hand, the Timoshenko beam (TB) model, which
considers shear deformation, has also been well-received in rail-wheel simulations for its superior
accuracy compared to that of the EB model. In 1982, a TB model in which both the rail and sleepers
were modeled as flexible beams was developed by Clark et al.13 to study the vertical rail vibration
caused by the rail corrugation. Ilias14 proposed a discretely supported TB model to investigate the
influences of the rail pad stiffness on the rail-wheel interaction forces and the growth of the rail
corrugation. Hosseinkhani et al.15 modeled the track using a TB model on a viscoelastic foundation
to simulate the dynamic deflection alongside the railways. Wu and Thompson16-21 conducted
systematic studies on the rail-wheel vibration using TB models, where additional features, such as
the effect of multiple wheels, wheel flats and rail joints, rail corrugation, etc., were incorporated. To
explore the interspersed track vibration induced by a moving train, a TB rail-wheel interaction model
was developed by Kaewunruen et al.22

With advances in computing technology, continuum FE models have been increasingly
employed to simulate the rail-wheel vibration with a refined approximation. These models can be
divided into four categories according to the modeling objectives, i.e., stress analysis, rolling
contact fatigue (RCF), wear analysis and thermal contact analysis.

i. Stress analyses, which are essential for understanding and further predicting rail/wheel fatigue
and failure behaviors, are conducted via continuum FE models because the stress distribution
cannot be generally reflected by the beam model. For instance, Sladkowski et al.23 proposed a
three dimensional (3D) FE model to explore the effects of the rail and wheel profiles on the
contact stress distribution; Sun et al.24 developed an elastic 3D FE model to study the dynamic
behavior of a rail under a wheel passing through a curved track; a 3D FE model was built by
Wen et al.25 to investigate the effects of the height difference defect, train speed and axle load
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on the contact stress at the railhead; and a 2D rail-wheel FE model was proposed by Chen et
al.26 to explore the effects of insulated rail joints on the contact stress.

ii. The RCF prediction, which is an extensively focused topic in the railway industry, has also
been implemented using continuum FE models. For example, Kabo et al.27 proposed a two-
dimensional (2D) FE model to explore how the material defect size affected the RCF of railway
wheels; Bogdanski et al.28 developed a 2D multi-size FE model to predict the RCF crack; and
Ringsberg29 performed an elastic-plastic FE analysis that cooperated with the strain-life method
to predict the lifetime of RCF.

iii. The mechanism of wear can also be explained using a continuum FE analysis. For instance,
Daves et al.30 developed a 2D FE model to investigate the effect of surface roughness on the
sliding-rolling wear; Chang et al.31 studied the evolution of the rail/wheel profile due to wear
via 3D FE dynamic analyses; and other researchers, such as Chen et al.32, Wen et al.33,
Andersson et al.34 and Naeimi et al.35, investigated the mechanisms behind the occurrence of
corrugation using continuum FE models.

iv. The effect of thermal contact, which may cause severe heat damage at the rail/wheel surfaces,
has also been simulated using continuum FE analyses. For example, Wu et al.36 developed a 2D
frictional FE model to discuss the effect of rail-wheel thermal contact on the residual
deformation/stress and found that the contact stresses were observably increased when
considering the thermal effect; Ramanan et al.37 proposed a 3D rail-wheel FE model to study
the thermal stresses due to braking; a 2D FE simulation was conducted by M. Petereson38 to
discuss the transient thermal convection-diffusion during block braking; and Sun et al.39

employed 3D FE models to investigate the impact of frictional heat caused by the relative
sliding between the rail and the wheel on the contact stress and temperature field.

Although both beam and continuum FE models are widely employed in rail-wheel simulations,
a systematic comparison between them, to the authors’ best knowledge, is still absent.40 Generally,
for static analyses or dynamic analyses over small time periods, continuum FE models are preferred.
In contrast, beam models are usually selected for dynamic analyses over relatively large time periods.
What triggered this comparative study was wanting to ascertain whether these common
understandings are pertinent or not. In the present study, one typical beam FE model and one plane
continuum FE model are developed, and then the dynamic behaviors of the rail-wheel vibration
simulated using each model are systematically compared and discussed. The paper is organized as
follows: a modified beam FE model based on Wu and Thompson’s work is proposed in Section 2; a
plane continuum FE model is proposed and validated through numerical tests in Section 3; typical FE
simulations on rail/wheel vibrations are conducted using the two models and their results are
compared and discussed in Section 4; and a conclusion is given in Section 5. It is expected that the
main features of the two models revealed in this paper can provide a more comprehensive
understanding of the numerical simulation of rail-wheel vibrations, which will be helpful when
choosing between different models.

