
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2018-0319 

Title Subgroup Analysis in Censored Linear Regression 

Manuscript ID SS-2018-0319 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202018.0319 

Complete List of Authors Xiaodong Yan 

Guosheng Yin and  

Xingqiu Zhao 

Corresponding Author Xingqiu Zhao 

E-mail xingqiu.zhao@polyu.edu.hk 

Notice: Accepted version subject to English editing. 



Statistica Sinica

Subgroup Analysis in Censored Linear Regression

Xiaodong Yan

School of Economics, Shandong University, Jinan, China

Guosheng Yin

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong

Xingqiu Zhao

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

Abstract: In the presence of treatment heterogeneity due to unknown grouping information, stan-

dard methods assuming homogeneous treatment effects cannot capture the subgroup structure in the

population. To accommodate heterogeneity, we propose a concave fusion approach to identifying the

subgroup structures as well as estimating treatment effects for semiparametric linear regression with

censored data. In particular, the treatment effects are subject-dependent and subgroup-specific, and

our concave fusion penalized method conducts the subgroup analysis without the need to know the

individual subgroup memberships in advance. The proposed estimation procedure can automatically

identify the subgroup structure and simultaneously estimate the subgroup-specific treatment effects.

Our new algorithm proceeds through combining the Buckley–James iterative procedure and the al-

ternating direction method of multipliers. The resulting estimators enjoy the oracle property, and

simulation studies and real data application demonstrate the good performance of the new method.

Key words and phrases: Concave penalization; Oracle property; Subgroup analysis; Survival data;

Treatment heterogeneity.

1

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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1. Introduction

With the rapid development of precision medicine, subgroup analysis has become com-

monplace in clinical trials for tailoring disease treatment and prevention to subgroups of

patients with similar characteristics. Heterogeneity of treatment effects may arise due to

underlying differences among groups of patients in the risk, pathology, biology, genetics,

severity of disease, among others. Subgroup identification in a heterogeneous population is a

crucial step for promoting individualized treatment strategies, which in turn can contribute

to deeper understanding of the genetic basis of diseases, more accurate diagnosis, and better

survival prediction.

When treatment heterogeneity is present, the average treatment effect obtained by the

standard methods can lead to bias and incorrect conclusions. Subgroup analysis, on the

other hand, is specifically developed to model potential heterogeneity in the population,

which requires a rigorous statistical framework (Kravitz, Duan and Breslow 2004; Rothwell

2005; Lagakos 2006). From the finite mixture modeling perspective, Shen and He (2015)

proposed a structured logistic–normal mixture model by quantifying the subgroup member-

ship with logistic regression and the response with normal linear regression. Wu, Zheng and

Yu (2016) made an extension to a logistic–Cox mixture model to accommodate censored

outcomes. The mixture models typically require specifying the number of components and a

parametric model for grouping, which may not be feasible in practice. By contrast, Ma and

Huang (2017) developed a pairwise fusion penalized approach using concave penalty func-

tions, such as the smoothly clipped absolute deviations (SCAD) penalty in Fan and Li (2001)

and the minimax concave penalty (MCP) in Zhang (2010), which can automatically identify
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subgroups as well as estimating subgroup-specific intercepts. Furthermore, Ma and Huang

(2016) adopted the concave fusion penalized method to estimate the grouping structures

and the subgroup-specific treatment effects. This automatic fusion approach to identifying

the subgroups is based on complete observations, and thus it is not directly applicable to

handling treatment heterogeneity with censored data. Subgroup analysis for censored het-

erogeneous data brings new theoretical and computational challenges due to censoring and

complexity of survival models. As survival data represent one of the most important clini-

cal endpoints, the inference and analysis methods accommodating treatment heterogeneity

across subgroups with censored observations play an increasingly critical role in precision

medicine. However, most existing survival models are developed for statistical inference on

average effects (e.g., Kalbeisch and Prentice, 1980; Fleming and Harrington, 1991; Andersen,

Borgan, Keiding and Gill, 1993). In addition, penalized methods have been proposed for

variable selection in the Cox proportional hazards model (e.g., Tibshirani, 1997; Fan and

Li, 2002; Bradic, Fan and Jiang, 2011; Huang et al., 2013). When the proportional hazards

assumption does not hold, alternative models are developed to handle sparsity in regression.

For example, Cai, Huang and Tian (2009) proposed a regularization estimation approach for

the linear or accelerated failure time model. Liu and Zeng (2013) studied variable selection

in transformation survival models with possibly time-varying covariates. Lin and Lv (2013)

investigated a high-dimensional sparse additive hazards model with survival data.

To conduct a more systematical subgroup analysis with heterogeneous survival models,

we propose a censored linear regression model with heterogeneous treatment effects and as-

sume a sparsity structure for treatment effects. Specifically, the regression model considered
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allows the effects to be subgroup-specific with unknown grouping information. To estimate

the subgroup structures and subgroup-specific treatment effects, we utilize a concave fu-

sion penalized method to shrink pairwise differences of treatment effects, where the tuning

parameter is selected by a modified Bayesian information criterion (BIC). Our numerical

algorithm combines the Buckley–James iterative procedure (Buckley and James, 1979) and

the alternating direction method of multipliers (BJ-ADMM) using concave penalties such

as the SCAD or MCP. Under some canonical conditions, the oracle Buckley–James least

squares estimator with a priori knowledge of the true subgroups is a local minimizer of the

proposed objective function with high probability. That means, our proposed estimator can

approximate the oracle estimator with high probability.

The rest of this paper is organized as follows. Section 2 describes the censored linear

regression model under heterogeneity, the Buckley–James least squares objective function,

and the concave fusion penalization method. To compute the penalized Buckley–James

least squares estimator, we propose a BJ-ADMM algorithm with concave fusion penalties

in Section 3. The theoretical properties of the resulting estimator are established in Section

4. The finite-sample properties of the proposed method are evaluated through simulation

studies in Section 5 and our method is illustrated through a real data example in Section

6. Concluding remarks are provided in Section 7, and the technical proofs are given in the

Supplemental Materials.

2. Model and Method

2.1 Censored Linear Model with Heterogeneity

Consider a clinical trial with survival endpoint. For each subject, let Y and C denote
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the transformed survival and censoring times respectively, and let Z = (z1, . . . , zq)
> be a

q-dimensional nuisance covariate vector and X = (x1, . . . , xp)
> be a p-dimensional covariate

vector of interest. The observed data consist of {Y ∗i , δi, Xi, Zi; i = 1, . . . , n}, independent

copies of {Y ∗, δ,X, Z}, with Y ∗ = min(Y,C) and δ = I(Y ≤ C).

Under the homogeneous treatment effects, the semiparametric linear regression model

takes the form of

Yi = Z>i η +X>i β + εi, i = 1, . . . , n, (2.1)

where η = (η1, . . . , ηq)
>, β = (β1, . . . , βp)

>, and εi’s are assumed to be independent and iden-

tically distributed with an unknown distribution F . The corresponding probability density

function of εi is f , F−1(1) < ∞ and E|εi| < ∞, while E(εi) need not to be 0. Further, we

assume that εi is independent of (Zi, Xi, Ci) and conditional on Zi and Xi, Yi and Ci are

independent.

If individuals are from multi-subgroups with different treatment effects, the homogeneity

assumption in model (2.1) is violated. To estimate subgroup-specific effects, we consider a

heterogenous linear regression model,

Yi = Z>i η +X>i βi + εi, i = 1, . . . , n, (2.2)

where the key difference between models (2.1) and (2.2) lies in the individual-specific treat-

ment effects βi.

