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Data-Driven Fast Transient Stability Assessment  

Using (Fault-on + 2) Generator Trajectories 

Abstract—For transient stability assessment (TSA) in modern 

power systems, the assessment results should be issued as soon as 

possible to leave enough time for pre-emptive control. To this end, 

this paper develops a fast online TSA scheme using fault-on tra-

jectories and their two adjacent data-points in pre- and post-fault 

stages, i.e., (fault-on + 2) trajectories. First, (fault-on + 2) trajecto-

ries of voltage magnitudes, rotor angles, and frequency deviations 

are acquired from multiple generators via PMUs. With such tran-

sient trajectories, a novel anti-noise transient bitmap based de-

scriptor is then strategically designed to comprehensively describe 

the system-wide transients in bitmap forms. Finally, a convolu-

tional neural network based TSA model is constructed by deep 

learning of transient bitmaps. Test results on the IEEE 39-bus sys-

tem demonstrate the effectiveness, adaptability, and robustness of 

the proposed TSA scheme. 
 

Index Terms--Bitmaps, convolutional neural networks, phasor 

measurement units, transient stability, time series, trajectories. 

I.  INTRODUCTION 

ITH an increasing amount of power delivered via slowly 

evolved transmission networks, modern power systems 

are often operated near their stability limits, being greatly 

threatened by various stability issues. Amongst them, transient 

stability, which mainly relies on synchronous generators’ abil-

ity to maintain synchronism against large disturbances [1], has 

attracted great attention in the power engineering field. Once 

transient instability occurs, it may have severe outcomes, lead-

ing to large-scale outages and even blackouts. To tackle the 

transient stability problem, many efforts have been made in the 

research community, e.g., time-domain simulation based anal-

ysis, transient energy function (TEF) and related methods. 

However, due to the salient nonlinear and high-dimensional 

features of transient stability, these conventional approaches 

have either extremely heavy computational burdens or limited 

applicability when applied to large-scale systems, except for 

highly approximated implementations, see [2] for instance. In 

practice, it is still challenging and urgent to develop reliable and 

efficient tools for online transient stability assessment (TSA).  

In recent years, owing to the wide deployment of wide area 

measurement systems (WAMS) and phasor measurement units 

(PMU), the above TSA challenge has been eased greatly. In 

particular, with huge volumes of synchronous PMU data avail-

able, data-driven machine learning methods have shown to be 

powerful for online TSA [3]-[7]. These methods generally learn 

the underlying relationships between system states/responses 

and stability status from the data-analytics perspective, and then 

directly apply them to online TSA with a high efficiency. In this 

way, they are hopeful to overcome the dilemmas encountered 

by conventional TSA methods when applied to realistic large-

scale systems. Most of these efforts take post-fault responsive 

data as inputs [3]-[5]. Since they need to collect post-fault PMU 

data before performing TSA, the issuance of TSA results would 

be delayed by a certain amount of time after fault clearance. In 

emergency situations, if the TSA results come out too late, it 

would be too difficult for corrective actions to save the system 

from instability. Although system stability can be predicted us-

ing security assessment models trained with steady-state meas-

urements regarding presumed events [6], it may be short of 

adaptability to unknown contingencies.            

To improve the early response of online TSA, recently a 

TSA method focusing on learning fault-on PMU data has been 

reported in [7]. Supposing fault occurrence/clearance can be 

identified by well-developed fault detection techniques [8], it 

tactfully takes steady-state and fault-on PMU data as raw inputs. 

Since post-fault data is not needed, it can predict the onset of 

potential instability once a fault is cleared, leaving sufficient 

time for pre-emptive control. However, as it requires to identify 

time-varying Thevenin equivalent parameters in real time, the 

TSA results may be sensitive to severe measurement noises.  

Taking the above concerns into account, this paper develops 

a data-driven online TSA scheme that enables fast TSA almost 

immediately after fault clearance. In particular, the fault-on 

time series (TS) trajectories plus their two closest data-points in 

pre- and post-fault stages [(fault-on + 2) trajectories] acquired 

from multiple generators are taken as the raw inputs. An anti-

noise transient bitmap based descriptor is devised to capture the 

spatial-temporal correlations within such transient trajectories 

and thus characterize the system-wide dynamics. Deep bitmap 

learning is then performed with the convolutional neural net-

work (CNN) algorithm, which eventually derives a highly reli-

able and robust TSA model for online monitoring.    