2. Beam FE Model

In this section Wu and Thompson’s typical beam model41 is briefly introduced, based on which a
modified beam FE model is then developed. In Wu and Thompson’s model, the rail is modeled as a
conventional TB and the discrete supports, including sleepers, rail-pads and the ballast, are simplified
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as discrete mass-spring systems, see Fig. 1. The wheel is treated as a lumped mass, Mw, while the
vehicle weight is simplified as a dead weight, W, loading on the wheel mass. The track receptance
subjected to a harmonic force in the frequency domain at n (e.g., n=12) equal-spaced positions within
a sleeper span is first calculated. Then, the track model is transformed from the frequency domain to
the time domain using mathematical treatments. Finally, the response of the wheel is connected to
the rail by a nonlinear Hertzian contact spring, in which the rail-wheel interaction force is defined as:
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where CH is the Hertzian constant and xr and xw are the vertical displacements of the rail and the
wheel at the contact position, respectively. Noteworthy that the Hertzian constant CH is determined
according to the Hertzian contact theory, which assumes small strain and non-adhesive and
frictionless contact conditions.42

Fig. 1 Timoshenko beam model of the rail-wheel dynamic interaction by Wu and Thompson.41

Although Wu and Thompson’s beam model has been successfully applied to various engineering
problems21, 41, modifications are made here to further improve its accuracy. The modified beam FE
model is illustrated in Fig. 2. First, the wheel/track vibrations are excited by moving interaction forces
instead of non-moving harmonic forces, considering that the wheel is moving along the rail
throughout. Consequently, the error caused by the relative speed of the structural waves in the track
and train can be reduced, e.g., the error of the rail acceleration is decreased by approximately 3~5%
in general cases.42 Second, the modified beam model is solved using an explicit time integration
method, thus it can be directly applied in the time domain and extended to nonlinear analyses. Third,
a rail section covering 69 sleeper spans rather than only one single span is selected, considering that
it should be sufficiently long to capture the approaching and leaving effects of the train on the track
vibration and reduce the influence of the longitudinal boundary conditions.42

The modified beam FE model is established in Abaqus. Two-node TB elements are applied to
discretize the rail. The element size determination will be discussed in Section 2.1. For the discrete
support consisting of rail-pads, sleepers and the ballast, the sleepers are simplified as lumped masses,
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and the rail-pads and the ballast are both modeled using a linear spring element and a dashpot element,
as shown in Fig. 2. Additionally, the primary suspension of the vehicle is taken into account and
modeled by a set of elastic springs and dampers in order to improve the model accuracy. The
parameters related to the track and vehicle are extracted from the website of Hong Kong Mass Transit
Railway Corporation Limited (HK MTR)43 and are provided in Table 1, unless otherwise specified.

Fig. 2 Modified beam FE model for the rail-wheel dynamic interaction.

In the modified beam FE model, a nonlinear spring element is applied to build the force-
displacement relationship of the rail-wheel interaction, i.e., the nonlinear Hertzian relationship in Wu
and Thompson’s work,41 see Eq. (1). Since the Hertzian constant depends highly on the shape of the
contact area42, which is difficult to measure accurately, it is simply taken as the value given in Wu
and Thompson’s model.41 To ensure the spring node, which denotes the contact point on the rail that
is always sliding on the rail surface, a rigid surface is introduced to be sliding on the rail, see Fig. 2.
The characteristic length of the rigid surface as well as the mass should be sufficiently small to reduce
the effects of this artificial surface. Here the characteristic length is assumed to be only slightly larger
than the beam element size in the potential contact zone and thus the rigid surface cannot penetrate
the rail, while the mass is empirically chosen to be one-tenth of the mass of the adjacent rail node. It
deserves mentioning that numerical tests have been conducted and the results reveal that, as long as
the characteristic length does not exceed thrice that of the element size, a rather limited difference
can be found. The kinematic contact algorithm in Abaqus/Explicit is chosen to build the contact
condition between the rigid surface and the rail surface. Because neither ballast springs nor rail-pad
springs can bear the shear force along the longitudinal direction, the longitudinal displacements of
the sleepers are constrained. This simplification is reasonable because in reality each sleeper is

W

Rigid surface
Kinematic contact constraintRail

48.524 m

V

Rail pad

Sleeper

Ballast

Wheel Mw

Hertzian contact spring

z

0.7 m

Sprung mass Mc

Primary suspension
x
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embedded in the ballast and its longitudinal motion can be neglected. The above modified beam FE
model will be employed in subsequent simulations and denoted as the “beam FE model” in the results.

