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Steady buckling (coiling) of thin falling liquid jets is sensitive to surface tension, yet an understanding of
these capillary effects lags far behind what is known about surface-tension-free coiling. In experiments with
submillimetric jets and ultralow flow rates, we find that the critical dispensing height Hc for coiling
decreases with increasing flow rate, a trend opposite to that found previously for inertia-free coiling. We
resolve the apparent contradiction using nonlinear numerical simulations based on slender-jet theory which
show that the trend reversal is due to the strong effect of surface tension in our experiments. We use our
experiments to construct a regime diagram (coiling vs stagnation flow) in the space of capillary number Ca
and jet slenderness ϵ and find that it agrees well with fully nonlinear numerical simulations. However, it
differs substantially from the analogous regime diagram determined experimentally by Le Merrer, Quéré,
and Clanet [Phys. Rev. Lett. 109, 064502 (2012)] for the unsteady buckling of a compressed liquid bridge.
Using linear stability analysis, we show that the differences between the two regime diagrams can be
explained by a combination of shape nonuniformity and the influence of gravity.
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An elastic rod compressed along its axis buckles when the
load exceeds a critical value, a phenomenon first studied by
Euler in the 18th century. Liquid “rods” can also buckle
under compression; here the resisting force is due to
viscosity. A liquid bridge compressed sufficiently rapidly
between rigid pistons eventually bends; this is an example of
unsteady buckling [1]. By contrast, steady buckling occurs
when the liquid falls continuously downward from a nozzle
onto a stationary surface. This “liquid rope coiling” (LRC)
has been intensively studied during the past 60 years using
laboratory experiments, linear stability analysis, asymptotic
analysis, and numerical simulation [2–12]. LRC is interest-
ing not only for the rich dynamics emerging from the
interplay of the multiple forces involved, but also because
it is encountered in practical situations such as additive
manufacturing of functional materials [13–17] and ultrafine
viscous liquid dispensing [18–22]. The high resolution
involved here is achieved by dispensing very thin jets at
very low flow rates. The effects of surface tension should
therefore be particularly strong. Yet all existing studies of
LRC consider vanishing [9,11] or weak [8,23] surface
tension. Understanding the coiling of capillary jets with
strong surface tension is essential not only for completing

the big picture of LRC dynamics but also for a variety of
applications in high-resolution extrusion-based printing and
liquid dispensing.
Here we combine experiments, nonlinear numerical

simulation and linear stability analysis (LSA), to reveal
the dynamics of surface-tension-dominated LRC in the
limit of negligible inertia. We gain further understanding by
comparing steady buckling with unsteady buckling [1]
using LSA. To our knowledge, ours is the first study to
elucidate LRC for capillary jets using three independent
approaches that agree closely with one another.
Experimental procedure.—We used silicone oils (Sigma

Aldrich) with viscosities 3.2–60 Pa s measured by a rheo-
meter (Anton Paar). The fluid was extruded from a glass
syringe activated by a syringe pump fixed to an elevatable
platform [Fig. 1(a)]. Figure 1(b) shows a schematic of the jet.
The flow rate ranged from 1.5 to 150 mL=h. Visual datawas
recorded by high-speed camera (Photon).
Critical height vs flow rate.—As the fall height increases

beyond a critical value Hc with the flow rate held fixed, an
initially straight jet exhibits incipient buckling that quickly
turns into finite-amplitude coiling [Fig. 1(c)]. A similar
transition occurs as the flow rate increases for a fixed
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dispensingheight [Fig. 1(d)]. Figure 2 showsHc (solid lines)
as a function of flow rate Q for six sets of experiments with
different viscosities. Hc decreases with Q within each set.
This is opposite to the trend previously found [23,24] for
surface-tension-free coiling with negligible inertia, for
which Hc is either independent of flow rate (“viscous”
regime) or increases with flow rate (“gravitational” regime).
One clue to the cause of this discrepancy is the