To estimate each individual-specific treatment effect βi, we assume that all subjects can

be classified into R subgroups G1, . . . ,GR, and the regression coefficients satisfy the fused

sparse structure,

‖βi − βj‖ = 0, i, j ∈ Gr, r = 1, . . . , R. (2.3)
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Under the sparsity assumption (2.3), the treatment effects are the same within each subgroup

but different across subgroups. Suppose that for i ∈ Gr, βi = ρr, where ρr is the common

value of βi’s in subgroup Gr. Our goal is to estimate the subgroup-specific treatment effects

ρr’s (i.e., βi’s) and identify the fused sparse structure Gr’s (i.e., R) simultaneously.

2.2 Penalized Method via Concave Fusion

Penalized procedures are commonly used for parameter estimation and variable selection.

For estimating the parameters β = (β>1, . . . , β
>
n)> and η, as well as selecting the proper

grouping structure of β under the sparse assumption (2.3), we develop a penalized Buckley–

James least squares method. Let θ = (η>,β>)> and θi = (η>, β>i )
>.

As Yi cannot be completely observed due to censoring, we impute Yi by its conditional

expectation given the observed data,

Ỹi(θi, F ) = E(Yi | Xi, Zi, Y
∗
i , δi)

= δiY
∗
i + (1− δi)

{
Z>i η +X>i βi +

∫∞
Y ∗i −Z>i η−X>i βi

tdF (t)

1− F (Y ∗i − Z>i η −X>i βi)

}
. (2.4)

Let εi(θi) = Yi − Z>i η −X>i βi, ζi(θi) = Ci − Z>i η −X>i βi, and υi(θi) = min(ζi(θi), εi(θi)). For

a given θ, based on {(υi(θi), δi), i = 1, . . . , n} the Kaplan–Meier estimator of the unknown

error distribution F in (2.4) is given by

F̃θ(t) = 1−
∏

i:υi(θi)≤t

{
1− 1

Gn(θ, υi(θi))

}δi
, (2.5)

where Gn(θ, u) =
∑n

i=1 I(υi(θi) ≥ u).

Motivated by the Buckley–James least squares method (Buckley and James, 1979; Miller
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and Halpern, 1982), we propose a penalized Buckley–James least squares objective function,

`P (θ;λ) =
1

2

n∑
i=1

[
{Ỹi(θi, F̃θ)− Z>i η −X>i βi} −

1

n

n∑
i=1

{Ỹi(θi, F̃θ)− Z>i η −X>i βi}

]2
+

∑
1≤i<j≤n

Pλ(‖βi − βj‖) (2.6)

where Pλ(·) is a penalty function and λ ≥ 0 is a tuning parameter that controls the amount of

penalty on ‖βi−βj‖’s. The tuning parameter λ determines an estimation path of individual-

specific treatment effects, and it can shrink ‖βi−βj‖ towards zero with a large enough value

of λ. For a given λ, we define

θ̂(λ) = argminθ∈Rq+np `P (θ;λ), (2.7)

and the optimal value of λ can be selected via a properly constructed BIC. In particular,

we partition the support of λ into a grid of λmin = λ0 < λ1 < · · · < λJ = λmax, and for

each λj we compute a solution path of θ̂(λj), and obtain the estimated number of subgroups

R̂(λj) and subgroup-specific effects {ρ̂1(λj), . . . , ρ̂R̂(λj)
(λj)}. The optimal λ̂ is selected by

minimizing a data-driven BIC, i.e., λ̂ = argminλj ;j=1,...,JBIC(λj). Subsequently, we obtain

the estimator θ̂ = θ̂(λ̂), and the individuals can be separated into R̂ = R̂(λ̂) subgroups

accordingly, i.e., Ĝr = {i : β̂i = ρ̂r, i = 1, . . . n}, r = 1, . . . , R̂.

The commonly used sparsity-inducing penalties include:

(i) Lasso penalty (Tibshirani 1996) with Pλ(t) = λ|t|;

(ii) Smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001) with Pλ(t) =

λ
∫ |t|
0

min{1, (aλ− x)+/a(λ− 1)}dx, a > 2;
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(iii) Minimax concave penalty (MCP) (Zhang 2010) with Pλ(t) = λ
∫ |t|
0
{1 − x/(aλ)}+dx,

a > 2.

However, Lasso generally assigns a small penalty to a small difference of ‖βi − βj‖ and

consequently the resulting subgroups tend to be dense, which may include too many spurious

subgroups with very small differences among them.

3. Computational Procedure

3.1 The BJ-ADMM Algorithm

We propose to use the Buckley–James iterative procedure in conjunction with the ADMM

algorithm to obtain the estimator θ̂. Let Z = (Z1, . . . , Zn)>, X = diag(X>1, . . . , X
>
n), and

Z̄ = 1
n

∑n
i=1 Zi. Let Z̄ be an n× q matrix with every row equal to Z̄, and X̄ = 1

n

∑n
i=1X i,

where X i is the ith row of X. Let X̄ be an n × np matrix with every row equal to X̄.

Define Z̃ = Z − Z̄, X̃ = X − X̄, and QZ = In −Z(Z̃>Z)−1Z̃> where In is an n× n identity

matrix. Let Ỹ (θ, F̃θ) = (Ỹ1(θ1, F̃θ), . . . , Ỹn(θn, F̃θ))>, Ȳ (θ, F̃θ) = 1
n

∑n
i=1 Yi(θi, F̃θ), Ȳ(θ, F̃θ)

be an n-vector with each component Ȳ (θ, F̃θ), and Ỹ(θ, F̃θ) = Ỹ (θ, F̃θ) − Ȳ(θ, F̃θ). Let

Ω = E ⊗ Ip, where E = {(ei − ej), i < j}>n(n−1)
2
×n

with ei being the ith n × 1 unit vector

whose ith element is 1 and the remaining elements are 0, Ip is a p× p identity matrix and ⊗

represents the Kronecker product. Let 〈a, b〉 = a>b represent the inner product of two vectors

a and b of the same dimension. With the notation αij = βi − βj, the objective function in
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(2.6) can be written as

˜̀
P (η,β,α) =

1

2

n∑
i=1

{Ỹi(θi, F̃θ)− Z>i η −X>i βi}2 −
1

2n

{ n∑
i=1

(Ỹi(θi, F̃θ)− Z>i η −X>i βi)
}2

+
∑

1≤i<j≤n

Pλ(‖αij‖), subject to βi − βj − αij = 0, (3.1)

where α = {α>ij, i < j}>. Under the constraints in (3.1), the augmented Lagrangian equation

is

Q(η,β,α,ν) = ˜̀
P (η,β,α) +

∑
i<j

〈νij, βi − βj − αij〉+
ϕ

2

∑
i<j

‖βi − βj − αij‖2, (3.2)

where the dual variables ν = {ν>ij, i < j}> are the Lagrange multipliers and ϕ is a penalty

parameter. Given the parameter values θ(k) = (η(k)>,β(k)>)> and ν(k) at the kth step, our

BJ-ADMM iterative algorithm proceeds as follows:

α(k+1) = arg min
α
L(α,β(k),ν(k)), (3.3)

ν
(k+1)
ij = ν

(k)
ij + ϕ(β

(k)
i − β

(k)
j − α

(k+1)
ij ), (3.4)

(η(k+1),β(k+1)) = arg min
η,β

Q(η,β,α(k+1),ν(k+1) | θ(k)), (3.5)

where L(α,β(k),ν(k)) is the simplified version of the objective function Q(η(k),β(k),α,ν(k))

after discarding the terms independent of α,

L(α,β(k),ν(k)) =
ϕ

2

∑
i<j

‖β(k)
i − β

(k)
j + ϕ−1ν

(k)
ij − αij‖2 +

∑
i<j

Pλ(‖αij‖),(3.6)

Q(η,β,α(k+1),ν(k+1) | θ(k)) = ˜̀
P (η,β,α(k+1) | θ(k)) +

∑
i<j

〈
ν
(k+1)
ij , βi − βj − α(k+1)

ij

〉
+
ϕ

2

∑
i<j

‖βi − βj − α(k+1)
ij ‖2, (3.7)
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and

˜̀
P (η,β,α(k+1) | θ(k))

=
1

2

n∑
i=1

{Ỹi(θ(k)i , F̃θ(k))− Z>i η −X>i βi}2 −
1

2n

{ n∑
i=1

(Ỹi(θ
(k)
i , F̃θ(k))− Z>i η −X>i βi)

}2
+

∑
1≤i<j≤n

Pλ(‖α(k+1)
ij ‖).