Table 1. Vehicle and track parameters used in the beam FE model.

Components Parameters Values

Vehicle body 44 Sprung mass Mc (kg) 10000

Wheel mass Mw (kg) 561

Primary suspension 45
Spring stiffness (kN/m) 665

Dashpot coefficient (kN·s/m) 15

Sleeper mass Ms (kg) 150

Sleeper span d (m) 0.7

Rail-pad
Spring stiffness (MN/m) 200

Dashpot coefficient (kN·s/m) 48

Ballast
Spring stiffness (MN/m) 40

Dashpot coefficient (kN·s/m) 43

Rail (UIC60)

Elastic modulus (GPa) 210

Shear modulus (GPa) 80.769

Poisson’s ratio 0.3

Density (kg/m3) 7850

Rail cross-section

Area (m2) 7.823×10-3

Moment of inertia about the n1 axis
(m4)

3.155×10-5

Moment of inertia about the n2 axis
(m4)

5.247×10-6

Rail-wheel interaction41 Hertzian constant (GN/m3/2) 93.7

2.1 Element Size of the Rail

A typical simulation of a single wheel rolling on a rail is performed in the present study to
determine a reasonable element size for the rail. The wheel is located directly above a sleeper at t =
0. The evolution of the wheel speed versus time is shown in Fig. 3, where the wheel speed is uniformly
accelerated to V = 21 m/s at t1 = 0.2 s and then rolls at that uniform speed until t2 = 0.3 s. The three
mesh schemes given in Table 2 are considered, in which the element size of the rail is selected as
8.75, 4.375 and 0.875 mm, respectively. The vertical displacement at the wheel center during the
uniform rolling period, t1 to t2, is predicted and plotted in Fig. 4. The two meshes with smaller element
sizes, i.e., 0.875 mm and 4.375 mm, provide very similar results, thus the element size of the rail is
determined to be 4.375 mm in the present modified beam FE model.
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Fig. 3 Evolution of the wheel speed versus time

Table 2. Three mesh schemes of the rail

Mesh
Scheme

Element Size of the Rail
(mm)

Total Number of Elements in the Rail

Mesh 1 0.875 55440

Mesh 2 4.375 11828

Mesh 3 8.75 5544

Fig. 4 Vertical displacement at the wheel center using the three rail meshes.

2.2 Validation of the Modified Beam FE Model

A simple example considering a single wheel rolling on a straight rail is studied using Wu and
Thompson’s beam model and the present modified beam FE model. The rail-wheel contact force and
the dynamic displacement at the wheel center are predicted and compared in Fig. 5. The results
obtained from the two beam models agree well with one another, except for some minor fluctuations
in the contact force.

Time

V

0 t1 = 0.2 s

Wheel speed

t2 = 0.3 s
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(a)   (b)

Fig. 5 Time-histories of (a) the contact force and (b) the dynamic displacement at the wheel center
predicted by the two beam models.

3. Plane FE Model

Plane continuum FE models are often employed in dynamic analyses because fewer elements and
nodes are involved compared to their 3D counterparts and thus considerable computational costs can
be saved.38, 46 In this section, a plane continuum FE model in the Lagrangian frame is developed and
implemented in Abaqus for a dynamic rail-wheel interaction. Before introducing the model in detail,
it deserves mentioning that the main challenge in constructing the continuum FE model of the rail-
wheel interaction system is a dilemma between the demanding of an acceptable accuracy, which
requires both a high mesh quality and a small time step, and the limitation of the computational costs.

