

Near-Field Dynamics and Plume Dispersion after an On-Road Truck: Implication to Remote Sensing

Jingwei Xie¹, Chun-Ho Liu^{1,*}, Ziwei Mo¹, Yuhan Huang^{2,3} and Wai-Chuen Mok^{1,2}

¹Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

²Centre for Green Technology, School of Civil and Environmental Engineering, University of
Technology Sydney, Australia

³Jockey Club Heavy Vehicle Emission Testing and Research Centre, Vocational Training
Council, Hong Kong

Revised Manuscript

Ref. No.: STOTEN-D-20-09479

submitted

to

Science of the Total Environment

on

July 26, 2020

**Corresponding author address:*

Chun-Ho LIU

Department of Mechanical Engineering

7/F, Haking Wong Building

The University of Hong Kong

Pokfulam Road, Hong Kong, CHINA

Tel: +852 3917 7901 / +852 9788 7951

Fax: +852 2858 5415

Email: liuchunho@graduate.hku.hk

<https://aplhk.tech>

Near-Field Dynamics and Plume Dispersion after an On-Road

Truck: Implication to Remote Sensing

Jingwei Xie¹, Chun-Ho Liu¹, Ziwei Mo¹, Yuhang Huang^{2,3} and Wai-Chuen Mok^{1,2}

¹Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

²Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia

³Jockey Club Heavy Vehicle Emission Testing and Research Centre, Vocational Training Council, Hong Kong

Abstract

11 Apart from the aerodynamic performance (efficiency and safety), the wake after an on-
12 road vehicle substantially influences the tailpipe pollutant dispersion (environment). Remote
13 sensing is the most practicable measures for large-scale emission control. Its reliability,
14 however, is largely dictated by how well the complicated vehicular flows and instrumentation
15 constraint are tackled. Specifically, the broad range of motion scales and the short sampling
16 duration (less than 1 sec) are the most prominent ones. Their impact on remote sensing has not
17 been studied. Large-eddy simulation (LES) is thus employed in this paper to look into the
18 dynamics and the plume dispersion after an on-road heavy-duty truck at speed U_∞ so as to
19 elucidate the transport mechanism, examine the sampling uncertainty and develop the remedial
20 measures. A major recirculation of size comparable to the truck height h is induced collectively
21 by the roof-level prevailing flows, side entrainment and underbody wall jet. The tailpipe is
22 enclosed by dividing streamlines so the plume is carried back to the truck right after emission.
23 The recirculation augments the pollutant mixing, resulting in a more homogeneous pollutant
24 distribution together with a rather high fluctuating concentration (over 20% of the time-

25 averaged concentrations). The plume ascends mildly before being purged out of the major
26 recirculation to the far field by turbulence, leading to a huge reduction in pollutant
27 concentration (an order of magnitude) outside the near wake. In the far-field, the plume is
28 higher than the tailpipe and disperses in a conventional Gaussian distribution manner. Under
29 this circumstance, a sampling duration for remote sensing longer than h/U_∞ would be prone to
30 underestimating the tailpipe emission.

31

32 *Keywords:* Dispersion models, Heavy-duty truck, Large-eddy simulation (LES), Remote
33 sensing technology, Sampling inaccuracy, Tailpipe emission.

34

35 1. Introduction

36 Automobile emission is a major air pollutant source, especially in mega cities where
37 vehicles and pedestrians are in close proximity (Anenberg et al. 2017). It poses a serious threat
38 to human health that would reduce life expectancy and increase the incidence of disease,
39 especially for susceptible populations such as infants and elderlies (Abdull et al. 2020). The
40 World Health Organization (WHO) reported that 91% of the world population resided in places
41 where the air quality did not reach the WHO guidelines in 2016 (WHO 2020). Moreover, it
42 was estimated that 4.2 million premature deaths were related to ambient air pollution in the
43 same year. Under this circumstance, deteriorating air quality has become a critical issue that
44 has attracted global concern for years (Gong and Wang 2018; Huang et al. 2018). Source
45 control is the most effective solution to air pollution, yet reliable methods to determine the
46 tailpipe emissions from a large number of in-use vehicles are vital to enforcement (Owais 2019).

47

48 Various methods have been attempted, including the portable emission measurement
49 system (PEMS), plume chasing, tunnel measurement, ambient measurement and remote

50 sensing, to measure the real-world tailpipe emissions from in-use vehicles accurately (Huang
51 et al. 2018). In PEMS, gas analysers are mounted onboard the target vehicle to sample the
52 exhaust gases (Kang et al. 2017). It can trace the emissions of a single vehicle during the
53 journey, including driving and idling. However, the measurement is costly and time-consuming
54 (Davison et al. 2020). Plume chasing adopts a mobile platform of measurement devices to
55 follow individual on-road vehicles. It is able to capture the emission characteristics in real-
56 world driving conditions (Wen et al. 2019). Whereas, there exist speed limits for safety concern
57 and finite distance apart for sampling accuracy (Huang et al. 2018). Tunnel measurement
58 monitors the pollutant fluxes while vehicles are passing through a tunnel (Giechaskiel et al.
59 2015). It can sample a large number of vehicles in a short time but cannot differentiate the
60 emission footprint from individuals (Mazzoleni et al. 2010). Roadside measurement is
61 logically convenient to measure the ambient air pollutant levels in the vicinity of busy traffic
62 using stationary roadside sampling equipment (Ning et al. 2012). Apart from collective
63 emission from vehicle fleet, the data are unavoidably affected by rapid changes of meteorology
64 in local scale (Ning et al. 2012, Huang et al. 2018).

65

66 Among others, remote sensing is a well-established technique that has been
67 successfully implemented for years (Cadle and Stephens 1994). Compared with the
68 aforementioned methods, it can collect the emission data from a large ensemble of vehicles as
69 well as data logging the information of individuals (Mazzoleni et al. 2010). In addition, it is
70 most cost-effective in terms of coverage, deployment and manpower (Xie et al. 2004). Single,
71 instantaneous pass-by measurement in short sampling duration (less than 1 sec), however, is
72 prone to error that degrades the confidence and even ends up with false detections (Huang et
73 al. 2018). In fact, the flows around an on-road vehicle is inherently three-dimensional (3D),
74 exhibiting complicated dynamics such as separations, recirculations and longitudinal vortices

75 (Choi et al. 2014). The intermittency also imposes a technical challenge for airborne pollutant
76 measurements, which would further impair on-road remote sensing (Zhang et al. 2015). Most
77 studies have focused on the aerodynamic performance (for safety and control) of vehicles but
78 not environmental performance such as the exhaust plume dispersion (Rohit et al. 2019). This
79 study is an extension of our previous one (Huang et al. 2020) in which certain good practices
80 of remote sensing, such as valid measurement range and time, were proposed. In this paper, we
81 elaborate on the dynamics and the dispersion mechanism behind. Large-eddy simulation (LES)
82 is employed to examine in detail the unsteady flows and transport after an on-road, heavy-duty
83 truck. The outcome could help improve remote sensing implementation, strengthen
84 environmental management as well as better protect the health of pedestrians and other
85 stakeholders.

86

87 The wake after an on-road vehicle is broadly divided into two distinct regions, namely,
88 the near-wake and the far field (Hucho 1987). The near-wake is characterized by the intensive
89 (spanwise) recirculation immediately behind the vehicle body together with a pair of counter-
90 rotating (streamwise) trailing vortices (Vino et al. 2005). They are initiated by several factors
91 such as flow separation and wake pumping (Baker 2001) that subsequently affect the
92 aerodynamic forces and moments experienced by the vehicle (Ahmed et al. 1985). These flow
93 features play equally important roles in the transport processes for environmental concern
94 (Ahmed 1981) but have been less studied. Vehicular pollutants right after tailpipe are diluted
95 rapidly by the near-wake recirculation before detrainment (Wang et al. 2013). The far field, on
96 the other hand, consists of general turbulence behaviours without discernible flow structures
97 (Baker, 2001). Its plume dispersion is thus well predicted by the Gaussian theory, including
98 CALINE (California Line Source Dispersion Model; Benson 1992), OSPM (Operational Street
99 Pollution Model; Berkowicz 2000) and HIWAY Model (Rao and Keenan 1980). In view of the

100 persistent recirculations, the near-wake dispersion deviates from the Gaussian distribution
101 (Zhao et al. 2015). A mixing zone with uniform turbulence was used in Gaussian models to
102 handle vehicular wake effects (Zhang and Batterman 2013), which, however, often under-
103 predicted the concentrations (Kota et al. 2013). The Gaussian models also under-estimated the
104 streamwise diffusion which is important to near-field dispersion (Xing and Brimblecombe
105 2018). Vehicle momentum suppresses dispersion but forces the pollutants following its
106 trajectory (Pospisil et al. 2004). However, these transport processes are **hardly** simulated in the
107 Gaussian models. Currently, a handful of statistical models have been developed for near-wake
108 dispersion based on the Ahmed vehicle model only (Dong and Chan 2006). The conventional
109 solution therefore must be interpreted cautiously to determine the pollutant concentrations in
110 the near-wake of an on-road vehicle.

111

112 Near-wake recirculation is important to the entire mixing processes after an on-road
113 vehicle because it determines the initial pollutant strength and configuration. Hence, there is a
114 need to unveil the limitations of conventional Gaussian models (Clifford et al. 1997; Gosse et
115 al. 2011). All along, Ahmed vehicle models have been commonly adopted for simulating real-
116 life scenarios. In this study, a heavy-duty commercial truck, which is available on the market,
117 is used instead to include the surface details in the calculation. It has the typical, square-back,
118 in which the after-vehicle flows differ from those of a fast-back one (Hu et al. 2015). Massive
119 flow separations and reattachments are observed at the truck while a large, 3D recirculation is
120 formed downstream at the base (Choi et al. 2014). Near-wake dispersion is tightly coupled with
121 the complicated flows so additional effort is made to analyse the transport processes. Likewise,
122 the majority of far-field dispersion can be well characterized by simple nondimensionalization
123 techniques but not those in the near wake within a few vehicle heights (Chang et al. 2009b).

124 In view of the inadequacy of the conventional Gaussian models for estimating near-
 125 wake dispersion, wind tunnel experiments and computational fluid dynamics (CFD) have been
 126 adopted to tackle the problems. Using wind tunnel measurements, Kanda et al. (2006)
 127 contrasted the plume dispersion behind a passenger car with that behind a truck, focusing on
 128 the relationship between velocity and pollutant concentrations. It was found that the presence
 129 of the vehicle body augments the pollutant dispersion significantly. Moreover, the pollutant
 130 distribution is closely related to the mean and fluctuating velocities around the vehicle. Gosse
 131 et al. (2011) also employed wind tunnel measurements to study the dispersion after a simplified
 132 car model, considering the possibility of chemical reactions between vehicular emissions and
 133 the ambient atmospheric constituents. Although wind tunnel experiments are powerful tools
 134 for dispersion studies, it hardly captures the fast, transient processes after a moving bluff body
 135 in detail, such as the wake dynamics after an on-road vehicle. The one single uncontrollable or
 136 unpredictable factor would further induce uncertainty (Carpentieri et al. 2012). CFD, on the
 137 other hand, enables a refined spatio-temporal resolution of the flows as well as transport
 138 processes. It is therefore commonly used to diagnose the fundamental physics (Cheng and Liu
 139 2011). Among CFD approaches, LES is appealing for studying the transient phenomena of
 140 fluid dynamics (Lesieur et al. 2018). It explicitly solves most of the conservation of momentum,
 141 mass and energy while modelling small portions of Reynolds stresses and pollutant fluxes at
 142 reasonable computation resources.

143

144 ~~This section outlines the background of the problems and reviews the literature. The~~
 145 ~~mathematical model and boundary conditions (BCs) are recorded in the next section. Results,~~
 146 ~~including the flows, turbulence and dispersion, are reported in Section 3. The implication for~~
 147 ~~remote sensing is discussed in Section 4. The conclusion is drawn in Section 5.~~

148

149 **2. Methodology**150 **2.1 Governing Equations**

151 In this paper, the LES is conducted by the open-source CFD code OpenFOAM 6
 152 (Weller et al. 1998). The flows are assumed incompressible and isothermal because buoyancy
 153 effect is limited to the proximity of tailpipes (Kanda et al., 2006). The filtered continuity

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0 \quad (1)$$

154 and the filtered Navier-Stokes equation

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \bar{u}_i \bar{u}_j = - \frac{\partial \bar{\pi}}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j} \quad (2)$$

155 are solved for the flows. Here, u_i is the velocity component in the i -direction, x_i the Cartesian
 156 coordinate, t the time and ν the kinematic viscosity. The summation convention on repeated
 157 indices ($i, j = 1, 2$ and 3) applies. The overbar $\bar{\psi}$ denotes the spatial filtering employed to derive
 158 the LES resolved scales. The modified resolved-scale pressure

$$\bar{\pi} = \bar{p} + \frac{2}{3} k_{SGS} \quad (3)$$

159 where p is the kinematic pressure and k_{SGS} ($= \tau_{ii}/2$) the subgrid-scale (SGS) turbulence kinetic
 160 energy (TKE). The anisotropic part of SGS momentum flux τ_{ij} ($= \bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j$) is modelled by
 161 the Smagorinsky model (Smagorinsky 1963)

$$\tau_{ij} = -2\nu_{SGS} S_{ij} + \frac{2}{3} k_{SGS} \delta_{ij} \quad (4)$$

162 where ν_{SGS} ($= C_k k_{SGS}^{1/2} \Delta$) is the SGS kinematic viscosity, S_{ij} ($= [\partial \bar{u}_i / \partial x_j + \partial \bar{u}_j / \partial x_i] / 2$) the
 163 rate-of-strain tensor, Δ ($= [\Delta_x \Delta_y \Delta_z]^{1/3}$) the filter width expressed as the cube root of the volume
 164 of hexahedral cell, δ_{ij} the Kronecker delta and C_k ($= 0.07$) a modelling constant. The SGS TKE
 165 conservation is handled by the one-equation TKE model (Schumann 1975)

$$\frac{\partial k_{SGS}}{\partial t} + \frac{\partial}{\partial x_i} k_{SGS} \bar{u}_i = 2\nu_{SGS} S_{ij} S_{ij} + (\nu + \nu_{SGS}) \frac{\partial^2 k_{SGS}}{\partial x_i \partial x_i} - C_\varepsilon \frac{k_{SGS}^{3/2}}{\Delta} \quad (5)$$

166 where C_ε ($= 1.05$) is another modelling constant. The filtered pollutant transport equation

$$\frac{\partial \bar{\phi}}{\partial t} + \frac{\partial}{\partial x_i} \bar{\phi} \bar{u}_i = \frac{\nu + \nu_{SGS}}{Sc} \frac{\partial^2 \bar{\phi}}{\partial x_i \partial x_i} \quad (6)$$

167 is solved for the dispersion where ϕ is the pollutant concentration and Sc ($= 0.72$) the Schmidt
168 number. Carbon dioxide (CO_2) is taken as the pollutant so no chemical reaction is considered.