Note that the element α
(k+1)
ij of α(k+1) is the minimizer of ϕ

2
‖ξ(k)ij − αij‖2 + Pλ(‖αij‖), where

ξ
(k)
ij = β

(k)
i − β

(k)
j + ϕ−1ν

(k)
ij . Different groupwise thresholding operators Pλ(·) would yield

different estimates α
(k+1)
ij :

(i) for the Lasso penalty (Tibshirani 1996),

α
(k+1)
ij = S(ξ

(k)
ij , λ/ϕ), where S(w, t) =


(1− t/‖w‖)w, if t/‖w‖ < 1,

0, otherwise;

(ii) for the SCAD penalty (Fan and Li 2001) with a > 1/ϕ+ 1,

α
(k+1)
ij =



S(ξ
(k)
ij , λ/ϕ), if ‖ξ(k)ij ‖ ≤ λ+ λ/ϕ,

ξ
(k)
ij , if ‖ξ(k)ij ‖ > aλ,

S(ξ
(k)
ij ,aλ/((a−1)ϕ))
1−1/((a−1)ϕ) , otherwise;

(iii) for the MCP (Zhang 2010) with a > 1/ϕ,

α
(k+1)
ij =


S(ξ

(k)
ij ,λ/ϕ)

1−1/(aϕ) , if ‖ξ(k)ij ‖ ≤ aλ,

ξ
(k)
ij , otherwise.
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Via some algebraic manipulation, the problem in (3.7) is equivalent to minimizing

h(η,β,α(k+1),ν(k+1) | θ(k))

=
1

2
‖Ỹ (θ(k), F̃θ(k))−Zη −Xβ‖2 −

n

2
{Ȳ (θ(k), F̃θ(k))− Z̄>η − X̄>β}2

+
ϕ

2
‖Ωβ −α(k+1) + ϕ−1ν(k+1)‖2.

Thus, for given values of α(k+1), ν(k+1) and θ(k), we update β(k+1) and η(k+1) as follows:

β(k+1) = (X̃>QZX + ϕΩ>Ω)−1{X̃>QZỸ (θ(k), F̃θ(k)) + ϕΩ>(α(k+1) − ϕ−1ν(k+1))},

η(k+1) = (Z̃>Z)−1Z̃>{Ỹ (θ(k), F̃θ(k))−Xβ(k+1)}.

The BJ-ADMM algorithm is terminated until the primal residual r(k) = Ωβ(k) −α(k) is

close enough to zero, such as ‖r(k)‖ < 0.01. Once convergence is reached, subjects i and j

with α̂ij = 0 can be grouped into one subgroup Ĝr and estimate the rth subgroup-specific

treatment effect through ρ̂r = 1

|Ĝr|

∑
i∈Ĝr β̂i, where |Gr| denotes the number of elements in

Gr. Note that when QZ = In, the proposed algorithm reduces to an estimation procedure

for the model Yi = X>i βi + εi.

3.2 Initial Values

To facilitate the (k + 1)th update of (α(k+1),ν(k+1), η(k+1),β(k+1)) in (3.3) to (3.5) of

the BJ-ADMM iterative algorithm, we need to specify proper initial values. Motivated by

the Buckley–James iterative procedure (Miller and Halpern 1982), we obtain the regression

estimators η(m+1) and β(m+1) = (β
(m+1)>
1 , . . . , β

(m+1)>
n )> at the (m+ 1)th step by minimizing
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a ridge fusion criterion

`(θ | θ(m)) =
1

2

n∑
i=1

{Ỹi(θ(m)
i , F̃θ(m))− Z>i η −X>i βi}2 −

1

2n
{

n∑
i=1

(Ỹi(θ
(m)
i , F̃θ(m))− Z>i η −X>i βi)}2

+
λ∗

2

∑
1≤i<j≤n

‖βi − βj‖2, (3.8)

where θ(m) = (η(m)>,β(m)>)> are the parameter estimates at the mth step, and we set λ∗ =

0.001.

Using the matrix notation, (3.8) can be written as

`(θ | θ(m)) =
1

2
‖Ỹ (θ(m), F̃θ(m))−Zη −Xβ‖2 −

n

2
{Ȳ (θ(m), F̃θ(m))− Z̄>η − X̄>β}2

+
λ∗

2
‖Ωβ‖2,

which leads to

β(m+1) = (X̃>QZX + λ∗Ω>Ω)−1X̃>QZỸ (θ(m), F̃θ(m)),

η(m+1) = (Z̃>Z)−1Z̃>{Ỹ (θ(m), F̃θ(m))−Xβ(m+1)(λ∗)}.

In each iterative step, we also update Ỹ (θ(m), F̃θ(m)), and the iteration is continued until

θ(m) converges to the limit value, which is then used as the initial value for the BJ-ADMM

iterative procedure.

3.3 Tuning Parameter

From a grid of λ values, we select the optimal tuning parameter λ̂ by minimizing a

modified BIC,

BIC(λ) = log

{
1

n
‖Ỹ(θ̂(λ), F̃θ̂(λ))− Z̃η̂(λ)− X̃β̂(λ)‖2

}
+ Cn

log n

n

{
R̂(λ)p+ q

}
, (3.9)
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where Cn is a positive number dependent on n. By default, we take Cn = log(np+q), ϕ = 1,

and a = 3.

3.4 Convergence of the BJ-ADMM Algorithm

The convergence of the BJ-ADMM algorithm can be demonstrated by showing that both

the primal residual and dual residual approach zero in the iterative procedure.

Proposition 1. If {α(k)}∞k=1 is bounded and ‖ν(k+1)−ν(k)‖ → 0, then {η(k),β(k),α(k),ν(k)}∞k=1

is bounded. Moreover, there exists a subsequence {η(kj),β(kj), α(kj),ν(kj)}∞kj=1, such that

limkj→∞‖η(kj+1) − η(kj)‖+ ‖β(kj+1) − β(kj)‖+ ‖α(kj+1) −α(kj)‖+ ‖ν(kj+1) − ν(kj)‖ = 0

and thus {η(k),β(k),α(k),ν(k)}∞k=1 has a subsequence which converges to a stationary point.

The proof is given in the Supplementary Materials. This proposition guarantees that

the BJ-ADMM algorithm applied to the objective function (3.2) converges to a minimum

point which is locally optimal.