The rest of the paper is organized as follows. Section II in-

troduces the transient bitmap based descriptor. In Section III, 

the CNN based TSA scheme is described in detail. Section IV 

tests the TSA scheme’s overall performances on the IEEE 39-

bus system. Finally, conclusions are summarized in Section V. 

II.  TRANSIENT BITMAP BASED DESCRIPTOR 

In a specific system, rotor angle swings are the direct and 

reliable indicator of transient stability. However, as generator 

voltages usually evolve much faster than generator rotor angles 

[3]-[5], they may be utilized to predict potential instability more 

rapidly. To achieve fast yet reliable online TSA, the fault-on 

trajectories of generator voltage magnitudes, rotor angles and 

frequency (rotor speed) deviations from nominal values, i.e., V, 
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δ and ∆f, are acquired by PMUs and taken as the main raw in-

puts. However, as PMUs cannot always precisely capture the 

time instants of fault occurrence and clearance, both the data-

points on their left/right sides are sampled. This simple inclu-

sion of the two adjacent data-points in pre- and post-fault stages 

makes the whole trajectories more informative for the TSA task. 

For brevity, the acquired TS trajectories are thus called (fault-

on + 2) trajectories in this paper. With these trajectories, a tran-

sient bitmap based descriptor is developed to characterize the 

system’s overall dynamics in the following. 

A.  Symbolic Characterization of Individual Trajectories 

Before depicting a bitmap for system-wide transient descrip-

tion, individual (fault-on + 2) trajectories of {V, δ, ∆f} are first 

compactly characterized via a technique called Symbolic Aggre-

gate approXimation (SAX) [9]. It discretely encodes the numer-

ical sampling points of the TS trajectories with a group of pre-

scribed symbols. In this way, a TS is represented by a specific 

symbolic code or word, which preserves the TS’s main evolu-

tion trends and simultaneously gains a strong resistance to 

noises. In particular, how a TS trajectory is characterized by a 

symbolic word is presented as follows. 

Let a (fault-on + 2) trajectory be denoted as TS = {x1, x2, …, 

xn}, where n is the total number of data-points in TS. Assuming 

the cardinality of symbols is m, an alphabet for SAX is desig-

nated as 𝜶 = {𝛼1, 𝛼2, …, 𝛼m}. Given the cardinality m, the range 

of sampling values in TS can be split into m intervals with a 

specific breakpoint vector β = {β0, β1,…, βm}. For the j-th in-

terval (1 ≤ j ≤ m), all the data-points of TS falling into it are 

represented by the j-th symbol in 𝜶, i.e., 𝛼j. Following this idea, 

TS is transformed into a symbolic word C:    

 1, if (for 1 )i i j ij jc c ix n       C         (1) 

where ci is the i-th symbol in C, corresponding to xi in TS. 

Clearly, the parameters m and β have a crucial impact on the 

results of symbolic characterization. According to [9], [10], set-

ting the cardinality to m = 4~8 generally results in satisfactory 

performances on diverse TS datasets. Considering the compu-

tational complexity of subsequent bitmap learning, the cardinal-

ity is chosen as m = 4. As for β, its elements are statistically 

determined based on the mean value and standard deviation of 

all the TS data-points of the same quantity. Taking the voltage 

quantity for instance, by statistically collecting the voltage tra-

jectories of each generator from all the learning cases, their 

mean value and standard deviation are obtained and denoted as 

μV and σV, respectively. β is determined in the sense that the area 

under the probability density curve of the ideal Gaussian distri-

bution N(𝜇𝑉 , 𝜎𝑉
2) is separated into m equal parts by the (m+1) 

breakpoints in β [9], [11]. Specifically, β is formulated as 
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where f(u) is the probability density function of the hypothetical 

Gaussian distribution N(𝜇𝑉 , 𝜎𝑉
2). To cover the whole range of 

sampling values, β0 and βm are set to −∞ and +∞, respectively. 

Note that although the statistical voltage values may not neces-

sarily comply with a standard Gaussian distribution, practical 

tests show that any possible violation has a negligible effect on 

the SAX-based characterization [9], [11]. Similarly, the break-

points for δ and ∆f can also be calculated with their mean values 

and standard deviations. Taking the learning cases in Section 

IV-A for instance, based on the statistical analysis of all the {V, 

δ, ∆f} trajectories, their breakpoints are summarized in Table I. 

