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Abstract: This research examines the economic impact of climate change adaptation measures on the
housing markets of two representative coastal cities in the United States located along the Atlantic
Ocean. The results shed light on how adaptation measures and investments influence housing values
and local real estate markets with respect to their place-based and local forms of implementation.
Numerous quantitative approaches, with the use of geospatial data, panel-data hedonic regressions,
and difference-in-differences analyses, are used to examine changes in property values associated
with climate adaptation measures and the dynamics of risk perception. The results also signal how
risk perception and hurricane characteristics are reflected in housing markets, thereby shedding
light on the effects of anticipatory and reactive adaptation strategies on property values in these
coastal communities. Collectively, the study suggests which adaptation strategies and characteristics
can contribute to maximizing both community resilience and economic benefits against the weather
extremes caused by climate change.

Keywords: climate change adaptation; hurricane characteristics; risk perception; housing price;
hedonic pricing; difference-in-differences

1. Introduction

As climate change accelerates, extreme meteorological events such as coastal floods and storm
surges are occurring more frequently and with greater intensity [1]. According to the National Oceanic
and Atmospheric Administration (NOAA), in 2017 alone, Hurricane Harvey caused total damages in
the amount of $125 billion in the United States (US). In that same year, Hurricane Irma destroyed 25%
of buildings in the Florida Keys. Moreover, the frequency of billion-dollar disaster events in the past
five years doubled from the average frequency between 1980 and 2016 [2].

Despite increases in disruptive climatic risks, coastal population density is growing, fueled by
the positive effects of coastal amenities [3] and flood insurance subsidies [4], and it is now nearly
three times that of the hinterlands over the past half-century [5]. This paradoxical phenomenon—the
spatial coexistence of urban growth and risk increase—led to an exponential increase in vulnerability
to climate risk.

To alleviate problems caused by this paradox, many coastal cities are allocating a considerable
amount of their budgets toward climate change adaptation projects, including planned retreat, nearshore
armoring, and ways of enhancing adaptive capacity. Among the strategies that were widely discussed
over the last half century, however, retreat and relocation options are seen as highly unfavorable on the
basis of the financial burden, legal conflicts, and numerous other socio-cultural issues these strategies
require [6]. By contrast, on-site adaptation measures are gaining more popularity, since these allow
homeowners to keep coastal amenities and local place identity, whilst curbing potential asset and
cultural value degradation due to climate change [7–10].
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However, the existing literature pays insufficient attention to measuring the economic effects of
these on-site climate adaptation measures. This is primarily due to factors such as the unpredictability
of the risks in time and space, locally different disaster preparedness capacities, and the subjective
nature of climate risk perception [11]. Furthermore, the reactive nature of adaptation projects—climate
adaptation decision-making is mostly based on past climate events—prevents evaluating already
implemented adaptation projects until the next climate event [12].

Such complexity aside, identifying the economic effects of adaptation measures on real estate
markets is necessary, due to the significant share of the housing market in the urban economies, as well
as the view of pragmatic economic dimensions concerning existing urban infrastructures. During the
past half-century, a severe storm impacted Miami-Dade County (MDC) every two years and New York
City (NYC) every five years [13,14]. Due to the storm intensity and frequency, Miami-Dade County
and New York City spent more than $326 million ($18 per capita per year) and $1.6 billion ($38 per
capita per year) for on-site adaptation projects from 2012 to 2016 [15,16]. Thus, the study areas, having
high storm occurrences and high climate adaptation budgets, serve as clear subjects for analyzing the
effects of adaptation measures.

Using data on 169,958 single-family housing sales (MDC: 79,181 and NYC: 90,777) from July 2009
to May 2018 in these two sites, I employed a hedonic pricing model and difference-in-differences (DID)
framework to examine the economic impact of climate change adaptation measures on the housing
markets, with risk perception factors and individual storm characteristics.

I found a positive effect of structural elevation and green infrastructure on the value of nearby
housing in both regions. Adaptation measures for storm surges provide a particularly strong impact on
housing price appreciation. By contrast, properties near public building reinforcement and equipment
retrofitting projects, hurricane shelters, or adaptation projects for wind protection show no evidence of
such effects. The results, thus, provide quantitative evidence that supports the ongoing debates on the
economic efficacy of climate change adaptation measures, contributing to improving the effectiveness
of future adaptation policies and urban resilience strategies in coastal areas.

2. Literature Review

A number of studies identified the effects of coastal amenities on housing markets. The majority
of the literature suggests that property values are positively related by proximity to the coast because of
the amenity effects (such as ocean views and accessibility to beaches) and are particularly strong within
500 feet of the coastline [17]. Pompe [18] found that ocean views add approximately 45% to housing
values on Seabrook Island in South Carolina. Similarly, Benson, et al. [19] confirmed that ocean view
quality differentiates a sales price premium. Landry and Hindsley [20] found that the influence of
beach quality on local property values is significantly positive within 1000 feet. Gopalakrishnan, et
al. [21] suggested that beach width is strongly associated with property value increase.

In contrast to the positive impacts of these coastal amenities, risks associated with major storms
typically have adverse impacts on housing prices. Bin and Polasky [22] indicated that flood risk
decreases market values, and the effect is substantially larger post storm occurrences than prior.
Higher flood risk probability is associated with housing price decreases [23,24]. Hallstrom and
Smith [25] confirmed that risk information without any physical harms decreases housing prices by
19%, which is similar to the effect in areas that have significant storm damages. This is not only
because physical damages occurred, but also because of the perceived risk’s negative effect on property
value [26]. Similarly, Kousky [27] indicated that damaged infrastructure or the stigmatizing of an area
as “risk-prone” after a disaster can also influence property values outside of a floodplain.

These adverse impacts of risk probability and information are influenced by human cognitive
perspectives. Otto, et al. [28] suggested that a newer risk experience affects individuals’ response
to future risks by modifying their true risk perception. Meyer, et al. [29] found that perceived risk
between before and after a hurricane strikes can be altered by “hindsight.” This cognitive tendency
leads homeowners to underestimate the actual threats of hurricanes, resulting in a failure of adequate
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storm preparation. Pryce, et al. [30] indicated that risks can be influenced by discounting risk cognition
of anticipated future events (myopic tendency about unrealized risk) while forgetting past events
over time.