169

170 **2.2 Computational Domain and Boundary Conditions**

171 The model of the heavy-duty truck (Figure 1a) sizes $3.86h$ (length) $\times 0.89h$ (width) \times
172 $1.09h$ (height) while the computational domain (Figure 1b) is $31.8h$ (streamwise) $\times 3.9h$
173 (spanwise) $\times 10.3h$ (vertical). Here, h ($= 3.27$ m) is the height of the truck. Dirichlet BCs of
174 constant wind speed U_∞ ($= 10$ m sec $^{-1}$) and zero pollutant $\bar{\phi} = 0$ are prescribed at the inflow.

175 The prevailing flows are thus in the streamwise x direction normal to the wind shield. The
176 logarithmic law of the wall (log-law) is used to model the flow BCs on all the solid boundaries
177 including the ground and the truck body. At the domain top and the spanwise extent, Neumann
178 BCs ($\partial \bar{\psi} / \partial \vec{n} = 0$ where \vec{n} is the normal to the boundary surface) for both flows and dispersion

179 are applied. A pollutant (point) source of size $20 \times 10^{-6}h^3$ with a constant emission rate \dot{Q} is
180 placed at the tailpipe exhaust ($x = 0, y = 0, z = 0$) to simulate vehicular pollutant. The effect of
181 exhaust-induced turbulence is limited to the proximity of the tailpipe so the emission speed is
182 not considered (Chan et al. 2001). An open BC ($\partial \bar{\phi} / \partial t + \bar{u} \partial \bar{\phi} / \partial x = 0$) is applied at the outflow
183 so all the pollutants are removed from the computational domain by the prevailing flows
184 without any reflection. Neumann BCs for pollutants are adopted on all the solid boundaries.
185 The Reynolds number based on the free-stream wind speeds U_∞ (characteristics velocity scale)

186 and the truck height h (characteristic length scale) Re ($= U_\infty h/v$) is over 37,200 that is
 187 comparable to that in previous studies (Tunay et al. 2016). The characteristic pollutant
 188 concentration $\Phi_0 = \dot{Q}/U_\infty h^2$ represents roughly the far-field value.

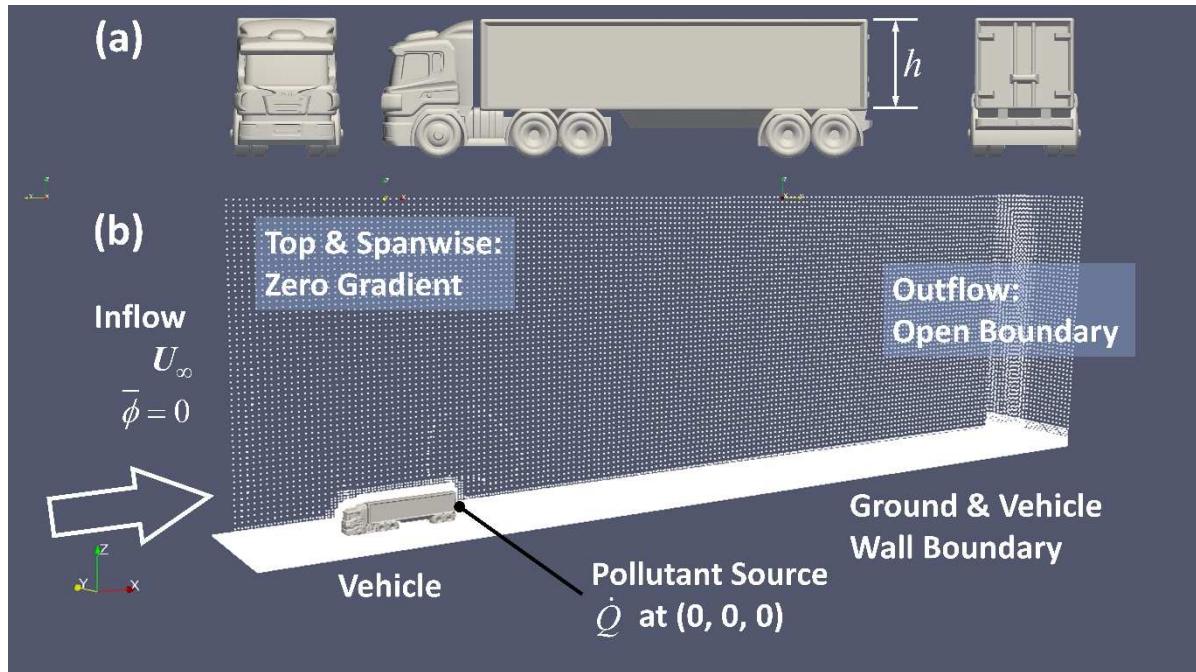


Figure 1. (a) Digital model of the heavy-duty truck together with (b) computational domain and boundary conditions.

189

190 2.3 Numerical Method

191 The spatial domain is discretized into 3.38 million unstructured hexahedra. The cells
 192 are refined towards the truck surfaces and the ground by the mesh generation utility
 193 *snappyHexMesh* (OpenFOAM 2018). The minimum and maximum cell volume is in the order
 194 of $10^{-7}h^3$ and $10^{-2}h^3$, respectively. The size of the cells is thus ranged from $0.005h$ to $0.2h$. The
 195 time-step increment is $\Delta t = 0.0013h/U_\infty$. The finite volume method (FVM) is used to solve the
 196 mathematical model. The implicit, second-order-accurate backward differencing is employed
 197 in the time integration. The gradient, divergence and Laplacian terms are integrated by the
 198 second-order-accurate Gaussian FVM based on the summation on cell faces. The pressure-

199 implicit with splitting of operators (PISO) approach is used to handle the pressure-velocity
 200 coupling in incompressible flows. The preconditioned conjugate gradient (PCG) method is
 201 used to solve the symmetric equation system of pressure and the preconditioned bi-conjugate
 202 gradient (PBiCG) method is used to solve the asymmetric systems of other variables. The
 203 residual of the iterative solvers is less than 10^{-8} for converged solution. Equations are integrated
 204 in time for $30h/U_\infty$ to initialize the flows and dispersion. After pseudo-steady state, they are
 205 integrated for another $30h/U_\infty$ to compute the statistics. The data sampling time is long enough
 206 to ensure convergence of first- and second-order moments. In the following analyses, the angle
 207 brackets $\langle \psi \rangle$ denote time average (mean) while the double prime ψ'' ($= \psi - \langle \psi \rangle$) denotes the
 208 deviation from the time average $\langle \psi \rangle$.

209

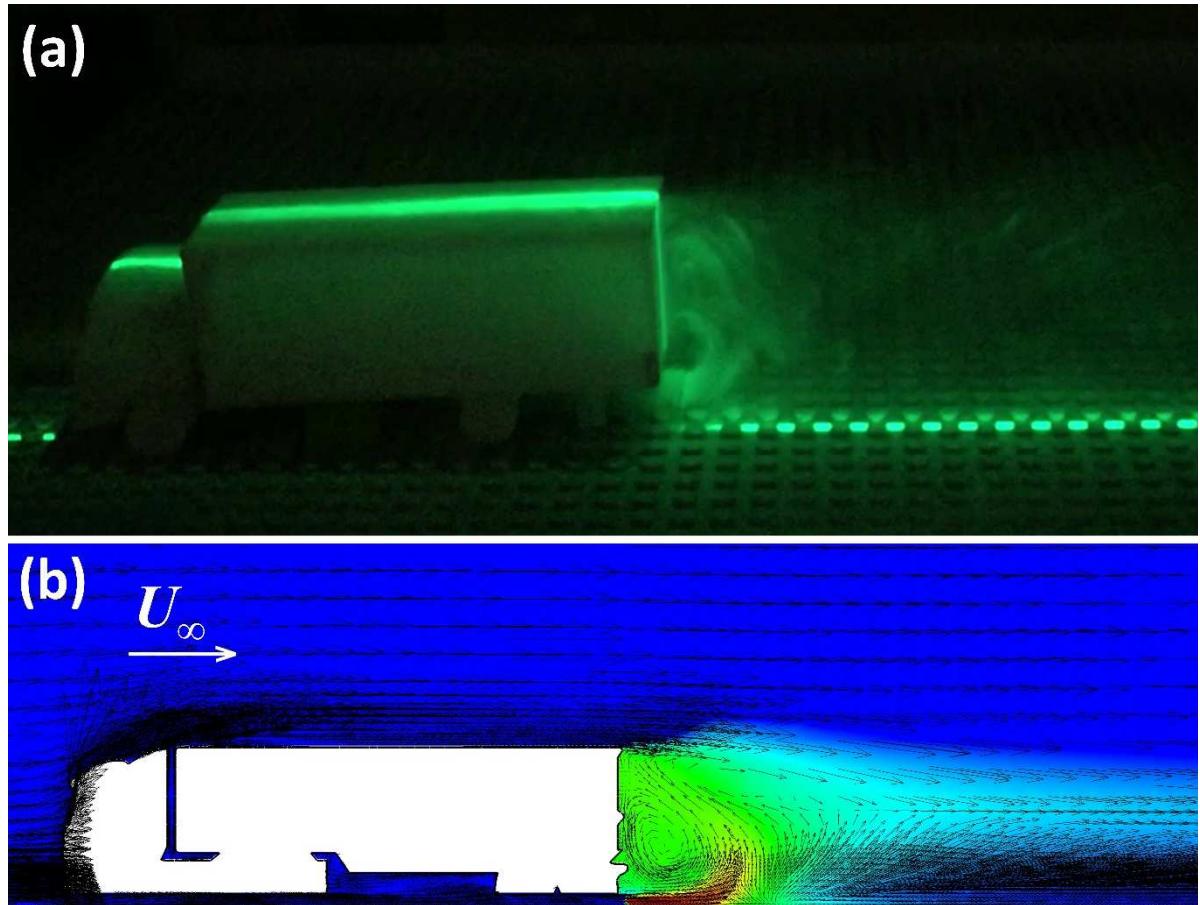


Figure 2. Visualization of the near-wake flows after a heavy-duty truck in: (a). previous wind tunnel experiment (Liu et al. 2019) and (b). the current LES.

210 **3. Results**211 **3.1 Flows**

212 Both our previous wind tunnel visualization (Liu et al. 2019) and the current LES
 213 illustrate that the near wake after a truck consists of a major recirculation of size h (Figure 2).
 214 The recirculation (reverse flow) is highly 3D and emanates from the truck underbody toward
 215 the rear side. A similar flow pattern was reported schematically in laboratory experiments
 216 (Chang et al. 2009a). It is thus expected that the pollutant concentration is more homogeneous
 217 within the major recirculation. In this connection, a box model was proposed to determine the
 218 pollutant concentrations in the immediate vicinity of a roadway (Habegger et al. 1974) instead
 219 of the conventional Gaussian model. Over the truck, another counter-rotating, upper
 220 recirculation is developed, which is in line with the existing LESs (Chan et al. 2008; Minguez
 221 et al. 2008) as well as laboratory experiments (Wang et al. 2013; Sellappan et al. 2018). These
 222 recirculations are sensitive to vehicle shape, such as the rear slant angle, which tremendously
 223 affects the near-wake structure. We thus disentangle the pollutant transport mechanism from
 224 the dynamics to explore the technical difficulty of remote sensing.

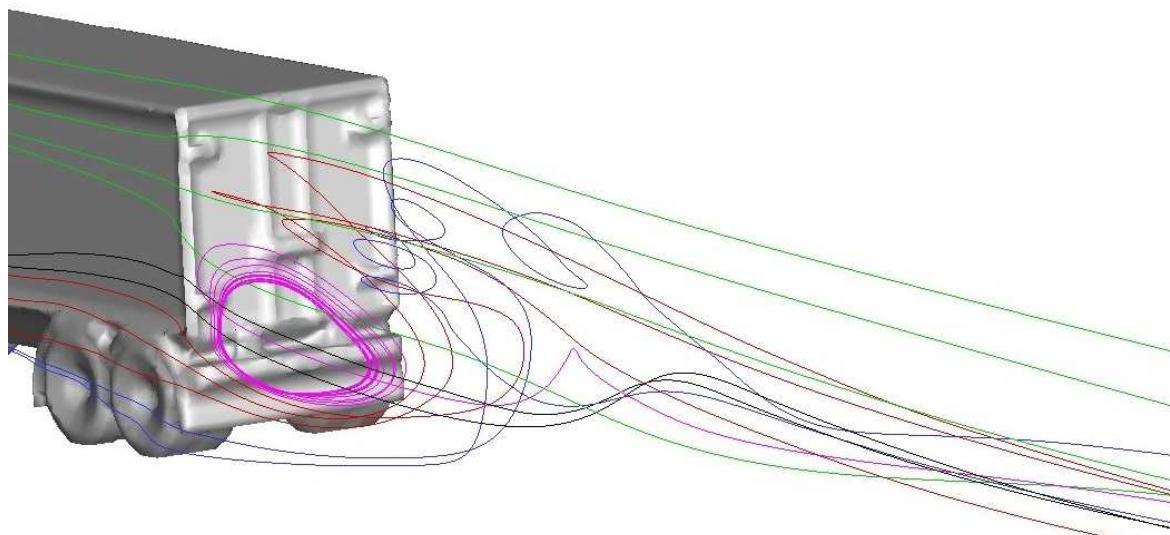


Figure 3. Streamlines illustrate the flow entrainment from the side into the near wake after
 the truck.