TABLE I BREAKPOINT VECTORS FOR {V, δ, ∆f} SAMPLING VALUES 

Quantity Mean value Standard deviation Breakpoint vector 

V 0.825 pu 0.180 pu {−∞, 0.704, 0.825, 0.946, +∞} 

δ 57.65 deg 36.60 deg {−∞, 32.96, 57.65, 82.34, +∞} 

∆f 0.262 Hz 0.722 Hz {−∞, -0.225, 0.262, 0.748, +∞} 
 

Given the above parameters, how a (fault-on + 2) voltage 

trajectory is represented by a symbolic word is exemplified in 

Fig. 1. As can be seen, the voltage TS is discretely represented 

as C = {daaaaaaaaaaaab}.  
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Fig. 1 Illustrative SAX based trajectory characterization. (a) transient voltage 

profile of a generator; (b) SAX representation of the (fault-on + 2) trajectory. 

B.  Pictorial Representation of System-Wide Transients 

With all the {V, δ, ∆f} trajectories transformed into symbolic 

words, they are integrated as a compact wordbook, from which 

the main transient characteristics of the system will be eventu-

ally described by a discerning bitmap. First, inspired by the idea 

that critical transient evolution trends may exist in fractional se-

quences instead of individual snapshots [12], a series of affixes 

are extracted from the full-length words to gain further insights 

into system dynamics. Supposing the length of affixes is L, (n− 

L+1) affixes can be extracted from C, which yields 

  1 1, , ..., , for 1 1i i i i i Lc c c i n L       A a a    (3) 

where A is the collection of all the L-length affixes extracted 

from C. In general, an affix with a larger length L may help to 

sufficiently describe the evolution trends of transient trajecto-

ries, especially for relatively slow rotor angle swings. However, 

with the increase of L, the cardinality of affixes, i.e., mL, grows 

significantly, leading to a larger transient bitmap. As the bitmap 

size has a crucial impact on the computational burden of CNN 

learning in the sequel, L should not be too large. In fact, empir-

ical tests show that setting L to 2~3 for {V, δ, ∆f} would result 

in a satisfactory trade-off between the CNN classification per-

formance and computational efficiency. Hence, L is uniformly 

set to L = 2 for all the trajectories of {V, δ, ∆f}.  

Given a two-symbol affix {𝛼i, 𝛼j} (1 ≤ i, j ≤ m), its normal-

ized frequency of occurrence in C is calculated as 
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where 𝜒(∗) is a characteristic function judging whether the k-th 

affix in A is equal to {𝛼i,𝛼j}. The normalization in (4) enables 

the processing of transient trajectories with different lengths, 

which are induced by different fault durations under different 

scenarios. By computing the occurrence frequencies of all the 

possible affixes in C, an m∗m frequency matrix characterizing 
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the statistical features of local evolution trends is constructed. 

As illustrated in Fig. 2(a) (for convenience, each frequency ma-

trix is reshaped as a 2*8 matrix), frequency matrices of {V, δ, 

∆f} variables collected from different generators are lined up 

together, being ready for bitmap depiction.  
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(a) Statistics of affix frequencies (b) Bitmap depiction based on affix frequencies  
Fig. 2 Illustration of bitmap based representation. 

  
In essence, a bitmap is rendered by mapping affix frequency 

values to a specific colormap [10]. As shown in Fig. 2(b), each 

2∗8 frequency matrix is represented by a 2∗8 pixel matrix. As 

for the construction of the whole bitmap, the pixel blocks of all 

the generators with the same type of quantities are grouped and 

aligned from top to bottom (in the same columns). Given a sys-

tem with 10 generators, the pixel matrices of all the 10 genera-

tor voltages are aligned in the 1st~8th columns, occupying a 

20∗8 block. The pixel matrices of the other two types of quan-

tities {δ, ∆f } are depicted in the same way. All of these matrices 

form a 20*24 pixel block. As it is generally more convenient 

for the classical CNN algorithm to handle a squared picture, the 

20∗24 pixel block is further padded with a 4∗20 blank patch 

(each pixel with the 0 value). In this way, a squared 24∗24 bit-

map is eventually depicted to characterize the system-wide dy-

namics for a (fault-on + 2) transient process.   

