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Abstract 48 

Influenza A virus (IAV) causes not only seasonal respiratory illness, but also outbreaks of more 49 

severe disease and pandemics when novel strains emerge as a result of reassortment or 50 

interspecies transmission. PB1-F2 is an IAV protein expressed from the second open reading frame 51 

of PB1 gene. Small as it is, PB1-F2 is a critical virulence factor. Multiple key amino acid residues and 52 

motifs of PB1-F2 have been shown to influence the virulence of IAV in a strain- and host-specific 53 

manner, plausibly through the induction of apoptotic cell death, modulation of type I interferon 54 

(IFN) response, activation of inflammasome, and facilitation of secondary bacterial infection. 55 

However, the exact role of PB1-F2 in IAV pathogenesis remains unexplained. Through reanalysis of 56 

the current literature, we redefine PB1-F2 as an ambivalent innate immune modulator that 57 

determines IAV infection outcome through induction of immune cell death, differential modulation 58 

of early- and late-type I IFN response, and promotion of pathogenic inflammation. PB1-F2 functions 59 

both intracellularly and extracellularly. Further investigations of the mechanistic details of PB1-F2 60 

action will shed new light on immunopathogenesis of IAV infection.  61 
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1. Introduction 72 

Influenza virus is an enveloped virus belonging to the family of Orthomyxoviridae with a 73 

single stranded, negative sensed and segmented RNA genome.1 Symptoms of influenza range from 74 

mild respiratory illnesses such as sore throat, runny nose, muscle pain and mild fever to severe 75 

conditions including high fever, acute respiratory distress syndrome (ARDS), multi-organ failure, 76 

secondary bacterial infection or even death.2-5  77 

Among the four genus of influenza virus A to D, influenza A virus (IAV) is most virulent to 78 

humans. Since early nineteenth century, there have been five IAV pandemics, claiming millions of 79 

lives globally.6 Unlike other genera, IAV adapts to multiple nonhuman reservoir species such as 80 

birds, pigs, horses, cows, bats as well as domestic pets including cats and dogs.7, 8 High 81 

pathogenicity strains can emerge when IAV crosses species barrier to infect humans. Typical 82 

examples are H5N1 and H7N9 avian influenza A viruses (AIVs) emerged in 1997 and 2013, with a 83 

high case fatality of 55% and 40%, respectively, in humans.9, 10 In addition, 24 cases of human 84 

infection with H5N6 AIV have been reported from China since 2014, including 7 deaths.11 85 

Contrary to the general belief, cross-species infection of humans with AIVs could also be 86 

mild. For example, H7N7 and H9N2 AIVs occasionally infect humans but cause mild diseases in most 87 

cases, resembling human seasonal IAVs.12-15 This indicates that virulence of IAV depends not only 88 

on the host including pre-existing immune memory, but also on the virus including virulence factors, 89 

which are accounted for increased pathogenicity due to facilitation of viral entry and replication, 90 

evasion of host antiviral immunity, dysregulation of inflammatory response and direct 91 

cytotoxicity.16 92 

Among all IAV virulence factors, PB1-F2 is unique and multifaceted. In 2001, it was 93 

discovered as an “immune cell killer”, which induces apoptotic death of immune cells.17, 18 Infection 94 
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studies in different animal models reveal species- and strain-specific pathogenicity of PB1-F2-95 

defective     IAVs.19-24 Opposite to the observations in mammals that loss of PB1-F2 often renders 96 

IAV less pathogenic,19, 25  expression of PB1-F2 results in the attenuation of the virus but extension 97 

of virus shedding in chickens.21, 22 Whether and to what extent this might be attributed to the 98 

interaction and competition between PB1-F2 and HAX-1, an IAV restriction factor that inhibits PA 99 

subunit of viral polymerase remain to be elucidated.26, 27 It is known that chicken have NLRP3 but 100 

not AIM2.28, 29 However, it remains unclear how defects in the activation of inflammasome 101 

pathways in chicken might affect PB1-F2 function. By and large, growing evidence accumulated in 102 

the past two decades supports the notion that PB1-F2 affects the outcome of IAV infection by 103 

modulating host innate immunity both positively and negatively. The delicate balance of antiviral 104 

response and inflammation in the presence of PB1-F2 has important implications in viral 105 

pathogenesis and disease intervention. The evolutionary conservation of PB1-F2 and the evidence 106 

that PB1-F2 sequence is under strong selection pressure30, 31  lend support to the importance of 107 

