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Article

In longitudinal studies, ordinary means of scales derived 
from the aggregation of individual items are often compared 
in order to answer questions like “How does a group prog-
ress over time?” or “Is a drug having a beneficial effect?”. 
To answer these questions, statistical techniques such as 
paired t tests or repeated measures analyses of variance 
require that the continuous outcome is evaluating the under-
lying phenomenon in the same way at each repeated assess-
ment. When an instrument and its items behave differently 
between different occasions of measurement, the scores can-
not be meaningfully compared. The use of the same scale 
does not guarantee that psychometric features are being cap-
tured in the same way over time. For example, if levels of 
performance change sufficiently to cause ceiling or floor 
effects, an instrument of measurement must change to enable 
proper estimation of that change (Embretson, 2006). 
Assessing evidence of longitudinal invariance permits eval-
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Abstract
Longitudinal invariance indicates that a construct is measured over time in the same way, and this fundamental scale 
property is a sine qua non to track change over time using ordinary mean comparisons. The Alzheimer’s Disease Assessment 
Scale–cognitive (ADAS-Cog) and its subscale scores are often used to monitor the progression of Alzheimer’s disease, but 
longitudinal invariance has not been formally evaluated. A configural invariance model was used to evaluate ADAS-Cog 
data as a three correlated factors structure for two visits over 6 months, and four visits over 2 years (baseline, 6, 12, and 24 
months) among 341 participants with Alzheimer’s disease. We also attempted to model ADAS-Cog subscales individually, 
and furthermore added item-specific latent variables. Neither the three-correlated factors ADAS-Cog model, nor its 
subscales viewed unidimensionally, achieved longitudinal configural invariance under a traditional modeling approach. No 
subscale achieved scalar invariance when considered unidimensional across 6 months or 2 years of assessment. In models 
accounting for item-specific effects, configural and metric invariance were achieved for language and memory subscales. 
Although some of the ADAS-Cog individual items were reliable, comparisons of summed ADAS-Cog scores and subscale 
scores over time may not be meaningful due to a lack of longitudinal invariance.
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uation of whether a scale assesses a given construct uni-
formly, on the same metric, over time.

Longitudinal invariance testing is conducted within the 
context of structural equation modeling, using item param-
eters such as factor loadings and thresholds (when the items 
are categorical) or intercepts (when items are continuous). 
The first level of invariance is called configural invariance 
and in longitudinal models it is achieved when the relation-
ship between the latent variables (i.e., factors/domains of a 
given scale) and their manifest indicators are uniform across 
occasions; in other words, the number of factors and the 
general loading of the items onto those factors do not 
change from visit to visit. In the case of the ADAS-Cog, we 
would expect its 11 items to load equivalently onto the three 
subdomains (memory, praxis, and language) over time. A 
sine qua non to evaluate changes in means of aggregated 
scores in an ordinary paired t test or a repeated measures 
analysis of variance (ANOVA) is to guarantee that some 
level of invariance is observed across these parameters. 
Operationally, a series of constraints on factor loadings, and 
then on thresholds/intercepts, is imposed in a hierarchical 
order, and changes to the goodness of fit of the measure-
ment model are evaluated (Van de Schoot et al., 2012; Van 
de Schoot et al., 2015).

The ADAS-Cog is commonly used to monitor the pro-
gression of cognitive symptoms in dementia due to 
Alzheimer’s Disease (AD), and it has been used as a pri-
mary cognitive outcome measure across many large-scale 
randomized clinical trials (Connor & Sabbagh, 2008; Honig 
et  al., 2018; D.-D. Li et  al., 2019; Salloway et  al., 2014; 
Weyer et al., 1997). It is also employed in cohort studies to 
track AD trajectories as, for example, one of many cogni-
tive assessments performed in the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI; Weiner et  al., 2013), the 
Japanese ADNI (Yagi et  al., 2019), and others. The most 
commonly used version of this test is the 11-item ADAS-
Cog, composed of three subdomains intended to assess 
learning and memory, language production and comprehen-
sion, and praxis (Rosen et al., 1984). Given that ADAS-Cog 
scores have been used as a clinical a trial endpoint to assess 
the efficacy of drug therapies, it is of importance to under-
stand how confident one can be that repeated measurements 
capture cognition in the same way.

Some psychometric features of the ADAS-Cog have 
been described previously, and measurement issues have 
motivated numerous attempts to improve the ADAS-Cog. A 
recent review noted that 31 modified versions appear in the 
literature (Kueper et al., 2018), including an empirical solu-
tion presented by Verma et  al. (2015), based on item 
response theory. Cano et  al. (2010), Hobart et  al. (2013), 
and Karin et  al. (2014) identified ceiling effects, even 
among AD patients of mild to moderate severity. 
Longitudinally, some studies have found low reliability for 
measuring change (Grochowalski et  al., 2016) and low 

test–retest reliability for several of the individual items 
(Karin et  al., 2014). In terms of convergent validity with 
clinical assessments over time, improvement on the ADAS-
Cog has been related to clinical improvement, but many 
people who declined on the ADAS-Cog did not show clini-
cal decline (Rockwood et al., 2007). Despite these observa-
tions, the ADAS-Cog and its three subdomains have been 
evaluated scarcely for measurement invariance. As part of a 
larger study, Dowling et al. (2016) conducted longitudinal 
invariance testing using a traditional modeling approach; 
however, their model specifications, and methods for treat-
ing different natures of items (i.e., categorical and continu-
ous) were not described. Beyond that, they noted that some 
items exhibited different sensitivities to between-person 
differences at baseline versus changes over time, which 
hinted at the possible need for a more flexible modeling 
approach.