Remark: Pixel matrices of topologically adjacent generators 

can be positioned nearby in the bitmap, so as to take into ac-

count possible spatial correlations of transient behaviors be-

tween generators (similar to the bus re-ordering strategy in [13]).  

III.  PROPOSED TSA SCHEME 

With the above transient bitmap based descriptor, all the 

transient cases are represented by transient bitmaps. By learning 

features from such transient bitmaps, a fast online TSA scheme 

can be constructed, as shown in Fig. 3. The whole scheme con-

sists of three stages, which are described in the following.  
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Fig. 3 Proposed TSA scheme. 

A.  Case Generation and Data Preprocessing 

Given a specific system, considering a variety of possible 

operating conditions and contingencies, numerous transient sta-

bility cases are generated via numerical simulations. The (fault-

on + 2) TS trajectories of the {V, δ, ∆f} variables at all the gen-

erator buses are acquired from each case. Meanwhile, the tran-

sient stability status of each case, denoted as y, is labeled via a 

rotor angle based index η [14]: 

o

max

o

max

3601 if 0 (stable)
for

0 otherwise (unstable) 360
y






 
 

 
，      (6) 

where |∆δ|max is the maximum absolute value of the rotor angle 

deviation between any two generators during the 0~10 s transi-

ent simulation period. The TS trajectories and the labels of all 

the cases are gathered to form a labeled TS database. With the 

help of the transient bitmap based descriptor, all the transient 

cases are further characterized by a series of bitmaps, which 

will be fed into the 2nd stage for classification learning.  

B.  Transient Bitmap Learning 

Taking the bitmaps and labels of all the cases as the inputs 

and outputs, respectively, the proposed TSA scheme employs a 

CNN classifier to learn the hidden relationship between the 

transient bitmaps and system stability status. As this paper 

mainly focuses on presenting the application of CNN to the 

TSA task, for more details about CNN, interested readers may 

refer to [15]. 

 Although a multitude of complex and powerful CNN mod-

els have been proposed in recent years, one of the simplest CNN 

structures is adopted here to minimize the offline computational 

burden of the TSA task. As shown in Fig. 4, the adopted CNN 

is a variation of the classical LeNet-5 model [16]. It has a bit-

map based input layer, two convolution layers, two max-pool-

ing layers, two fully connected layers and an output layer. All 

the convolutional computations are performed with a kernel 

size of is 5∗5 and a stride size of 1. All the max-pooling manip-

ulations are implemented with a subsampling size of 2∗2 and a 

stride size of 2. The output of each convolution layer is acti-

vated by a rectified linear unit (ReLU) [15]: 

  ( ) max 0,f x x x 

                             

 (7) 

For the eventual output layer, the activation and loss func-

tions are designed as   
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where �̂� and y are the predicted and actual outputs of a certain 

case, respectively. By feeding all the bitmaps to the CNN 

model, iterative learning is performed, which eventually builds 

a binary transient stability classifier for online TSA. With the 

predicted value �̂�, the binary stability status ypre is predicted as 

pre

ˆ1 if (stable)

0 otherwise (unstable)

y
y


 


                     (9) 

where ε (0 < ε < 1) is the decision threshold acting as the bound-

ary to separate stable cases from unstable ones. It is generally 

set to ε = 0.5 for unbiased online TSA.  
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Fig. 4 CNN based transient bitmap learning. 

C.  Online Transient Stability Monitoring 

During online monitoring, when the system encounters a 

transient fault, PMUs located at generator buses acquire the 

(fault-on + 2) TS data for all the {V, δ, ∆f} quantities. With these 

measured TS trajectories, a pictorial measured case is generated 

by bitmap depiction and then fed to the transient stability clas-

sifier to quickly predict whether the system can keep stable. If 

not, alerting signals will be issued in real time to warn that cor-

rective countermeasures be taken as soon as possible. Other-

wise, continuous online monitoring will be performed, and TSA 

will be executed again for the next contingency. 