PB1-F2. In this review, we summarize the current knowledge of PB1-F2 protein and the mechanism 108 

by which PB1-F2 perturbs innate immunity. We also provide an overall model to explain the action 109 

of PB1-F2 as an ambivalent innate immune modulator and virulence factor. 110 

PB1-F2 protein is the eleventh IAV protein discovered through the characterization of PB1-111 

F2-targeting CD8+ T cells.17, 32 Indeed, PB1-F2 is immunogenic17, 33, 34 and anti-PB1-F2 antibodies 112 

were found to contribute to protection in mice.35 Yet, PB1-F2 is a non-structural protein not found 113 

in the IAV virion.36 PB1-F2 is expressed from the +1 open reading frame with respect to PB1 gene on 114 

segment 2 of the IAV genome. As the result of a frame shift, PB1-F2 is produced as a completely 115 

different protein compared to PB1, which is a structural protein subunit of viral polymerase. 116 

Translation of PB1-F2 is likely initiated through leaky ribosome scanning under the control of 117 

elements downstream of the initiation codon.37, 38 In stark contrast to PB1, PB1-F2 is a small viral 118 
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protein with 87 to 90 amino acid residues in full length and localized predominantly to 119 

mitochondria.17, 39 PB1-F2 targets mitochondrial inner membrane facing intermembrane space.40, 41 
120 

The mitochondrial targeting sequence of PB1-F2 is in the C terminal region between residues 65 121 

and 87 and assembles into a positively charged α-helix structure.40 Tom40 was recently found to be 122 

a necessary adaptor in mitochondrial localization of PB1-F2.41  123 

 124 

2. PB1-F2 – an immune cell recruiter and killer 125 

PB1-F2 protein is too small to carry functional enzymatic domain. It was originally found to 126 

promote apoptotic cell death by permeabilizing mitochondrial membrane.17 Mechanistically, PB1-127 

F2 interacts with subunits of mitochondrial permeability transition pore (mPTP) complex VDAC1 128 

and ANT3 to activate permeability transition that enhances apoptosis during IAV infection.18 129 

Moreover, PB1-F2 protein can form channel-like pore by self-aggregation on mitochondrial 130 

membrane to directly mediate leakage of mitochondrial content such as cytochrome C to initiate 131 

intrinsic apoptosis.42, 43 Indeed, structural analysis reveals that PB1-F2 forms amyloid β aggregate in 132 

membranous environment.44, 45 PB1-F2 protein changes from monomer to higher-order oligomer or 133 

protein aggregate during lytic IAV life cycle, more rapidly in U937 monocytic cell line than A549 lung 134 

cell line.46, 47 In line with this, PB1-F2-mediated apoptotic response is more pronounced in immune 135 

cells, such as monocytes and macrophages.17, 32, 48, 49 Plausibly, rapid protein aggregation of PB1-F2 136 

quickly forms pores over mitochondrial membranes to trigger exaggerated apoptotic responses in 137 

these cells. In contrast, slower aggregation of PB1-F2 in A549 cells merely activates mPTP, which 138 

primes cells for minimal apoptosis.18, 50 Moreover, PB1-F2 can be phosphorylated by protein kinase 139 

C at T27 and S35. This phosphorylation is required for the proapoptotic function of PB1-F2 in 140 
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monocytes.51 Although detailed underlying mechanism of PB1-F2-mediated apoptosis in immune 141 

cells remains largely elusive, PB1-F2 is characteristic of an “immune cells killer”.48 142 

Immune cells such as phagocytes play important roles in antiviral immunity against IAV and 143 

viral clearance.52-54 NLRX1 was recently identified as an anti-apoptotic protein to PB1-F2 in 144 

macrophages.49 NLRX1 was required for macrophage survival and antiviral activities such as type I 145 

IFN production in response to IAV infection.49 Knocking out NLRX1 enhanced macrophage 146 

apoptosis, reduced type I IFN production and suppressed virus clearance. Mechanistically, NLRX1 147 

targets and binds to PB1-F2.49 Indeed, apoptotic cell death induced by PB1-F2-deficient IAV was 148 

unaffected by NLRX1 knockout, although the phenotype of cell death attributed to PB1-F2-deficient 149 