The present study aims to examine longitudinal mea-
surement invariance of the ADAS-Cog and its subdomains 
among patients with mild AD using two approaches: a tra-
ditional approach related to the works of Millsap (2012) and 
Meredith (1993), and an alternative more flexible approach 
that includes item-specific effects, reducing the degrees of 
freedom (Eid et al., 2016; Eid & Kutscher, 2014). The latter 
approach relaxes the assumption that the relationships 
between the observed indicators and the underlying con-
structs are consistent between each occasion of measure-
ment. We provide an empirical examination in the context 
of the ADNI, a naturalistic longitudinal study, making use 
of the 11 indicators of the ADAS-Cog across four visits: 
baseline, 6, 12, and 24 months. A better understanding of 
these fundamental scale properties might offer some guid-
ance in the use of the ADAS-Cog items and their summed 
scores in longitudinal studies, including observational stud-
ies and randomized clinical trials.

Method

Sample

Data were obtained from the ADNI database (http://adni.
loni.usc.edu/) in January, 2018. The ADNI was launched in 
2003, as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD, with the primary goal 
of determining whether neuroimaging, other biomarkers, 
and clinical and neuropsychological assessments could be 
combined to measure the progression of early AD. For up-
to-date information, see www.adni-info.org. Briefly, ADNI 
recruited participants between the ages of 55 and 90 years 
in North America to be followed longitudinally, with testing 
at regular intervals. A diagnosis of mild AD was determined 
using National Institute of Neurological and Communicative 
Disorders and Stroke/Alzheimer’s Disease and Related 
Disorders Association criteria, as well a score of between 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
www.adni-info.org
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20 and 26 on the Mini Mental State Examination (MMSE; 
a tool frequently used to screen for cognitive impairment in 
clinical, research, and community settings; (Arevalo-
Rodriguez et  al., 2015) and a score of 0.5 or 1.0 on the 
Clinical Dementia Rating Scale (CDR), indicating a very 
mild, or mild clinical level of impairment, respectively. At 
the time of data download, the ADNI database included 341 
participants with AD at baseline, all of whom were included 
in the current study; their baseline MMSE scores, years of 
education, age, sex, and carrier status for the apolipoprotein 
E ε4 allele (ApoE ε4), a genetic variant associated with the 
risk of late-onset AD (Saunders et al., 1993), can be found 
in Table 1.

The ADAS-Cog

The ADAS-Cog was conducted by an Alzheimer’s Disease 
Cooperative Study—ADAS certified psychometrist on 
ADNI participants at their baseline, 6-month, and subse-
quent annual visits. A detailed description of test adminis-
tration is provided in the ADNI procedures manual (http://
adni.loni.usc.edu/). The 13-item version of the ADAS-Cog 
was conducted (ADAS-Cog 13), allowing for calculation of 
either the 13-item total score (out of 85), or the more com-
monly used 11-item total score (out of 70), where a higher 
score indicated poorer performance and greater impair-
ment. Test items consisted of the following tasks: (1) word 
recall, (2) commands, (3) constructional praxis, (4) delayed 
word recall, (5) naming, (6) ideational praxis, (7) orienta-
tion, (8) word recognition, (9) remembering test instruc-
tions, (10) comprehension of spoken language, (11) word 
finding difficulty, (12) spoken language ability, and (13) 
number cancellation. An alternate list of words was used for 
the Word Recall Task (Item 1) at Month 6, but the original 
list was used at Baseline, Month 12, and Month 24, which 
were considered sufficiently distanced in time to avoid 
practice effects. This also affects the Delayed Word Recall 
Task (Item 4), which asks the participant to recall words 
from the list (Item 1).

Statistical Analysis

For the ADAS-Cog 11 structure, and for the empirical fac-
tor structure later proposed by Verma et  al. (2015), tradi-
tional invariance testing was conducted as described by 
Horn and McArdle (1992; Meredith & Horn, 2001), for 
each subdomain separately (Figure 1, top depicts, e.g., the 
memory subdomain as an unidimensional solution, where 
all the items related to this subdomain are loaded onto a 
single factor; the same procedure was conducted for Praxis 
and Language) and also for the three-correlated factor solu-
tion (Figure 1, bottom). For the unidimensional solution, 
longitudinal invariance was tested considering (1) a 6 
months gap between the assessment (i.e., pre–post evalua-
tion; two visits) and (2) across 2 years (i.e., four visits; base-
line, 6 months, 12 months, and 24 months after baseline). 
For the three-correlated factors solution, evaluation across 
four visits was not conducted due to failure of invariance 
testing over the initial two visits. Only the Verma et  al. 
(2015) and the ADAS-Cog 11 solutions could be tested 
under three correlated factors; the ADAS-Cog 13 structure 
is not admissible because at least two items per factor are 
required.