IV.  SIMULATION RESULTS 

A.  Simulation Setting and Assumption 

The whole TSA scheme was tested on the IEEE 39-bus sys-

tem, as depicted in Fig. 5. The 10 generator buses 30~39 were 

assumed to be deployed with PMUs for TSA. Considering spa-

tial correlations, the generator buses were sorted as {30, 37, 39, 

31, 32, 33, 34, 35, 36, 38}. The PMUs’ sampling rate for (fault-

on + 2) trajectory acquisition was set to 120 Hz. Numerous con-

ditions and contingencies were simulated for transient case gen-

eration. To cover a wide variety of operating conditions, differ-

ent levels of load demands and typical topological variations 

were considered. Three-phase short-circuit faults with time du-

rations 0.1~0.5 s were separately imposed on different trans-

mission lines. Based on these settings, 9000 cases were gener-

ated by numerical simulations. All the cases were randomly as-

signed to two groups, with 7200 ones constituting a training set, 

while the remaining 1800 ones forming a testing set.  
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Fig. 5 One-line diagram of the IEEE 39-bus system. 

B.  Illustration of Transient Bitmap Description 

Without loss of generality, two transient cases were ran-

domly chosen from the training set to illustrate the effect of 

transient bitmap description, as shown in Fig. 6. Clearly, the 

two bitmaps exhibit significant differences. In particular, the 

bitmap of the stable case has more red pixels, while the bitmap 

of the unstable case has more diverse pixels. This is because the 

evolution of system trajectories in the unstable case is more 

drastic, resulting in multiple abundant TS segments and affixes 

for bitmap depiction. For the stable case, however, as its trajec-

tories evolve moderately, the TS segments are more likely to 

concentrate on a certain affix. Such discriminative bitmaps 

would greatly contribute to the high performance of the TSA 

scheme, which will be shown below. 

0 1 2t/s

0

50

100
Bus30
Bus31
Bus32
Bus33
Bus34

Bus35
Bus36
Bus37
Bus38
Bus39

R
o

to
r 

A
n

g
le

/d
e
g
re

e

x-axis

y
-a

x
is

(Fault-on + 2) 

Trajectory

(a) Rotor angle profile of a stable case (b) Bitmap of a stable case

R
o

to
r 

A
n

g
le

/d
e
g
re

e

0 1 2t/s
(c) Rotor angle profile of an unstable case

y
-a

x
is

x-axis
(d) Bitmap of an unstable case

(Fault-on + 2) 

Trajectory

Bus30
Bus31
Bus32
Bus33
Bus34

Bus35
Bus36
Bus37
Bus38
Bus39

Affix Frequency

Affix Frequency

200

400

0

0.5

1

0

0.5

1

 
Fig. 6 Illustration of bitmap based transient case representation. (a)~(b): stable 

case; (c)~(d): unstable case.   

C.  Performance on Online TSA 

1) CNN Training and Classification: With the 7200 training 

cases described by bitmaps, a CNN model was trained for 

online TSA. In the meantime, several conventional classifiers, 

including support vector machine (SVM), decision tree (DT), 

and random forest (RF) [17], were trained on the same case base 

for comparative study. As these classifiers cannot directly han-

dle 2-D images, all the 24∗24 bitmaps were flattened as 480-

dimentional vectors (with the padded pixels removed). 10-fold 

cross validation was employed to evaluate the classifiers’ per-

formances on the training set. The 1800 testing cases not pre-

sent in the learning stage were fed to all the classifiers to mimic 

online TSA. All their performances are summarized in Table II. 

TABLE II  PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS 

Accuracy/% CNN SVM DT RF 

Cross validation 99.40 95.19 95.56 96.04 

Online test 98.11 94.83 94.17 95.67 
 

Obviously, the CNN model outperforms the other 4 learners, 

with its accuracy being above 98%. In fact, its high performance 

mainly benefits from transient bitmap description, which not 

only statistically characterizes the temporal evolution trends of 

transient trajectories, but also considers possible spatial corre-

lations. For the other 4 classifiers, only temporal characteristics 

are involved in the flat vector. Besides, as their learning struc-

tures are much simpler than CNN, it is difficult for them to fully 

deduce the underlying relationship between short TS trajecto-

ries (0.1~0.5 s) and the system stability status. Hence, the CNN 

model would be preferred for online TSA in practice.       

2) Computational Efficiency: To evaluate the overall com-

putational efficiency, the computation times cost by each stage 
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of the TSA scheme were recorded in Table III. As can be seen, 

most of the computation times are consumed by the CNN train-

ing procedure (with 2000 epochs). It is due to the deep learning 

structure of the CNN model which involves hundreds of thou-

sands of parameters to be trained. However, this does not im-

pact online TSA efficiency. Actually, online TSA results can be 

issued almost right after fault clearance, with a negligible online 

processing time. Note that all the data processing and calcula-

tions were conducted in MATLAB on a PC configured with an 

Intel Core i7 CPU (3.60 GHz∗8) and 8.0 GB RAM. If more 

advanced deep learning frameworks such as Google Tensor-

Flow and GPU based computing platforms are deployed, the 

offline learning procedure can be significantly speeded up. 