With respect to storm idiosyncrasies, hurricane characteristics can also play a significant role
in housing market dynamics. Ewing, et al. [31] discovered that windstorms adversely influence
housing prices by 1.5% to 2% promptly after the storm events. On the contrary, Meyer, Baker, Broad,
Czajkowski and Orlove [29] found that wind speed of hurricanes is overestimated while the flooding
is underestimated because the current hurricane warning system (i.e., the Saffir–Simpson Hurricane
Scale) largely relies on wind power.

Regardless of the individual storm characteristics, a major storm occurrence can directly affect
local market dynamics. Murphy and Strobl [32] indicated that major storms have a positive influence
on housing values temporarily because of the shortfall of available housing supply immediately after
a hurricane occurrence. Conversely, Beracha and Prati [33] argued that both home sales volumes
and prices decline within several months post hurricane and rebound to the prices before the event.
Although a large body of literature suggests that the adverse effect of hurricanes on housing prices
is generally transitory [34–36], this negative impacts can be prolonged for years depending on local
market economies [37,38].

Several hurricane-specific studies also support the market impacts of the major storms. Komarek
and Filer [39] found that hurricane Irene (2011) negatively influenced residential real estate markets at
a localized level in southeast Virginia, and the effects were differentiated by floodplains (100-year vs.
500-year floodplains). Similarly, Ortega and Taspinar [36] found that properties that were damaged by
Sandy in 2012 suffered a significant price drop in NYC by 17–22% immediately following the hurricane.
Properties in a flood hazard zone that were not damaged by Sandy also showed a price penalty by
8% in the year 2017 due to increased risk perceptions of the natural disaster [36]. From the study
on hurricanes Irene (2011) and Sandy (2012), Botzen, et al. [40] indicated that past experiences with
flooding, rather than the flood probability, have a large influence on flood risk perceptions.

Relatively few studies were developed identifying the economic effects associated with on-site
adaptation measures. Fell and Kousky [41] found that levee-protected commercial properties sell for
approximately 8% more than similar properties in 100-year floodplains without such protection. Jin,
Hoagland, Au and Qiu [8] indicated that single-family homes located behind a seawall within 160 feet
of waterbodies have a 10% price appreciation due to anticipated risk reduction against inundation.

Quantitative studies of valuing green infrastructure and private adaptive measures on housing
prices are mostly limited. Watson, et al. [42] roughly suggested that wetlands reduce flood damage by
54–78%. Green, et al. [43] argued that green infrastructure supports enhancing insurance value by
reducing vulnerability and the costs of hard infrastructural adaptation to climate change. Natural green
infrastructure can be more cost-effective than engineering approaches from a long-term perspective,
since they generally have self-maintaining capacities and can host other ecosystem services [44,45]. In
terms of private adaptive measures, McKenzie and Levendis [46] found that elevation has a positive
relationship with sales prices, particularly in low-lying areas, and this elevation premium is pronounced
after a high-powered storm. Fortifying building structures by implementing stricter building codes
and reinforcing homes against major hurricanes yields a price premium [47].

Although coastal communities can reduce their risk exposure by investment in buildings and
infrastructural resilience, it would be difficult to achieve long-term adaptive effects to climate change
only with these approaches. Since limited budgets and resources prioritize certain climate adaptation
projects in certain areas, poorer communities may be further marginalized by the risk exposure [48].
Thus, “addressing the social structural causes of vulnerability is essential” by enhancing adaptive
capacity, which is “often associated with access to technology, high education levels, economic equity,
and strong institutions” [49]. To maximize climate adaptation efforts, then, cities and local governments
would need to include both the infrastructural adaptation and the adaptive capacity.
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3. Data

This study investigates the impacts of climate adaptation measures using single-family housing
transaction data in MDC and NYC from July 1, 2009 to May 31, 2018. The study combines four
large datasets from MDC, NYC, the Federal Emergency Management Agency (FEMA), and the
National Oceanic and Atmospheric Administration (NOAA); datasets include property transaction
data, neighborhood and amenity characteristics, and historical hurricane tracks and storm reports.
Local market statistics such as unemployment rates, housing vacancy rates, and median household
incomes are provided by the US Census Bureau.

3.1. Housing

The housing transaction data include typical structural information such as building square
footage, lot size, building age, story, building occupancy status, and transaction prices with sales dates.
Since the spatial coordination of each property is excluded in the NYC dataset, the addresses of each
property were manually batch-geocoded with ArcGIS. Outliers (15,717 in MDC and 7541 in NYC)
were excluded, such as homes with more than eight bedrooms, lot sizes greater than five acres, zero
transaction price, and inflation adjusted price less than $60,000 or more than $10 million. Consequently,
a total of 79,181 and 90,777 single-family housing units in MDC and NYC, respectively, are analyzed in
this study. Of the dataset, approximately 24.6% in MCD and 16.5% in NYC were repeated sales.

To capture location-specific unobserved factors, the transaction data were clustered by 270 and
1186 census tracts in MDC and NYC, respectively. Housing sales prices were seasonal index-adjusted
prices. The inflation is also adjusted to January 2018 prices using each region’s monthly consumer
price index for housing. The average adjusted sales prices were $459,000 in MDC and $614,000 in NYC.
About 70% of all transactions were within price ranges between $150,000 and $800,000 in MDC, and
between $300,000 and $800,000 in NYC. The average age of housing structures in NYC (around 74
years) is about 24 years older than that of MDC (around 50 years per structure). A typical lot size in
MDC is three times larger than that of NYC, but the average number of stories in NYC is twice as
high as MDC. Approximately 80% are owner-occupied properties for both regions. Only about 7% (in
MDC) and 1% (in NYC) of homes are bay-view properties.