scaled-down character of our experiments. Compared to
previous studies [2,4,23,25], we use nozzle diameters
(d0 ¼ 0.6–1.55 mm) smaller by a factor of ≈2 and flow
rates (Q ¼ 1.5–150 mL=h) smaller by ≈2 orders of
magnitude. A comparison of parameters is found in [26],
Table S1. Another clue is that our critical heights Hc are as
large as ≈93d0, about 15 times the largest values ≈5–6d0
from the existing literature ([26], Table S2). Both clues
suggest the hypothesis that the discrepancy is due to strong
surface tension. To test this, we use a slender-jet model [9]
implemented in the continuation and bifurcation software
AUTO-07P [27] to simulate coiling with strong surface
tension. In the limit of negligible inertia, the critical height
Hc can depend only on d0, Q, ν, ρg, and γ. The Π-theorem
of dimensional analysis then implies that three independent
dimensionless groups can be formed from these six
parameters. We choose these groups to be

Hc

d0
;

�
νQ
gd40

�
1=4 ≡ ΠQ;

ρgd20
γ

≡ Bo; ð1Þ

where ΠQ is a dimensionless flow rate and the Bond
number Bo is the ratio of gravitational to capillary forces.
Following [28], we define Hc as the height at which the
numerically predicted radius a1 of the lowermost part of
the coiling jet just equals the radius R of the coil itself

because a1 > R corresponds to unphysical self-penetration.
Figure 3 shows our calculated critical heights (solid lines)
together with our experimental measurements (symbols) as
functions of ΠQ for several values of Bo. Despite a small

FIG. 2. Experimentally determined critical height for the onset
of coiling as a function of flow rate and viscosity. The needle
diameter is d0 ¼ 0.6 mm. Different colors correspond to different
viscosities as indicated. Solid symbols represent coiling, whereas
open symbols correspond to stagnation flow. Solid lines are
drawn by eye to fit the boundaries between open and solid
symbols to indicate a decreasing trend.

FIG. 1. (a) Experimental setup. (b) Schematic of the extruded
jet with density ρ, kinematic viscosity ν, dynamic viscosity η,
surface tension coefficient γ, nozzle diameter d0, and jet diameter
dðzÞ. (c) Photographs of the jet for fixed flow rate Q and
increasing fall height H, showing the transition from stagnation
flow to coiling. The scale bar is 1 mm. (d) Still photographs of a
similar transition at a fixed fall height with increasing flow rate.
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FIG. 3. Numerically predicted (lines) and experimentally mea-
sured (symbols) critical heights Hc vs ΠQ for several values of
the Bond number Bo ([26], Note S4). The black line replicates a
previous result for Bo ¼ ∞ [28] and is compared to experimental
data of [4] for Bo ¼ 158 (squares) and 70 (circles). The other
four curves are for the values of Bo indicated. The symbols
represent different viscosities: 3.2 Pa s (up-pointing triangles),
5.7 Pa s (pentagons), 10 Pa s (right-pointing triangles, stars,
andþ symbol), 20 Pa s (down-pointing triangles), 30 Pa s
(x symbol), 40 Pa s (diamonds), and 50 Pa s (left-pointing
triangles). The corresponding onset frequencies (both measured
and predicted) are shown in [26], Fig. S1.
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systematic offset, the measured data points and the calcu-
lated curves track each other well. For large Bo ≥ 70
(negligible surface tension), Hc increases with the flow
rate, whereas it decreases when Bo ≤ 1.12 (strong surface
tension). This is the apparent contradiction that we pointed
out earlier between the results of this study and those
of [4,5,23]; we now see that it is due to the large effect of
surface tension in our experiments.
Regime diagram for buckling.—Steady buckling (LRC)

is induced by injecting fluid into the upper end of a jet
while keeping the fall height fixed. By contrast, in
unsteady buckling, the height of a compressed liquid
bridge decreases while the deflection of the centerline
increases monotonically. Yet while steady and unsteady
buckling show these obvious differences, a deeper physi-
cal understanding of both can be obtained by comparing
them. To do this we construct a regime diagram (LRC vs
stagnation flow) in the space of jet slenderness
d0=H ≡ ϵ and capillary number ηU0=γ ≡ Ca, following
the procedure used by [1] for unsteady buckling. Here
U0 ¼ 4Q=πd20 is the mean extrusion velocity, and
Ca ¼ ð4=πÞΠ4