Subdomains were investigated separately under unidi-
mensional (single-factor) solutions, specified as per guid-
ance from previous literature. For the memory subdomain, 
three versions were analyzed; first, as per the ADAS-Cog 
11, the memory score was based on four items (i.e., word 
recall, orientation, remembering test instructions, and word 
recognition); second, as per the ADAS-Cog 13, the memory 
score was based on five items (i.e., as per the ADAS-Cog 11 
plus Item 4 [delayed word recall]); and third, constituted by 
four items, as suggested by Verma et al. (2015) to have lon-
gitudinal validity (i.e., word recall, orientation, word recog-
nition, and delayed word recall; Mohs et al., 1997; Verma 
et  al., 2015). For the language subdomain, two versions 
were analyzed; first, as per the ADAS-Cog 11 and 13, this 
subdomain was constituted by five items (i.e., commands, 
naming, comprehension of spoken language, word finding 
difficulty, and spoken language ability); second, as per 

Table 1.  Demographic and Dementia Characteristics (N = 341).

Characteristic Baseline 6 Months 12 Months 24 Months

Baseline age, M (SD) 75 (5)  
Years of education, M (SD) 15 (3)  
ApoE ε4 carriers (% carriers)a 66  
Sex (% male) 55  
MMSE, M (SD) 23.2 (2.1) 22.2 (3.7) 20.9 (4.5) 18.7 (5.7)
CDR, M (SD) 0.76 (0.26) 0.89 (0.38) 1.04 (0.54) 1.27 (0.66)

Note. ApoE = apolipoprotein E; MMSE = Mini Mental Status Examination (score from 30 to 0; higher scores are better); CDR = Clinical Dementia 
Rating (rating from 0 to 3; 0 = no dementia, 0.5 = very mild dementia, 1.0 = mild dementia, 2.0 = moderate dementia, etc.).
aData were not available for two AD.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Verma et al. (2015) this subdomain was constituted by five 
items (i.e., naming, remembering test instructions, compre-
hension of spoken language, word finding difficulty, and 
spoken language ability). For praxis, only the solution of 
Verma et al. (2015) could be properly evaluated, which was 
constituted by three items (i.e., commands, constructional 
praxis, and ideational praxis); in a cross-sectional design 
fewer than three items per factor would result in a just-spec-
ified model for which it is not possible to evaluate model fit 
indices (Bollen, 1998).

The less restrictive level of invariance, the configural 
model, holds the same pattern of fixed and free factor load-
ings across time. In that model, thresholds (for the categori-
cal items [language and praxis domains]) and intercepts (for 
the continuous items [for the memory domain]) and residual 
variances of the items were freely estimated across time. If 
configural invariance was achieved, other constraints were 
added progressively. Testing metric invariance, or “weak 
invariance,” is said to be achieved if the association of a 
given item and its underlying factor is equal across the time. 
It is tested by imposing factor loadings to be equal across 
time as a further model constraint. Further restrictions 
impose constraints to thresholds/intercepts (called “scalar 
invariance” or “strong invariance”) and, then, to residual 
variance (called “strict invariance”), and, last, constraints to 
the factor level variance.

For the models with four visits over time, we addition-
ally took into to account item-specific effects (Eid et al., 
2016; Eid & Kutscher, 2014), which gives more flexibility 
by reducing the degrees of freedom compared with tradi-
tional invariance testing. With the addition of latent 

variables capturing item-specific effects, the model 
becomes less restrictive, modeling at the same time the 
occasion effect, sometimes called state variance (Eid & 
Kutscher, 2014), and the item-specific effects (variance 
that is uniform across time), and as consequence it is pos-
sible to disentangle both of these sources of information. 
Figure 2 shows configural invariance testing for the mem-
ory subscale (Items 1, 4, 7, and 8) including item-specific 
effects across four visits. For example, the orientation 
items across the four visits were loaded onto an extra 
latent variable called orientation, and the items for word 
recognition subscale were loaded onto an extra latent fac-
tor called word recognition; for each item-specific factor, 
one loading parameter was fixed to 1 and the other factor 
loadings were free to be estimated, and means were fixed 
at zero. The items for word recall were used as a reference 
methodological factor by not loading the word recall items 
to any latent factor. Therefore, the number of item-specific 
factors to be specified will be the number of different sub-
scale items less one, which is sufficient to model item-
specific effects under configural invariance testing (Eid, 
1996; Geiser & Lockhart, 2012). Together with the item-
specific factor, the occasion factors, as previously speci-
fied (i.e., items answered at the same visit), and their 
hierarchical invariance restrictions (configural, weak, and 
scalar) were estimated together with the item-specific fac-
tor. The occasion and item-specific factors are orthogonal 
to one another, but the correlations of the indicator-spe-
cific factors are freely estimated in the same way that the 
occasion factor is allowed to be correlated and freely 
estimated.