IAV was less robust than that ascribed to the wild-type IAV counterpart. This indicates the 150 

specificity of NLRX1 to PB1-F2 in suppressing apoptosis and supporting macrophage-mediated 151 

antiviral function.49  152 

PB1-F2-mediated apoptosis is IAV strain-specific. Two early reports claimed that only PB1-F2 153 

of PR8 H1N1 possessed proapoptotic properties.43, 55 However, subsequent study showed that PB1-154 

F2 of AIVs H5N1, H6N1 and H2N3 but not mammalian H1N1 promoted apoptosis in porcine 155 

macrophages.56 Interestingly, PB1-F2 of 1918 H1N1 of the Spanish flu was shown to be57 or not to 156 

be43 proapoptotic in different experimental settings such as viral backbone and cells. Although it is 157 

still unclear which specific residues of PB1-F2 are required for the strain-specific proapoptotic effect, 158 

it is plausibly governed by properties such as PB1-F2 binding affinity to mPTP and NLRX1 as well as 159 

its pore-forming capability through self-aggregation. PB1-F2 is also known to be an inhibitor of 160 

natural killer (NK) cells.58  161 

In addition to being an immune cell killer, PB1-F2 is also an “immune cell trap” that attracts 162 

immune cells to the site of infection as a result of proinflammatory response. It was found that PB1-163 
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F2 expression increased both pulmonary leukocyte infiltration and cell death in IAV-infected mice.59 164 

Transcriptomic study found that PB1-F2 promoted expression of chemokines such as Csf3, Cxcl3, 165 

Trem1 and Cxcl2, which attract leukocytes such as neutrophils and monocytes to infected lung   166 

tissue.58, 59 By using in vivo κB reporter assay, it was shown that PB1-F2 strikingly enhances NF-κB 167 

activity in infected lung.59 Indeed, enforced expression of PB1-F2 directly activates NF-κB.60 NDP52 168 

protein, an autophagy adaptor that physically interacts with PB1-F2, and TRAF6 protein are also 169 

implicated in PB1-F2-mediated NF-κB activation.61 Together with its proapoptotic property, the 170 

proinflammatory nature of PB1-F2 should also be influential on overall IAV virulence. Indeed, when 171 

PB1-F2 induces chemokine expression and consequent leukocyte infiltration, more leukocytes are 172 

susceptible to IAV infection and then killed by PB1-F2 through apoptosis.59   173 

 174 

3. Extracellular PB1-F2 – NLRP3 inflammasome activation and necrosis 175 

PB1-F2 can function extracellularly to elicit lethal inflammation. It was found that direct 176 

intranasal application of peptide corresponding to 27 amino acid residues of PB1-F2 C-terminus 177 

alone was sufficient to elicit severe immunopathogenic effect and secondary bacterial infection, 178 

leading to higher mortality in mice.43, 62-64 Indeed, PB1-F2 peptide was found to activate NLRP3 179 

inflammasome in macrophages.65 Mechanistically, it was found that extracellular PB1-F2 peptide 180 

formed protein aggregate of over 100kDa in size and macrophage phagocytosis is required for 181 

internalisation of PB1-F2 peptide for NLRP3 inflammasome activation.65 Caspase 1 is cleaved and 182 

activated to produce excessive mature interleukin 1β (IL-1β) and IL-18, triggering a series of 183 

immunopathogenic effects or immunopathology.65 It was found that mitochondrial reactive oxygen 184 

species (mtROS) and lysosomal damage were necessary for PB1-F2 peptide-mediated NLRP3 185 

inflammasome activation and immunopathology.64 Whether and how the internalised PB1-F2 186 
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peptide perturbs lysosomal and mitochondrial function resulting in mtROS production and NLRP3 187 

inflammasome activation remain to be elucidated. Interestingly, instead of activating NLRP3 188 

inflammasome maturation, intracellularly expressed PB1-F2 seems to suppress NLRP3 189 

inflammasome activation as demonstrated in NLRP3 inflammasome reconstitution experiment in 190 

non-phagocytic cell line HEK293T.41 We have recently found that intracellular PB1-F2 suppresses 191 

inflammasome in an IAV subtype-dependent manner, with PB1-F2 of highly pathogenic IAV being a 192 

less potent suppressor than PB1-F2 of low pathogenicity   IAV.66 This suggests that the ability to 193 

activate NLRP3 inflammasome is specific to extracellular PB1-F2. It will be of great interest to clarify 194 

the relationship between the inflammasome-modulating activities of intracellular and extracellular 195 