QBo. Figure 4 shows our experimental data
for steady buckling in the ϵ-Ca plane, together with the
critical curve (black dashed line) for unsteady buckling of
[1]. One sees immediately that the domain of steady
buckling (filled symbols) is larger than that of unsteady
buckling, extending both to lower values of Ca < 8.5 and
to higher values of ϵ > 0.1.
Also shown in Fig. 4 are critical curves for steady

buckling calculated numerically for three values of Bo.
Bo ¼ 0.73 corresponds to the experimental data shown in
green and yellow, while Bo ¼ 0.17 corresponds to pink and
violet data. The good agreement of the calculated critical
curves with the experimentally observed regime boundaries
shows that the minimum value of Ca for which buckling
occurs depends strongly on Bo, i.e., on the effect of gravity
relative to surface tension. Gravity is relatively unimportant
in the upper part of the diagram where the three critical
curves coincide.
Linear stability analysis.—We now turn to LSA, which

unlike the nonlinear slender-jet model can be applied to
both steady (jet) and unsteady (bridge) buckling, allowing
us to compare them consistently. The analysis will eluci-
date the distinct causes of the greater rightward (to larger ϵ)
and downward (to smaller Ca) extents of the steady
buckling region relative to the unsteady buckling region
in Fig. 4. We first demonstrate the relevance of LSA by
using it to predict accurately the critical buckling height and
frequency for one of our experiments on LRC ([26],
Note S1). Now we apply LSA to unsteady buckling of a
compressed liquid bridge.
Without loss of generality, we suppose that buckling is

confined to the x1 − x3 plane, where x3 ≡ z increases
downward. We further suppose that the lateral deflection
ζ of the jet’s axis is small. In the absence of inertia, the

equations of force balance perpendicular to and parallel to
the jet’s axis are [10]

−M00
2 þ κ2N3 þ

π

2
γdκ2 − ρAgζ0 ¼ 0; ð2aÞ

N0
3 þ

π

2
γd0 þ ρAg ¼ 0; ð2bÞ

where N3ðzÞ is the normal viscous force on the cross
section, M2ðz; tÞ is the bending moment, A ¼ πd2=4, κ2 ≡
ζ00ðz; tÞ is the curvature of the axis about the x2 direction,
and primes denote ∂=∂z. The constitutive relations for N3

and M2 are N3 ¼ 3ηAU0
3 and M2 ¼ 3ηIð_ζ00 þ U3ζ

000 −
U0

3ζ
00=2Þ [12], where I ¼ πd4=64, U3 is the vertical

velocity on the jet’s axis, and a dot indicates ∂=∂t.
We now combine the foregoing equations and set

ζ ¼ FðzÞ exp σt, where σ is the growth rate. The resulting
equations for U3 and F are