4. Asymptotic Results

4.1 Notation and Conditions

To study the consistency and oracle property of the proposed concave-penalized Buckley–

James estimator, we first introduce some notation and regularity conditions. Let Π̃ = {πir}

denote an n×R matrix with πir = 1 for i ∈ Gr and πir = 0 for i /∈ Gr. Let Π = Π̃⊗ Ip, U =

(Z,XΠ)n×(q+Rp), and Ui is the ith row vector of U , i.e., Ui = [Z>i , X
>
i πi1, · · · , X>i πiR]> and

Ū = 1
n

∑n
i=1 Ui. Define φ = (η>,ρ>)>, ρ = (ρ>1, . . . , ρ

>
R)>, where ρr is the rth subgroup-specific
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parameter vector of dimension p. Then β = Πρ, and the corresponding true parameters are

φ0 = (η>0,ρ
>
0)
> and β0 = Πρ0. Note that Π>Π = diag(|G1|, . . . , |GR|) ⊗ Ip, and let Gmin =

min1≤r≤R |Gr| and Gmax = max1≤r≤R |Gr|, which represent the minimum and maximum group

sizes, respectively. Let εi(φ) = Yi − U>i φ, ζi(φ) = Ci − U>i φ, and υi(φ) = min(εi(φ), ζi(φ)).

In the sequel, we restrict φ in a bounded interval ‖φ‖ ≤ κ, and then maxi ‖θi‖ ≤ κ. Based

on {(υi(φ), δi), i = 1, . . . , n}, we have

F̃φ(t) = 1−
∏

i:υi(φ)≤t

[
1− 1

Gn(φ, υi(φ))

]δi
,

where Gn(φ, u) =
∑n

i=1 I(υi(φ) ≥ u). For a given vector b = (b1, . . . , bt)
> ∈ Rt and a

symmetric matrix At×t, define ‖b‖∞ = max1≤s≤t |bs|, ‖A‖∞ = max1≤i≤t
∑t

j=1 |Aij|, and

‖A‖ = ‖A‖2 = maxb∈Rt,‖b‖=1 ‖Ab‖. Let Emin(A) and Emax(A) be the smallest and largest

eigenvalues of A respectively, and further let

ρ = min
i∈Gr,j∈Gr′ ,r 6=r′

‖β0i − β0j‖ = min
r 6=r′
‖ρ0r − ρ0r′‖

which is the minimum difference of the common treatment effects between two subgroups.

Define Dφ,i(u) = (D
(1)>
φ (u), D

(2)>
φ (u)πi1, · · · , D(2)>

φ (u)πiR)>, where D
(1)
φ (u) = E[Zi | Y ∗i −

U>i φ ≥ u] and D
(2)
φ (u) = E[Xi | Y ∗i − U>i φ ≥ u], and they can be respectively estimated by

D̂
(1)
φ (u) =

n∑
i=1

ZiI(υi(φ) ≥ u)/
n∑
i=1

I(υi(φ) ≥ u),

D̂
(2)
φ (u) =

n∑
i=1

XiI(υi(φ) ≥ u)/
n∑
i=1

I(υi(φ) ≥ u).

Also define

WF (t) = t−
∫∞
t
sdF (s)

1− F (t)
and WF (t, h) = h(t)−

∫∞
t
h(s)dF (s)

1− F (t)
. (4.1)
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Let

Σn =
n∑
i=1

∫
I(ζi(φ0) ≥ u)(Ui − Dφ0,i(u))(Ui − Dφ0,i(u))>W 2

F (u)dF (u)

and Vn =
n∑
i=1

∫
I(ζi(φ0) ≥ u)Ui(Ui − Dφ0,i(u))>WF (u)WF (u, f ′/f)dF (u),

where f ′ is the first derivative of density function f . Let Vn = E(V −1n ΣnV
−1
n ). Based on the

composition of U , we correspondingly decompose Vn as

Vn =

Vn11 Vn12
Vn21 Vn22

 ,

where Vn11 is a q × q matrix.

For convenience, we rewrite the penalty function as pλ(·) = λ%λ(·) and %λ(·) as %(·) when

it is free of λ. Hereafter, Pλ(s) is taken to be the folded-concave penalty studied by Lv and

Fan (2009) and defined in condition (C1). Let c and cj’s denote some positive constants.

We impose three regularity conditions as follows:

(C1) %λ(s) is symmetric, non-decreasing and concave in s ∈ [0,∞), and the derivative %
′

λ(s)

is continuous on (0,∞). It is constant for s ≥ aλ for some a > 0, and %λ(0) = 0. In

addition, %
′

λ(s) is increasing in λ and %
′

λ(0+) ≡ %
′
(0+) = c > 0 is independent of λ.

(C2) Let S(s, t | F ) = tI(t ≤ s) +
∫∞
s udF (u)

1−F (s)
I(t > s), ζi = ζi(θ0i), and εi = εi(θ0i). The

imputed noise vector

S = (S(ζ1, ε1 | F ), . . . ,S(ζn, εn | F ))>

has sub-Gaussian tails such that

P (|a>{S− E(ε)}| > ‖a‖x) ≤ 2 exp(−c1x2)
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for any vector a ∈ Rn and x > 0, where ε = (ε1, . . . , εn)>.

(C3) (i) supi ‖Xi‖ ≤ c2 and supi ‖Zi‖ ≤ c3; (ii) Emin(U>U) ≥ c4Gmin and Emax(U
>U) ≤ c5n.

The penalty criterion in condition (C1) indicates that the singularity at the region ensures

sparsity; the concavity reduces the amount of penalty for large parameters; and the increase

of %
′

λ(s) with respect to λ allows λ to effectively control the overall strength of the penalty.

The sub-Gaussian tail behavior of the error term in condition (C2) is an extension of Ma

and Huang (2016) for the fact that E(εi) may not be 0.

4.2 Censored Heterogeneous Model

We first study the theoretical properties of the oracle estimators φ̂
or

= (η̂or>, ρ̂or>)> in

the censored heterogenous linear model. If we had known the underlying subgroup structure

(2.3), i.e., the matrix Π is known, then the oracle estimator of φ would be

φ̂
or

= argminφ∈RLp+q

{1

2
‖Ỹ (φ, F̃φ)−Uφ‖2 − n

2
[Ȳ (φ, F̃φ)− Ū>φ]2

}
. (4.2)

Since the group membership of the subjects, Π, is typically unknown in advance, the oracle

estimators are not obtainable in practice, which however can shed light on the theoretical

properties of the proposed estimators. Let vn = max(n1/2/Gmin, n
4ς/Gmin) and

Ψ̃n(φ) = n−1/2
n∑
i=1

∫
I(ζi(φ) ≥ u)(Ui − Dφ,i(u))WFφ

(u)dM(u, εi(φ) | Fφ),

where

M(s, t | F ) = I(t ≤ s)−
∫ s
−∞ I(t ≥ u)dF (u)

1− F (s−)
.
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Theorem 1. (Large sample properties for oracle estimators). Under conditions (C2)–(C3)

and

P

(
lim
n→∞

n1/2−4ς
{

inf
φ≤κ,‖φ−φ0‖≥n−γ

‖Ψ̃n(φ)‖
}

=∞
)

= 1,

and 4ς + γ > 1 with 1
8
≤ ς < 1, we have

(i) (Consistency) ‖φ̂
or
−φ0‖ = o(vn) a.s., ‖β̂

or
−β0‖ = o(

√
Gmaxvn) a.s., and supi ‖β̂ori −

β0i‖ = o(vn) a.s.

(ii) (Asymptotic normality) If vn → 0, then GnV−1/2n (φ̂
or
− φ0)

D→ N (0, 1), where Gn is a

1×(q+Rp) row vector such that ‖Gn‖ = 1, and
D→ denotes convergence in distribution.

Since |Gmin| ≤ n/R and vn → 0, we conclude R = o{min(n1/2, n1−4ς)}, and thus Theorem

1 indicates that the number of subgroups L is assumed to grow slower than min(n1/2, n1−4ς).

Let Gmin = nψ with 0 < ψ ≤ 1, and the bound can be rewritten as vn = min(n1/2−ψ, n4ς−ψ).