225 Although the upper recirculation is merely visualized in the wind tunnel experiment,
 226 the pollutant being emitted from the tailpipe is elevated to the upper part of the truck after the
 227 near wake (Figure 2a), which is in line with the current LES (Figure 2b). The flows entraining
 228 from the side are divided into three parts (Figure 3). The bottom part, which essentially climbs
 229 up a height of h , forms the outer region surrounding the major recirculation as well as initiates
 230 the upper recirculation. The top part is mainly driven by the prevailing flows that does not show
 231 noticeable meandering. The middle part immerses into the major recirculation. These structures
 232 align with those reported in the literature (McArthur et al. 2016).

233

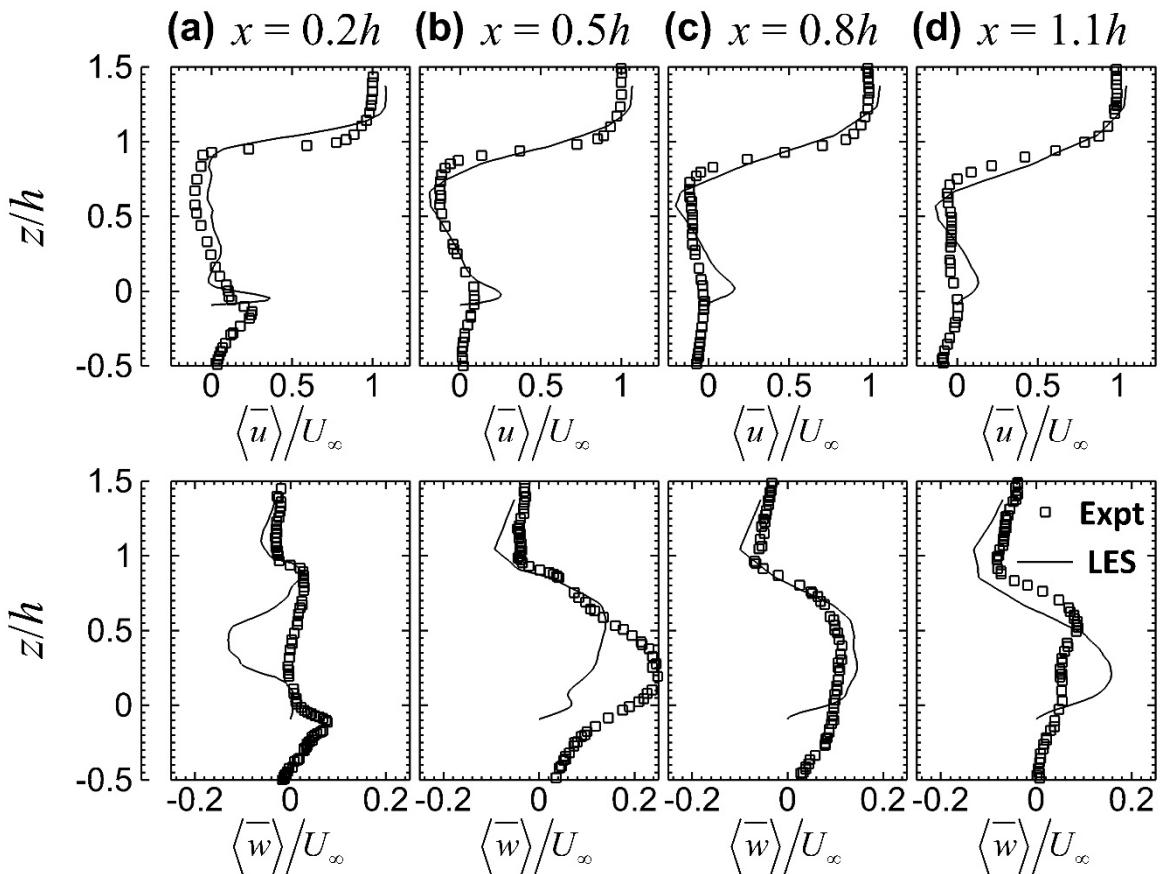


Figure 4. Vertical dimensionless profiles of mean streamwise $\langle \bar{u} \rangle / U_\infty$ and vertical $\langle \bar{w} \rangle / U_\infty$

velocities on the vertical (x - z) centre plane at $y = 0$ for $x/h =$ (a). 0.2, (b). 0.5, (c). 0.8
 and (d). 1.1. The experimental data are obtained from Lo and Kontis (2017).

234 Apart from the visualization, the current LES is validated by the wind tunnel results
 235 available in the literature (Lo and Kontis 2017). The near-wake velocity profiles obtained from
 236 the two solutions, especially the roof-level mixing layer, compare well with each other (Figure
 237 4). The LES-calculated wall jet is slightly stronger than that of the wind tunnel. Discrepancy
 238 in the vertical flows is observed in the core of major recirculation. It could be attributed to the
 239 dissimilar vortex centres in the two studies. A strong wind shear (velocity difference $\Delta\langle\bar{u}\rangle \approx$
 240 U_∞) and a mild wall jet ($0.1U_\infty \leq \Delta\langle\bar{u}\rangle \leq 0.3U_\infty$) are developed, respectively, about the roof
 241 level ($z \approx h$) and below the truck ($z \leq 0$). The upper flows are induced by the prevailing wind
 242 and pressure difference while the bottom wall jet is driven by the flows from the truck
 243 underbody. Moreover, mild downward ($-0.1U_\infty \leq \langle\bar{w}\rangle$) and upward ($\langle\bar{w}\rangle \leq 0.25U_\infty$) flows are
 244 observed at the top and bottom, respectively. These flow structures constitute the major
 245 recirculation, governing the rapid, early plume mixing. Close to the truck at $x = 0.2h$, the
 246 underbody wall jet is noticeable ($\langle\bar{u}\rangle = 0.3U_\infty$ and $\langle\bar{w}\rangle = 0.1U_\infty$; Figure 4a) that picks up the
 247 tailpipe emission. The flows then bend upwards ($\langle\bar{u}\rangle \leq 0.1U_\infty$ and $0.1U_\infty \leq \langle\bar{w}\rangle \leq 0.2U_\infty$) at
 248 $x = 0.5h$ (Figure 4b) and continue at $x = 0.8h$ (Figure 4c). The peaked vertical flows are further
 249 elevated to $z = 0.2h$ at $x = 1.1h$ (Figure 4d) close to the boundary of the major recirculation.
 250

251 The truck models employed in the wind tunnel experiments and the current LES possess
 252 a few minor differences, such as the accessories on the bodies and the size of the truck, leading
 253 to the discrepancy in the wake structures. Nonetheless, they have the common square-back
 254 design so the near-wake flow structures are representative and generally agree with each other.

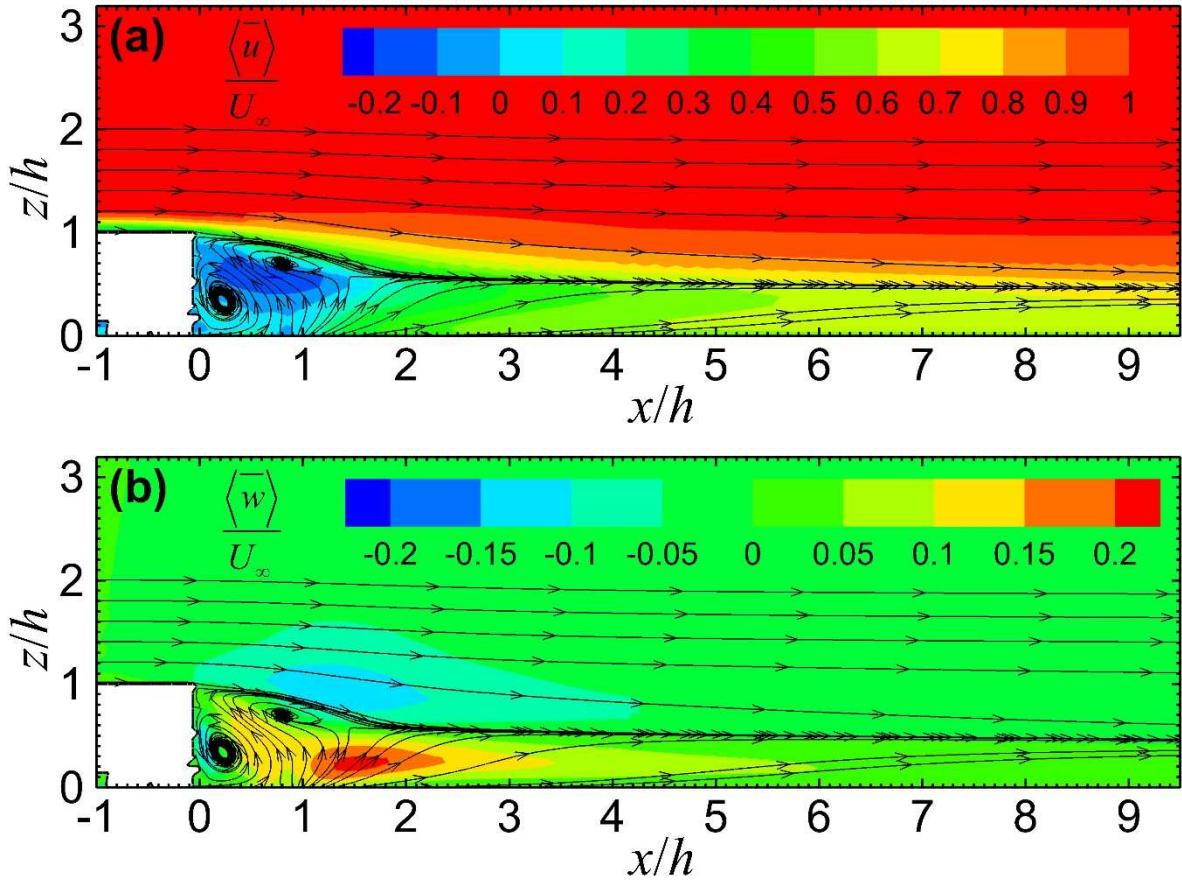


Figure 5. Shaded contours of dimensionless (a). streamwise $\langle \bar{u} \rangle / U_\infty$ and (b). vertical $\langle \bar{w} \rangle / U_\infty$ mean velocities on the vertical (x - z) centre plane at $y = 0$. Also shown are the streamlines.

255
 256 The major and upper recirculations in the near wake ($x \leq h$) are depicted by the LES-
 257 calculated streamlines and velocities (Figure 5). Substantial reverse flows ($\langle \bar{u} \rangle \leq 0$) are
 258 observed in the near wake whose extremity ($\langle \bar{u} \rangle = -0.25U_\infty$) locates between the two counter-
 259 rotating recirculations ($x = 0.5h, z = 0.5h$). On top of the side entrainment, the prevailing flows
 260 descend mildly after the near wake ($x \geq h$), inducing the flow convergence at $z = 0.5h$ (Figure
 261 5a). The convergence also serves as a group of dividing streamlines that partitions the vertical
 262 flows into the upward ($\langle \bar{w} \rangle > 0$) and downward ($\langle \bar{w} \rangle < 0$) regimes (Figure 5b). The roof-level

263 downward flows ($0 \leq x \leq 3h$) locate over the upper recirculation, transferring momentum into
 264 the near wake. The upward flows are found below the dividing streamlines, rolling from the
 265 sides towards the truck behind the major recirculation while moving downstream. They are
 266 indeed largely induced by the low-level entrainment from the side (Figure 3).

267

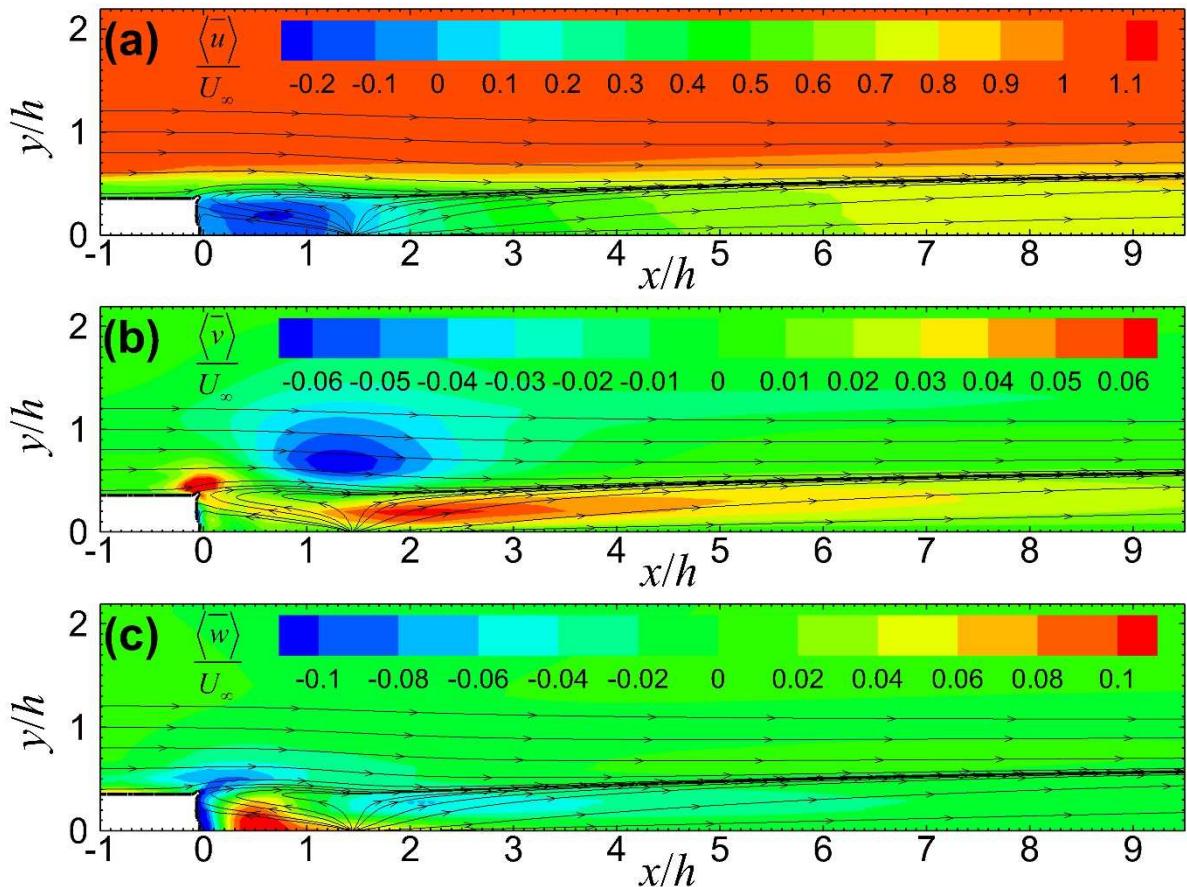


Figure 6. Shaded contours of dimensionless (a). streamwise $\langle \bar{u} \rangle / U_\infty$, (b). spanwise $\langle \bar{v} \rangle / U_\infty$

and (c). vertical $\langle \bar{w} \rangle / U_\infty$ mean velocities on the horizontal (x - y) plane at $z = 0.5h$.