C
a

d0 /H

FIG. 4. Regime diagram for steady buckling (LRC) in the space
of jet slenderness d0=H ≡ ϵ and capillary number ηU0=γ ≡ Ca.
Solid lines indicate the stagnation to coiling transition predicted
by nonlinear numerical simulations of LRC for Bo ¼ 0.73, 0.17,
and 0.002. The dashed black line is the critical curve for unsteady
buckling [1]. Experimental data are indicated by filled symbols
(coiling) and open symbols (stagnation flow). The pink and violet
symbols are for Bo ¼ 0.17, and the yellow and green symbols are
for Bo ¼ 0.73. Viscosities used are 3.2 Pa s (deep plum down-
ward-pointing triangles), 5.7 Pa s (orchid left-pointing triangles),
10 Pa s (light pink squares), 20 Pa s (deep pink right-pointing
triangles), 23 Pa s (blush pink circles), 30 Pa s (light brown
triangles), 40 Pa s (light violet diamonds), and 50 Pa s (purple
pentagons) for Bo ¼ 0.17; 10 Pa s (yellow stars) and 30 Pa s
(green downward-pointing triangles) for Bo ¼ 0.73. Analogous
results for Bo ¼ 0.032, which like the case Bo ¼ 0.002 exhibits
multiple onset heights, can be found in [26], Note S5, and the
supplemental video.
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3ηðd2U0
3Þ0 þ 2γd0 þ ρgd2 ¼ 0; ð3aÞ

�
d4
�
σF00 þ U3F000 −

1

2
U3

0F00
��00

− 16

�
d2U3

0 þ 2γ

3η
d

�
F00 þ 16ρg

3η
d2F0 ¼ 0: ð3bÞ

Equation (3b) together with the “clamped” boundary
conditions Fð0Þ ¼ F0ð0Þ ¼ F00ð0Þ ¼ FðHÞ ¼ F0ðHÞ ¼ 0
is an eigenvalue problem for FðzÞ that can be solved if
dðzÞ and U3ðzÞ are known. A critical difference between a
clamped liquid bridge and a flowing jet is that the diameter
dðzÞ is highlynonuniform in the former case. To approximate
the shape of a static liquid bridge before it is compressed, we
assume d ¼ d0 þ ðd1 − d0Þð2z −HÞ2=H2, where d0 is the
diameter in the center and d1 the diameter at either end.
Figure 5(a) shows this shape for d1=d0 ¼ 2.2, a value
determined by least-squares fitting of the assumed quadratic
shape to the central 50% of the bridge shown in the leftmost
image of Fig. 1(a) of [1]. The known function dðzÞ is now
injected into Eq. (3) with g ¼ 0, which can then be solved
analytically subject to U3ð0Þ ¼ U0 and U3ðHÞ ¼ 0 ([26],
Note S2). The eigenvalue problem for FðzÞ is then solved
using AUTO-07P. The only eigenvalues are two positive real
ones, which lie on a double-valued (folded) surface above the
ϵ-Ca plane. These correspond to amplified buckling without
oscillation, as observed by [1]. To determine where in the
ϵ-Ca plane such growing modes exist, we start from either
mode and continue it to higher ϵ and/or lower Ca until a
turning point is encountered beyond which the solution no
longer exists. The locus of all such turning points is a critical

curve that divides the ϵ-Ca plane into two regions where
buckling occurs and does not occur.
Figure 5(b) shows those critical curves (solid lines) for

three combinations of values of d1=d0 and Bo. The dashed
lines bound the regions of active and latent unsteady
buckling proposed by [1] ([26], Note S3) such that bridges
initially in the latent region remain straight while their
slenderness ϵ increases until they reach the active region.
The “reference” critical curve for ðd1=d0; BoÞ ¼ ð2.2; 0.0Þ
agrees well with the boundaries of the active buckling
region of [1]. Relative to this, the curve with ðd1=d0; BoÞ ¼
ð1.0; 0.0Þ shows that buckling of a uniform bridge occurs
for values of the slenderness ϵ that are about twice as great
as those for a nonuniform bridge with d1=d0 ¼ 2.2. This is
because the thicker ends of the nonuniform bridge resist
buckling more effectively than the thinner ends of the
uniform bridge. In summary, the maximum slenderness
d0=H for which unsteady buckling occurs depends strongly
on the shape of the bridge.
Continuing with Fig. 5(b), we explore the effect of