3.2. Major Storms

A total of four major storms directly influenced MDC, and three storms impacted NYC from
July 2009 to May 2018 (Figure 1). Each hurricane, with a homogeneous direction from the ocean
to land, was large enough to impact the entirety of each region. However, the local impacts and
associated risks should be dependent upon hurricane characteristics. For example, it is plausible that
a higher probability of flooding from a hurricane that contains higher rainfalls can be anticipated.
However, it is not always the case due to interactions with other factors, such as rainfall durations with
forward-moving speed and drainage conditions in an area, for example. Thus, in order to identify
the effects of storm characteristics on housing prices more precisely, three types of the most common
and economically measurable elements (i.e., wind, flood, and storm surge), which describe each
individual hurricane in the National Hurricane Center’s tropical cyclone reports, are used in these
analyses. Human casualty and damage amount were excluded in this study, as the human casualty
is economically unmeasurable, while the damage amount is too extensive because it is generally
aggregated at the state and/or even national level.
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3.3. Risk Perception Factors

Since human cognitive processes largely influence the risk perception [50], I included the five
factors (compression bias, anchoring effect, risk fadedness, miscalibration, and representativeness) to
estimate risk perception relating to natural hazards in this study. These factors were reclassified from
common intuitive biases which were identified in empirical risk perception studies [30,51–53].

Bogardus Jr, Holmboe and Jekel [53] classified four typical biases as compression bias
(overestimating rare risks and underestimating common ones), availability heuristics (relying more
on risk information that is more easily recalled), anchoring bias (the tendency to rely heavily on
initial piece of information), and miscalibration (overconfidence about given facts). Rohrmann and
Renn [52] additionally described the concepts of representativeness (the tendency to use heuristics to
reach decisions efficiently) and cognitive dissonance (the propensity to seek consistency when new
information is contrary to their beliefs) as a common intuitive bias of risk perception. Pryce, Chen
and Galster [30] proposed the concept of myopia (discounting perceived risks from anticipated future
disasters) and amnesia (forgetting past events over time) in their study analyzing the impact of floods
on housing prices.

Compression bias refers to the human’s propensity to exaggerate rare risks and underestimate
recurring risks. In this case, a less frequent storm experience would have a greater impact on housing
prices. In order to identify the compression bias for this study, I constructed storm frequency data
from calculating the total number of storms that a homeowner experienced during the holding period.
Anchoring bias can be measured by storm intensities that occupants experienced. Since the intensity of
storms can be an “anchoring’ factor in risk perceptions, I used the strongest hurricane category (which
is based on wind speed) that a homeowner experienced during the holding period, regardless of the
storm frequency [54]. Amnesia effect is renamed risk fadedness in this study because the perceived
risk fades over time, rather than being completely erased at a certain point. This human bias suggests
that risk perception would be much stronger immediately after a hurricane strikes, then gradually
fading. To identify this risk fadedness effect, I created the elapsed periods between the previous storm
strikes and home sales transaction dates for each property [55]. Insurance information represents
miscalibration bias because homeowners can be overconfident about flood insurance and, thus, could
also have an influence on the individual risk cognition. To measure this bias, I added a dummy variable
that indicates flood insurance requirements for individual properties based on the flood insurance
rate map (FIRM). Adaptation information can be another important factor in estimating the effects of
representativeness bias. Similar to the precedent studies on whether risk information without actual
damage can also impact housing prices [25], personal heuristics about adaptation projects can be a
considerable factor. Therefore, expected project information without actual completion or rumors
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even before announcing an adaptation project can influence adjacent property values. To estimate
the project information effect, I included another binary variable that identifies the sales transactions
between the initial announcement and actual completion dates of the adaptation projects.

Meanwhile, availability bias and cognitive dissonance are not used in this study, because they are
insignificant for this study due to the relatively short study period with small storm samples. Although
myopia may impact on future home values with calculating probability [30], this bias is less related to
natural hazard risks due to the uncertain nature of climate disasters.

3.4. Climate Change Adaptation

According to Miami-Dade County Emergency Management Office and New York Rising
Community Reconstruction, a total of 305 ($326 million) and 327 ($1.62 billion) individual adaptation
projects were implemented in each region during the study period (Figures 2 and 3). The individual
project information includes project types and locations, initiation and completion dates, adaptation
goals (i.e., which hazard to be addressed), construction stages, project costs, and detailed project
descriptions. In order to analyze the effects of the implemented adaptation measures, I reclassify the
individual projects into 10 categories (Figure 4).
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Figure 2. On-site adaptation measures in Miami-Dade County (MDC). Note: Each circle represents the
ped-shed distance of a 400-m radius from hard and green infrastructure, emergency preparedness, and
individual projects.

The first is “infrastructural adaptation.” This project type includes hard infrastructure construction
such as levees and storm barriers. Since the effects of existing infrastructure would already be reflected
in housing prices, only newly added projects are considered in this subcategory. The second adaptation
type is “public reinforcement” and includes all projects related to public service building (critical
facilities) and infrastructural (e.g., elevating roadways) reinforcements. The third type is “drainage
improvement.” Erosion control and stormwater system improvement fall into this subcategory. The
fourth type is “green infrastructure.” Improvement of coastal barrier resource systems (CBRS), such
as wetlands, lagoons, and salt marshes, as well as green space restoration and beach nourishment,
is included in this subcategory. The fifth type is “adaptation facility” and includes provision of new
critical facilities to prepare future events. The sixth type is “equipment retrofitting” and includes
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on-site power generators and installation of pump stations. The seventh type is “hurricane shelter”
and includes both existing and new hurricane ready shelters. The eighth and ninth types are based
on floodplain revision, but the eight type is elevating housing structure while the ninth type is a
modification of the base flood elevation (BFE) by land (based on FEMA’s Letter of Map Revision). The
last type is “private building reinforcement” such as installing hurricane shutters, storm panels, and
individual property-specific drainage improvements, as well as elevating building foundation by their
own expenses.Sustainability 2020, 12, x FOR PEER REVIEW  7 of 20 
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4. Method

This study uses a panel data hedonic pricing model and the DID. Hedonic pricing is an economic
technique that decomposes a property’s sale price into a set of non-market characteristics, thereby
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quantifying the effects of the inherent attributes associated with the property on housing sales
price. I applied this pricing model to estimate the impacts of climate change adaptation measures
on single-family housing transaction prices in MDC and NYC over the last decade. Due to the
foreseeable effects of risk dynamics, this study also includes risk perception factors and individual
storm characteristics. A semi-log model is widely adopted in the hedonic literature [56]. In addition,
due to expected nonlinear effects and the overall site characteristics in this analysis, the multiple
semi-log regression model is most suitable for examining the effects of climate change adaptation
measures on property values. However, the coefficients in the hedonic pricing model could be biased
due to omitted variables and misspecification [57]. To adequately support the empirical criteria, I
additionally use the DID specification with detailed adaptation project data to identify the treatment
and control groups.