The plane continuum FE model of the rail-wheel system is composed of the track and the vehicle.
The former includes the rail, rail-pads, sleepers and the ballast while the latter consists of the vehicle
body, primary suspension, axles and wheelsets. The four-node quadrilateral (Q4) element is selected
to model the rail and the wheel. The actual profile of the standard UIC60 rail shown in Fig. 6a is
simplified as a ladder-shaped cross-section and is modeled using Q4 elements with different
thicknesses assigned, as shown in Fig. 6b. The rail has the same length as in the beam FE model and
a high mesh density is required within and around the contact region. If the entire rail and the wheel
are both meshed with a high density, the computational cost will be dramatically increased, which
makes performing the simulation unrealistic. To solve this issue, two approaches are applied here.
First, the entire rail is divided into three parts, as shown in Fig. 7a. The wheel is assumed to only roll
over the mid-part and the element size in the potential contact zone should be sufficiently small for
contact treatments. The determination of the smallest element size in the contact zone will be
discussed in Section 3.2. For the other two parts (i.e., the left-side and right-side parts) the element
size can be relatively enlarged. The meshes of the three parts are ‘tied’ together at the interfaces where
no relative movements are allowed, see Fig. 7b. Note that the meshes of the three parts are generated
during the preprocessing stage and remain unchanged during the dynamic analysis to avoid
oscillations and numerical noises as well as an additional computational cost brought by adaptive
remeshing. Second, a transition mesh scheme (Scheme 3 in Fig. 8c) is introduced, which is selected
from the three transition mesh schemes in Fig. 8 (the selection details will be presented in Section
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3.1). In the discretization of the mid-part, a transition mesh layer is applied between every three mesh
layers in vertical direction with a total of five transition mesh layers included. For a better
approximation, the sleepers and rail-pads are both modeled using Q4 elements instead of the mass-
spring system used in the beam model. The top and bottom surfaces of the rail-pads are tied with the
rail and sleeper, respectively. The ballast, which is relatively far from the contact zone, is modeled
using parallel linear springs and dashpots. The established track model is shown in Fig. 9.

(a) (b)

Fig. 6 (a) Actual cross-section of the UIC60 rail; (b) simplified cross-sections of the rail.

(a) (b)

Fig. 7 (a) Three parts of the rail with different mesh qualities; (b) zoom-in meshes at the transition
region between the mid- and right-parts of the rail.

(a) (b) (c)

Fig. 8 Transition mesh schemes: (a) Scheme 1; (b) Scheme 2; (c) Scheme 3.
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Fig. 9 A plane continuum FE model of the rail-wheel system (the smallest element size at rail-
wheel interface is 0.875 × 0.875 mm).

For practical applications, the conventional wheelset consists of two wheels in the lateral
direction and is mounted on a common axel.47 Because the wheel is assumed to be rolling over a
straight rail in all cases in this paper and only vertical vibration is focused on, a single wheel with
half of the axle is modeled here due to symmetry. The actual profile of the SP1900 wheel is simplified
as a ladder-shaped cross-section modeled by Q4 elements with different thicknesses, which is similar
to the treatment on the rail. Both the smallest element size and the transition mesh scheme in the rail
model are applied to model the wheel. Similarly, for the wheel mesh a transition mesh layer is
employed every three mesh layers near the rail-wheel contact surface with a total of six transition
mesh layers applied. The vehicle body is simplified as a lumped mass, the primary suspension is
modeled using a set of linear spring and dashpot, and the vehicle weight is treated as a dead force
acting on the sprung mass of the vehicle body, which is the same as that in the beam FE model. A
rigid circular surface is employed to represent the axle, which transmits the load from the vehicle
body to the wheel. The established vehicle model is also given in Fig. 9.

The normal interaction between the rail and wheel is directly modeled using the surface-to-
surface contact treatment known as the kinematic contact enforcement method, which strictly
enforces the non-penetration condition through a kinematic predictor/corrector contact algorithm.48

In terms of a tangential contact, the friction is considered based on the classical isotropic Coulomb
friction law.49 Because the friction coefficient is difficult to measure, here both the static and dynamic
friction coefficients are assumed to be 0.3 as recommended by the handbook,47 while the actual
friction type is determined according to the calculated contact pressure in each time increment.
Furthermore, the creep effect of the rail-wheel system is not considered because the simulated rolling
period is relatively short. All the materials in the model are assumed to be linearly elastic and
geometrical nonlinearity is considered. The physical parameters related to the track and the vehicle
in Table 1 are also used here with additional parameters supplemented in Table 3. The subsequent
results obtained from the present plane continuum FE model will be denoted as the “plane FE model”.

x

z

V
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Table 3. Additional parameters used in the plane FE model.

Components Parameters Values

Friction Friction coefficient µ 0.3

Axle Mass (kg) 270

Wheel (SP1900)