PB1-F2. Whether the full-length and truncated PB1-F2 might also behave differently in the 196 

activation of NLRP3 inflammasome also deserves further investigation.   197 

The ability of extracellular PB1-F2 to activate NLRP3 inflammasome is also IAV strain-specific 198 

and is conserved only in high-pathogenicity strains. Whereas PB1-F2 from H3N2 of the 1968 199 

pandemic is highly immunopathogenic, progressively decreasing immunopathogenicity was seen in 200 

its counterparts in H3N2 pandemic descendants.63 By sequence analysis, it was found that the 201 

“proinflammatory domain” comprising L62, R75, R79 and L82 in PB1-F2 of pandemic H3N2 was 202 

necessary for PB1-F2-mediated immunopathology, while mutations to P62, H75, Q79 and S82 in 203 

PB1-F2 of H3N2 descendants abolished the immunopathogenic effect.63 A proinflammatory domain 204 

was also found in PB1-F2 of H1N1 of the 1918 pandemic and H2N2, but was gradually lost in all 205 

their descendants,67 suggesting that extracellular PB1-F2-mediated immunopathology shapes the 206 

virulence of pandemic IAV, but is lost plausibly due to IAV adaption to humans.  207 

Besides, extracellular PB1-F2 can mediate a novel type of cell death. It was found that 208 

extracellular PB1-F2 peptides with “cytotoxic domain” of I68, L69 and V70 were not only 209 
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immunogenic, but also cytotoxic to cells. On the contrary, mutations of I68T, L69Q and V70G relieve 210 

extracellular PB1-F2-mediated cell death.68 Instead of being pro-apoptotic, extracellular PB1-F2-211 

mediated cytotoxicity is necrotic, as demonstrated by its insensitivity to pan-caspase inhibitor,68 212 

and is executed through direct lysis of cell membrane.69 Necrosis is one type of cell death response 213 

in which cellular content is released to act as proinflammatory mediators.70 Whether extracellular 214 

PB1-F2-mediated necrosis triggers a second level of inflammatory response is still an unanswered 215 

question. Extracellular PB1-F2-mediated necrotic cell death was also a key in the promotion of 216 

secondary bacterial infection.68 Plausibly, extracellular PB1-F2 represses anti-bacterial immunity 217 

and increased bacterial adhesion by inducing necrotic death of immune cells and lung epithelial 218 

cells.71     219 

4. PB1-F2 modulation of type I IFN response 220 

4.1 Delayed type I IFN response and IAV pathogenesis 221 

In addition to modulating apoptosis and NLRP3 inflammasome activation, PB1-F2 is also 222 

capable of suppressing or activating type I interferon (IFN) response. Type I IFN is a major antiviral 223 

cytokine that activates multiple interferon-stimulated genes to restrict viral replication.72 However, 224 

excessive type I IFN can result in uncontrolled inflammation that exacerbates IAV pathogenesis.73 As 225 

mentioned earlier in section 2, PB1-F2 is an activator of NF-κB signalling, which in turn activates 226 

type I IFN expression.59, 60 Opposite to this, PB1-F2 can also suppress type I IFN response during IAV 227 

infection.41, 49, 74-76 Whether suppression or activation of type I IFN prevails in the context of IAV 228 

infection depends on time or infection stage. Indeed, PB1-F2 suppresses type I IFN response at early 229 

time points from 5 to 8 hours post-infection at a multiplicity of infection (MOI) of 5 in IAV-infected 230 