Also shown are the streamlines.

268

269 Flow convergence is also observed on the horizontal (x - y) plane at $z = 0.5h$, further
 270 characterizing the wake flows after the truck (Figure 6). The reverse flows ($\langle \bar{u} \rangle = -0.2U_\infty$) in

271 the major recirculation are rather uniform (Figure 6a). Similar to the vertical flows on the x - z
 272 plane, the spanwise flows are partitioned into positive and negative on the horizontal (x - y)
 273 plane (Figure 6b). Apart from the flow separation at the truck edge before the wake, a mild,
 274 positive (outward) flow regime ($\langle \bar{v} \rangle = 0.06U_\infty$) is elongated ($1.5 \leq x/h \leq 3.5$) after the major
 275 recirculation, developing the flow convergence on the sides. On the other hand, negative
 276 spanwise flows ($\langle \bar{v} \rangle = -0.06U_\infty$) are found between the near wake and the far field ($x = 1.5h$).
 277 They are outside the convergence ($y \geq 0.4h$), which signifies the flow entrainment from the
 278 sides, though with weaker intensity (by 3 times) than the case of the vertical flows on the
 279 vertical centre plane (Figure 5). Both the time-averaged spanwise and vertical flows are
 280 towards the core at the same streamwise location ($0 \leq x \leq 3h$) that collectively enforce the flow
 281 convergence. Downward flows ($\langle \bar{w} \rangle = -0.1U_\infty$) are found after the truck edge on the horizontal
 282 plane (Figure 6c) that concur the three characteristic regimes discussed in Figure 3. After the
 283 major recirculation ($x \geq h$), the flows descend slightly ($\langle \bar{w} \rangle = -0.05U_\infty$), diminishing gradually
 284 in the streamwise direction.

285

286 3.2 Fluctuating Velocity

287 Turbulence $\langle u_i''u_i'' \rangle^{1/2}$ after the truck is quite isotropic except close to the ground
 288 surface near the boundary of major recirculation (Figure 7). The isotropy inside the major
 289 circulation is attributed to the recirculating flows that augments the homogeneous transport.
 290 They are rather small $\langle u_i''u_i'' \rangle^{1/2} \leq 0.04U_\infty$ for $x \leq 0.5h$ in the major recirculation. The
 291 streamwise ($\langle u''u'' \rangle^{1/2} = 0.14U_\infty$; Figure 7a) and spanwise ($\langle v''v'' \rangle^{1/2} = 0.16U_\infty$; Figure 7b)
 292 fluctuating velocities elevate close to the ground surface in $h \leq x \leq 2h$. These two peaks coincide
 293 with the boundary of major recirculation where the side entrainment drives the majority flow

upward. Moreover, the underbody wall jet decelerates and bends upward. The local wind shear subsequently escalates the turbulence intensity.

296

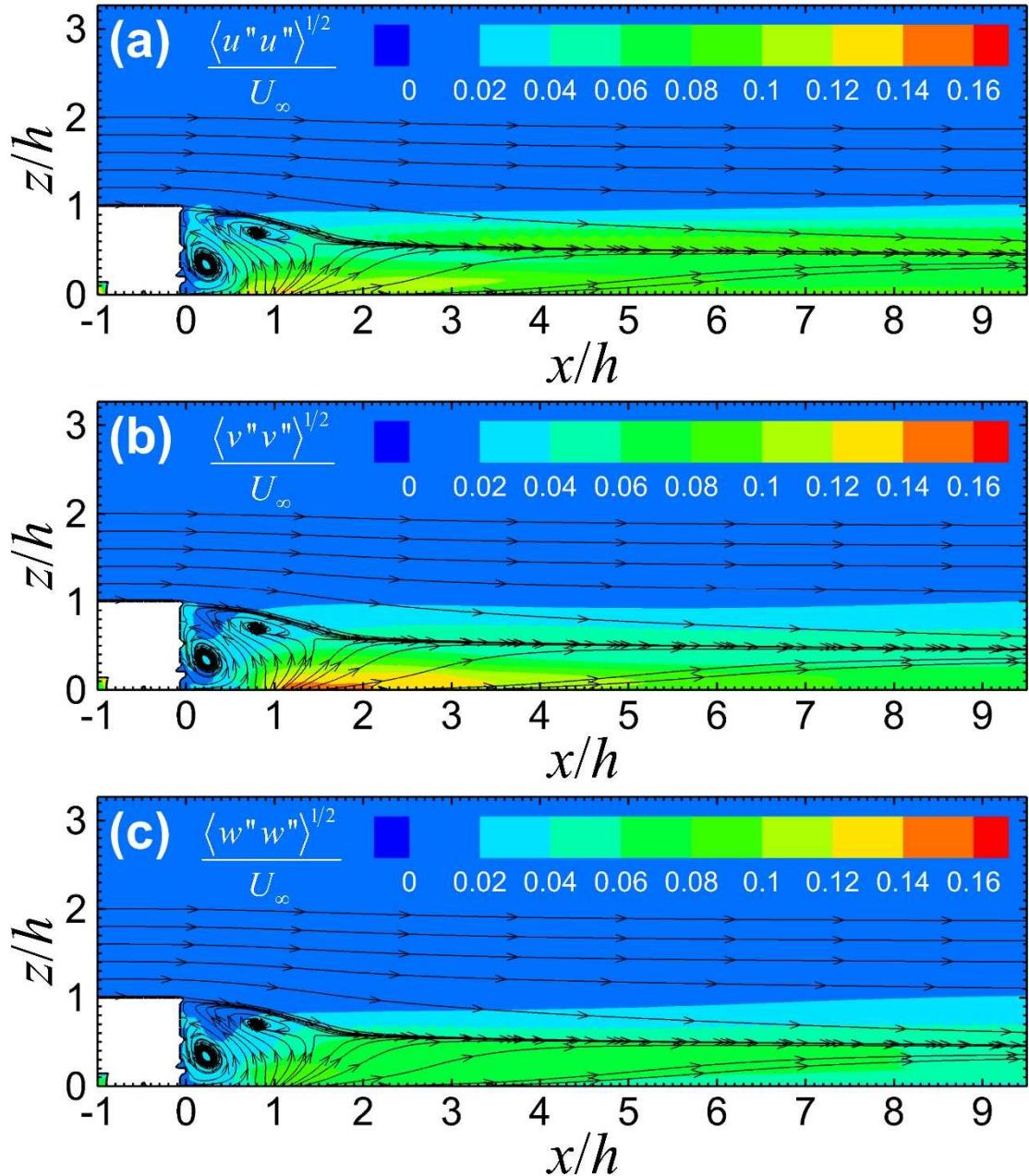


Figure 7. Shaded contours of dimensionless (a). streamwise $\langle u''u'' \rangle^{1/2}/U_\infty$, (b). spanwise $\langle v''v'' \rangle^{1/2}/U_\infty$ and (c). vertical $\langle w''w'' \rangle^{1/2}/U_\infty$ fluctuating velocities on the vertical (x-z) centre plane at $y = 0$. Also shown are the streamlines.

297 It is noteworthy that the spanwise fluctuating velocity is even higher than its streamwise
 298 counterpart. The entrainment from the side is stronger than that from the top near the ground
 299 in $h \leq x \leq 2h$ (Figure 3). It concurs with the highly 3D-structured major recirculation. The flows
 300 are largely in the spanwise (inward) direction so is the peaked fluctuating velocity. Unlike the
 301 other two components, the vertical fluctuating velocity does not have a noticeable ground-level
 302 maximum but a rather uniform one $\langle w''w'' \rangle^{1/2} = 0.06U_\infty$ in the entire far field (Figure 7c).

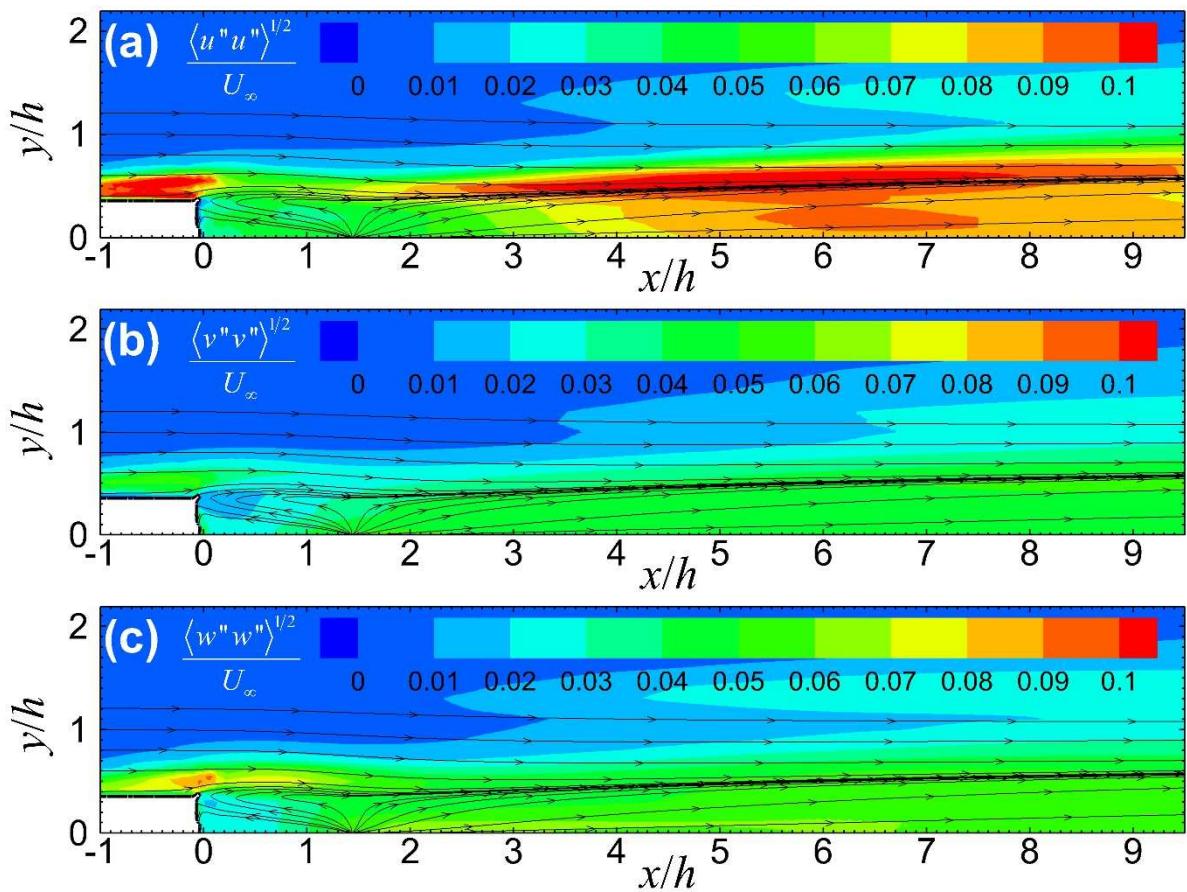


Figure 8. Shaded contours of dimensionless (a). streamwise $\langle u''u'' \rangle^{1/2}/U_\infty$, (b). spanwise $\langle v''v'' \rangle^{1/2}/U_\infty$ and (c). vertical $\langle w''w'' \rangle^{1/2}/U_\infty$ fluctuating velocities on the horizontal ($x-y$) plane at $z = 0.5h$. Also shown are the streamlines.

303
 304 The fluctuating velocities on the horizontal ($x-y$) plane at $z = 0.5h$ are augmented at the
 305 truck edge because of flow separation (Figure 8). In the entire range, the turbulence is less

306 isotropic compared with that on the vertical (x - z) plane as shown in Figure 7. Generally, all the
 307 three components of fluctuating velocities in the far field are higher than those within the major
 308 recirculation (by two to three times). A faster spanwise transport process is thus expected. The
 309 peaked streamwise fluctuating velocity $\langle u''u' \rangle^{1/2} = 0.1U_\infty$, which doubles the other two
 310 components, is elongated on the side along the flow convergence for $x \geq 3h$ (in the far field;
 311 Figure 8a). It is apparently induced by the shear ($\Delta u \approx U_\infty/2$) between the wake and the
 312 prevailing flows (on the side). The local maximum subsequently induces the broad maximum
 313 of streamwise fluctuating velocity near the centre core. The spanwise $\langle v''v' \rangle^{1/2}$ (Figure 8b)
 314 and vertical $\langle w''w' \rangle^{1/2}$ (Figure 8c) fluctuating velocities, on the other hand, are rather uniform
 315 in the entire range. Another region of (mildly) elevated turbulence is found on the side for $y \geq$
 316 h where the vortices are generated by the ground shear.

317

318 **3.3. Pollutant Dispersion**

319 The flows and turbulence discussed above form the basis to explain the plume
 320 characteristics on the vertical (x - z) centre plane at $y = 0$ (Figure 9). After being emitted from
 321 the tailpipe, the pollutant is driven by the major recirculation toward the truck (Figure 9a). The
 322 reverse flows are mainly driven by the side entrainment so the pollutant is mixed rapidly within
 323 the major recirculation. Pollutant overshot ($z \geq h$) is found in response to the upper recirculation
 324 and the elevated turbulence in the upper shear layer. The pollutant over the dividing streamlines
 325 is then diluted quickly by the prevailing flows at free-stream wind speed. Concurrently, the
 326 pollutant below the flow convergence is dispersed from the major recirculation to the upper
 327 recirculation at $x = 0.8h$, $z = 0.8h$ across the streamlines. Afterwards, it is carried downstream
 328 to the far field at a level ($z = h/2$ for $x \geq h$) higher than that of the tailpipe, resulting in the
 329 elevated plume trajectory. A sharp decrease in the pollutant concentration is thereafter observed
 330 between the major recirculation and the far field.