Elastic modulus (GPa) 210

Poisson’s ratio 0.3

Density (kg/m3) 7850

Sleeper

Depth (m) 1.25

Elastic modulus (GPa) 43

Poisson’s ratio 0.15

Density (kg/m3) 2753

Rail pads

Depth (m) 0.15

Elastic modulus (MPa) 60

Poisson’s ratio 0.5

Density (kg/m3) 1200

3.1 Transition Mesh Scheme

A variety of transition mesh schemes have been proposed for the mesh generation50, 51, among
which the three commonly used transition mesh schemes in 2D problems are depicted in Fig. 8. To
assess their performances, a cantilever beam subjected to a vertical shear force P at its free end is
considered, see Fig. 10a.52 When the beam undergoes both bending and shearing deformation its
mechanical behavior is similar to that of the track in the rail-wheel system. The beam is meshed using
the three transition mesh schemes as shown in Fig. 10b-d, respectively. These meshes are designed
so that they all possess six elements along the bottom surface of the beam and the total numbers of
nodes are close to each other, i.e., 21, 22 and 23, respectively. The deflections at the bottom right
corner are reported in Table 4. Mesh 3 in Fig. 10d yields the most accurate result, while the other two
meshes give relatively rigid predictions, which is attributed to the poor mesh quality for the
trapezoidal elements with a large aspect ratio in Mesh 1 and a high proportion of triangular elements
in Mesh 2. Therefore, the transition mesh scheme used in Mesh 3, namely, Scheme 3 in Fig. 8c, is
selected here for the mesh generation of the rail and wheel.

(a) (b)
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(c) (d)

Fig. 10 Cantilever beam problem. (a) Loading condition: P = 300 and M = 3000; (b) Mesh 1; (c)
Mesh 2; (d) Mesh 3.

Table 4. Vertical deflection at the bottom right corner of the cantilever.

Transition mesh scheme FE results Analytical solution Error (%)

Mesh 1 (14 elements) 6.32

10.23

38.2

Mesh 2 (18 elements) 8.64 15.5

Mesh 3 (15 elements) 9.50 7.1

3.2 Element Size at the Contact Zone

A convergence study is conducted here to determine a reasonable element size at the contact zone.
Three mesh conditions are considered, in which the element sizes at the contact zone are selected as
1.75×1.75 mm, 0.875×0.875 mm and 0.4375×0.4375 mm, respectively. For all three meshes, the rail
and wheel are discretized into five and six transition mesh layers, respectively. With all other
parameters being identical, a dead force of 100 kN is loaded on the sprung mass and the resulted
contact pressure on the rail is predicted and plotted in Fig. 11. The 0.875×0.875 mm and
0.4375×0.4375 mm meshes produce very similar predictions, thus the preferred element size at the
contact zone is selected as 0.875 × 0.875 mm, considering the computational efficiency and the total
numbers of elements in the rail and wheel being 70019 and 31392, respectively.

Fig. 11 Contact pressure predicted with different element sizes at the contact zone.
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4. Comparative Study Based on Numerical Examples

In this section, both the modified beam FE model in Section 2 and the plane FE model in
Section 3 are applied to simulate the rail-wheel interaction. Their results are then compared and
discussed.

4.1 Steady-State Analysis of the Track Vibration

The linear response of the track to a harmonic excitation force loaded at the center of a sleeper
span is simulated using the two models to study the track behavior, see Fig. 12. The angular frequency
of the harmonic force,ω, is considered to range from 0 to 1200 Hz, which covers the normally focused
frequencies in the rail-wheel vibration. Additionally, the amplitude of the harmonic force is simply
assumed to be 100 kN. The acceleration of the rail at the loading point is depicted in Fig. 13, from
which the following observations can be obtained:

Fig. 12 Track model in a steady-state analysis

l A broad resonance peak appears at approximately 65 Hz, where the rail close to the excitation
point bounces on the ballast spring in both FE models. The corresponding modes are depicted in
Fig. 14.

l The second group of peaks are observed at approximately 435 Hz in the plane FE model and 340
Hz in the beam FE model, with the corresponding resonance modes plotted in Fig. 15. The
difference between the two frequencies is approximately 25%, which might be attributed to the
different treatments of the sleeper and the rail-pad in the two models. Recall that the sleeper is
modeled as a rigid body and the rail-pad is assumed to be a linear spring element and a dashpot
element with the mass neglected in the beam FE model, while both of them are treated as elastic
bodies in the plane FE model.

l The pronounced peaks at approximately 855 Hz and 935 Hz are noted in the plane and beam FE
models, respectively. The corresponding resonance modes plotted in Fig. 16 are induced by the
periodic nature of the discrete supports42, which are well known as the pinned-pinned vibration
modes in which the rail-wheel vibration reaches its maximum at each mid-span. A similar
phenomenon can also be observed in Ref. 41 and 42. The difference between the two frequencies
is also caused by the different treatments on the rail-pad. Specifically, the deformation of the rail-

Rail

F0eiωt
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pad varies along the width of the sleeper in the plane FE model. However, this cannot be
described by the beam FE model.

l A number of peaks are observed at frequencies ranging from 500-800 Hz and 1000 -1200 Hz in
the plane FE model. Some typical vibration modes corresponding to these resonances are shown
in Fig. 17 and are related to the deformation of the sleeper and rail-pad system. By contrast, the
acceleration curve of the beam FE model appears relatively smooth in these two frequency
regions.

l The accelerations of the two models have both positive and negative values because the
acceleration is related to both the harmonic excitation force and the reaction forces produced by
the deformed track and the discrete supports.