Theorem 2. Under conditions (C1)–(C3) and ρ > cλ with λ� max(
√

log(n)/Gmin, n
−1/2+4ς

/Gmin) for some constant c > 0, there exists a local minimizer θ̂(λ) of the objective function

`P (θ;λ) given in (2.6) satisfying

P{θ̂(λ) = θ̂
or
} → 1.

Theorem 2 implies that if the minimal difference of the common treatment effects between

two subgroups satisfies ρ � max(
√

log(n)/Gmin, n
−1/2+4ς/Gmin), the oracle estimator θ̂

or
is

a local minimizer of the objective function with high probability, and then our method can

recover the true subgroup structure with high probability.

17

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Subgroup Analysis in Censored Regression

Corollary 1. Under conditions in Theorem 2, as n → ∞, GnV−1/2n (φ̂ − φ0)
D→ N (0, 1).

As a result, we have Gn1V−1/2n11 (η̂(λ) − η0)
D→ N (0, 1), and Gn2V−1/2n22 (ρ̂(λ) − ρ0)

D→ N (0, 1),

where Gn1 and Gn2 are respectively 1× q and 1×Rp row vectors with ‖Gn1‖ = ‖Gn2‖ = 1.

The asymptotic distribution of the penalized estimators can be used to construct a

confidence interval for each ρj and also to test the significance of each component of the

subgroup-specific treatment effects.

4.3 Censored Homogeneous Model

When the true model contains only homogeneous treatment effects,

Yi = Z>i η +X>i ρ+ εi, i = 1, . . . , n,

we have β1 = · · · = βn = ρ and R = 1. The oracle estimators φ̂
or

= (η̂or>, ρ̂or>)> in the

censored homogeneous linear model are

φ̂
or

= argminφ∈Rp+q

{1

2
‖Ỹ (φ, F̃φ)−U ∗φ‖2 − n

2
{Ȳ (φ, F̃φ)− Ū∗>φ}2

}
= argmin(η>,ρ>)>∈Rp+q

{1

2
‖Ỹ (φ, F̃φ)−Zη − xρ‖2 − n

2
{Ȳ (φ, F̃φ)− Z̄>η − X̄>ρ}2

}
,

where x = (X1, . . . , Xn)>, X̄ = 1
n

∑n
i=1Xi, U

∗ = (Z,x), U∗ = (Z>, X>)>, U∗i = (Z>i , X
>
i )
>,

and Ū∗ = 1
n

∑n
i=1 U

∗
i . Let β̂

or
= (β̂or>1 , . . . , β̂or>n )> with β̂ori = ρ̂or, and set ρ̂ and θ̂ = (η̂>, β̂

>
)>

to be the penalized estimators of ρ and θ = (η>,β>)> respectively, and η0 and ρ0 correspond

to the true coefficient vectors and φ0 = (η>0, ρ
>
0)
>. Let

Σ∗n =
n∑
i=1

∫
I(ζi(φ0) ≥ u)(U∗i − D∗φ0

(u))(U∗i − D∗φ0
(u))>W 2

F (u)dF (u)

and V ∗n =
n∑
i=1

∫
I(ζi(φ0) ≥ u)U∗i (U∗i − D∗φ0

(u))>WF (u)WF (u, f ′/f)dF (u),
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where D∗φ(u) = E(U∗|Y ∗ − U∗>φ ≥ u). Then, D∗φ(u) can be estimated by D̂∗φ(u) =∑n
i=1 U

∗
i I(υ∗i (φ) ≥ u)/

∑n
i=1 I(υ∗i (φ) ≥ u), where υ∗i (φ) = min(ε∗i (φ), ζ∗i (φ)), ε∗i (φ) = Yi −

U∗>i φ, and ζ∗i (φ) = Ci−U∗>i φ. Let V∗n = E(V ∗−1n Σ∗nV
∗−1
n ). Based on the composition of U ∗,

V∗n can be correspondingly decomposed as

V∗n =

V∗n11 V∗n12
V∗n21 V∗n22

 ,

where V∗n11 is a q × q matrix.

Moreover, we replace condition (C3) with (C3*) as follows:

(C3∗) (i) supi ‖Xi‖ ≤ c2 and supi ‖Zi‖ ≤ c3; (ii) Emin(U ∗>U ∗) ≥ c6n and Emax(U
∗>U ∗) ≤ c7n.

Let v′n = max(n−1/2, n4ς−1) and

Ψ̃∗n(φ) = n−1/2
n∑
i=1

∫
I(ζ∗i (φ) ≥ u)(U∗i − D∗φ(u))WFφ

(u)dM(u, ε∗i (φ) | Fφ).

Theorem 3. If conditions (C1), (C2) and (C3∗) hold, and further

P

(
lim
n→∞

n1/2−4ς
{

inf
φ≤κ,‖φ−φ0‖≥n−γ

‖Ψ̃∗n(φ)‖
}

=∞
)

= 1,

and 4ς + γ > 1 with 1
8
≤ ς < 1, then we have

(i) (Consistency) ‖φ̂
or
− φ0‖ = o(v′n) a.s., ‖β̂

or
− β0‖ = o(

√
nv′n) a.s., and supi ‖β̂ori −

β0i‖ = o(v′n) a.s. ;

(ii) (Asymptotic normality) If v′n → 0, then G′nV
∗−1/2
n (φ̂

or
−φ0)

D→ N (0, 1), where G′n is a

1× (q + p) row vector with ‖G′n‖ = 1;
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(iii) If λ � max(
√

log(n)/n, n−3/2+4ς) for some constant ς > 0, there exists a local mini-

mizer θ̂ of the objective function `P (θ;λ) given in (2.6) satisfying

P{θ̂(λ) = θ̂
or
} → 1.

Corollary 2. Under conditions in Theorem 3, as n → ∞, G′nV
∗−1/2
n (φ̂ − φ0)

D→ N (0, 1).

As a result, we have G′n1V
∗−1/2
n11 (η̂(λ)− η0)

D→ N (0, 1), and G′n2V
∗−1/2
n22 (ρ̂(λ)− ρ0)

D→ N (0, 1),

where G′n1 and G′n2 are respectively 1× q and 1× p row vectors with ‖G′n1‖ = ‖G′n2‖ = 1.

5. Simulation Studies

To evaluate the finite-sample performance of the proposed method, we considered three

censored linear regression examples including one heterogenous treatment effect, multiple

heterogenous treatment effects, and the homogeneous regression setting.

Example 1 (One treatment variable). We generated data from a censored heterogenous

linear regression model,

Yi = Z>i η +Xiβi + εi, i = 1, . . . , n,

where Zi = (Zi1, Zi2)
> was generated from a bivariate standard normal distribution, Xi was

generated from the standard normal distribution, and εi was taken from the normal distri-

bution N (1, 0.22). Furthermore, we generated censoring time Ci from log{min(τ,Unif(0, τ +

2))}, where Unif(·,·) denotes a uniform distribution and τ controls the censoring rate. The

true coefficients were set as η = (η1, η2)
> = (−1, 1)>. We randomly assigned the treatment

coefficients to three subgroups with equal probabilities, i.e., we let P (i ∈ G1) = P (i ∈ G2) =

P (i ∈ G3) = 1/3, so that βi = ρ1 for i ∈ G1, βi = ρ2 for i ∈ G2, and βi = ρ3 for i ∈ G3. To
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investigate the effect of the size of the difference among subgroup-specific treatment effects,

we considered three values of ρ:

Case 1: ρ1 = 1, ρ2 = −1 and ρ3 = 0;

Case 2: ρ1 = 2, ρ2 = −2 and ρ3 = 0;

Case 3: ρ1 = 4, ρ2 = −4 and ρ3 = 0.