From the adaptation policies based on storm characteristics, it would be interesting to identify the
adaptation effects on housing prices by project goals (e.g., what hazard to be addressed). I included
additional adaptation classification by recalibrating the adaptation projects based on hazard types to
be addressed (Figure 4). The rest of this section is organized as follows: Section 4.1 illustrates how the
storm impacts on housing markets are estimated by the hedonic pricing method. Sections 4.2 and 4.3
describe different methods (hedonic pricing model vs. DID framework) for ensuring robustness to
measure the effects of adaptation measures on housing prices.

4.1. Storm Impacts on Housing Markets

The first model is to examine whether storms impact housing prices or not. Regardless of storm
impacts on housing prices, risk perception factors may still influence the impacts of adaptation policies
on housing prices. However, the pricing effects of storms may influence risk perceptions that are
reflected in people’s economic decisions. Thus, the common trend assumption of storm impacts on
housing prices should be tested first. To estimate this pricing trend, I constructed specific sales time
windows after each storm. As a rule of thumb, damage recovery generally takes about five months
in the study areas, and the housing market remains relatively slow-moving [58,59]. I set the market
impact intervals for every 150 days. For example, the first sales window includes all transactions
between 30 and 150 days after each storm. The second window includes the transactions occurring
between 150 and 300 days after an event. Since a given housing sales transaction typically takes
around one month on average, the transaction decisions immediately after storm strikes would not be
related to the storm experiences. Thus, the transactions within 30 days after storms were excluded
from the first sales window. The equation of the first model for estimating storm effects in different
sales windows is specified as follows:

ln Pict = α0 + α1Xi + α2Ni + α3Mizy + α4Stormt + wc + cy + εict, (1)

where ln Pict is the natural log of the sales price (inflation and seasonality adjusted) of single-family
property i in census tract c in day t, Xi and Ni are vectors of house and location characteristics,
respectively (Table 1), Micy is a vector of market factors to property i in zip code z in year y, Stormt

represents housing transaction dummies representing the sales windows post hurricanes with 150-day
intervals (e.g., 30–150 days, 150–300 days, and 300–450 days), wc represents the census tract fixed
effects, cy includes year fixed effects, and εict is the error term. In all models, the standard errors are
clustered at the census tract level.
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Table 1. Definition and summary statistics of key variables.

Variables MDC
(n = 79,181)

NYC
(n = 90,777)

Mean SD Mean SD

Price Sales price of single-family home ($100,000) 4.10 5.45 6.03 5.22

Storm impact periods
H30-150 1 if a home sold between 30 and 150 days post-hurricanes 0.127 0.332 0.099 0.299
H150-300 1 if a home sold between 150 and 300 days post-hurricanes 0.145 0.352 0.124 0.330
H300-450 1 if a home sold between 300 and 450 days post-hurricanes 0.110 0.313 0.133 0.340
H450-600 1 if a home sold between 450 and 600 days post-hurricanes 0.101 0.301 0.128 0.334
H600-750 1 if a home sold between 600 and 750 days post-hurricanes 0.072 0.259 0.143 0.350

Storm characteristics
Wind Sustained wind speed (knots) 12.3 30.1 12.4 23.4

Rainfall Total amount of rainfall (inch) 1.10 2.36 1.00 2.10
Surge Storm surge heights of affected homes (feet) 0.079 0.463 0.217 0.467

Risk-perception factors
Frequency Number of hurricanes between buying and selling home 0.515 1.17 0.758 1.17
Intensity Strongest hurricane category that homeowners experienced 0.647 1.59 0.318 0.613

Fadedness Elapsed period of time from hurricane to housing transactions 37.1 89.0 29.7 83.1
Insurance 1 if an insurance purchase is required * 0.364 0.481 0.040 0.197

Information 1 if a home sold between project announcement and completion dates * 0.011 0.106 0.012 0.107

Adaptation projects
Infrastructure 1 if a home is located within ped-shed ** of new infrastructures* 0.005 0.067 0.021 0.143

Pub_Reinforce 1 if a home is located within ped-shed ** of public building
reinforcement projects* 0.001 0.032 0.013 0.113

Drainage 1 if a home is located within ped-shed ** of drainage projects* 0.027 0.162 0.010 0.097
Green 1 if a home is located within ped-shed ** of green infrastructures* 0.166 0.372 0.007 0.081

Facility 1 if a home is located within ped-shed ** of new public facilities* 0.001 0.023 0.001 0.024

Equipment 1 if a home is located within ped-shed ** of equipment
retrofitting/installation projects* 0.001 0.037 0.001 0.035

Shelter 1 if a home is located within ped-shed ** of hurricane shelters* 0.025 0.158 0.004 0.199
Bldg_Elev 1 if structure of home is elevated * 0.001 0.094 0.001 0.094
Land_Elev 1 if land of home is elevated * 0.005 0.069 0.003 0.166

Pri_Reinforce 1 if a home is reinforced by individual homeowners * 0.008 0.091 0.010 0.099

Adaptation goals
Adp_Wind 1 if a home is located within ped-shed ** of wind adaptation * 0.002 0.045 0.015 0.122
Adp_Flood 1 if a home is located within ped-shed ** of flood prevention * 0.182 0.386 0.002 0.039
Adp_Surge 1 if a home is located within ped-shed ** of storm surge projects * 0.020 0.139 0.007 0.081

* The variable is rated zero if the description is not met. ** Ped-shed, the pedestrian shed, defined as the area covered
by a five-minute walk, or 400-m radius [60].