(a)

(b)

Fig. 13 Linear response of the track to a harmonic excitation force when neglecting the wheel mass:
(a) the acceleration in the frequency ranging from 0 Hz to 1200 Hz; and (b) the zoom-in curve in

the frequency ranging from 0 Hz to 400 Hz.

l
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(a)

(b)

Fig. 14 Vibration modes at 65 Hz corresponding to the rail resonance on the ballast spring
(scale factor: 1000) (a) Plane FE model; and (b) beam FE model.

(a)

(b)

Fig. 15 Vibration modes corresponding to the rail resonance (a) at 435 Hz for the plane FE model
(scale factor: 500); and (b) at 340 Hz for the beam FE model (scale factor: 3000).

Considering that the wheel is always in contact with the track and in reality possesses a mass,
the linear response of track to the harmonic excitation force additionally with the wheel mass attached
to the loading point is calculated using the two models. The acceleration results of the rail at the
loading point are plotted in Fig. 18, from which the following observations can be obtained:

l A sharp peak and a trough are respectively observed at approximately 45 Hz and 55 Hz in
both models, mainly because the rail close to the excitation point bounces on the ballast
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spring but in opposite directions. The corresponding modes at the two frequencies are shown
in Fig. 19 and Fig. 20, respectively.

l At approximately 225 Hz the resonances caused by the sleeper-pad system occur in both
models, with the corresponding modes similar to those in Fig. 15. The pinned-pinned
resonance in the plane FE model occurs at approximately 835 Hz, while it occurs at
approximately 925 Hz in the beam FE model. The corresponding modes are similar to those
in Fig. 16.

l Another intensive resonance arises at approximately 970 Hz in the plane FE model, with the
corresponding mode depicted in Fig. 21.

(a)

(b)

Fig. 16 Vibration modes corresponding to the rail resonance (a) at 855 Hz for the plane FE model
(scale factor: 500); and (b) at 935 Hz for the beam FE model (scale factor: 1000).

(a)

(b)

(c)

Fig. 17 Vibration modes of the plane FE model corresponding to the rail resonances in the
frequency ranging 500 – 800 Hz and 1000 – 1200 Hz: (a) at 600 Hz (scale factor: 1000); (b) at 700

Hz (scale factor: 1000); and (c) at 1150 Hz (scale factor: 2000).
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Fig. 18 Linear response of the track to a harmonic excitation force when the wheel mass is
included.

(a)

(b)

Fig. 19 Vibration modes corresponding to the rail resonance on the ballast spring at 45 Hz (scale
factor: 1000). (a) Plane FE model; and (b) beam FE model.
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(a)

(b)

Fig. 20 Vibration modes corresponding to the rail resonance on the ballast spring at 55 Hz (scale
factor: 1000). (a) Plane FE model; and (b) beam FE model.

Fig. 21 Vibration mode of the plane FE model at approximately 970 Hz (scale factor: 20000).

From the above steady-state analysis of the track vibration, it is noted that the wheel mass can
significantly affect the vibrational behavior of the track. When the wheel mass is included, the
resonances induced by the ballast spring, the resonances caused by the sleeper-pad systems and the
pinned-pinned resonance caused by the discrete supports can still be observed, but they are all shifted
to lower frequencies in both models. Furthermore, although the main resonance frequencies and
modes, e.g., the pinned-pinned frequency and mode, can be captured by both models, there is an
observable distinction between these frequencies in the two models. Additionally, some of the
resonance frequencies obtained from the plane FE model are missing in the beam FE model, which
is mainly attributed to the simplified modeling of the sleepers and rail-pads.

4.2 Rail-Wheel Vibration Subjected to a Single Rolling Wheel

In this section, the rail-wheel vibration subjected to a single rolling wheel is simulated by the two
models. The wheel is assumed to be rolling at (1) a regular speed of V = 21 m/s, which is close to the
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running speed of HK MTR (60 - 80 km/h) and (2) a high speed of V = 42 m/s, which is twice the
regular speed. The wheel is accelerated uniformly from the static status to the prescribed speed V and
then runs uniformly at speed V, as described in Fig. 3. The time-histories of the rail-wheel contact
force and the vertical displacement at the wheel center are predicted. The results during the uniform
rolling period, i.e., t1-t2 in Fig. 3, are presented as follows.