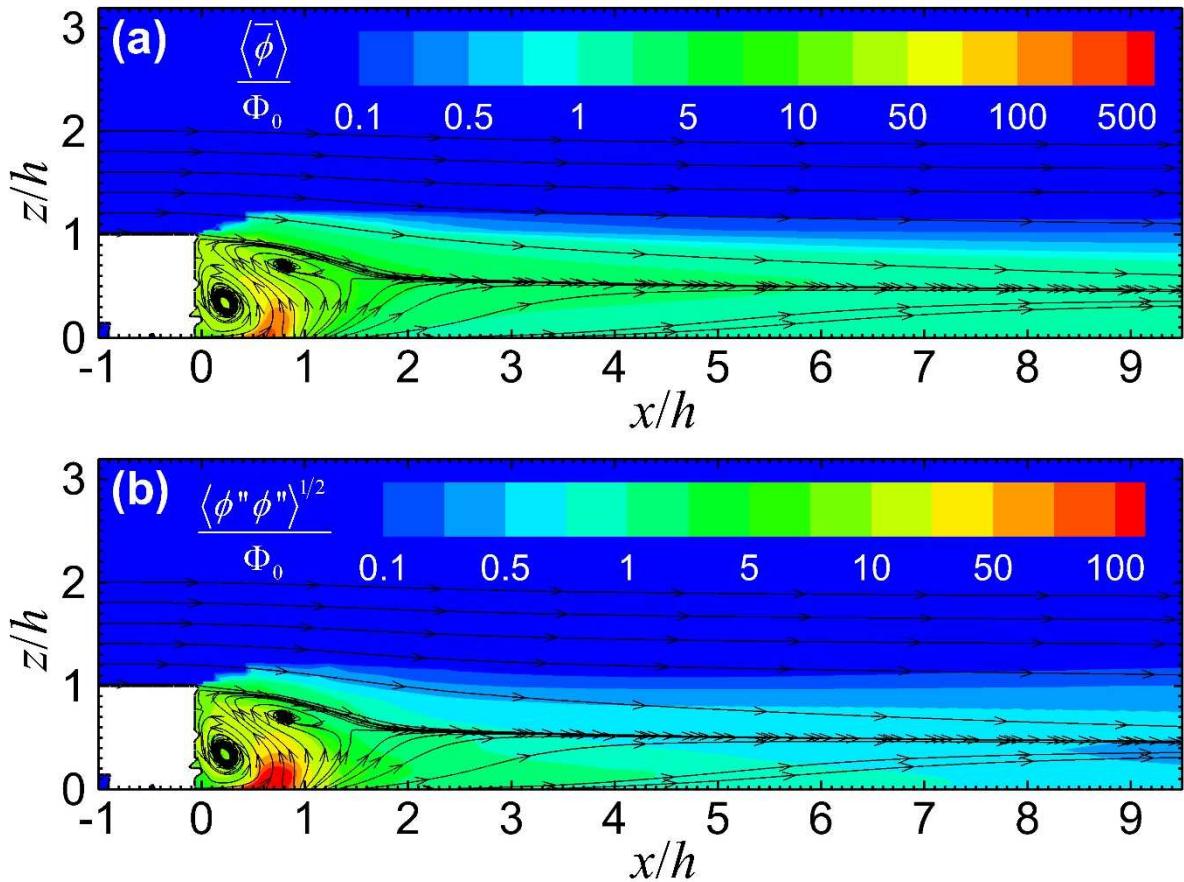


Figure 9. Shaded contours of dimensionless (a). mean pollutant concentration $\langle \bar{\phi} \rangle / \Phi_0$ and

(b). fluctuating pollutant concentration $\langle \phi'' \phi'' \rangle^{1/2} / \Phi_0$ on the vertical (x - z) centre

plane at $y = 0$. Also shown are the streamlines.

331
 332 The maximum fluctuating pollutant concentration ($\langle \phi'' \phi'' \rangle^{1/2} = 100\Phi_0$) is almost up to
 333 20% of the mean pollutant concentration ($\langle \bar{\phi} \rangle = 250\Phi_0$) within the major recirculation that
 334 decreases along the plume trajectory (Figure 9b). It is caused by the reducing mean pollutant
 335 concentrations and the enhanced mixing in the major recirculation. The fluctuating pollutant
 336 concentration decreases to $\langle \phi'' \phi'' \rangle^{1/2} \leq \Phi_0$ over the dividing streamlines. The prevailing flows
 337 dilute pollutants quickly, which in turn reduces both the mean and fluctuating concentrations.
 338 Below the dividing streamlines, on the other hand, the fluctuating pollutant concentration is
 339 higher ($1 \leq \langle \phi'' \phi'' \rangle^{1/2} / \Phi_0 \leq 10$). Nonetheless it decreases gradually in the far field.

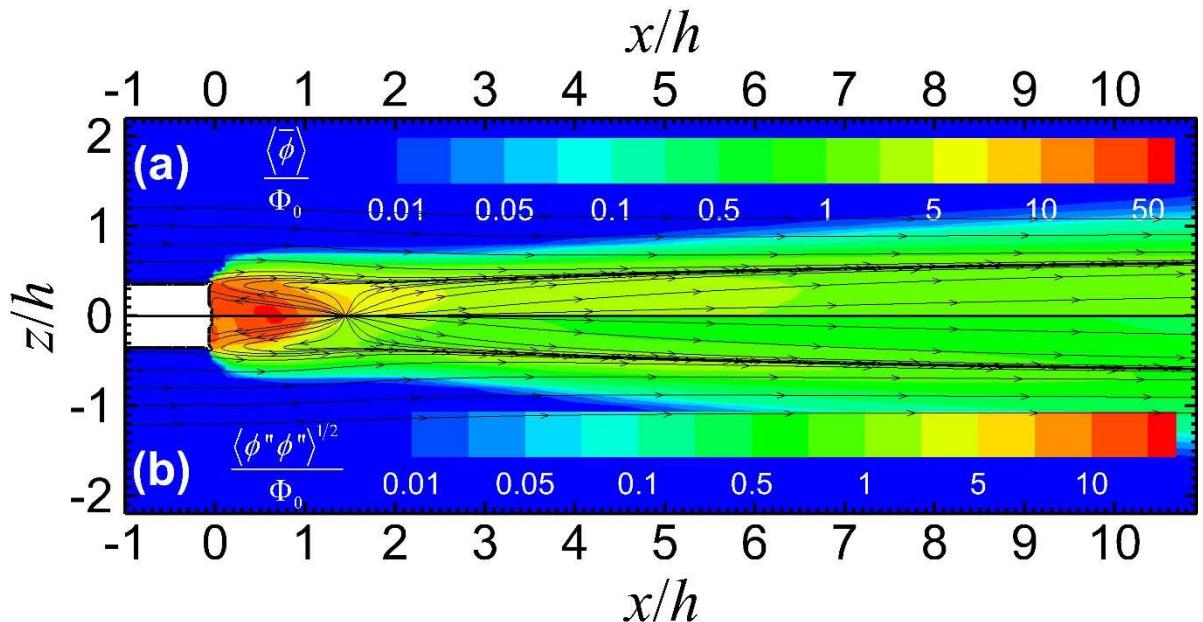


Figure 10. Shaded contours of dimensionless (a). mean pollutant concentration $\langle \bar{\phi} \rangle / \Phi_0$ and (b). fluctuating pollutant concentration $\langle \phi'' \phi'' \rangle^{1/2} / \Phi_0$ on the horizontal (x - y) plane at $z = h/2$. Also shown are the streamlines.

340
 341 Recurring on the horizontal (x - y) plane at $z = h/2$, most pollutants are trapped by the
 342 major recirculation after tailpipe emission (Figure 10). The homogeneous pollutant
 343 concentration within the major recirculation is clearly observed. The mean pollutant
 344 concentration in the major recirculation ($\langle \bar{\phi} \rangle \geq 50\Phi_0$) is higher than that in the far field ($\langle \bar{\phi} \rangle$
 345 $\approx \Phi_0$) by an order of magnitude. The major recirculation thus retains a large amount of tailpipe
 346 emission in a rather well-mixed manner. The dividing streamlines work together like a shelter,
 347 suppressing the pollutant removal from the major recirculation to the far field. Cross-streamline
 348 pollutant transport is governed by turbulence only that is much weaker than advection. A huge
 349 pollutant concentration gradient is thus developed between the major recirculation and the far
 350 field. In the far field, the local maximum of mean pollutant concentration shifts from the centre
 351 at $y = 0$ sideward to $y = 0.3h$, which deviates from the Gaussian theory. It is attributed to the
 352 off-centre streamwise pollutant advection that is explained in Section 3.4 below.

353 The fluctuating pollutant concentration ($\langle \phi''\phi' \rangle^{1/2} \geq 25\Phi_0$) is elevated within the
354 major recirculation (Figure 10b). It is as high as 50% of the time-averaged pollutant
355 concentration ($\langle \bar{\phi} \rangle \approx 50\Phi_0$). Under this circumstance, the signal collected within the major
356 recirculation, though strong, would be very noisy. In the far field, the peaked fluctuating
357 pollutant concentration correlates tightly with the peaked mean pollutant concentration. It
358 locates at $y = 0.5h$, displacing mildly from the peak of the mean pollutant concentration. The
359 discrepancy could be explained by their dissimilar profiles. Note that fluctuating pollutant
360 concentration is proportional to the gradient of the mean pollutant concentration.

361

362 When the y - z planes are located within the major recirculation (Figures 11a to 11c), the
363 flows are characterized by two counter-rotating vortices. They are initiated by the near-wake,
364 low-pressure zone which entrains the flows into the major recirculation. These pair of
365 streamwise vortices were reported elsewhere (Lo and Kontis 2017). However, on the planes
366 outside the major recirculation (Figures 11d to 11f), the key feature is the two counter-rotating
367 trailing vortices on the y - z plane. It is also found that the upper shear layer gradually develops
368 that interacts with the recirculations and the trailing vortices (modifies their flow directions and
369 sizes). The two trailing vortices persist after $x \geq 1.75h$ that drive the flows further downstream.
370 Apart from the trailing vortices, some small vortices are found near the ground which could be
371 generated by ground-level shear.



Figure 11. Shaded contours of dimensionless mean pollutant concentration $\langle \bar{\phi} \rangle / \Phi_0$ and fluctuating pollutant concentration $\langle \phi'' \phi'' \rangle^{1/2} / \Phi_0$ on the vertical (y - z) plane at $x/h =$ (a). 0.25; (b). 0.5; (c). 0.75; (d). 1; (e). 1.25 and (f). 1.5. Also shown are the flow vectors and the streamlines.

372 The tailpipe is located close to the plane at $x = 0.25h$ (Figure 11a) so there is a small
 373 region with elevated mean and fluctuating pollutant concentrations. The fluctuating pollutant
 374 concentration at $z = 0.7h$ is further intensified by the shear between the major and upper
 375 recirculations. The pollutant removal from the major recirculation is thus enhanced. The major
 376 recirculation mixes the pollutant rapidly (Figures 11b and 11c). The underbody wall jet drives
 377 the pollutant upwards so the mean pollutant concentration is rather uniform behind the truck
 378 (Figure 11b). The peaked time-averaged pollutant concentration then descends slightly after
 379 the major recirculation (Figure 11c). The coverage of fluctuating pollutant concentration at $x =$
 380 $0.5h$ (Figure 11b) and $x = 0.75h$ (Figure 11c) is similar. It reflects the turbulent pollutant
 381 transport from the recirculations into the trailing vortices. In the far field ($x \geq h$), the pollutant
 382 is diluted quickly by the prevailing flows that is represented by the fast decreasing mean and
 383 fluctuating pollutant concentrations (Figure 11d and 11f). The mild descent of the upper shear
 384 layer is also observed (Figures 11d to 11e) that eventually converges for $x \geq 1.25h$ (Figures 11e
 385 and 11f). The peaked mean pollutant concentration remains at $z = 0.5h$. On the other hand, the
 386 peaked fluctuating pollutant concentration further descends (Figures 11e and 11f), resulting in
 387 a ground-level maximum.

388

389 **3.4 Transport Mechanism**

390 The streamwise mean pollutant flux on the vertical (x - z) centre plane at $y = 0$ shows
 391 elongated ($0 \leq x \leq 4h$), positive streamwise mean pollutant flux ($\langle \bar{\phi} \rangle \langle \bar{u} \rangle = 2\Phi_0 U_\infty$) over the
 392 dividing streamlines (Figure 12a). It in turn illustrates the mild advection of the pollutant
 393 overshot by the strong prevailing flows. In the major recirculation, the abandon tailpipe
 394 emission close to the unbody wall jet results in the maximum streamwise mean pollutant flux
 395 ($\langle \bar{\phi} \rangle \langle \bar{u} \rangle = 10\Phi_0 U_\infty$) near the ground at $x = h/2$. The flows reverse afterwards, leading to the

396 minimum streamwise mean pollutant flux ($\langle \bar{\phi} \rangle \langle \bar{u} \rangle = -10\Phi_0 U_\infty$) at $z = h/2$. These two equal-
 397 magnitude streamwise mean pollutant fluxes in opposite directions together with the local
 398 maximum vertical mean pollutant flux ($\langle \bar{\phi} \rangle \langle \bar{w} \rangle = 10\Phi_0 U_\infty$) at the ground level (Figure 12b)
 399 develop the pollutant recirculation and the thorough mixing. Hence, the vehicular emission is
 400 escalated from the tailpipe to the upper recirculation, resulting in the rather uniform
 401 concentration within the major recirculation shown in Figures 9 and 10. The mean pollutant
 402 fluxes decrease gradually in the far field because of the diminishing vertical mean flow.