We chose sample sizes of n = 100 and 200 and censoring rates of 20% and 40% which

corresponded to τ = 20 and 1. We compared the performance of the estimators using the

proposed BJ-ADMM algorithm with two concave penalties (SCAD and MCP) and the Lasso

penalty. Following Ma and Huang (2016, 2017), we took ϕ = 1 and a = 3 for MCP and

SCAD penalties. The optimal value of the tuning parameter λ was selected by minimizing

the modified BIC in (3.9). All simulation results are based on 500 replications.

Figure 1 displays the fusiongrams, i.e., the solution paths for β̂1(λ), . . . , β̂n(λ) against λ

using the SCAD, MCP and Lasso penalties under Case 3 of Example 1. For both SCAD

and MCP, the method can provide nearly unbiased estimates, and when λ reaches around

0.8, the estimates of (β1, . . . , βn) are merged into the three groups at true values −4, 0 and

4. When λ exceeds 1.8, all the estimates of βi’s are shrunk into one single value. For the

Lasso, the estimates of βi’s are quickly merged into one value starting from λ = 0.2 due to

its tendency towards over-shrinkage.

To evaluate the proposed estimation procedure, we present the estimates R̂, β̂i’s, ρ̂j’s, and

η̂ over 500 replications for each setting. Table 1 shows the mean, median, standard deviation

of the estimated numbers of subgroups R̂ and the percentage of R̂ equal to the true number

of groups by the SCAD and MCP shrinkage procedures. In Case 1 with censoring rate 20%,
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Case 2, and Case 3, the median of R̂ is always 3 which is the true number of subgroups.

As sample size n increases, the mean moves closer to 3 and the standard deviation becomes

smaller, and the percentage of correctly selecting the number of subgroups increases as well.

The two concave penalties SCAD and MCP procedures have similar performance.

To examine the treatment effect estimates β̂i, i = 1, . . . , n, we plot Xiβi, Xiβ̂i and Xiβ̂
BJ
i

against the values of Xi in Figure 2 under the SCAD method for n = 100 and a censoring

rate of 20%, where βi’s are the true values, β̂i’s are the estimated values by the proposed

BJ-ADMM algorithm with SCAD, and β̂BJi ’s are the estimated values from the Buckley–

James iterative procedure. It exhibits that the fitted lines by the BJ-ADMM with SCAD

are close to the truth, while those by the Buckley–James iterative procedure center around

the horizontal line y = 0, which deviate far away from the truth. Figure 3 exhibits the mean

squared error (MSE) for the estimates of η, which also demonstrates the good performance

of our method under different settings.

To further study the estimation accuracy of the subgroup-specific effects ρ̂r, we compare

the mean, median and standard deviation of the estimates ρ̂1, ρ̂2 and ρ̂3 by the proposed

method with the SCAD and MCP penalties and those of the oracle estimators in Table 2.

Both the means and medians of the three versions of (ρ̂1, ρ̂2, ρ̂3) are close to the true values for

all cases. As n increases, the biases decrease and the standard deviations also decrease, while

the converse is true when the censoring rate increases. Moreover, the estimates using the

SCAD and MCP penalties are similar, and both are close to the oracle results. In addition,

the size of the difference between subgroup-specific treatment effects slightly influences the

performance of the proposed method.
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Example 2 (Multiple treatment variables). In this experiment, we generated data from

a censored heterogenous linear regression model,

Yi = Z>i η +X>i βi + εi, i = 1, . . . , n,

where Zi and η were generated in the same way as in Example 1, and Xi = (Xi1, Xi2)
>

was simulated from a bivariate standard normal distribution. We randomly assigned the

responses to three groups with equal probabilities, i.e., R = 3 and P (i ∈ G1) = P (i ∈ G2) =

P (i ∈ G3) = 1/3, so that βi = ρ1 for i ∈ G1, βi = ρ2 for i ∈ G2, and βi = ρ3 for i ∈ G3,

where ρ1 = (4, 4)>, ρ2 = (−4,−4)> and ρ3 = (0, 0)>. In this experiment, we also consider the

non-centralized quadratic loss function with fusion penalty, given by

`∗P (θ;λ) =
1

2

n∑
i=1

{Ỹi(θi, F̃θ)− Z>i η −X>i βi}2 +
∑

1≤i<j≤n

Pλ(‖βi − βj‖). (5.1)

As a result, four cases are examined to explore the effect of centralization as follows:

Case 1: εi ∼ N (0, 0.52) by `P (θ;λ) in (2.6);

Case 2: εi ∼ N (0, 0.52) by `∗P (θ;λ) in (5.1);

Case 3: εi ∼ N (1, 0.52) by `P (θ;λ) in (2.6);

Case 4: εi ∼ N (1, 0.52) by `∗P (θ;λ) in (5.1).

Figure 4 displays the fusiongrams for β1 = (β11, . . . , β1n)> and β2 = (β21, . . . , β2n)>

with n = 100 and a censoring rate of 20% under Case 3. It indicates that the BJ-ADMM

methods with SCAD and MCP behave similarly and both are more suited for enforcing

sparser subgroups in comparison to the Lasso penalty. Table 3 reports the mean, median

and standard deviation of R̂ and the percentage of R̂ equal to the true number of subgroups

by the BJ-ADMM procedure with the SCAD and MCP penalties based on 500 replicates

23

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Subgroup Analysis in Censored Regression

in Case 3. The median of R̂ always matches the true number of subgroups which is 3,

and the mean of R̂ is also close to 3. Moreover, the percentage of correctly selecting the

true number of subgroups increases as the censoring rate becomes smaller or the sample

size increases. Table 4 reports the mean, median and standard deviation (SD) of the root

mean square errors (RMSE) of the estimator ρ̂ with the formula ‖ρ̂ − ρ‖/
√
Rp under the

SCAD penalty over 500 replications with n = 100, 200, and censoring rates of 20%, 40%

respectively under the four cases of Example 2. The results under Case 2 shows the best

performance because the objective function `∗P (θ;λ) correctly reflects the parameter structure

of the model, while `∗P (θ;λ) leads to invalid estimation in Case 4. Our centralized quadratic

loss function with a fusion penalty, i.e., `P (θ;λ), always provides valid estimates of the

group-specified coefficients. Furthermore, we evaluate the performance of the estimators

ρ̂ = (ρ̂>1, ρ̂
>
2, ρ̂
>
3)
> using the MSE with the formula ‖ρ̂ − ρ‖/

√
Rp. Figure 5 depicts the

boxplots of the MSEs of ρ̂ by the two concave penalties SCAD and MCP under censoring

rates of 20% and 40% respectively under Case 3. The MSE decreases as the censoring rate

decreases or the sample size increases for both SCAD and MCP, and the BJ-ADMM with

SCAD and MCP procedures perform similarly in all settings.

Example 3 (Homogeneous treatment effect). In this experiment, we generated data

from a censored homogeneous linear regression model,

Yi = Z>i η +Xiβ + εi, i = 1, . . . , n,

where Zi, Xi, εi and η were generated in the same way as in Example 1. We took β =

2, sample size n = 100, and censoring rates of 20% and 40%. Besides the independent

censoring as in the previous two examples, we also considered covariate-dependent censoring
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by generating C from N (µ+X, 1), where µ controls the censoring rate.

Table 5 presents the simulation results of the estimate R̂ by the SCAD and MCP shrink-

age procedures over 500 replicates. In all cases, the medians of R̂ are exactly 1, which implies

a homogeneous treatment effect. Regardless of independent or covariate-dependent censor-

ing mechanisms, all the means of the estimated numbers of subgroups are close to 1, and the

standard deviation becomes smaller with a lower censoring rate. Moreover, the percentage

of correctly selecting the true number of subgroups becomes higher as the censoring rate

decreases. The two concave penalties SCAD and MCP perform equally well.