4.2. Valuing Climate Change Adaptation Measures

The second and third models are to identify the risk perception and adaptation effects on housing
prices. The second model specification includes storm characteristics, the five risk-perception factors,
and the 10 adaptation project characteristics. The third specification uses the adaptation variables
reclassified by adaptation goals, instead of the adaptation variables used in the second model. The
basic equation of the second and third models for estimating adaptation measures along with storm
characteristics and risk-perception factors is as follows:

ln Pict = α0 + α1Xi + α2Ni + α3Mizy + α4Ht + α5Ri + α6Adaptationict + wc + cy + εict, (2)

where Ht is a vector of hurricane characteristics on day t and includes three major characteristics (wind
speed, rainfall amount, and height of storm surge), while Ri is a vector of the risk-perception factors to
property i. This attribute group includes storm frequencies to test compression bias, storm intensities
to estimate the anchoring effect, the elapsed date counts between previous storm strikes and home
sales for the effects of risk fadedness, a dummy variable for flood insurance requirement to measure
the miscalibration bias, and another dummy variable to distinguish homes sold between adaptation
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project announcement and project completion dates to estimate representativeness bias. Adaptationict
represents the 10 variables of the adaptation project characteristics and the three variables of the
adaptation goals (Table 1). To distinguish the effects of adaptation projects that were already completed
from the projects under construction at the point of sales transaction, I only include completed
adaptation projects prior to a housing sale. All other variables are the same as in the Equation (1).

4.3. Robustness Check: DID Estimation

To examine the evidence for the robustness of the hedonic regression results, I adopt the DID
approach. I construct the treatment and control groups by dividing housing samples based on the
spatial distance to the nearest adaptation project of each of the 10 adaptation project characteristics and
three adaptation goals. I choose the sample period to be all observations within a two-year window
around the completion date of adaptation projects, one year before and after. The model is set as
follows:

ln Pict = γ0 + γ1Adaptationi ×Opent + γ2Ki + wc + cm + εict, (3)

where Adaptationi is a dummy variable equal to one if a property i is near to the adaptation measures
and equal to zero otherwise, Opent is an indicator variable that takes a value of one for all sales
transactions after completion of adaptation projects and a value of zero before the adaptation projects,
the vector of covariates Ki refers to all other variables including structural variables, locational and
market variables, storm characteristics, and risk-perception factors, wc represents census tract fixed
effects, cm includes month fixed effects, and εict is the error term.

5. Results and Discussion

The regression results indicate that the relationship between the dependent variable and the
independent variables is strong (adjusted R2 = 0.79 for MDC and 0.57 for NYC). The majority of
the variables’ p-values are smaller than 0.05, and the joint hypothesis f-statistics on each attribute
group rejects the null hypothesis at the 1% level. Therefore, the panel data hedonic regressions are
statistically significant.

5.1. Structural and Locational Variables (Appendices A and B)

As anticipated, all of the housing structural variables have a positive relationship with transaction
prices. Larger building size and lot square footage, more stories, and recently built homes are associated
with a housing sales price increase. Proximity to subway stations, bus stops, and schools has a negative
relation to housing prices in MDC, but it is positively associated with home value increases in NYC.
Although the majority of empirical findings indicated that public transportation proximity is positively
associated with property value increases [61–63], the “net nuisance” effect can be caused by public
transportation, and school proximity penalty, such as traffic congestion and noise, could overshadow
the proximity benefits.

As expected, five-minute walkability to major commercial facilities, such as a major mall or
shopping center, in both regions, and green space view and bay-view variables in NYC have a positive
relation to home values. Brownfields are negatively associated with housing prices at 5% and 1%
significance levels in MDC and NYC, respectively. Higher unemployment and housing vacancy rates
are associated with housing price decreases in NYC, but they are statistically insignificant in MDC. I
surmise that more land availability in MDC (population density in MDC is 20 times lower than in
NYC) could influence the market variables.

5.2. Storm Impact on Housing Market (Table 2, Model 1)

The regression results show that hurricanes are strongly associated with housing price decreases.
The non-linear trends on storm impact periods in model 1 (Table 2) suggest that other external factors
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(such as market factors, risk perceptions, and efficacy of adaptation measures) may also affect the
housing markets.

The coefficient of H30-150 variable implies that single-family properties sold between 30 and 150
days after a storm strike sell at a 2.2% and 1.5% discount on average compared with homes sold in
the other period in MDC and NYC, respectively. The negative impact of the storm becomes positive
after five months following storm occurrences in MDC, while the adverse effects persist much longer
in NYC, lasting around one year and a half. This contradictory impact over time signifies that risk
perception and job market factors may be stronger than the power of housing market dynamics. If
hurricanes affect the local housing supply and demand, the coefficient of H30-150 should be positive,
due to the supply decrease caused by storm-induced property damages, but a negative result was
observed in this study. This result indicates that either the majority of hurricane-damaged properties
are still available in the market, or the local housing market dynamics are not much influenced by
hurricanes. However, two plausible factors (job market and risk perception) may explain that there are
negative impacts on housing prices during the first five months, followed by positive turns. Since
hurricanes cause demand shocks in the job markets [64], these unemployment shocks can trigger
increases in mortgage delinquency and foreclosure rates, resulting in housing vacancy escalation. The
economic decline caused by hurricanes deters the inflow of job seekers, and subsequently higher
unemployment rates can negatively impact the housing transaction prices. Another reason would
be that a stronger risk awareness makes people hesitate to buy in. Consequently, housing demand
decreases and, thus, housing prices drop for a few months.

Table 2. Summary results of hedonic regression (dependent variable: logged home value).