403

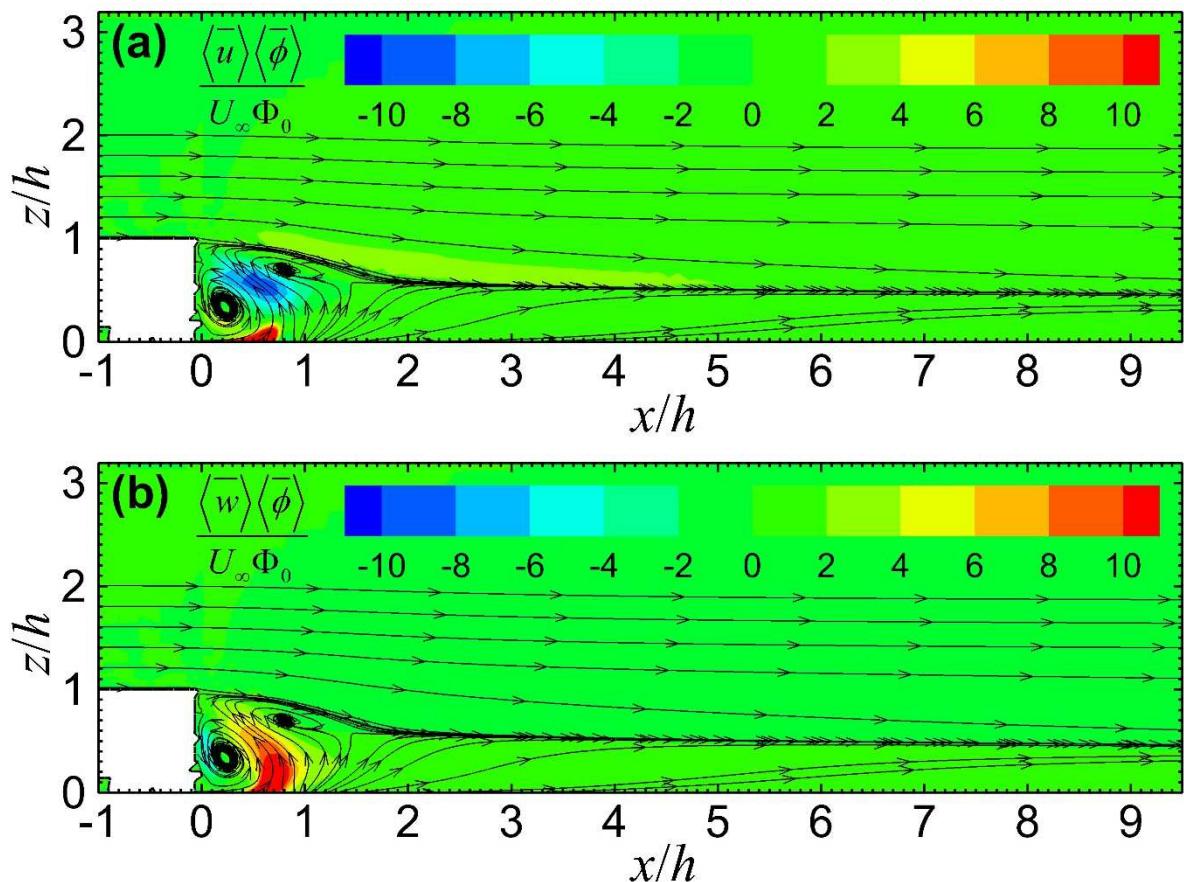


Figure 12. Shaded contours of dimensionless (a). streamwise $\langle \bar{u} \rangle \langle \bar{\phi} \rangle / U_\infty \Phi_0$ and (b) vertical $\langle \bar{w} \rangle \langle \bar{\phi} \rangle / U_\infty \Phi_0$ mean pollutant fluxes on the vertical (x - z) centre plane at $y = 0$. Also shown are the streamlines.

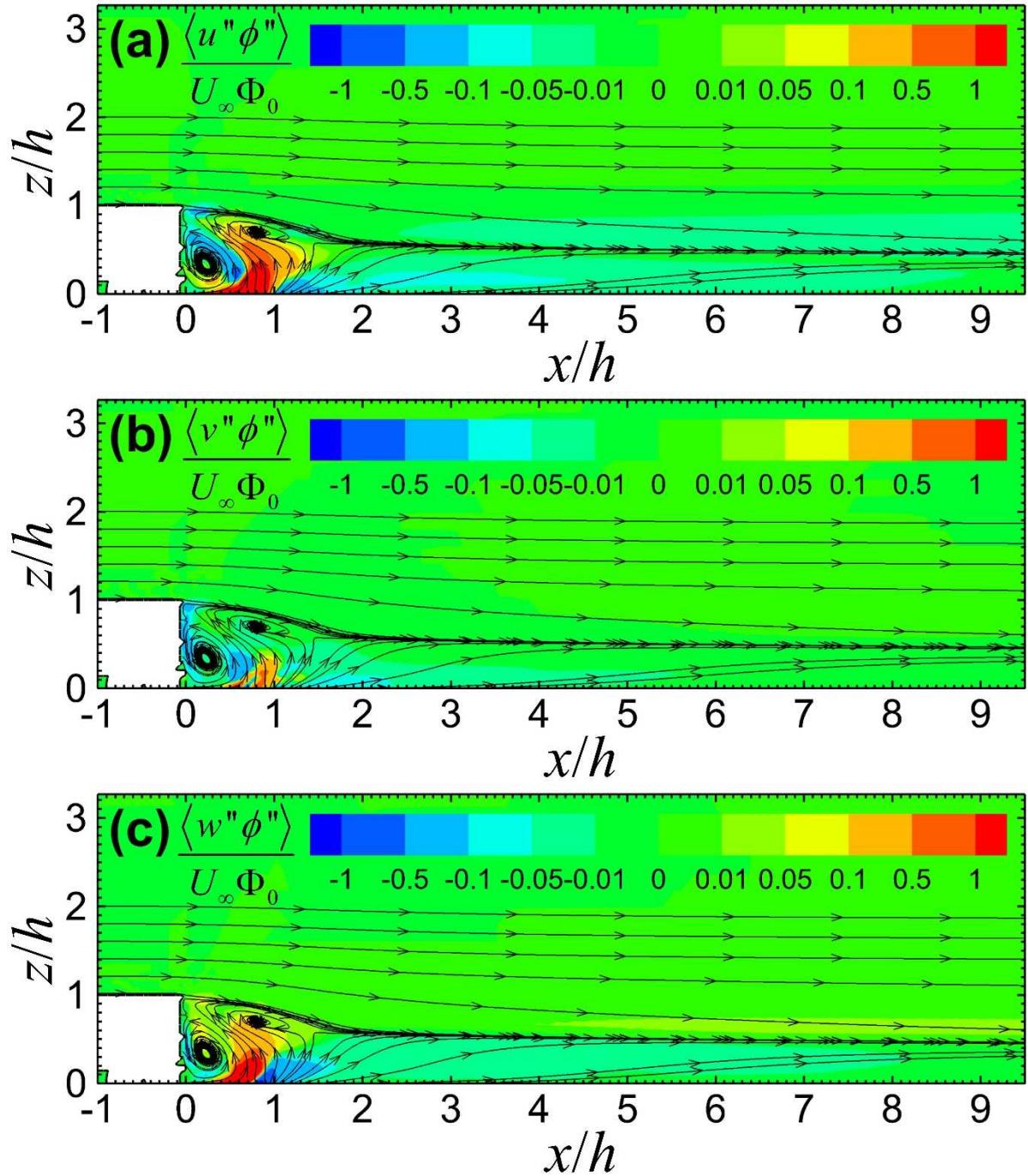


Figure 13. Shaded contours of dimensionless (a). streamwise $\langle \phi'' u'' \rangle / U_\infty \Phi_0$, (b). spanwise $\langle \phi'' v'' \rangle / U_\infty \Phi_0$ and (c). vertical $\langle \phi'' w'' \rangle / U_\infty \Phi_0$ turbulent pollutant fluxes on the vertical (x - z) centre plane at $y = 0$. Also shown are the streamlines.

404

405

406 The turbulent pollutant fluxes $\langle\phi''u_i'\rangle$ are largely negative within the major
 407 recirculation (Figure 13) that signify the rapid dilution by mean flows (pollutant concentrations
 408 decrease with increasing wind speeds). Their magnitudes ($|\langle\phi''u_i'\rangle| \approx U_\infty\Phi_0$) are an order of
 409 magnitude smaller than those of mean pollutant fluxes ($|\langle\bar{u}_i\rangle\langle\bar{\phi}\rangle| \approx 10U_\infty\Phi_0$). Hence, the early
 410 plume mixing is fast and homogeneous, being dominated by advection.

411

412 A broad maximum of streamwise turbulent pollutant flux $\langle\phi''u'\rangle = U_\infty\Phi_0$ is found in
 413 $0.5 \leq x/h \leq 1$. It is positive across the streamlines that suggests the majority turbulent pollutant
 414 removal from the major recirculation in the streamwise direction to the upper recirculation and
 415 to the far field (Figure 13a). The near-ground negative streamwise turbulent pollutant flux
 416 ($\langle\phi''u'\rangle = -0.5U_\infty\Phi_0$) for $x \geq h$, on the other hand, depicts the pollutant dilution by prevailing
 417 flows. Another region of negative streamwise turbulent pollutant flux ($\langle\phi''u'\rangle = -0.5U_\infty\Phi_0$)
 418 is developed within the major recirculation. The spanwise pollutant flux $\langle\phi''v'\rangle = -0.1U_\infty\Phi_0$
 419 is also negative for $x \geq h$ (Figure 13b). Both the streamwise and spanwise turbulent pollutant
 420 fluxes diminish for $x \geq 5h$. Small amounts of positive (upward) and negative (downward)
 421 vertical turbulent pollutant fluxes ($\langle\phi''w'\rangle = \pm 0.05\Phi_0U_\infty$) are found over and below the flow
 422 convergence, respectively (Figure 13c). These findings in turn suggest the crosswind pollutant
 423 transport in the far field which are analogous to those of Gaussian model along the plume
 424 trajectory. The far-field vehicular plume thus gradually resumes the Gaussian form. The
 425 vertical turbulent pollutant flux $\langle\phi''w'\rangle = -0.5U_\infty\Phi_0$ is also negative for $x \approx h$ near the ground
 426 (Figure 13c) that is attributed to the dilution along ascending flows. It is positive along the
 427 major recirculation that indicates the turbulent pollutant transport from the major recirculation
 428 to the upper recirculation then the upper shear layer.

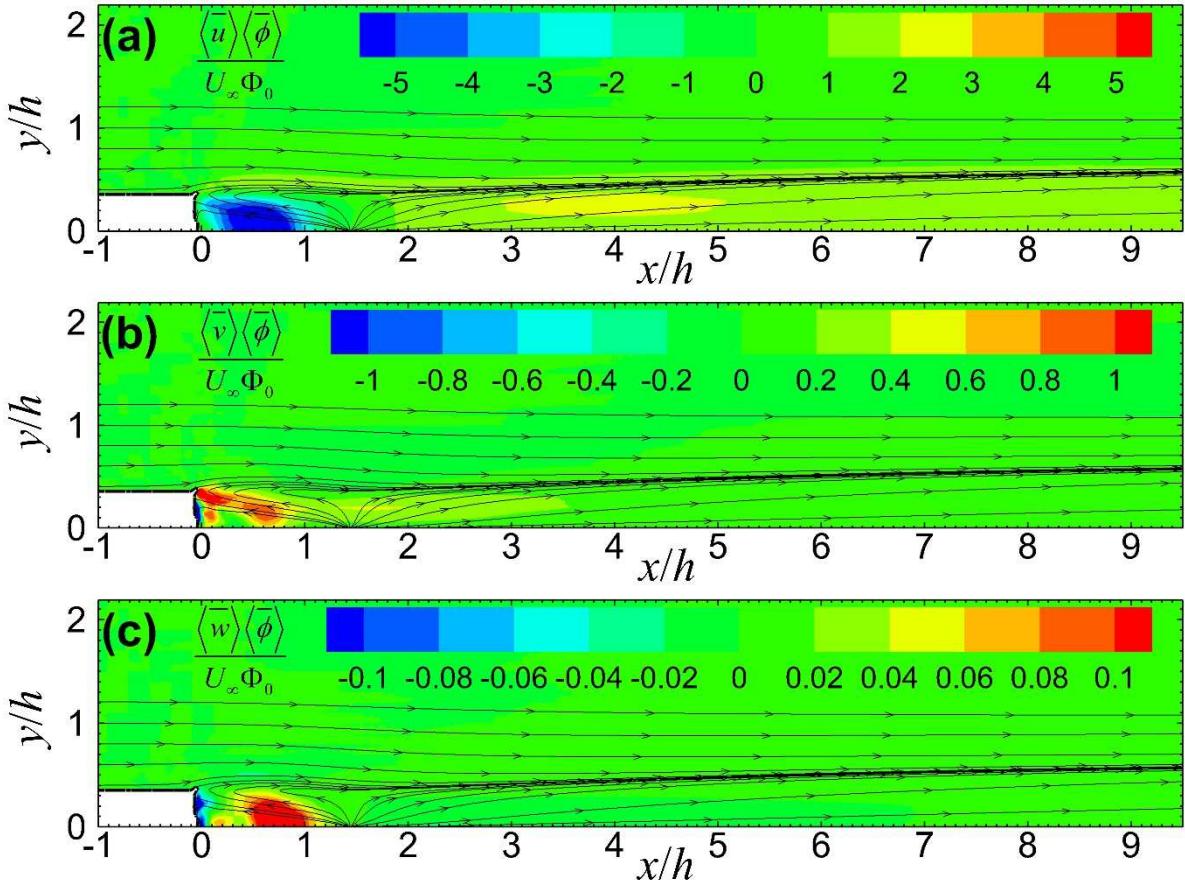


Figure 14. Shaded contours of dimensionless (a). streamwise $\langle \bar{u} \rangle \langle \bar{\phi} \rangle / U_\infty \Phi_0$, (b) spanwise $\langle \bar{v} \rangle \langle \bar{\phi} \rangle / U_\infty \Phi_0$ and (c). vertical $\langle \bar{w} \rangle \langle \bar{\phi} \rangle / U_\infty \Phi_0$ mean pollutant fluxes on the horizontal (x - y) plane at $z = 0.5h$. Also shown are the streamlines.