Furthermore, we considered a null hypothesis H0 : β1 = · · · = βn = β∗ with β∗ = 2, for

testing homogeneity, and applied the χ2-test statistic,

T ∗n = (ρ̂− ρ∗)>(V̂n11)−1(ρ̂− ρ∗),

where ρ∗ = (1R̂ ⊗ Ip)β
∗ and 1R̂ is a vector of length R̂ with all elements equal to 1. We

calculated the average type I error rate based on 500 replications using 1
500

∑500
j=1 I{T ∗jn >

χ2
R̂

(0.95)}, where T ∗jn is the value of T ∗n from the jth replicate and χ2
R̂

(0.95) is the 0.95-

quantile of the χ2 distribution with R̂ degrees of freedom. We obtained the average type I

error rate of 0.0552 and 0.0554 for SCAD and MCP, respectively, which are very close to the

nominal significance level 0.05.

6. Application

As an illustration, we applied the proposed method to a real data set from a clinical

trial in primary biliary cirrhosis (PBC) of the liver carried out in the Mayo Clinic (Fleming

and Harrington 1991). Patients in the PBC data were randomized to two treatment groups:
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D-penicillamine and placebo, and 16 baseline covariates were collected: age in years (z1), sex

(z2), presence of ascites (z3), presence of hepatomegaly (z4), presence of spiders (z5), presence

of edema (z6), serum bilirubin (z7), serum cholesterol (z8), albumin (z9), urine copper (z10),

alkaline phosphatase (z11), serum glutamic-oxaloacetic transaminase (z12), triglycerides (z13),

histologic stage of disease (z14), platelet count (z15), and prothrombin time (z16). After

removing the missing data, we ended up with n = 276 observations. During the follow-up,

129 patients died and the other 147 patients were censored, leading to a censoring rate of

53%. We took the log-transformed survival time as the response variable Yi, and considered

a binary variable X for the two treatments (Xi = 1 for patients in the D-penicillamine group;

Xi = 0 for patients in the placebo group).

To check the possible heterogeneity in treatment effects, we first fitted a censored ho-

mogeneous linear model, Yi = Z>i η + εi, with Zi = (zi1, . . . , zi16)
>, using the Buckley–James

estimation procedure. We then plotted the Kaplan–Meier kernel density estimate of residu-

als {(δi, Yi − Z>i η̂BJ) : Xi = 1, i = 1, · · · , 276}, where η̂BJ is the Buckley–James estimator.

Figure 6 shows that the distribution has multiple modes for these patients, which indicates

possible heterogeneous treatment effects.

As a result, we considered the censored heterogeneous linear regression, Yi = Z>i η +

Xiβi + εi. All covariates were standardized before applying the proposed method with the

SCAD and MCP penalties. We selected the optimal tuning parameter λ̂ = 0.15 for both

SCAD and MCP penalties by minimizing the modified BIC defined in (3.9) respectively, and

identified R̂ = 3 major subgroups by our proposed BJ-ADMM algorithm. Figure 7 displays

the fusiongrams for β = (β1, . . . , βn)> using the SCAD and MCP penalties, indicating the
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existence of heterogeneity in treatment effects.

In Table 6, we report the estimates ρ̂1, ρ̂2 and ρ̂3 with the p-values for testing the sig-

nificance of each component of the subgroup-specific treatment effects using the proposed

method, and those using the standard Buckley–James method. The Buckley–James results

show that the treatment had no statistically significant effect on the survival time. However,

the BJ-ADMM methods with the MCP and SCAD suggest that the D-penicillamine treat-

ment had significantly positive and negative subgroup-specific effects on the survival times

of patients in the first and second groups respectively, but no effect in the third group.

7. Conclusion

To accommodate random censoring in survival data, the concave fusion penalized Buckley–

James least squares approach is developed for simultaneously estimating the grouping struc-

ture and the subgroup-specific treatment effects in a heterogeneous linear regression model.

Our BJ-ADMM algorithm with the SCAD or MCP penalty works well in both simulation

and real data examples. It is possible to incorporate the modified Buckley–James estimator

(Lai and Ying, 1991) to our method for dealing with the difficulties caused by the instability

at the upper tail of the associated Kaplan–Meier estimator of the underlying error distri-

bution. Extensions in other survival models, such as the Cox proportional hazards model

(Zhang and Lu, 2007), additive hazards (Lin and Lv, 2013), or transformation models, are

also worth pursuing.
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Supplementary Materials

The Supplementary Materials include the proofs of Proposition 1 and Theorems 1–3.
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Table 1: The mean, median and standard deviation (SD) of R̂ and the percentage of R̂ equal

to the true number of subgroups, P (R̂ = R), by the BJ-ADMM algorithm with the MCP

and SCAD penalties based on 500 replications with n = 100, 200, and censoring rates of

20%, 40% respectively in Example 1.

BJ-ADMM+SCAD BJ-ADMM+MCP

Case n Censoring Mean Median SD P (R̂ = R) Mean Median SD P (R̂ = R)

Case 1 100 20% 3.62 3 0.672 0.85 3.64 3 0.675 0.84

40% 3.86 3.5 0.708 0.80 3.89 3.5 0.710 0.80

200 20% 3.48 3 0.587 0.88 3.51 3 0.591 0.87

40% 3.60 3.5 0.626 0.83 3.63 3.5 0.630 0.82

Case 2 100 20% 3.23 3 0.330 0.94 3.25 3 0.332 0.93

40% 3.45 3 0.358 0.89 3.47 3 0.360 0.89

200 20% 3.11 3 0.267 0.96 3.13 3 0.269 0.96

40% 3.21 3 0.210 0.92 3.22 3 0.213 0.91

Case 3 100 20% 3.04 3 0.131 1.00 3.05 3 0.134 1.00

40% 3.09 3 0.148 0.96 3.10 3 0.157 0.95

200 20% 3.01 3 0.087 1.00 3.01 3 0.088 1.00

40% 3.04 3 0.096 0.98 3.03 3 0.095 0.97
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Table 2: The mean, median and standard deviation (SD) of the estimators ρ̂1, ρ̂2 and ρ̂3

by the SCAD and MCP penalties and the oracle (OR) estimators over 500 replications with

n = 100, 200, and censoring rates of 20%, 40% respectively in Example 1.

n = 100 n = 200

Censoring = 20% Censoring = 40% Censoring = 20% Censoring = 40%

Case Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Case 1 ρ̂1(SCAD) 1.076 1.072 0.074 1.112 1.107 0.125 1.046 1.042 0.051 1.087 1.082 0.106

ρ̂1(MCP) 1.082 1.076 0.078 1.124 1.120 0.129 1.048 1.045 0.053 0.059 1.085 0.109

ρ̂1(OR) 1.050 1.048 0.050 1.053 1.059 0.086 1.026 1.022 0.027 1.047 1.042 0.076

ρ̂2(SCAD) -0.913 -0.924 0.092 -0.897 -0.902 0.133 -0.938 -0.943 0.072 -0.917 -0.919 0.093

ρ̂2(MCP) -0.910 -0.916 0.095 -0.895 -0.900 0.135 -0.934 -0.939 0.076 -0.913 -0.916 0.097

ρ̂2(OR) -1.065 -1.053 0.073 -1.098 -1.079 0.098 -1.023 -1.021 0.051 -1.049 -1.043 0.080

ρ̂3(SCAD) 0.024 0.020 0.031 0.039 0.033 0.057 0.011 0.009 0.018 0.021 0.019 0.037

ρ̂3(MCP) 0.022 0.019 0.034 0.041 0.039 0.060 -0.013 -0.011 0.019 -0.024 -0.021 0.042