Independent Variables
Model 1 Model 2 Model 3

MDC NYC MDC NYC MDC NYC

Storm impact periods
H30-150 −0.022 ***

−0.015 **

H150-300 0.022 **
−0.036 ***

H300-450 0.014 −0.017 **

H450-600 −0.026 −0.034 ***

H600-750 0.027** −0.008

Storm characteristics
Wind 0.010 0.008 *** 0.010 0.008 **

Rainfall −0.036 ***
−0.048 **

−0.036 ***
−0.048 **

Surge −0.015 **
−0.032 **

−0.015 **
−0.031 **

Risk-perception factors
(Log)Frequency 0.057 ** 0.002 0.057 ** 0.001
Intensity −0.017 ***

−0.012 ***
−0.017 ***

−0.012 ***

(Log)Fadedness 0.003 * 0.005 * 0.003 * 0.005 *

Insurance 0.030 ***
−0.086 *** 0.033 ***

−0.083 ***

Information 0.019 0.014 0.020 0.018

Adaptation projects
Infrastructure 0.111 *** 0.039 *

Pub_Reinforce −0.059 0.006
Drainage 0.017 −0.011 ***

Green 0.077 ** 0.020 ***

Facility −0.091 0.007
Equipment 0.064 0.042 **

Shelter −0.002 0.019
Bldg_Elev 0.141 *** 0.117 ***

Land_Elev −0.077 −0.136 **

Pri_Reinforce 0.017 0.172 ***
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Table 2. Cont.

Independent Variables
Model 1 Model 2 Model 3

MDC NYC MDC NYC MDC NYC

Adaptation goals
Adp_Wind −0.033 0.014
Adp_Flood 0.040 * 0.017 ***

Adp_Surge 0.062 * 0.021 ***

Other variables Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Census tract fixed effects Yes Yes Yes Yes Yes Yes
Constant 6.811 *** 9.905 *** 6.639 *** 9.885 *** 6.716 *** 9.897 ***

N 79,181 90,777 79,181 90,777 79,181 90,777
Adjusted R2 0.793 0.569 0.793 0.572 0.793 0.571

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Each column reports the result from one regression with controls for space
and time fixed effects by census tract and year dummies. Other variables include structural and locational variables.
Standard errors are clustered at the census tract level. See Appendix for full regression results.

5.3. Storm Characteristics and Risk Perception Factors (Table 2, Model 2)

The majority of the storm characteristics and risk factors impact housing transaction prices. A
stronger storm surge and more rainfall are associated with housing sales price depreciation in the
two regions. Surprisingly, the results indicate that storms accompanying a higher wind speed have a
positive influence on housing prices in both regions, although it is statistically insignificant in MDC.
A plausible explanation is that the wind factor often influences a storm’s movement speed. It is
not always the case, but the forwarding wind speed is generally one of the factors determining the
movement speed. If the movement speed is slow, greater flood damage would be anticipated due to
increased rainfall on already fully saturated soils. Another possible reason supporting the result could
include overestimation of the wind factor in the hurricane information. Current hurricane intensity
(i.e., the Saffir–Simpson Scale) is largely based on sustained wind speeds, excluding other significant
factors. However, there is much historical evidence to show that other storm characteristics should
also be considered as well. For example, most of the damages in NYC from Super Storm Sandy in 2012
were caused by the extreme storm tide. In Puerto Rico, the major casualties from Hurricane Maria in
2017 were caused by rainfall-induced massive landslides.

Among the risk perception variables, the frequency variable has a positive effect on housing prices
in MDC and has a positive sign in NYC. The storm frequency is calculated by counting the number
of storm experiences that a homeowner has before the home transaction to a new homebuyer, and
the homeowner’s risk perception to the storms is affected by the frequency because the compression
bias is applied—more storm experiences would lead homeowners to underestimate the actual risks,
while a rare storm experience exaggerates the home seller’s risk cognition. Stronger intensity of
hurricane has a negative effect on home values in the two regions. This result confirms that anchoring
bias impacts housing prices by the hurricane, while intensity works as the anchoring factor in risk
perception. Fadedness has a positive impact on housing prices in both regions. The result indicates
that homeowners have tendencies to forget past events over time. Insurance is positively associated
with home value increases in MDC. This result suggests that homeowner’s risk cognition can be altered
by overconfidence about flood insurance, thus confirming that miscalibration bias exists. By contrast,
the insurance variable has a negative effect on home values in NYC. A possible reason would be that
higher insurance premiums, due to higher risk exposure, yield a lower housing sales price. The project
information variable has a positive sign but is not statistically significant at any conventional levels of
statistical significance in MDC and NYC. Thus, no effect of representativeness bias on housing prices is
observed. Although homeowners would have a positive expectation about future adaptive projects,
the nuisance effects from the construction activities, including noise, dust, and traffic congestion, would
offset the positive effects.
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5.4. Effects of Adaptation Measures (Tables 2 and 3)

The 10 variables of adaptation measures were examined by estimating each project characteristic of
application. To generalize the adaptation impacts by their adaptation goal, three recategorized variables
from the 10 original categories were estimated. In light of the Kuminoff, Parmeter and Pope [57] study,
I used the DID models to avert the bias resulting from omitted variables in the hedonic approach.
Table 2 contains three major findings. Firstly, hard infrastructural measures, green infrastructural
projects, and structural elevation projects are associated with housing price increases in both regions.
Secondly, a particularly strong impact was observed on private adaptation (Pri_Reinforce) in NYC.
Thirdly, adaptation projects to address wind hazard do not have a direct impact on housing prices.

The results are robust to regressions using the DID specification. The results of the DID estimates
shown in Table 3 suggest that properties experienced a premium (2.9% in MDC and 2.4% in NYC
at the 5% and 10% significance levels, respectively) in areas proximate to adaptation compared
to remote areas in the first year after completion of hard infrastructural adaptation projects. The
coefficient of Infrastructure in NYC is relatively small (Table 2) and statistically significant at the
10% significance level (Tables 2 and 3). A plausible reason would be that the majority of NYC’s
hard infrastructural projects were relatively small and passive infrastructural projects, such as
roadway elevation, pavement resurfacing, and breakwater installation for erosion controls, while MDC
invested in active infrastructural projects including construction of levees and flood protection berms.
These passive infrastructural projects would not have an influence as strong as the impact of active
infrastructural projects on an individual homeowner’s risk cognition.