TABLE III  STATISTICS OF COMPUTATIONAL TIME 

Offline bitmap generation 

time (7200 cases) 

Offline CNN training 

time  (7200 cases) 

Online bitmap processing 

time (on average) 

8.79 s 7741.52 s 1.2 ms  

 

3) Adaptability to Unexpected Conditions: As the operating 

conditions in practice generally vary from time to time, two 

brand-new scenarios not included in the initial database in Sec-

tion IV-A were simulated to test the scheme’s adaptability to 

unforeseen conditions: 1) Three transmission lines (bus 25-bus 

26, bus 26-bus 28, bus 28-bus 29) were respectively discon-

nected to simulate unscheduled line tripping. 2) Load demands 

at load buses were separately randomized from 80% to 120% 

of their base levels, so as to mimic stochastic and unknown load 

patterns. Similar to Section IV-A, by setting different fault lo-

cations and fault clearing times, 1800 and 2700 new transient 

cases were generated for the two new scenarios via numerical 

simulations. TSA was implemented by directly applying the 

CNN model trained previously. As shown in Table IV, with 

such totally unknown scenarios, the scheme still achieves an 

excellent TSA accuracy (> 97.3%). This implies that the TSA 

scheme adapts well to unforeseen conditions in the system. 

TABLE IV  TSA PERFORMANCES IN UNEXPECTED SCENARIOS 

Scenario No. of cases Accuracy/% Misdetection/% False Alarm/% 

1 1800 97.39 1.22 1.39 

2 2700 97.48 1.11 1.41 

Remark: Misdetection rate is the ratio of falsely dismissed unstable cases, while false 

alarm rate stands for the percentage of stable cases that are falsely alarmed [18]. 

4) Robustness to PMU Measurement Errors: Considering 

practical measurement contexts, the TSA scheme’s perfor-

mance was further tested in the presence of PMU measurement 

errors. Specifically, PMU measurement errors were simulated 

by superimposing Gaussian noises following the distribution 

N(0, σ2) on transient {V, δ, ∆f} trajectories of the 1800 testing 

cases in Section IV-A. Different levels of measurement errors 

were considered by setting σ to σ = 0, 1%, 2% and 3%, respec-

tively. With the CNN model in Table II, the classification per-

formances at different error levels are summarized in Table V. 

TABLE V  TSA PERFORMANCES IN NOISY CONTEXTS (1800 TESTING CASES) 

Noise level Accuracy/% Misdetection/% False Alarm/% 

σ = 0 98.11 0.89 1.00 

σ = 1% 98.06 0.83 1.11 

σ = 2% 97.72 1.00 1.28 

σ = 3% 97.06 1.33 1.61 

 

 Obviously, the TSA scheme remains resistant to PMU 

measurement noises, with a limited reduction of accuracy. Even 

with the error level as high as 3%, its TSA accuracy stays above 

97%. Such a desirable anti-noise merit results from the SAX 

based characterization of TS trajectories, which is able to cap-

ture critical TS evolution trends by strategic discretization. 

V.  CONCLUSION 

This paper develops a fast online TSA scheme by deeply 

learning transient trajectories from multiple generators. Taking 

(fault-on + 2) TS data of {V, δ, ∆f} quantities as the raw inputs, 

it tactfully designs a transient bitmap based descriptor to char-

acterize system-wide transient behaviors. With each case de-

scribed by a 2-D bitmap, it leverages the CNN algorithm to train 

a transient stability classifier for online TSA. Test results on the 

IEEE 39-bus system verify that the proposed scheme achieves 

superior performances, with online TSA results reliably issued 

almost immediately after fault clearance. Preliminary tests of its 

adaptability to unforeseen conditions and robustness to meas-

urement errors have further demonstrated its applicability. Yet 

more systematic studies on how the scheme performs in more 

imperfect practical contexts and how to cope with them remain 

to be carried out in relevant future work. In particular, special 

attention may be paid to how the malfunctions of the PMUs and 

WAMS will affect the scheme’s online TSA performances.  
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