A549 cells when compared to cells infected with a PB1-F2-knockout IAV.76 However, at 24 hours 231 

post-infection and an MOI of 5, PB1-F2-proficient IAV elicits a more robust type I IFN response in 232 
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A549 cells than PB1-F2-deprived virus.60 This suggests that PB1-F2 suppresses type I IFN production 233 

during early phase of IAV infection but changes to exert an exacerbating effect on IFN response in 234 

late phase. Notably, the observed inhibitory and augmentory effects of PB1-F2 were shown to 235 

correlate with overall immunopathology induced by IAV,59, 76 indicating that the combined pattern 236 

known as a “delayed type I IFN response” contributes to IAV pathogenesis.  237 

In support of this model, one molecular determinant of the delayed type I IFN response 238 

induced by PB1-F2 was identified to be a specific amino acid residue S66. PB1-F2s of highly 239 

pathogenic strains including H5N1 (HK/97) and pandemic 1918 carry S66 to enhance pathogenicity 240 

in mice when compared to non-pathogenic and less pathogenic IAVs with an N66 in PB1-F2.77 241 

Interestingly, S66 of PB1-F2 does not change viral replication kinetics in vitro in MDCK cells but 242 

boosts viral titre in lung of IAV-infected mice, implying that PB1-F2 with an S66 might delay viral 243 

clearance.77 By transcriptomic analysis, it was found that N66S mutation of PB1-F2 suppresses early 244 

type I IFN response but exacerbates late IFN response during IAV infection.78 Plausibly, the ‘delayed’ 245 

pattern of type I IFN induction by PB1-F2 with an S66 boosts viral lung titre and exacerbates lung 246 

immunopathology in IAV-infected mice.77, 78   247 

4.2 Mechanistic analysis of PB1-F2 modulation of RIG-I signalling  248 

Intense research efforts have been devoted in recent years to elucidate how PB1-F2 249 

dysregulates type I IFN production. Indirectly, as mentioned in section 2, PB1-F2 can suppress type I 250 

IFN production by macrophages through induction of macrophage apoptotic cell death.49 Directly, 251 

increasing evidence has demonstrated that PB1-F2 targets mitochondria and adaptor proteins such 252 

as MAVS and TBK1 to modulate RIG-I signalling. 253 

RIG-I-dependent type I IFN response serves important antiviral function in IAV infection.79, 80 254 

RIG-I signalling is initiated by activation of RIG-I by viral RNA. Once bound with incoming foreign 255 
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RNA species with 5’ triphosphates and double stranded region like the panhandle of IAV RNA, the 256 

CARD domain of RIG-I is released from suppression by the helicase domain.81, 82 Following 257 

dephosphorylation, K63-ubiquitination and interaction with accessory proteins such as PACT and 258 

14-3-3ε, activated RIG-I oligomerizes and binds to CARD domain of MAVS adaptor protein.81, 82 259 

Next, MAVS protein oligomerizes to form giant protein aggregate on mitochondria83 as a platform 260 

to recruit downstream effectors TRAFs,84 which in turn recruit IKKs and TBK1 complex to activate 261 

transcription factors IRF3, IRF7 and NF-κB, leading to stimulation of type I IFN transcription and 262 

expression.85 263 

4.2.1 PB1-F2 and MAVS  264 

PB1-F2 can impair MAVS signalosome formation in multiple manners. It was found that PB1-265 

F2 dissipates mitochondrial membrane potential (ΔΨm), perturbs mitochondrial dynamics and 266 

sequesters MAVS protein to suppress RIG-I-dependent type I IFN production. As mentioned in 267 

section 2, PB1-F2 can permeabilize mitochondrial membrane by channel formation or recruiting 268 

mPTP complex.18, 42 Consistently, it was found that PB1-F2 can dissipate ΔΨm, which is necessary 269 

for MAVS signalosome formation,86 to suppress RIG-I-dependent type I IFN production.41, 74 Besides, 270 

dissipation of ΔΨm by PB1-F2 also activates OMA-1 that cleaves OPA-1, a mitochondrial fusion 271 

protein, but enhances Drp-1 recruitment to mitochondria to augment mitochondrial fission.41 272 

Mitochondrial fusion is necessary for proper MAVS signalosome formation including Mtn1 273 

recruitment and MAVS-STING interaction at mitochondria-associated endoplasmic reticulum 274 

membranes (MAM).87, 88 Thus, PB1-F2-mediated mitochondrial fission sabotages proper MAVS 275 

signalosome formation and blocks RIG-I-dependent type I IFN production. Moreover, PB1-F2 276 

protein can bind to the transmembrane domain of MAVS.74 As PB1-F2 is a self-aggregating protein 277 

that forms amyloid structure as mentioned earlier,44-47 PB1-F2-bound MAVS protein is probably 278 
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sequestered and inactivated. Importantly, it was demonstrated that N66S mutation of PB1-F2 279 

substantiates its suppressive effect on RIG-I-dependent type I IFN production at the level of MAVS, 280 

mediated through higher binding affinity to MAVS and more pronounced dissipation of ΔΨm.74, 75 281 