gravity by comparing the reference curve with the curve for
d1=d0 ¼ 2.2 and Bo ¼ 0.17, the values in the experiments
of [1]. Whereas the two curves coincide for Ca > 12, they
are quite different for lower values of Ca and even the signs
of their slopes are opposite. Active unsteady buckling
should occur everywhere above and to the left of the curve
with Bo ¼ 0.17. However, this is not what was seen in the
experiments of [1], who observed buckling only above a
horizontal line Ca ¼ 8.5. The reason for this disagreement
between experiment and theory is unclear.
Discussion.—This work began as an effort to understand

why the critical height for steady buckling of capillary jets
decreases as a function of flow rate, a trend opposite to that
seen in previous studies of inertia-free coiling. The small
nozzle sizes and flow rates used in our experiments, as well
as our observations of unusually long stable jets, suggested
that the trend reversal was due to strong surface tension, a
hypothesis that we confirmed with fully nonlinear slender-
jet numerical simulations. The importance of surface
tension relative to viscous forces in steady buckling can
also be estimated roughly as the characteristic ratio of the
surface tension force Fγ ∼ γa1R−1 to the viscous force
Fv ∼ ρνa41U0R−4, where R is the coil radius, a1 is the radius
of the jet within the coil, and U1 ≡Q=πa21 is the axial
velocity of the fluid in the coil [9]. We find that Fγ=Fv ¼
1.1–2.3 for our experiments, indicating the crucial impor-
tance of surface tension.
We gained further physical insight by comparing our

experimental phase diagram for steady buckling in the
ϵ-Ca plane with an analogous diagram for unsteady
buckling [1]. There are two major differences between
the two diagrams. First, steady buckling occurs up to
ϵ ≈ 0.25, greater than the maximum slenderness ϵ ≈ 0.1
for unsteady buckling. Second, steady buckling occurs
for capillary numbers as low as 1.3, whereas unsteady
buckling is limited to Ca ≥ 8.5. These two differences
have distinct causes that we were able to elucidate using

(a)
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FIG. 5. Results of linear stability analysis of unsteady basic
states of a compressed liquid bridge. (a) Prescribed parabolic
shape of the bridge for d1=d0 ¼ 2.2. (b) Critical curves for
unsteady buckling in the d0=H-Ca space. The three solid curves
are predicted by linear stability analysis for the values of (d1=d0,
Bo) indicated. The dashed lines bound the regions of active and
latent unsteady buckling of [1].
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finite-amplitude numerical simulation and linear stability
analysis. The different ranges of ϵ are explained by a
difference in shape of the buckling object: a steadily
coiling capillary jet has a nearly constant diameter,
whereas a buckling liquid bridge has strongly thickened
ends that oppose a greater resistance to bending. The
cause of the different ranges of Ca is more subtle. First,
note that all three of our independent approaches (experi-
ments for steady buckling, numerical simulation of steady
coiling, and LSA of unsteady buckling) agree in showing
that the minimum value of Ca for buckling decreases as
gravity becomes more important relative to surface
tension, i.e., as Bo increases. This result would explain
the difference between our regime diagram and that of [1]
if gravity were negligible in the latter study. This is
not so, however, because Bo ¼ 0.17 in the experiments
of [1]. According to our LSA, a gravitational effect of
this magnitude relative to surface tension should permit
unsteady buckling to occur well below the lower limit
Ca ¼ 8.5 observed by [1]. Further analysis and experi-
ments are needed to resolve this contradiction.
Our work has important applications to microscale

manipulation of viscous fluid threads in situations such
as high-resolution printing of intricate patterns and func-
tional architectures. The current trend toward ever smaller
scales means that surface tension will play a crucial role in
future applications. The present work may therefore pro-
vide timely guidance for practice. On the theoretical side,
asymptotic analysis similar to that of [3] could help to
elucidate the detailed mechanism by which strong surface
tension reverses the trend of the variation of onset height
as a function of flow rate. In closing, we note that our
investigation of the effects of surface tension has been
limited to coiling in the inertia-free viscous and gravita-
tional regimes. Future research on the influence of surface
tension on inertial coiling will bring us closer to a complete
physical picture of liquid rope coiling.
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