Similarly, strong positive pricing effects of green infrastructure (11.8% in MDC and 4.6% in NYC
at the 1% significance level) and building structural elevation (15% in MDC and 16.7% in NYC at
the 1% and 10% significance levels, respectively) were observed (Table 3). The green infrastructural
projects in MDC are characterized by enhancing its functionality through expanding and retrofitting
the existing features, while NYC projects focused more on restoring natural elements such as green
spaces and sand dunes. Regardless of this distinction, overall green infrastructural projects in both
regions preserve accessibility to natural amenities and recreational opportunities, as well as provide a
similar function of planned retreat strategy by creating room to mitigate adverse impacts of hurricanes.
It was interesting to note that land elevation appears to have a statistically significant negative impact
on housing prices in NYC. One reason for this could be that it is difficult to raise the ground sufficiently
above the base flood elevation on land with existing buildings, resulting in a little decrease in the flood
insurance rate [65]. This limit may appear more in a high-density context of NYC where the regrading
is limited due to the smaller average lot size.

Private adaptation is associated with housing price increases by 3.5% at the 1% significance level,
while the variable is statistically insignificant in MDC (Table 3, Model 2). Plausible reasons that private
adaptation measures are strong in New York City could result from issues related to the uneven spatial
distribution of adaptation measures [66,67], as well as gaps between the level and quality of public
provision and the social desirability of such adaptations [68]. In order words, residents far from the
coastline could have the same magnitude of risk that the coastal residents have because the intensity of
hurricanes can be strong enough to impact the entire city. However, public adaptation projects were
mainly focused on the coastline communities and, thus, the benefits of public infrastructure are not
equally distributed. Even if the distribution issue of adaptation provisions is considered to be minor,
public adaptation cannot satisfy everybody due to its cost-effectiveness characteristics. Therefore,
greater gaps between the level of public provision and individual desirability of adaptation result in a
greater anticipated effect of private adaptation (i.e., elevating or reinforcing their properties).

With respect to another set of reclassifications by adaptation projects for each of the three hazard
types, the projects that address flood and storm surge are positively associated with housing prices in
both regions. Particularly strong coefficient values were observed for the flood adaptation (10.3%)
and storm surge adaptation (18.1%) projects in MDC (Table 3). A plausible reason that adaptation
projects to address wind hazard are not statistically significant at all specifications would be because
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hurricane wind force is overestimated by the hurricane warning system (the Saffir–Simpson Scale),
which is largely based on wind speed [29].

Table 3. Effects of adaptation projects: difference-in-differences (DID) estimates. SE—standard error.

Variables

Model 1
MDC

Model 2
NYC

Coefficient SE Coefficient SE

Infrastructure × Open 0.029 ** 0.090 0.024 * 0.013
Pub_Reinforce × Open −0.042 0.251 0.002 0.008

Drainage × Open 0.062 ** 0.032 −0.058 *** 0.011
Green × Open 0.118 *** 0.029 0.046 *** 0.013

Facility × Open 0.216 0.295 0.020 0.025
Equipment × Open −0.025 0.110 −0.011 0.021

Shelter × Open −0.059 0.078 0.006 0.030
Bldg_Elev × Open 0.150 *** 0.018 0.167 * 0.118
Land_Elev × Open 0.042 * 0.024 −0.074 ** 0.029

Pri_Reinforce × Open 0.028 0.056 0.035 *** 0.072

Adp_Wind × Open 0.233 0.167 −0.003 0.008
Adp_Flood × Open 0.103 *** 0.024 024 * 016
Adp_Surge × Open 0.181 *** 0.042 046 *** 013

All other variables Yes Yes
Time dummies Yes Yes

Census tract fixed effects Yes Yes
N 40,571 32,618

Adjusted R2 0.780 0.576

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Each row reports the result from one regression with controls for space and
time fixed effects by census tract and month dummies. Heteroscedasticity-robust standard errors are given in the
next column after estimated coefficients. Standard errors are clustered at the census tract level.

5.5. Adaptation Efficacy and Market Trend (Figure 5)

To identify the market effects of adaptation efficacy, I scaled home sales prices to the average
transaction prices of the homes sold within the first sales window. The indexed values indicate that
effective adaptation measures (homes affected by the adaptation measures that have a positive impact
on housing prices in each site) generally appreciate sales prices faster within five months of hurricane
occurrences in both regions. Similarly, when adaptation is malfunctioning (homes influenced by the
adaptation measures that have no impact or negative values), a rapid depreciation is also observed in
MDC within the same period.
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6. Conclusions

This study contributes to the literature on the effects of climate change adaptation measures on
risk perception, as well as real estate market. Using single-family housing transactions, major storm
data, and implemented adaptation measures over the last decade, I examined how the adaptation
measures, risk-perception factors, and storm specific characteristics influence housing prices in these
coastal communities. The results shed light on implemented climate adaptation effects on housing
market dynamics. From the hedonic pricing model, I confirmed that the impacts of major storms on
coastal housing prices are closely related to a temporary change in housing prices. With respect to
the risk-perception factors, compression bias, anchoring bias, and risk fadedness consistently impact
housing prices in both regions.

The study highlights that properties, in areas proximate to hard infrastructure, green infrastructure,
and building structural elevation projects, experienced a housing price appreciation. Among these
three, the pricing effects of green infrastructural adaptation projects (11.8%) and structural elevation
(15%) were particularly strong in MDC at the 5% statistical significance level. The findings with the
specific percentages of price premium contribute to existing green infrastructure literature, which
mostly provides a quite rough price estimate [42,43].

Adapting for storm surges provided the largest positive impact on housing prices by 18.1% in
MDC among the variables in the DID specifications. Unlike other large-scale development projects or
urban infrastructure provisions, adaptation project information does not effectively influence reducing
adverse storm risks due to “net negative nuisance” effects.