PB1-F2-dependent suppression of RIG-I signalling correlates with IAV pathogenesis. 282 

On the other hand, PB1-F2 can also target MAVS signalosome to activate type I IFN 283 

production.60 Unlike its suppressive effect on MAVS mediated through elimination of IRF3 activity 284 

but not that NF-κB or AP-1,76 PB1-F2 activates MAVS through NF-κB but not IRF3 or AP-1.60 Indeed, 285 

as mentioned earlier in section 2, PB1-F2 can activate NF-κB signaling by binding with NDP52.61 286 

Interestingly, NDP52 is found to target MAVS89-91 and its signal transducer TRAF692 for autophagic 287 

degradation. PB1-F2 likely sequesters and inhibits NDP52 to relieve lysosomal degradation of MAVS 288 

and TRAF6. The remaining MAVS-TRAF6 signalosome could thus propagate an excessive activation 289 

signal for NF-κB, leading to type I IFN expression. Whether PB1-F2 activation of MAVS-TRAF6-NF-κB 290 

signaling through NDP52 contributes to the late phase of “delayed type I IFN response” as 291 

mentioned above remains an open question.  292 

4.2.2 PB1-F2 and TBK-1-DDX3 complex 293 

In addition to targeting mitochondria and MAVS protein, a recent study has unveiled a new 294 

and strain-specific mechanism by which PB1-F2 of H1N1 of the 1918 pandemic suppresses type I 295 

IFN production by targeting DDX3 protein to proteasomal degradation.93 PB1-F2 of the 1918 296 

pandemic was more prone to destruction by ubiquitin proteasome system (UPS) than the 297 

counterpart in the PR8 strain.93 Interestingly, instead of compromising its IFN-suppressing effect, 298 

the unstable 1918 PB1-F2 can more potently suppress type I IFN production than the stable PR8 299 

PB1-F2. Mechanistically, 1918 PB1-F2 but not PR8 PB1-F2 specifically binds to DDX3, which is a 300 

substrate and coactivator of TBK1,94 and facilitates DDX3 degradation.93 The unstable 1918 PB1-F2 301 
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adapts DDX3 and UPS to TBK1.93 Ectopic administration of DDX3 recombinant protein rescued lethal 302 

infection of mice with 1918 H1N1 by resupplying sufficient amount of type I IFN,93 suggesting that 303 

1918 PB1-F2 affects the outcome of IAV infection by targeting DDX3 for degradation.  304 

It remains unclear whether PB1-F2-mediated DDX3 degradation applies to other pathogenic 305 

IAV. Importantly, amino acid residues T68 and P69 specific to 1918 PB1-F2 but not PR8 PB1-F2 are 306 

necessary for destabilization of 1918 PB1-F2 and high virulence of the virus. However, 307 

destabilization of PB1-F2 is also thought to be associated with attenuation of virus. In one study, 308 

ubiquitination of  PB1-F2 at C-terminal lysine cluster was found to  facilitate UPS degradation.95 309 

When C-terminal lysine residues were mutated to arginines, PB1-F2 degradation was prevented.95 310 

However, the same PB1-F2 mutant was found to be more potent in the inhibition of type I IFN 311 

response.95 Another study found that residues T68, Q69, D70 and S71 destabilize PB1-F2, while 312 

mutation to their natural counterparts I68, L69, V70 and F71 enhances PB1-F2 stability.96 Similarly, 313 

it was demonstrated that stable PB1-F2 with I68, L69, V70 and F71 is a more potent IFN 314 

suppressor.96 Thus, further investigations are required to clarify exactly how protein stability of 315 

PB1-F2 of the 1918 and other strains might affect infection outcome. In this regard, the specific 316 

interaction between 1918 PB1-F2 and DDX3 is another molecular determinant of the pathologic 317 