For (1), a regular speed of V = 21 m/s, the rail-wheel contact forces are directly obtained in the
time domain as plotted in Fig. 22a and then transformed to the frequency domain, as plotted in Fig.
22b.

(a)   (b)
Fig. 22 Contact force for rail/wheel vibration at a wheel speed of V = 21 m/s: (a) time-history of the

contact force; (b) the contact force spectrum.

In Fig. 22a, the overall trends of the contact forces obtained from both models agree well and
the principal frequency is identified to be the sleeper-passing frequency of 30 Hz, which is also the
frequency of the first peak noted in Fig. 22b. This principal frequency can be computed by V/d, in
which V is the wheel speed and d is the sleeper span. Furthermore, the difference between the contact
forces is approximately 100 kN, which equals the dead force imposed on the vehicle/track system.
Additionally, local strong oscillations of the contact force, which represent the rail/wheel vibration at
high frequencies, can only be observed in the plane FE model. The amplitude of the force oscillation
obtained from the plane FE model is almost 1.3 kN, whereas that obtained from the beam FE model
is only approximately 0.6 kN.

Fig. 22b shows that the contact forces at high frequencies in the plane FE model are much greater
than those in the beam FE model. A remarkable peak at approximately 860 Hz, which is close to the
pinned-pinned frequency of the track, is observed in the plane FE model. However, the pinned-pinned
resonance in the beam FE model is not obvious.

The time-history of the vertical displacements at the wheel center are plotted in Fig. 23. The
displacements in both models appear smooth and vary periodically with the frequency, 30 Hz, which
is found to be the sleeper-passing frequency. Furthermore, the displacement magnitude in the beam
FE model is larger than that in the plane FE model, mainly because the Hertzian constant used in the
former as well as in Wu and Thompson’s model41 is close to the lower bound according to the Hertzian
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contact theory.42 By contrast, the dynamic rail-wheel interaction in the plane FE model is realized
through a direct contact treatment on the wheel and rail, which are assumed to be 2D elastic
deformable continuums.

Fig. 23 Vertical displacement at the wheel center with a wheel speed of V = 21 m/s.

The results for (2), a high speed of V= 42 m/s, are plotted in Figs. 24 and 25. Their main features
are rather similar to those of (1), a regular wheel speed V= 21 m/s. For example, the trends of the
contact forces in both models agree well, local strong oscillations can only be observed in the plane
FE model, and the magnitude of the vertical displacement at the wheel center in the beam FE model
is larger than that in the plane FE model. Nevertheless, two additional features are noted: first, the
amplitude of the contact force increases significantly as the wheel speed increases from V = 21 m/s
to V = 42 m/s; second, the pinned-pinned resonance is not excited in either model at the high wheel
speed.

(a) (b)

Fig. 24 Contact force for rail/wheel vibration with a wheel speed of V = 42 m/s: (a) time-history of
the contact force; (b) the contact force spectrum.
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Fig. 25 Vertical displacement at the wheel center with a wheel speed of V = 42 m/s.

4.3 Rail-Wheel Vibration Subjected to Two Rolling Wheels

To investigate the interaction effect of multiple wheels on the rail, a vehicle consisting of two
wheels is considered. As shown in Fig. 26, the two wheels are connected to a bogie frame through
two primary suspensions, and the bogie frame is further connected by a secondary suspension to the
vehicle body, which is approximated as a sprung mass and a dead force. The CW-200 bogie frame,53

widely used in Mainland China and Hong Kong, is selected here and modeled as a TB with a circular
cross-section whose dimension is derived using the Rayleigh’s method according to the natural
frequency. The secondary suspension is modeled as a linear spring element and a dashpot element.
The parameters of both the bogie frame and the secondary suspension are derived according to Ref.
45 and summarized in Table 5.

Fig. 26 Vehicle structure including the bogie frame and the secondary suspension.
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Table 5. Parameters of the bogie frame and the secondary suspension.