Figure 1.  Traditional invariance testing of the three ADAS-Cog traits proposed by Verma et al., showing memory as a 
unidimensional construct across two and four visits (Figure 1, top, left, and right respectively) and the three-correlated factor 
structure (Figure 1, bottom) across two visits. Note that for language and praxis as unidimensional models (note shown here), the 
model specification would follow the structure shown on top (left and right side).
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Model fit was evaluated based on the following fit mea-
sures and their cutoffs proposed by Schermelleh-Engel 
et al. (2003): comparative fit index (CFI), root mean square 
error approximation (RMSEA), standardized root mean 
square residual (SRMR), and χ2 p value. A RMSEA value 
equal to or smaller than 0.05 indicates a good approximate 
model fit. The p value of the corresponding test of approxi-
mate fit should be equal to or smaller than 0.05. The CFI 
should be greater or equal to 0.97. Also, an SRMR greater 
than 0.05 and smaller than 0.1 would indicate an acceptable 
fit model, whereas values below 0.05 would indicate a good 
model fit.

We used two different estimators; robust maximum like-
lihood (MLR) was used for memory, and diagonally 
weighted least squares (WLSMV) for language and praxis 
items because the latter are ordinal observed variables (C.-
H. Li, 2016). WLSMV estimator was also used for the three 
correlated-factor solution models where there are continu-
ous and categorical indicators. Depending on the estimator, 
missing data were accommodated differently. Full-
information maximum likelihood (invoked via MLR) yields 
consistent parameter estimates and standard errors when the 
missing data are missing-at-random (Rubin & Little, 2002). 
The WLSMV estimator uses pairwise variables present, 
meaning that each correlation is estimated using all avail-
able data. All analyses were conducted in Mplus version 8.3 
(Muthén & Muthén, 1998-2017).

Results

Our sample is constituted by 341 AD patients, 55% male, 
75 years old on average (SD = 8 years old), and having 15 
years of education (SD = 3). Major details, including popu-
lation means on the MMSE and CDR (showing declines in 

cognitive and clinical status) over 24 months are shown in 
Table 1. Supplementary Tables 1 and 2 (available online) 
describe, for categorical items (i.e., Language and Praxis 
domains), proportions and counts at item-level over time. 
Supplementary Table 3 (available online) describes contin-
uous items in terms of their minimum, maximum, mean, 
and standard deviation at item-level and across time. The 
Pearson correlation matrix between the items at each time 
point is shown in Figure 3. At the baseline evaluation, the 
pairwise correlations between items were weak, even within 
the same subdomains. The magnitude of the correlations 
did not appear to be uniform over time, increasing on each 
successive visit.

Table 2 shows the model fit indices for the configural 
model on the six unidimensional domains variations and in 
the two three-correlated factors solution specification for 
pre–post evaluation after 6 months. Some models showed 
nonpositive definite psi (Ψ) matrices—marked with “*”; this 
occurred due correlations higher than 1 between the latent 
variables, which implies an unacceptable solution. The same 
occurred for all models across four visits (Table 1).

Table 3 shows the model fit indices for the four visits 
after the inclusion of item-specific factors under different 
levels of invariance. In contrast to the classical invariance 
models (Table 2), language and memory subscales did not 
have nonpositive definite Ψ matrices after the inclusion of 
item-specific factors (Table 3). For these subscales and their 
variations the addition of item-specific factors also returned 
good fit models under at least configural specification; 
however, none of the models achieved scalar invariance, 
where thresholds (language subscale) and intercepts (mem-
ory) were held constant across time showed poor fit indices 
(Table 3). Praxis showed offending estimates even under a 
less restrictive solution.

Figure 2.  Invariance testing under the specification of Eid et al. (2014; Eid et al., 2016) allowing configural invariance testing for the 
memory subscale proposed by Verma et al. (Items 1, 4, 7, and 8) as an example. Item-specific effects across four visits were added. 
Note that the same modeling approach was conducted for the other subscales (i.e., praxis and language).
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The ADAS-Cog 11 and ADAS-Cog 13 memory subscale 
versions did not meet configural or weak invariance crite-
ria. The memory subscale (Items 1, 4, 7, and 8, proposed to 
have construct validity in previous longitudinal analyses by 
Verma et al.), and the two language subscale configurations, 
returned admissible solutions and models with good fit 
indices under configural and weak restriction, although 
they did not meet scalar invariance.