429

430 On the horizontal (x - y) plane at $z = h/2$ (Figure 14a), the streamwise mean pollutant
 431 flux is negative ($\langle \bar{\phi} \rangle \langle \bar{u} \rangle = -5\Phi_0 U_\infty$) and positive ($\langle \bar{\phi} \rangle \langle \bar{u} \rangle \geq \Phi_0 U_\infty$), respectively, in the major
 432 recirculation (reverse pollutant transport) and the far field (pollutant advection downstream).
 433 In particular, there is a local maximum $\langle \bar{\phi} \rangle \langle \bar{u} \rangle = 3\Phi_0 U_\infty$ at $x = 4h$, $y = 0.3h$ that is in line with
 434 the off-centre local maximum pollutant concentration presented before in Figure 10. Slightly
 435 elevated streamwise mean pollutant flux ($\langle \bar{\phi} \rangle \langle \bar{u} \rangle = 2\Phi_0 U_\infty$) is shown along the flow
 436 convergence because of the high speeds in the shear layer. On the other hand, the spanwise
 437 mean pollutant flux ($\langle \bar{\phi} \rangle \langle \bar{v} \rangle \geq 0.8\Phi_0 U_\infty$) is almost all positive (except very close to the truck)
 438 that widens the plume coverage (Figure 14b). Unlike its streamwise counterpart, the spanwise

439 mean pollutant flux diminishes for $x \geq 5h$, overlapping with the dividing streamlines. The flows
 440 thereafter largely resume to the prevailing ones so the spanwise velocity is minimal. Within
 441 the major recirculation, positive vertical mean pollutant flux $\langle \bar{\phi} \rangle \langle \bar{w} \rangle = 0.1 \Phi_0 U_\infty$ is observed in
 442 $0.5h \leq x \leq h$ and negative $\langle \bar{\phi} \rangle \langle \bar{w} \rangle = -0.1 \Phi_0 U_\infty$ is limited to the truck base (Figure 14c). After
 443 the major recirculation, the vertical mean pollutant flux diminishes due to the prevailing
 444 horizontal flows. The far-field vertical pollutant transport is thus dominated by turbulence as
 445 discussed above in Figure 13. The extremities inside the major recirculation further support the
 446 reverse pollutant transport by advection toward the truck.

447

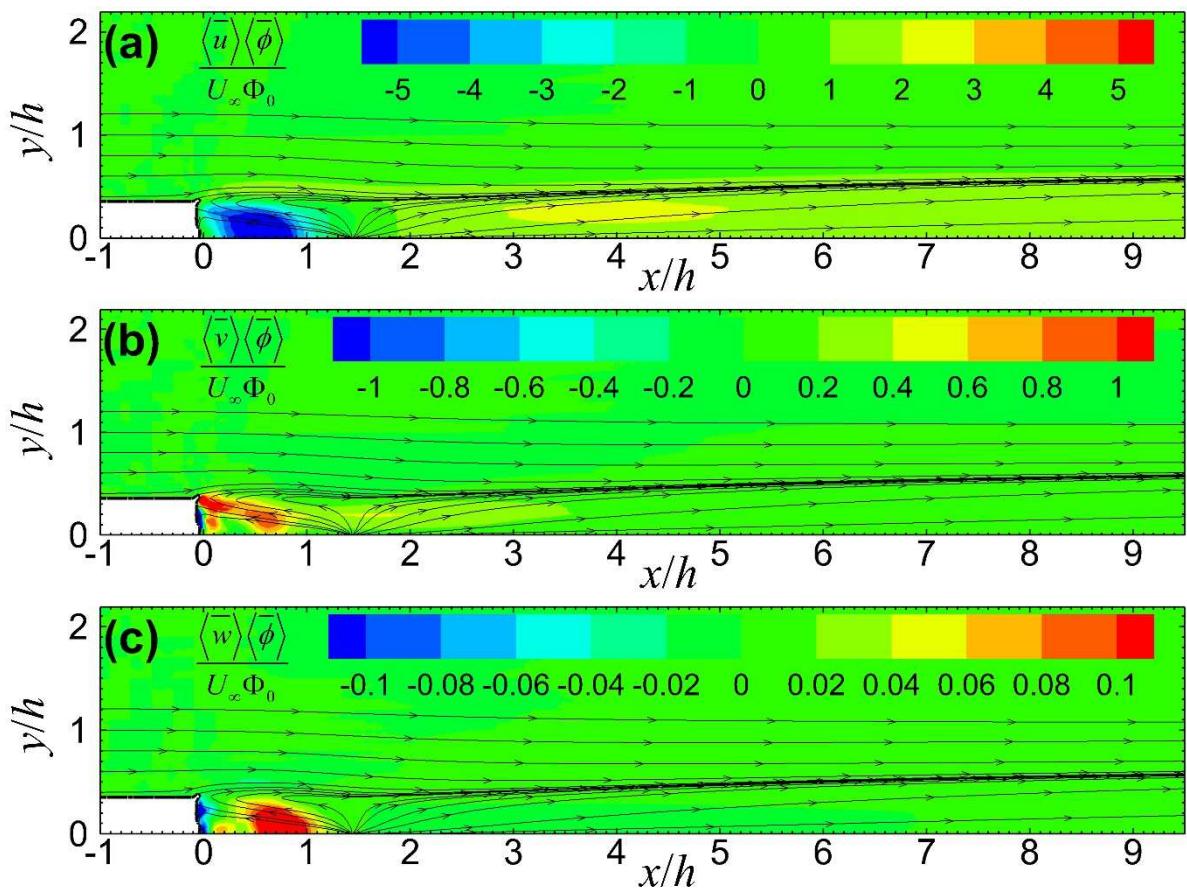


Figure 15. Shaded contours of dimensionless (a). streamwise $\langle \bar{\phi}'' u' \rangle / U_\infty \Phi_0$, (b) spanwise $\langle \bar{\phi}'' v' \rangle / U_\infty \Phi_0$ and (c). vertical $\langle \bar{\phi}'' w' \rangle / U_\infty \Phi_0$ turbulent pollutant fluxes on the horizontal (x - y) plane at $z = h/2$. Also shown are the streamlines.

448

449 The turbulent pollutant fluxes $\langle \phi'' u_i' \rangle$ on the horizontal (x - y) plane at $z = h/2$ concur
 450 the mixing processes inside the major recirculation (Figure 15). The spanwise turbulent
 451 pollutant flux is smaller than the other two components (by 50%) because the major
 452 recirculation is rotating about the spanwise (y) axis. Within the near wake, the streamwise
 453 turbulent pollutant flux is largely positive which overlaps with the streamlines of reverse flows
 454 (dilution by advection). Only a tiny negative region is found close to the vertical (x - z) centre
 455 plane at $y = 0$. In the far field, a prolonged local minimum of streamwise turbulent pollutant
 456 flux ($\langle \phi'' u' \rangle \leq -0.04\Phi_0 U_\infty$) overlaps with the flow convergence (Figure 15a). This finding is
 457 in line with the elevated streamwise fluctuating velocity ($\langle u'' u' \rangle^{1/2} = 0.1 U_\infty$) reported before
 458 in Figure 8a so the pollutant is diluted rapidly by prevailing flows. Turbulent transport, on the
 459 other hand, are illustrated clearly by the local maxima of spanwise turbulent pollutant flux
 460 $\langle \phi'' v' \rangle = 0.05\Phi_0 U_\infty$ across the streamlines at $x = 0.5h$ (Figure 15b) that carries the pollutant
 461 out of the major recirculation. Another elongated local maximum $\langle \phi'' v' \rangle = 0.04\Phi_0 U_\infty$ is
 462 observed in the far field that transports the pollutant across the flow convergence by turbulence
 463 as well. Its function is similar to that of Gaussian plume. The horizontal distribution of the
 464 vertical turbulent pollutant flux is alike its mean component as shown in Figure 14c. It
 465 gradually diminishes in the far field because of the prevailing flows (Figure 15c).

466

467 **4. Discussion**

468 The dynamics and transport mechanism discussed above facilitate our interpretation of
 469 tailpipe dispersion after an on-road vehicle. The distribution of mean pollutant concentration
 470 $\langle \bar{\phi} \rangle$ after a heavy-duty truck is quite different from that calculated by the Gaussian models.
 471 Within the major recirculation, the tailpipe emission is homogeneously mixed that results in a
 472 rather uniform mean pollutant concentration. Instead of an infinitely small pollutant point
 473 source, the size of the major recirculation is comparable to the height of truck h . Under this

474 circumstance, the conventional Gaussian models are no longer applicable to the near-wake
 475 dispersion calculation. Besides, turbulent transport is required to remove the pollutant from the
 476 major recirculation to the far field. The pollutant concentration drops sharply in the streamwise
 477 direction and a noticeable concentration gradient is developed in-between.

478

479 After the major recirculation, the flows gradually resume to the prevailing ones so the
 480 Gaussian models are applicable. It is noteworthy that tailpipe emission is driven to a higher
 481 level ($z = h/2$) in the major recirculation before being removed to the upper recirculation and
 482 the far field. The plume trajectory is escalated but not at the tailpipe level so the emission height
 483 should be adjusted accordingly for $x \geq h$. The horizontal, crosswind plume dispersion also
 484 differs from the Gaussian theory. In view of the trailing vortices and the nonuniform pollutant
 485 advection, the maximum pollutant concentration is not along the centreline but shifts sideward
 486 to $y \approx 0.3h$. The peaks of fluctuating pollutant concentration are shifted as well.

487

488 The above findings help refine the practice of remote sensing. We reported before that
 489 a long sampling duration is unfavourable to remote sensing accuracy (Huang et al. 2020). The
 490 different diffusion coefficients of nitric oxide (NO) and CO₂ in air lead to different dispersion
 491 patterns. Under this circumstance, the assumption of constant NO-to-CO₂ ratio (the only
 492 parameter that is measured in remote sensing) is valid only in a short distance after the tailpipe
 493 exit. The ratio then reduces further downstream.

494

495 The aerodynamics after a heavy-duty truck reported in this paper shed some light on
 496 the reliable range of remote sensing (short sampling duration) as well. The LES results show
 497 that the major recirculation is enclosed by dividing streamlines. The pollutant removal from
 498 the major recirculation to the far field is governed by turbulent pollutant fluxes $\langle \phi' u_i' \rangle$

499 (across the streamlines), which, however, are much weaker (about an order of magnitude) than
 500 the mean pollutant flux $\langle \bar{\phi} \rangle \langle \bar{u}_i \rangle$. A noticeable difference in pollutant concentration is therefore
 501 developed. Despite the chemical composition, the pollutant concentrations drop sharply after
 502 the near wake (an order of magnitude). A long sampling duration would be prone to
 503 underestimating the tailpipe emission. Besides, the sharp drop in pollutant concentrations
 504 demands a higher detection sensitivity, which might stretch the capability of remote sensing to
 505 the limit. It in turn adversely affects the signal collected and measurement accuracy. The far-
 506 field plume trajectory is escalated from the tailpipe to a higher level ($z \approx h/2$) which is
 507 unfavourable to sampling confidence. In the current practice, remote sensing focuses at tailpipe
 508 level. Far-field plume ascent implies that accurate remote sensing would demand even more
 509 sensitive detection.

510

511 According to the above analysis, the best sampling range should be smaller than the
 512 major recirculation ($\leq h$) within which the pollutant mixing is more homogeneous and the
 513 concentration is more uniform. The corresponding sampling duration is therefore $\leq h/U_\infty$.
 514 Taking an on-road truck of size 3 m at speed 30 km hr⁻¹ as an example, the sampling duration
 515 should be less than 0.4 sec. The current practice of remote sensing (0.5 sec) is marginally
 516 acceptable. The sampling time would be shortened for smaller vehicles (e.g. light-duty lorry)
 517 and faster driving speeds (e.g. 80 km hr⁻¹ on most of the highways in Hong Kong). Apparently,
 518 slower driving speed would help improve the remote sensing accuracy. Otherwise, a shorter
 519 sampling duration is more favourable.

520

521 There exists another technical difficulty for shorter sampling duration. Unlike the usual
 522 turbulence intensities (approximately 10%), the current LES unveils that the fluctuating
 523 pollutant concentrations is up to 20% of the mean pollutant concentration in the major

524 recirculation ($\langle \phi'' \phi' \rangle^{1/2} = 0.2 \langle \bar{\phi} \rangle$). It is thus expected that the signal data are noisy such that
 525 the conventional turbulence measurements should be implemented cautiously. One of the
 526 solutions could be prolonged sampling time, which, however, is unlikely practicable in remote
 527 sensing.

528

529 **5. Conclusion**

530 In this study, the flow and tailpipe pollutant dispersion after an on-road heavy-duty
 531 truck are examined by LES in detail. The current LES results agree well with our previous
 532 wind tunnel visualization and the wind profiles available in the literature. In line with previous
 533 studies, the flows after a truck can be divided into the near-wake and far-field regions. The near
 534 wake is composed of the major recirculation and the upper recirculation while the far field
 535 mainly consists of two trailing vortices. The upper shear layer not only induces the upper
 536 recirculation but also modifies the flows in the trailing vortices. It entrains into the trailing
 537 vortices finally.

538

539 Tailpipe emission is carried towards the truck following the major recirculation (reverse
 540 flows). Simultaneously, the pollutants are escalated from the tailpipe to a high level ($z \approx h/2$).
 541 In view of the rapid mixing, the pollutants are more homogeneous and the concentrations are
 542 more uniform within the major recirculation. In the far-field, the pollutant transport gradually
 543 follows the conventional Gaussian theory. However, the pollutant concentration is not peaked
 544 on the vertical ($x-z$) centre plane at $y = 0$ but shifted toward the dividing streamlines at $y = 0.3h$.
 545 Interestingly, substantial turbulent transport is found across those dividing streamlines.
 546 Generally, the pollutant transport by advection is 10 times larger than that by turbulence. It
 547 thus explains the thorough mixing in the major recirculation.

548

549 The current LES complements our previous finding that a shorter sampling duration
550 favours remote sensing accuracy. In this paper, it is proposed that the sampling coverage should
551 not extend beyond the major recirculation. Otherwise, the remote sensing signal would
552 underestimate the pollutant concentrations. It is caused by the sharp drop in pollutant
553 concentration (an order of magnitude) after the near wake. Nonetheless, the sampling time (0.5
554 sec) adopted in remote sensing nowadays is marginally acceptable.