Components Parameters Values

Secondary
suspension

Spring stiffness (kN/m) 350

Dashpot coefficient (kN·s/m) 80

Bogie frame

(CW-200)

Mass mb (kg) 545

Frequency of first order bending mode (Hz) 54 56

Radius of cross-section (m) 0.109

Length (m) 3.2

Elastic modulus (GPa) 200

Poisson’s ratio 0.28

Density (kg/m3) 4540.4

Distance between two wheels (m) 2.5

The rail-wheel vibration subjected to two wheels rolling at a regular speed of V= 21 m/s are
simulated using the two models, and the results w.r.t. the two contact pairs, i.e., the back wheel-rail
contact and the front wheel-rail contact, are presented, including the rail-wheel contact force and the
vertical displacement at the wheel center during the uniform rolling period, as well as the contact
force spectrum transformed from the time domain. Figs. 27 and 28 show the contact forces
corresponding to the back and front wheel-rail contact pairs, respectively, while Fig. 29 plots the
vertical displacements at the back and front wheel centers. Most observations on the vibrational
behaviors of both the back and front wheel-rail contact pairs are quite similar to those of the single
wheel-rail contact pair shown in Figs. 22 and 23, which indicates that the time-averaged loads are
uniformly distributed to the front and back wheels to a certain extent. Thus, using a single rolling
wheel in simulation is reasonable for general cases. Nonetheless, severer vibration is noted when two
wheels instead of one single wheel are considered on the rail. For example, the amplitude of the
contact force for two wheels is larger than that for one single wheel, see Figs. 22 and 27. Additionally,
the principal frequencies, the trends of the contact forces and the vertical displacements at the wheel
centers obtained from both models are consistent, while strong oscillations at high frequencies can
only be observed in the plane FE model, which is similar to the case of a single rolling wheel.



23

(a) (b)

Fig. 27 Contact force for the back wheel-rail interaction: (a) time-history of the contact force; and
(b) the contact force spectrum.

(a) (b)

Fig. 28 Contact force for the front wheel-rail interaction: (a) time-history of the contact force; and
(b) the contact force spectrum.

Fig. 29 Vertical displacement at the back and front wheel centers.
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4.4 Discussion

From the above simulations it can be seen that both the beam FE model and the plane FE model
can predict certain fundamental features of the rail-wheel vibration, e.g., the resonances
corresponding to the sleeper-passing frequency, and the trends of the contact force and displacement.
Nevertheless, the plane FE model shows superiorities over the beam model, at least in the following
aspects: first, the vibrational behaviors of the rail corresponding to high frequencies are captured more
realistically; second, the contact treatment is more rigorous, in which the contact algorithm is directly
applied instead of just the contact spring, which is highly dependent on the Hertzian assumptions;
and third, both the wheel and rail are modeled as deformable bodies, thus the stress
distribution/concentration can be readily considered, which, although not discussed here, can be of
great significance for the fatigue and failure analysis.

5. Conclusion

In this paper, two numerical models, i.e., the beam FE model and the plane continuum FE model,
which are widely applied in simulating rail-wheel vibration, are developed and compared. The beam
FE model is developed based on Wu and Thompson’s work, where the rail is modeled by TB elements
and the rail-wheel contact is approximated by a Hertzian spring. In the plane FE model, both the
wheel and rail are modeled using Q4 elements, and the rail-wheel contact is treated using the direct
contact algorithm. The beam FE model is generally more time-saving than the plane FE model,
although techniques such as the transition mesh scheme introduced in the latter can considerably
improve the efficiency. Examples of rail-wheel interactions are used to compare the two models. It is
found that certain features and trends of the simulated results obtained from both models are rather
similar; e.g., the principal frequencies of the contact force and the vertical displacement at the wheel
center are just the corresponding sleeper-passing frequencies. Nevertheless, it is impressive that the
plane FE model has superiorities, especially for analyzing the rail-wheel vibration at high frequencies.
As the contact force is usually expected to have a strong influence on the rail corrugation, it is often
the first concern of engineers, and so detailed discussions regarding it have been presented in this
paper. The contact force predicted by the beam FE model is a rather smooth function of time and is
different from, for instance, the rail acceleration, which contains a considerable amount of high
frequency content. Although only two typical numerical models are analyzed in this paper, the
obtained features are universal for the two model categories, i.e., the beam and the plane continuum
FE models. Thus, the present study can be of considerable help for designers and engineers in the
railway industry in achieving a trade-off between the simulation demands and the computational cost.
 It is worth mentioning that the comparison of the beam model and continuum model in the present
study is mainly focused on a 2D case that considers the vertical vibration, which is usually the most
important dynamic mode in the rail-wheel system. Nevertheless, it can be naturally extended to a 3D
case by applying a 3D beam or continuum models to consider both the vertical and lateral vibrations,
which are also important in some cases, e.g., a vehicle running on a curved track. Additionally, since
explicit time integration is adopted to simulate the mechanical process of the rail-wheel interaction
without an iteration involved, the main challenge for 3D simulations is still the computational cost
according to the current computational power.
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