The restrictions imposed from configural to weak invari-
ance worsened the model for language with Items 2, 5, 10, 
11, and 12 (χ2

(12) difference test = 21.256, p = .468), but not 
for language with Items 5, 9, 10, 11, and 12 (χ2

(12) difference 
test = 20.317, p = .061). For memory (Items 1, 4, 7, and 8) 
the restriction worsened the model (Sattora–Bentler Scaled 
chi-square difference χ2

(9) = 20.200, p = .008). For these 

three best models, even though they did not achieve scalar 
invariance, we calculated the item reliability and item speci-
ficity across four visits. Table 4 shows the unstandardized 
and standardized factor loadings for the memory subscale 
(Items 1, 4, 7, and 8) and language subscales across the vis-
its, and their reliability and item specificity.

For memory, the word recognition item was the least 
reliable over time (reliability ranged from 0.424 to 0.531), 
whereas the most reliable was word recall (average reliabil-
ity 0.799). For the language subscale (Items 5, 9, 10, 11, and 
12), the tasks had reliabilities higher than 0.69; naming was 
the most reliable (0.818) followed by spoken language abil-
ity (0.803), word finding difficulty (0.785), remembering 
test instructions (0.782), and comprehension of spoken lan-
guage (0.725). For language (Items 2, 5, 10, 11, and 12), the 

Figure 3.  Pearson correlation matrix between all items at each time point.
Note. L = language items; M = memory items; P = praxis items.
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Table 4.  Standardized and Unstandardized Factor Solutions and Derived Reliabilities and Item Specificities for the Language and 
Memory Subscales in Models Disentangling Occasion and Indicator-Specific Information.

Domain Item Visit

Loadings

Reliability
Indicator 
specificity

Indicator 
specificity/
reliability

Latent State Variable Indicator Specific Variable

Unst. Stand. Unst. Stand.

Memorya 1 Baseline 1.000 0.572 1.000 0.671 0.776 0.450 0.580
Memorya 4 Baseline 1.569 0.861 0.741  
Memorya 7 Baseline 0.696 0.240 1.000 0.592 0.466 0.350 0.752
Memorya 8 Baseline 1.309 0.385 1.000 0.530 0.429 0.281 0.655
Memorya 1 6 Months 1.000 0.556 1.014 0.685 0.779 0.469 0.602
Memorya 4 6 Months 1.661 0.811 0.658  
Memorya 7 6 Months 0.987 0.439 1.180 0.660 0.629 0.436 0.693
Memorya 8 6 Months 1.636 0.454 1.067 0.554 0.513 0.307 0.598
Memorya 1 12 Months 1.000 0.554 1.243 0.734 0.845 0.539 0.638
Memorya 4 12 Months 1.397 0.873 0.762  
Memorya 7 12 Months 1.085 0.501 1.481 0.754 0.820 0.569 0.693
Memorya 8 12 Months 1.260 0.392 1.018 0.520 0.424 0.270 0.638
Memorya 1 24 Months 1.000 0.539 1.201 0.713 0.799 0.508 0.636
Memorya 4 24 Months 1.269 0.916 0.839  
Memorya 7 24 Months 1.135 0.496 1.128 0.561 0.560 0.315 0.562
Memorya 8 24 Months 1.265 0.375 1.074 0.540 0.431 0.292 0.677
Languagea 5 Baseline 1.000 0.503 1.000 0.709 0.755 0.503 0.666
Languagea 9 Baseline 1.339 0.674 1.000 0.450 0.657 0.203 0.308
Languagea 10 Baseline 1.481 0.745 0.556  
Languagea 11 Baseline 1.454 0.732 1.000 0.495 0.781 0.245 0.314
Languagea 12 Baseline 1.365 0.687 1.000 0.467 0.690 0.218 0.316
Languagea 5 6 Months 1.000 0.493 1.071 0.759 0.819 0.576 0.703
Languagea 9 6 Months 1.458 0.719 1.348 0.607 0.886 0.368 0.416
Languagea 10 6 Months 1.743 0.860 0.739  
Languagea 11 6 Months 1.308 0.645 1.176 0.582 0.755 0.339 0.449
Languagea 12 6 Months 1.588 0.783 0.809 0.377 0.756 0.142 0.188
Languagea 5 12 Months 1.000 0.593 1.060 0.751 0.915 0.564 0.616
Languagea 9 12 Months 1.173 0.695 1.346 0.606 0.851 0.367 0.432
Languagea 10 12 Months 1.603 0.950 0.903  
Languagea 11 12 Months 1.238 0.734 0.911 0.451 0.742 0.203 0.274
Languagea 12 12 Months 1.435 0.851 0.884 0.412 0.894 0.170 0.190
Languagea 5 24 Months 1.000 0.718 0.734 0.520 0.786 0.270 0.344
Languagea 9 24 Months 1.044 0.750 0.919 0.414 0.734 0.171 0.234
Languagea 10 24 Months 1.295 0.930 0.865  
Languagea 11 24 Months 1.160 0.833 0.832 0.412 0.863 0.170 0.197
Languagea 12 24 Months 1.247 0.896 0.578 0.270 0.875 0.073 0.083
Languageb 2 Baseline 1.000 0.376 1.000 0.669 0.588 0.448 0.761
Languageb 5 Baseline 1.369 0.515 1.000 0.702 0.758 0.493 0.650
Languageb 10 Baseline 2.013 0.756 0.572  
Languageb 11 Baseline 1.930 0.725 1.000 0.531 0.808 0.282 0.349
Languageb 12 Baseline 1.878 0.706 1.000 0.440 0.692 0.194 0.280
Languageb 2 6 Months 1 0.531 0.981 0.656 0.712 0.430 0.604
Languageb 5 6 Months 0.888 0.471 1.080 0.759 0.798 0.576 0.722
Languageb 10 6 Months 1.602 0.850 0.722  
Languageb 11 6 Months 1.221 0.648 1.066 0.566 0.740 0.320 0.433
Languageb 12 6 Months 1.452 0.770 0.921 0.406 0.758 0.165 0.217
Languageb 2 12 Months 1.000 0.551 0.875 0.585 0.647 0.342 0.529