ρ̂3(OR) 0.012 0.010 0.019 0.027 0.025 0.035 -0.007 -0.005 0.010 -0.011 -0.009 0.021

Case 2 ρ̂1(SCAD) 2.049 2.044 0.044 2.089 2.086 0.092 2.016 2.012 0.031 2.047 2.042 0.056

ρ̂1(MCP) 2.052 2.048 0.048 2.092 2.090 0.093 2.018 2.015 0.033 2.049 2.045 0.059

ρ̂1(OR) 2.020 2.028 0.040 2.043 2.049 0.076 2.008 2.006 0.017 2.017 2.012 0.046

ρ̂2(SCAD) -1.953 -1.964 0.052 -1.917 -1.919 0.083 -1.978 -1.983 0.032 -1.957 -1.959 0.053

ρ̂2(MCP) -1.950 -1.956 0.055 -1.915 -1.918 0.085 -1.974 -1.979 0.036 -1.953 -1.956 0.057

ρ̂2(OR) -2.015 -2.013 0.030 -2.058 -2.059 0.058 -2.009 -2.006 0.021 -2.029 -2.023 0.060

ρ̂3(SCAD) 0.008 0.007 0.011 0.019 0.023 0.027 0.005 0.003 0.008 0.014 0.012 0.017

ρ̂3(MCP) 0.009 0.006 0.013 0.021 0.025 0.029 -0.007 -0.005 0.009 -0.016 -0.014 0.012

ρ̂3(OR) 0.005 0.004 0.009 0.013 0.010 0.015 -0.003 -0.002 0.003 -0.06 -0.005 0.008

Case 3 ρ̂1(SCAD) 3.989 3.996 0.034 3.919 3.924 0.069 3.995 3.997 0.020 3.937 3.942 0.036

ρ̂1(MCP) 3.987 3.994 0.036 3.916 3.922 0.070 3.992 3.994 0.019 3.936 3.940 0.037

ρ̂1(OR) 3.991 3.998 0.031 3.923 3.934 0.066 3.998 3.999 0.016 3.954 3.960 0.032

ρ̂2(SCAD) -3.982 -3.984 0.041 -3.921 -3.925 0.073 -3.989 -3.991 0.023 -3.951 -3.959 0.042

ρ̂2(MCP) -3.980 -3.983 0.045 -3.920 -3.922 0.075 -3.988 -3.992 0.026 -3.951 -3.955 0.044

ρ̂2(OR) -3.989 -3.991 0.038 -3.931 -3.934 0.068 -3.994 -3.998 0.020 -3.976 -3.980 0.039

ρ̂3(SCAD) -0.004 0.003 0.011 0.009 0.013 0.017 -0.002 -0.003 0.006 -0.006 -0.007 0.013

ρ̂3(MCP) -0.002 0.003 0.014 0.010 0.011 0.018 -0.001 -0.002 0.006 -0.006 -0.005 0.012

ρ̂3(OR) -0.000 0.001 0.009 0.004 0.005 0.015 -0.000 -0.000 0.003 -0.004 -0.003 0.009
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Table 3: The mean, median and standard deviation (SD) of R̂ and the percentage of R̂ equal

to the true number of subgroups, P (R̂ = R), by the MCP and SCAD penalties based on

500 replications with n = 100, 200, and censoring rates of 20%, 40% respectively in Case 3

of Example 2.

BJ-ADMM+SCAD BJ-ADMM+MCP

n Censoring Mean Median SD P (R̂ = R) Mean Median SD P (R̂ = R)

100 20% 3.11 3 0.423 0.91 3.26 3 0.412 0.92

40% 3.36 3 0.502 0.85 3.40 3 0.602 0.88

200 20% 3.06 3 0.223 0.95 3.11 3 0.302 0.94

40% 3.16 3 0.372 0.89 3.20 3 0.451 0.90

Table 4: The mean, median and standard deviation (SD) of RMSEs of the estimators ρ̂ with

the formula ‖ρ̂−ρ‖/
√
Rp under the SCAD penalty over 500 replications with n = 100, 200,

and censoring rates of 20%, 40% respectively under the four Cases of Example 2.

n = 100 n = 200

Censoring = 20% Censoring = 40% Censoring = 20% Censoring = 40%

Case Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Case 1 0.026 0.029 0.039 0.059 0.064 0.088 0.018 0.016 0.028 0.035 0.034 0.053

Case 2 0.017 0.016 0.021 0.038 0.044 0.052 0.009 0.006 0.014 0.023 0.021 0.031

Case 3 0.041 0.047 0.070 0.079 0.084 0.116 0.029 0.031 0.041 0.053 0.054 0.082

Case 4 1.834 1.947 2.882 2.419 2.528 3.062 1.589 1.638 2.031 2.011 1.927 2.421
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Table 5: The mean, median and standard deviation (SD) of R̂ and the percentage of R̂ equal

to the true number of subgroups, P (R̂ = R), by the MCP and SCAD penalties based on 500

replications with n = 100 and censoring rates of 20%, 40% respectively in Example 3.

BJ-ADMM+SCAD BJ-ADMM+MCP

Mechanism Rate Mean Median SD P (R̂ = R) Mean Median SD P (R̂ = R)

Independent 20% 1.12 1 0.137 0.97 1.10 1 0.132 0.96

40% 1.19 1 0.242 0.95 1.20 1 0.237 0.94

Dependent 20% 1.17 1 0.152 0.96 1.15 1 0.149 0.96

40% 1.25 1 0.207 0.91 1.26 1 0.196 0.93

Table 6: The estimates and p-values of ρ̂1, ρ̂2 and ρ̂3 by the BJ-ADMM with the MCP and

SCAD methods, and those of β̂ = ρ̂1 by the Buckley–James method for the PBC data.

Method Result ρ̂1 ρ̂2 ρ̂3

BJ-ADMM+SCAD Estimate 0.767 -0.567 0.003

p-value 0.006 0.009 0.708

BJ-ADMM+MCP Estimate 0.769 -0.566 0.003

p-value 0.005 0.009 0.708

Buckley–James Estimate 0.003

p-value 0.710
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Figure 1: Fusiongrams (or solution paths) of β̂1(λ), . . . , β̂n(λ) versus λ for Case 3 of Example

1 with n = 100 and censoring rate 40% under three different penalties SCAD, MCP, and

Lasso.
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Figure 2: Plots of Xiβi (black dotted lines), Xiβ̂i (red dotted lines) and Xiβ̂
BJ
i (blue dotted

lines) versus values of Xi, where βi’s are the true values, β̂i’s are the estimated values by

BJ-ADMM+SCAD and β̂BJi ’s are the estimated values using the Buckley–James iterative

procedure for Case 3 of Example 1.
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Figure 3: Boxplots of the MSEs of η̂ using BJ-ADMM+SCAD and BJ-ADMM+MCP with

n = 100, 200, and censoring rates of 20% (white) and 40% (grey) respectively for Case 3 of

Example 1.
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Figure 4: Fusiongrams of β1 = (β11, . . . , β1n)> and β2 = (β21, . . . , β2n)> with n = 100 and

censoring rate 20% in Example 2.
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Figure 5: Boxplots of the MSEs of ρ̂ using BJ-ADMM+SCAD and BJ-ADMM+MCP with

n = 100, 200, and censoring rates of 20% (white) and 40% (grey) respectively in Example 2.
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Figure 6: The kernel density plot of the residuals after controlling for the effects of the 16

baseline covariates for the patients treated with D-penicillamine in the PBC data.
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Figure 7: Fusiongrams of β = (β1, . . . , βn)> using the proposed BJ-ADMM with the SCAD

and MCP penalties for the PBC data.
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