Since climate risk is unavoidable in coastal areas, an accurate understanding of the effects of
adaptation measures on housing prices will greatly help those who engage in real estate investment
and development in coastal areas. Furthermore, this study helps to provide a clearer understanding
of how climate adaptation efforts, storm characteristics, and risk perception can also be directly or
indirectly related to improving coastal community resiliency.

Funding: This research received no external funding.
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Appendix A

Table A1. Definition and Summary Statistics of Covariates.

Variables
MDC

(n = 79,181)
NYC

(n = 90,777)
Mean SD Mean SD

Structural variables
Bldgsf Building square footage (thousands) 2.33 1.19 1.63 0.666
Area Lot square footage (thousands) 10.3 8.53 3.28 2.32
Story Number of stories 1.12 0.328 2.47 0.627
Age Building age (year) 50.2 20.6 74.3 27.0

Occupancy 1 if a property is owner-occupied; 0 otherwise 0.814 0.389 0.801 0.399
Elevation Ground elevation above sea level (feet) 8.17 2.46 57.5 46.4

Locational variables
Metro 1 if a home is within 400 m of metro stations; 0 otherwise 0.003 0.055 0.024 0.153

Bus 1 if a home is within 400 m of bus stops; 0 otherwise 0.662 0.473 0.230 0.421
Commercial 1 if a home is within 400 m of major malls; 0 otherwise 0.003 0.052 0.802 0.399

School 1 if a home is within 400 m of schools; 0 otherwise 0.388 0.487 0.295 0.456
Brownfield 1 if a home is within brownfield sites; 0 otherwise 0.099 0.299 0.012 0.108
Greenview 1 if a home has a green space view; 0 otherwise 0.051 0.220 0.014 0.116

Bayview 1 if a home has a bay-view; 0 otherwise 0.074 0.261 0.011 0.103

Market variables
Unemploy Annual unemployment rates by zip code (%) 0.095 0.035 0.085 0.030

Vacancy Annual vacancy rates by zip code (%) 0.114 0.084 0.069 0.010
Income Annual median household income (thousand dollar) by zip code 51.6 19.3 65.1 15.5
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Appendix B

Table A2. Full Results of Hedonic Regression.

Variables
Model 1 Model 2 Model 3

MDC NYC MDC NYC MDC NYC

(log)Bldgsf 0.048 *** 0.044 *** 0.047 *** 0.044 *** 0.047 *** 0.044 ***

(log)Area 0.026 *** 0.015 *** 0.026 *** 0.015 *** 0.026 *** 0.015 ***

(log)Story 0.027 *** 0.006 *** 0.026 *** 0.006 *** 0.026 *** 0.006 ***

(log)Age −0.072 ***
−0.025 ***

−0.069 ***
−0.027 ***

−0.071 ***
−0.026 ***

Occupancy 0.084 *** 0.006 0.084 *** 0.006 0.084 *** 0.006
(log)Elevation 0.019 −0.059 0.043 ** −0.063 0.044 ** −0.065

Metro −0.046 0.017 *** −0.043 0.017 *** −0.047 0.017 ***

Bus −0.032 *** 0.016 **
−0.029 *** 0.015 **

−0.028 *** 0.015 **

Commercial 0.081 ** 0.039 *** 0.070 ** 0.040 *** 0.071 ** 0.039 ***

School −0.021 *** 0.032 ***
−0.020 *** 0.031 ***

−0.020 *** 0.032 ***

Brownfield −0.077 **
−0.069 ***

−0.078 **
−0.063 **

−0.077 **
−0.072 ***

Greenview −0.010 0.047 ** −0.009 0.047 ** −0.010 0.046 **

Bayview 0.006 0.042 * 0.000 0.055 ** 0.003 0.059 ***

(log)Unemploy 0.060 −0.046 *** 0.052 −0.046 *** 0.054 −0.046 ***

(log)Vacancy 0.033 −0.012 *** 0.028 −0.011 *** 0.031 −0.011 ***

(log)Income −0.007 0.027 0.003 0.029 −0.004 0.028

H30-150 −0.022 ***
−0.015 **

H150-300 0.022 **
−0.036 ***

H300-450 0.014 −0.017 **

H450-600 −0.026 −0.034 ***

H600-750 0.027 ** −0.008

Wind 0.010 0.008 *** 0.010 0.008 **

Rainfall −0.036 ***
−0.048 **

−0.036 ***
−0.048 **

Surge −0.015 **
−0.032 **

−0.015 **
−0.031 **

(log)Frequency 0.057 ** 0.002 0.057 ** 0.001
Intensity −0.017 ***

−0.012 ***
−0.017 ***

−0.012 ***

(log)Fadedness 0.003 * 0.005 * 0.003 * 0.005 *

Insurance 0.030 ***
−0.086 *** 0.033 ***

−0.083 ***

Information 0.019 0.014 0.020 0.018

Infrastructure 0.111 *** 0.039 *

Pub_Reinforce −0.059 0.006
Drainage 0.017 −0.011 ***

Green 0.077 ** 0.020 ***

Facility −0.091 0.007
Equipment 0.064 0.042 **

Shelter −0.002 0.019
Bldg_Elev 0.141 *** 0.117 ***

Land_Elev −0.077 −0.136**

Pri_Reinforce 0.017 0.172 ***

Adp_Wind −0.033 0.014
Adp_Flood 0.040 * 0.017 ***

Adp_Surge 0.062 * 0.021 ***

Constant 6.811 *** 9.905 *** 6.639 *** 9.885 *** 6.716 *** 9.897 ***

Observations 79,181 90,777 79,181 90,777 79,181 90,777
Adjusted R2 0.793 0.569 0.793 0.572 0.793 0.571

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The main entries in each column report the coefficients are estimated from
Equation (1) by panel data hedonic pricing model, with controls for space and time fixed effects by census tract and
year dummies. Standard errors are clustered at census tract level.
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