555

556 Turbulence, especially within the shear layers from two sides of the truck and the region
557 directly behind the recirculation, disperses the pollutant outside the recirculation. The trailing
558 vortices can further elevate the pollutant to the level $z = 0.5h$ but the upper shear layer
559 suppresses pollutant from being driven further upward over the dividing streamlines. Most
560 pollutant in the far field is trapped by the trailing vortices and is transported downstream.
561 Concurrently, the turbulence induced by the upper shear layer and trailing vortices disperse the
562 pollutant within the vortices upwards and downwards, separately. The strong turbulence in the
563 region between the trailing vortices and the mean flows also transports pollutant in the
564 spanwise direction. Moreover, the turbulence induced by the trailing vortices leads to reverse
565 pollutant dispersion to the truck. These findings collectively formulate the pollutant dispersion
566 mechanisms behind an on-road truck as well as help pedestrians prevent from the harmful
567 effects of vehicular emission.

568

569 **Acknowledgment**

570 This research is conducted in part using the research computing facilities and/or
571 advisory services offered by Information Technology Services (ITS), The University of Hong
572 Kong (HKU). Technical support from Ms. Lilian Y.L. Chan, Mr. W.K. Kwan and Mr. Bill H.T.
573 Yau is appreciated. This work was supported by the General Research Fund (GRF) of the Hong

574 Kong Research Grants Council (RGC) RGC HKU 17210115 as well as the Environment and
 575 Conservation Fund (ECF) Project 26/2018 of the Hong Kong (HK) SAR.

576

577 **References**

578 Abdull, N., Yoneda, M. and Shimada, Y. (2020), “Traffic characteristics and pollutant emission
 579 from road transport in urban area”, *Air Qual. Atmos. Health* **13**, 731-738.

580 Ahmed, S.R. (1981), “An experimental study of the wake structures of typical automobile
 581 shapes”, *J. Wind Eng. Ind. Aerod.* **9**, 49-62.

582 Ahmed, S.R., Gawthorpe, R.G. and Mackrodt, P.A. (1985), “Aerodynamics of road and rail
 583 vehicles”, *Veh. Syst. Dyn.* **14**, 319–92.

584 Anenberg, S.C., Miller, J., Minjares, R., Du, L., Henze, D.K., Lacey, F., Malley, C.S.,
 585 Emberson, L., Franco, V., Klimont, Z. and Heyes, C. (2017), “Impacts and mitigation
 586 of excess diesel-related NO_x emissions in 11 major vehicle markets”, *Nature* **545**, 467–
 587 471.

588 Baker, C.J. (2001), “Flow and dispersion in ground vehicle wakes”, *J. Fluids Struct.* **15**, 1031–
 589 1060.

590 Benson, P.E. (1992), “A review of the development and application of the CALINE3 and 4
 591 models”, *Atmos. Environ. Part B. Urban Atmosphere* **26**, 379-390.

592 Berkowicz, R. (2000), “OSPM - A parameterised street pollution model”, *Environ. Monit.
 593 Assess.* **65**, 323-331.

594 Cadle, S.H. and Stephens, R.D. (1994), “Remote sensing of vehicle exhaust emissions”,
 595 *Environ. Sci. Technol.* **28**, 258-264.

596 Carpentieri, M., Kumar, P. and Robins, A. (2012), “Wind tunnel measurements for dispersion
 597 modelling of vehicle wakes”, *Atmos. Environ.* **62**, 9-25.

598 Chan, T.L., Dong, G., Cheung, C.S., Leung, C.W., Wong, C.P. and Hung, W.T. (2001), “Monte
599 Carlo simulation of nitrogen oxides dispersion from a vehicular exhaust plume and its
600 sensitivity studies”, *Atmos. Environ.* **35**, 6117-6127.

601 Chan, T.L., Luo, D.D. Cheung, C.S. and Chan, C.K. (2008), “Large eddy simulation of flow
602 structures and pollutant dispersion in the near-wake region of the studied ground
603 vehicle for different driving conditions”, *Atmos. Environ.* **42**, 5317-5339.

604 Chang, V.W.-C., Hildemann, L.M. and Chang, C.-h. (2009a), “Wind tunnel measurements of
605 the dilution of tailpipe emissions downstream of a car, a light-duty truck, and a heavy-
606 duty truck tractor head”, *J. Air & Waste Manage. Assoc.* **59**, 704-714.

607 Chang, V.W.-C., Hildemann, L.M. and Chang, C.-h. (2009b), “Dilution rates for tailpipe
608 emissions: Effects of vehicle shape, tailpipe position, and exhaust velocity”, *J. Air &*
609 *Waste Manage. Assoc.* **59**, 715-724.

610 Cheng, W.C. and Liu, C.-H. (2011). Large-eddy simulation of flow and pollutant transports in
611 and above two-dimensional idealized street canyons”, *Boundary-Layer Meteorol.* **139**,
612 411-437.

613 Choi, H., Lee, J. and Park, H. (2014), “Aerodynamics of heavy vehicles”, *Annu. Rev. Fluid*
614 *Mech.* **46**, 441-468.

615 Clifford, M.J., Clarke, R. and Riffat, S.B. (1997), “Local aspects of vehicular pollution”, *Atmos.*
616 *Environ.* **31**, 271-276.

617 Davison, J., Bernard, Y., Borken-Kleefeld, J., Farren, N.J., Hausberger, S., Sjödin, Å., Tate,
618 J.E., Vaughan, A.R. and Carslaw, D.C. (2020), “Distance-based emission factors from
619 vehicle emission remote sensing measurements”, *Sci. Total Environ.* **739**, 139688.

620 Dong, G. and Chan, T.L. (2006), “Large eddy simulation of flow structures and pollutant
621 dispersion in the nearwake region of a light-duty diesel vehicle”, *Atmos. Environ.* **40**,
622 1104-1116.

623 Giechaskiel, B., Riccobono, F., Vlachos, T., Mendoza-Villafuerte, P., Suarez-Bertoa, R.,
 624 Fontaras, G., Bonnel, P. and Weiss, M. (2015), “Vehicle emission factors of solid
 625 nanoparticles in the laboratory and on the road using portable emission measurement
 626 systems (PEMS)”, *Front. Environ. Sci.* **3**, 82.

627 Gosse, K., Gonzalez, M., and Paranthoën, P. (2011). “Mixing in the three-dimensional wake
 628 of an experimental modelled vehicle”, *Environ. Fluid Mech.* **11**, 573-589.

629 Gong, L. and Wang, X. (2018), “Numerical study of noise barriers’ side edge effects on
 630 pollutant dispersion near roadside under various thermal stability conditions”, *Fluids* **3**,
 631 105.

632 Habegger, L.J., Wolsko, T.D., Camaioni, J.E., Kellermeyer, D.A. and Dauzvardis, P.A. (1974),
 633 *Dispersion Simulation Techniques for Assessing the Air Pollution Impacts of Ground*
 634 *Transportation Systems*, Energy and Environmental Systems Division, Argonne
 635 National Laboratory, Illinois 60439.

636 Hu, X.J., Yang, H.B., Yang, B., Li, X.C. and Lei, Y.L. (2015), “Effect of car rear shape on
 637 pollution dispersion in near wake region”, *Math. Probl. Eng.* **2015**, 879735.

638 Huang, Y., Organa, B., Zhou, J.L., Surawska, N.C., Hong, G., Chan, E.F.C. and Yam, Y.S.
 639 (2018), “Remote sensing of on-road vehicle emissions: Mechanism, applications and a
 640 case study from Hong Kong”, *Atmos. Environ.* **182**, 58-74.

641 Huang, Y., Ng, E.C.Y., Surawski, N.C., Yam, Y.-S., Mok, W.-C., Liu, C.-H., Zhou, J.L., Organ,
 642 B. and Chan, E.F.C. (2020), “Large eddy simulation of vehicle emissions dispersion:
 643 Implications for on-road remote sensing measurements”, *Environ. Pollut.* **259**, 113974.

644 Hucho, W.-H., (1987), Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle
 645 Engineering, 4th Edition, SAE International, Warrendale, USA, 956 pp.

646 Kanda, I., Uehara, K., Yamao, Y., Yoshikawa, Y. and Morikawa, T. (2006), “A wind-tunnel
647 study on exhaust gas dispersion from road vehicles—Part I: Velocity and concentration
648 fields behind single vehicles”, *J. Wind Eng. Ind. Aerod.* **94**, 639-658.

649 Kang, Y., Ding, Y., Li, Z., Cao, Y., and Zhao, Y. (2017), “A networked remote sensing system
650 for on-road vehicle emission monitoring”, *Sci. China Inform. Sci.* **60**, 043201.

651 Kota, S.H., Ying, Q. and Zhang, Y. (2013), “Simulating near-road reactive dispersion of
652 gaseous air pollutants using a three-dimensional Eulerian model”, *Sci. Total Environ.*
653 **454**, 348-357.

654 Lesieur, M., Métais, O. and Comte, P. (2018), *Large-Eddy Simulations of Turbulence*,
655 Cambridge University Press, Cambridge, United Kingdom.

656 Liu, C.-H., Xie, J., Huang, Y. and Mok, W.-c. (2019), “Near-field vehicular plume mixing and
657 roadside air quality”, *The 15th International Conference on Wind Engineering*
658 (*ICWE15*), September 1 to 6, 2019, Beijing, China.

659 Lo, K.H. and Kontis, K. (2017), “Flow around an articulated lorry model”, *Exp. Therm. Fluid
660 Sci.* **82**, 58-74.

661 Mazzoleni, C., Kuhns, H. D., and Moosmüller, H. (2010), “Monitoring automotive particulate
662 matter emissions with LiDAR: a review”, *Remote Sens.* **2**, 1077-1119.

663 McArthur, D., Burton, D., Thompson, M. and Sheridan, J. (2016), “On the near wake of a
664 simplified heavy vehicle”, *J. Fluids Struct.* **66**, 293-314.

665 Minguez, M., Pasquetti, R. and Serre, E. (2008), “High-order large-eddy simulation of flow
666 over the “Ahmed body” car model”, *Phys. Fluids* **20**, 095101.

667 Ning, Z., Wubulihairen, M., and Yang, F. (2012), “PM, NOx and butane emissions from on-
668 road vehicle fleets in Hong Kong and their implications on emission control
669 policy”, *Atmos. Environ.* **61**, 265-274.

670 Owais, M. (2019), “Location strategy for traffic emission remote sensing monitors to capture
671 the violated emissions”, *J. Adv. Transport.* **2019**, 6520818.

672 Pospisil, J., Katolicky, J. and Jicha, M. (2004), “A comparison of measurements and CFD
673 model predictions for pollutant dispersion in cities”, *Sci. Total Environ.* **334**, 185-195.

674 Rao, S.T. and Keenan, M.T. (1980), “Suggestions for improvement of the EPA-HIWAY
675 model”, *J. Air & Waste Manage. Assoc.* **30**, 247-256.

676 Rohit, R., Kini, C.R. and Srinivas, G. (2019), “Recent trends in aerodynamic performance
677 developments of automobile vehicles: a review”, *Journal of Mechanical Engineering
678 Research and Developments*, **42**, 206-214.

679 Sellappan, P., McNally, J. and Alvi1, F.S. (2018), “Time-averaged three-dimensional flow
680 topology in the wake of a simplified car model using volumetric PIV”, *Exp. Fluids* **59**,
681 124.

682 Tunay, T., Yaniktepe, B. and Sahin, B. (2016), “Computational and experimental
683 investigations of the vortical flow structures in the near wake region downstream of the
684 Ahmed vehicle model”, *J. Wind Eng. Ind. Aerod.* **159**, 48-64.

685 Vino, G., Watkins, S., Mousley, P., Watmuff, J. and Prasad, S. (2005), “Flow structures in the
686 near-wake of the Ahmed model”, *J. Fluids Struct.* **20**, 673–695.

687 Wang, X.W., Zhou, Y., Pin, Y.F. and Chan, T.L. (2013), “Turbulent near wake of an Ahmed
688 vehicle model”, *Exp. Fluids* **54**, 1490.

689 Wang, Y.J., Nguyen, M.T., Steffens, J.T., Tong, Z., Wang, Y., Hopke, P.K. and Zhang, K.M.
690 (2013), “Modeling multi-scale aerosol dynamics and micro-environmental air quality
691 near a large highway intersection using the CTAG model”, *Sci. Total Environ.* **443**,
692 375-386.

693 Weller, H.G., Tabor, H., Jasak, H. and Fureby, C. (1998), “A tensorial approach to
694 computational continuum mechanics using object-oriented techniques”, *Comput. Phys.*
695 **12**, 620-631.

696 Wen, Y., Wang, H., Larson, T., Kelp, M., Zhang, S., Wu, Y., and Marshall, J. D. (2019), “On-
697 highway vehicle emission factors, and spatial patterns, based on mobile monitoring and
698 absolute principal component score”, *Sci. Total Environ.* **676**, 242-251.

699 WHO (2020), World Health Organization Fact sheet: Ambient (outdoor) air pollution, World
700 Health Organization, [https://www.who.int/news-room/fact-sheets/detail/ambient-\(outdoor\)-air-quality-and-health](https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health) (accessed on July 6, 2020).

702 Xie, S., Bluett, J., Fisher, G. and Kuschel, G. (2004), “On-road remote sensing identifies the
703 worst vehicle polluters”, *Water & Atmosphere* **12**, 8-9.

704 Xing, Y. and Brimblecombe, P. (2018), “Dispersion of traffic derived air pollutants into urban
705 parks”, *Sci. Total Environ.* **622**, 576-583.

706 Zhao, Y., Kato, S. and Zhao, J. (2015), “Numerical analysis of particle dispersion
707 characteristics at the near region of vehicles in a residential underground parking lot”,
708 *J. Disper. Sci. Technol.* **36**, 1327-1338.

709 Zhang, K. and Batterman, S. (2013), “Air pollution and health risks due to vehicle traffic”, *Sci.*
710 *Total Environ.* **450**, 307-316.

711 Zhang, B.F., Zhou, Y. and To, S. (2015), “Unsteady flow structures around a high-drag Ahmed
712 body”, *J. Fluid Mech.* **777**, 291-326.