(continued)
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highest reliability on average was also that of naming and 
the lowest was that of commands.

The majority of variance in the memory subscale (Items 
1, 4, 7, and 8) was due to item specificity (ranging from 
56.2% to 75.2%). Because delayed word recall was chosen 
as reference, the latent state variables are the true state vari-
able of delayed word recall. The indicator-specific factors 
of the other indicators represent that part of the indicator 
that cannot be predicted by the reference indicator and is, 
therefore, not shared with the reference indicator (Eid & 
Kutscher, 2014). For example, 75.2% of the reliable infor-
mation provided by the orientation task at the first assess-
ment (i.e., 0.35/0.466) corresponded to the true state score 
of orientation that was not shared with the other indicators. 
For language, using comprehension of spoken language as 
the reference indicator, we observed more heterogeneity in 
the specificities of the items (ranging from 0.073 for spoken 
language ability to 0.576 for naming).

Supplementary Table 4 (available online) shows the 
standardized Pearson correlations between the indicator-
specific latent variables and the correlations of the latent 
state variables, also known as latent stability coefficients 
(see Eid & Kutscher 2014). For memory, the correlations 
between the indicator-specific variables were in the major-
ity low–moderate, ranging from 0.318 to 0.445. For lan-
guage, they ranged from 0.130 to 0.538. The correlations of 
the latent state variables were in the majority strong, rang-
ing from 0.771 to 0.878 for memory and from 0.671 to 
0.870. On this measure, higher correlations indicate smaller 
interindividual differences in intraindividual change. In 
terms of attrition, the lowest covariance coverage (i.e., per-
centage of people with nonmissing values on the variable or 
pair of variables) was 47.2%, which is more than minimum 
covariance coverage of 10% used by Mplus to interrupt the 
analysis (see Supplementary Table 5, available online).

Discussion

Longitudinal invariance testing is commonly conducted in 
psychological assessments (Chan et  al., 2015; McFall 
et al., 2015), but it has been applied scarcely to neurologi-
cal instruments, limiting our comprehension about whether 
those tools track progression accurately when researchers 
use their summed scores in ordinary statistical testing. 
Among mild AD patients, under traditional invariance test-
ing, even configural invariance, which is the most funda-
mental and least restrictive level of invariance (Cheung & 
Rensvold, 2002; Eid & Kutscher, 2014), was not achieved 
for the ADAS-Cog 11 structure, or for an updated factor 
structure based on item response theory, under a three cor-
related factors solution. The majority of the models (identi-
fied specifically in Table 2) showed correlations between 
the latent factors higher than one, which are not admissible; 
even the simplest models with only two latent variables 
were problematic. After adding item-specific effects, two 
language subdomain models and one memory subdomain 
model achieved configural and metric invariance across 
four time points. In these cases, rank-order comparisons 
(e.g., between subjects or within subjects over time) might 
be valid; however, little support for scalar invariance was 
achieved, suggesting that mean-level comparisons might 
be discouraged even for these subscales.

A necessary condition for a CFA solution is that both the 
input variance—covariance matrix (i.e., coming from the 
data) and the model-implied variance—covariance matrix 
(i.e., based on the two ways the models were specified) are 
positive definite. The improper empirical solutions obtained 
here suggest that the specified models are very different 
from the structure that the data would support.

Failure to achieve longitudinal configural invariance 
casts doubt on the adequacy of the ADAS-Cog general 

Domain Item Visit

Loadings

Reliability
Indicator 
specificity

Indicator 
specificity/
reliability

Latent State Variable Indicator Specific Variable

Unst. Stand. Unst. Stand.