IFN-suppressing effect mediated by 1918 PB1-F2. Mapping the specific regions or amino acid 318 

residues essential for the interaction of 1918 PB1-F2 with DDX3 is thus necessary to provide more 319 

mechanistic insight on PB1-F2-mediated DDX3 degradation and IFN suppression. 320 

 321 

5. Concluding remarks and a unified model 322 

In summary, PB1-F2 is a virulence factor that modulates host innate immunity to determine 323 

the outcome of IAV infection. It is an “immune cell killer” that induces apoptotic death of immune 324 
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cells, leading to elimination of immune cell-mediated antiviral immunity. It is also an “immune cell 325 

trap” that not only promotes cell death response, but also activates NF-κB signalling to induce 326 

proinflammatory cytokine and chemokine expression, resulting in leukocyte infiltration. PB1-F2 can 327 

also elicit pathogenic inflammation extracellularly through activation of NLRP3 inflammasome to 328 

generate excessive IL-1β and IL-18. Extracellular PB1-F2 may also trigger necrotic cell death and 329 

secondary bacterial infection. Although how PB1-F2 is released to extracellular space and how 330 

extracellular PB1-F2 enters the target cells remain mysterious, extracellular PB1-F2 is generally 331 

thought to be immunopathogenic. Besides, PB1-F2 can delay type I IFN response by suppressing 332 

type I IFN production at an early phase of infection but exacerbating it at a late phase. The delayed 333 

type I IFN response mediated by PB1-F2 promotes IAV pathogenesis. Mechanistically, PB1-F2 334 

suppresses RIG-I-dependent type I IFN production by decomposing MAVS signalosome through (1) 335 

dissipating ΔΨm, (2) enhancing mitochondria fission but suppressing mitochondria fusion, and (3) 336 

directly binding and inhibiting MAVS protein. In addition, PB1-F2 can enhance UPS degradation of 337 

DDX3, leading to inactivation of TBK1. At later stage of IAV infection, PB1-F2 enhances RIG-I-338 

dependent type I IFN response through activation of NF-κB signalling. PB1-F2 binds NDP52 that is 339 

an essential autophagic receptor of MAVS and TRAF6. Probably, in some occasions, PB1-F2 might 340 

outcompete MAVS and TRAF6 for NDP52 binding. As such, MAVS and TRAF6 are no longer 341 

degraded and remain active to propagate the signal for NF-κB activation and type I IFN production. 342 

Some existing knowledge on PB1-F2 is derived from single cell types, it is desirable that multiple cell 343 

types and in vivo models are used to verify key findings. 344 

Here, a unified model of PB1-F2-mediated IAV pathogenesis is proposed (Figure 1). As 345 

shown on the left-hand side of the figure, at early stage of infection, PB1-F2 stays monomeric in 346 

IAV-infected epithelial cells with minimal apoptosis. In contrast, rapid oligomerization of PB1-F2 in 347 

alveolar macrophages could elicit pronounced apoptotic cell death that abolishes phagocytic 348 
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antiviral immunity and production of type I IFN. In lung epithelial cells, PB1-F2 suppresses type I IFN 349 

antiviral response by disrupting MAVS and/or TBK1-DDX3 signalosome critical to RIG-I signalling. 350 

PB1-F2 suppresses antiviral immunity in both alveolar macrophages and lung epithelial cells, 351 

facilitating IAV propagation. During later stage of infection as shown on the right-hand side of the 352 

figure, PB1-F2 interacts with NDP52 to activate NF-κB signalling and maintains MAVS-TRAF6 353 

signalosome to promote type I IFN and proinflammatory cytokine production, thereby sustaining 354 

inflammation and immune cell infiltration. In this late stage, PB1-F2 oligomerizes in IAV-infected 355 

epithelial cells. The infiltrated immune cells phagocytose PB1-F2 aggregate. The ingested PB1-F2 356 

aggregate promotes lysosomal damage and mtROS that exaggerates NLRP3 inflammasome 357 

maturation to produce IL-1β and IL-18, further substantiating the proinflammatory response in 358 

infected lung tissue. In addition to its direct effect on NLRP3 inflammasome, PB1-F2-mediated NF-359 