Languageb 5 12 Months 1.070 0.590 1.077 0.756 0.920 0.572 0.621
Languageb 10 12 Months 1.724 0.951 0.904  
Languageb 11 12 Months 1.319 0.727 0.869 0.461 0.742 0.213 0.286
Languageb 12 12 Months 1.557 0.859 0.910 0.401 0.898 0.161 0.179
Languageb 2 24 Months 1.000 0.683 0.761 0.509 0.726 0,.259 0.357
Languageb 5 24 Months 1.041 0.711 0.780 0.548 0.806 0.300 0.373
Languageb 10 24 Months 1.374 0.939 0.882  
Languageb 11 24 Months 1.225 0.837 0.747 0.397 0.857 0.158 0.184
Languageb 12 24 Months 1.307 0.893 0.623 0.275 0.873 0.076 0.087

Note. Uns. = unstandardized; stand. = standardized.
aSpecified as per (Verma, Beretvas, Pascual, Masdeu and Markey, 2015).
bSpecified as per the ADAS-Cog 11 and ADAS-Cog 13.

Table 4. (continued)
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score and subdomain scores to capture meaningful changes 
over time. Without meeting invariance criteria, the assump-
tions underlying conventional statistical approaches (e.g., 
paired t tests, repeated measures analyses of variance, gen-
eralized estimating equations, etc.) are violated, and com-
paring means over time may be misleading (Cheung & 
Rensvold, 2002). The ADAS-Cog score and estimates of its 
trajectory might be biased because the covariances between 
the items are not equal from visit to visit. In other words, the 
association between the items (test scores) and the latent 
factor (performance on that occasion) are inconsistent over 
time. Moreover, the reliable variance (the part of the score 
that is truly related to a person’s performance on a given 
visit) is also not consistent between visits. These problems 
may lead to differences in ADAS-Cog scores from one visit 
to the next that do not reflect the magnitude of the change in 
the underlying feature(s) that the ADAS-Cog is intended to 
measure.

Only one study to our knowledge mentioned the use of 
longitudinal invariance of the ADAS-Cog using data from 
ADNI (Dowling et al., 2016). The results from longitudinal 
invariance were not shown explicitly; however, it might be 
noted that a maximum likelihood estimator appears to have 
been used for the main analysis of the article (Akaike infor-
mation criterion, Bayesian Information criterion were pre-
sented), so it might intuited that the ordered-categorical 
items of ADAS-Cog (e.g., those from language and praxis 
subscales) were treated as continuous variables, which can 
lead to bias in the estimation of the factor loadings 
(Rhemtulla et al., 2012). Moreover, some of the analyses of 
Dowling et  al. (2016) were conducted using a complete-
cases approach, which requires strong assumptions regard-
ing a missing completely at random mechanism (White & 
Carlin, 2010), and which might generate selection bias. In 
that study, the model of change fit indices might be consid-
ered to indicate that further adaptations in model specifica-
tion would be beneficial (Schermelleh-Engel et al., 2003). 
In agreement, we hypothesized that item-specific effects 
may play an important role.

To deal with the configural issues in the traditional mod-
els, the addition of item-specific factors into the language 
and memory models returned models that fit the data well; 
however, they failed to achieve strong invariance. The pres-
ent findings empirically demonstrate that each item, even 
within the same subdomain, works differently, having an 
important amount item-specific variance. In other words, 
neither the memory nor language items reflected uniform 
constructs, but rather they captured distinct components 
that progress differently in AD. The small correlations 
observed between the items (seen visually in Figure 3) indi-
cate that they share little information, consistent with the 
strong item-specific effects observed. Over time, the corre-
lations between the items increased, albeit to at most a mod-
erate correlation at the final visit; the increase in the 

correlation across time is often attributable to practice 
effects (Duff, 2012), which have been described in people 
with mild cognitive impairment (Calamia et al., 2012). The 
results in toto suggest that even within the same subdomain, 
the items did not measure the same phenomenon. In this 
context, the principle of aggregation (Rushton et al., 1983), 
where the sum of the items would have greater reliability 
than any individual item alone, is not applicable. Instead, 
summing to create an aggregate score will result in a con-
siderable loss of information, and it may introduce unin-
tended bias. Statistically, the different scaling features (i.e., 
ordinal items for language and praxis vs. continuous mea-
sures for memory items) pose conceptual problems in creat-
ing a general score from their sums, which also argues that 
they might be best considered individually.

Our second set of models (i.e., those taking into account 
item-specific variances), supported reasonable reliabilities 
for many of the ADAS-Cog items; however, those models 
revealed that the majority of the reliable variance in mem-
ory was accounted for by the use of the same items over 
time, rather than the construct that the items intended to 
measure at each visit, casting doubt on their ability to track 
meaningful change over time. For instance memory Items 1 
and 4 had reliabilities consistently greater than 0.6 across 
the four visits, but less than half of that variance was related 
to change in the overall construct of memory over time. The 
reliabilities of the language items were generally acceptable 
(i.e., higher than 0.7) with the exception of Items 9, 10, and 
12 at the baseline assessment; however, the amount of 
information specific to each item was inconsistent over 
time (e.g., for Item 12, from baseline to the fourth evalua-
tion, it declined from 32% to 8% and for Item 5, which had 
more item-specific information at baseline, it declined from 
67% to 34% at the fourth visit), and Items 5, 9, and 11 
increased their item-specific variance from baseline to the 
second visit. In examining indicator-specific effects, very 
low latent variable correlations in the matrix of indicator-
specific variables indicated that there were small differ-
ences between people in their trajectories over time using 
the language and memory subscales. For this and the rea-
sons aforementioned, general aggregate ADAS-Cog or sub-
scale scores (summing the items) might be discouraged 
when tracking change over time. Instead, the most relevant 
individual items might be evaluated separately over 
repeated assessments.