κB signalling might also increase the expression of pro-IL-1β and NLRP3, leading to more 360 

pronounced inflammasome activity. Either from cell death or active secretion, PB1-F2 is released 361 

from the cells and extracellular PB1-F2 induces necrotic cell death, that impairs the structure of 362 

tracheal lining, skyrockets proinflammatory response and elicits secondary bacterial infection. 363 

Continuous PB1-F2-mediated necrotic cell death likely increases the level of extracellular PB1-F2 as 364 

in a possible feedback loop that amplifies the overall pathological response. The resulting high viral 365 

and bacterial titre in the lung and immunopathology contribute to IAV pathogenesis.  366 

6. Outstanding research questions 367 

Many questions concerning PB1-F2 and its roles in innate immunity and viral pathogenesis 368 

remain unanswered. Among these unanswered questions, the following three are of high priority.  369 

First, in addition to apoptosis, can PB1-F2 activate other types of programmed cell death 370 

such as pyroptosis, necroptosis and ferroptosis in immune cells?  One related issue concerns how 371 
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PB1-F2 might affect autophagy. It will be of great interest to see whether PB1-F2 from some types 372 

of IAV could trigger immune cell death through one of the above alternative pathways. Importantly, 373 

excessive neutrophil infiltration contributes substantially to PB1-F2-mediated IAV pathogenesis.58, 59 374 

NETosis is a neutrophil-specific cell death in which stressed neutrophils extrude its cellular content, 375 

namely neutrophil extracellular traps (NETs), to the extracellular space to “trap” pathogens.97 376 

Excessive NETosis has been suggested to play a role in IAV pathogenesis by disrupting endothelial 377 

and epithelial lining of respiratory tract.98, 99 Recently, Gasdermin D, another direct substrate to 378 

active caspase 1,100 has been found to mediate neutrophilic NETosis by promoting nuclear 379 

delobulation, nuclear expansion and plasma membrane permeabilization.101, 102 It remains to be 380 

elucidated as to whether extracellular PB1-F2-mediated NLRP3 inflammasome activation, which 381 

involves activation of caspase 1 and Gasdermin D, might also enhance NETosis. It is however 382 

noteworthy that appropriate NETosis is vital to antiviral response against IAV infection.103, 104 While 383 

PB1-F2-mediated apoptosis should limit the antiviral efficacy of NETosis, PB1-F2-mediated lytic 384 

necrosis should exacerbate the immunopathogenic effect of NETosis. It will be of great interest to 385 

see if there is a stage-dependent effect (Figure 1). In this model, intracellular PB1-F2 promotes 386 

apoptotic cell death of IAV-infected neutrophils, restricting the production of antiviral NETosis 387 

during the early stage of IAV infection. In contrast, when the infection progresses to the late stage 388 

of infection, extracellular PB1-F2 exacerbates Gasdermin D-mediated NETosis by excessive NLRP3 389 

inflammasome activation as well as inflammatory necrosis through direct membrane lysis.  390 

Second, how is PB1-F2 released from infected cells? There could be several possibilities for 391 

PB1-F2 release. It might be secreted through a non-canonical pathway just like the Tat protein of 392 

human immunodeficiency virus type 1.105,106 It could also be released through exocytosis and 393 

exosome.107-109  In connection to this, whether extracellular PB1-F2 of full length has the same 394 

inflammasome-activating property as the PB1-F2 peptides used in previous studies warrant 395 
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clarification. Importantly, it will be intriguing to determine how extracellular PB1-F2 acts on the 396 

target cells. Can it pass through the plasma membrane freely or is there a receptor? The molecular 397 

basis for the differential activity of intracellular and extracellular PB1-F2 remains to be elucidated. Is 398 

full-length PB1-F2 proteolytically modulated to switch on or off an activity? Can truncated PB1-F2 399 

interact with full-length PB1-F2 to alter its activity?  400 

Finally, what is the molecular mechanism by which the IFN-modulating activity of PB1-F2 is 401 

regulated? Plausibly, different pathways and targets might be modulated by PB1-F2 at different 402 

stages of infection. Elucidation of these and other questions surrounding PB1-F2 and innate 403 

immunity might derive new knowledge and strategies for prevention and control of IAV.   404 
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Figure legend: 721 

 722 

FIGURE 1 An overall model of PB1-F2-mediated immunopathology during IAV infection. 723 
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