Considering each of the items individually would pre-
serve the information they contain, which may be more reli-
able than total scores derived from their sum; but even so, 
for any given item, the amount of information that is related 
to a person’s enduring/consistent capabilities versus their 
trajectory of decline in performance or effort at a given visit 
might be uncertain. In a practical sense, a prespecified single 
item endpoint might be chosen or correction for multiple 
comparisons (e.g., multivariate analysis of covariance or 
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false discovery rate correction) might be necessary to con-
trol Type I error. Here, we modelled effects specific to each 
item over time, but still more sophisticated models might 
estimate trait change, occasion-specific effects, and accumu-
lated situational effects simultaneously in order to more spe-
cifically disentangle the information that is related to a 
person’s cognitive trajectory (Eid et al., 2017).

In the field of AD, there is considerable interest in iden-
tifying sensitive and meaningful outcomes for monitoring, 
and for use in clinical trials, including surrogate biofluid 
biomarkers, neuroimaging volumetrics, neuropsychologi-
cal measures, activities of daily living scales, neurophysio-
logical/functional brain parameters, amyloid in the lens of 
the eye, ecological functional outcomes, or actigraphy data 
(Frisoni et al., 2019), an approach consistent with the amy-
loid-tau-neurodegeneration framework proposed by Jack 
et al. (2018). It has been suggested that aggregation of mul-
tiple measures within or across these domains might be use-
ful to eliminate the noise inherent in each individual 
measure, resulting in more robust or precise estimates of the 
trajectory of decline. Including different measurements 
(biomarker, imaging, and scales) adds a new type of infor-
mation that might be controlled for by regression of method 
effects. Different models are available to disentangle trait 
features and methodological features, (Eid et al., 2003; Eid 
et  al., 2008) which might be extended into longitudinal 
designs for this purpose (Geiser et al., 2010). We and others 
have found reliable aggregate estimates via CFA for differ-
ent types of measures in AD (e.g., inflammatory/immuno-
logical; Swardfager et al., 2017; Bawa et al., 2020), but the 
behavior of these measures over time has not been evalu-
ated. The principles and methods applied here might also be 
considered in the development of composite surrogate trial 
outcome measures, to gain some insight into how repeated 
measures using those instruments would track change prior 
to their use in trials.

As a potential limitation, the data examined here describe 
the natural course of AD over 6 or 24 months; however, 
some clinical trials involve more repeated measures over 
shorter outcome windows. To establish generalizability in 
that context, evaluation of repeated measures trial data over 
a shorter timeline would be useful; however, in the present 
study, the instrument failed to achieve basic invariance 
between two measurements over 6 months among 341 
patients with mild AD consistent with the size and duration 
of many clinical trials for AD (Birks & Harvey, 2018; 
McShane et al., 2019), suggesting that using this instrument 
even over short windows of observation could be problem-
atic. Because the second, more flexible modeling approach 
assumes a unidimensional structure, we were unable to 
apply it to the ADAS-Cog three-correlated factors models 
because such complexity increases offending estimates 
such as those observed for the total scale, even over two 
visits 6 months apart. As a further limitation, we did not 

conduct partial scalar invariance testing (Van de Schoot 
et al., 2012). Although that approach might improve model 
fit indices, perhaps achieving scalar invariance for the Eid 
et al.’s (2014; Eid et al., 2016) models, improvement in the 
fit of these models would not dismiss the marked heteroge-
neous item-specific effects observed. Last, because the dif-
ferent natures of items necessitated different estimators 
(i.e., for categorical items, WLSMV; for continuous, MLR; 
and for mixtures of continuous and ordered-categorical 
items, WLSMV), missing data have been handled differ-
ently, and different mechanisms of missingness have been 
assumed.

Conclusion

Using a large dataset from an observational study, we failed 
to provide evidence that the ADAS-Cog or its subscales 
achieved invariance in mild AD over time frames of 6 or 24 
months. As dementia in this population progressed over 
time, the measurement properties of the ADAS-Cog also 
changed. Achieving scalar invariance is the minimal 
requirement to allow ordinary mean comparisons over time 
using procedures such as paired t tests or repeated measures 
ANOVA. Applying models that relaxed the assumption that 
the trajectories of the items would be stable or uniform 
revealed heterogeneous item-specific effects, some of 
which were strong. For this reason, mean comparisons of 
their sums in statistical tests is likely to produce unreliable 
inferences. The use of ADAS-Cog total or subscale scores 
to track trajectories of cognitive decline over time might be 
reconsidered.
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