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Abstract: Testing the homogeneity of multiple high-dimensional covariance matri-

ces is becoming increasingly critical in multivariate statistical analyses owing to the

emergence of big data. Many existing homogeneity tests for covariance matrices

focus on two populations, under specific situations, for example, either sparse or

dense alternatives. As a result, these methods are not suitable for general cases that

include multiple groups. We propose a power-enhancement high-dimensional test

for multi-sample comparisons of covariance matrices, which includes homogeneity

tests of two matrices as a special case. The proposed tests do not require a distri-

butional assumption, and can handle both sparse and non-sparse structures. Based

on random-matrix theory, the asymptotic normality properties of our tests are es-

tablished under both the null and the alternative hypotheses. Numerical studies

demonstrate the substantial gain in power for the proposed method. Furthermore,

we illustrate the method using a gene expression data set from a breast cancer

study.

Key words and phrases: Asymptotic normality, high-dimensional covariance matrix,

homogeneity test, multi-sample comparison, power enhancement.

1. Introduction

Covariance matrices play a fundamental role in multivariate statistical infer-

ences. In various fields, such as economics and biology, many modern statistical

procedures require testing the equality of covariance matrices. For example,

the multivariate analysis of variance or Fisher’s linear discriminant analysis. In

conventional low-dimensional settings where the dimension of the variables is

relatively small compared with the sample size, tests for the equality of covari-

ance matrices have been studied extensively; for example, see Sugiura and Nagao

(1968), Gupta and Giri (1973), Gupta and Tang (1984), and O’Brien (1992) for

two populations; and Perlman (1980) and Anderson (2003) for multiple popula-

tions.

As a result of the rapid development of science and technology, the collection
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and storage of large amounts of data are becoming increasingly common. Often,

this results in high dimensions for the observations when the number of variables

is large relative to the sample size. Conventional methods for testing the equal-

ity of covariance matrices usually fail in high-dimensional settings, because the

sample covariance matrix does not converge to its population counterpart in such

situations. For inferences on high-dimensional covariance matrices, extensive re-

search has been conducted on analyzing the limiting distributions of the extreme

eigenvalues of the sample covariance matrix (Bai (1993); Johnstone (2001); EI

Karoui (2007); Johnstone and Lu (2009); Bai and Silverstein (2010)), estimations

of high-dimensional population covariance matrices (Bickel and Levina (2008a,b);

Fan, Fan and Lv (2008); Rothman, Levina and Zhu (2010); Cai and Ma (2013)),

and one-sample tests for high-dimensional matrices (Bai et al. (2009); Chen,

Zhang and Zhong (2010); Jiang and Yang (2013); Srivastava, Yanagihara and

Kubokawa (2014)). However, few statistical methods have been proposed for

testing two or more high-dimensional covariance matrices (Cai (2017)). Bai et

al. (2009) and Jiang and Yang (2013) used likelihood ratio statistics to test the

equality of two population covariance matrices when the dimension is smaller

than the sample size. However, a likelihood ratio statistic cannot be defined

when the dimension is larger than the sample size. For situations characterized

by a “large p” and a “small n” where p is the dimension of data and n is the

sample size, Schott (2007) utilized the trace tr(S1 − S2)
2 to quantify the dif-

ference between two matrices, where S1 and S2 are sample covariance matrices

of the two groups in comparison. Srivastava and Yanagihara (2010) proposed a

test statistic based on a distance measure, trS2
1/(trS1)

2−trS2
2/(trS2)

2. However,

the theoretical results of these two methods are derived under high-dimensional

Gaussian distributions, and thus cannot be applied to general populations. To

accommodate both Gaussian and non-Gaussian populations, Li and Chen (2012)

proposed a U -statistic, and Cai, Liu and Xia (2013) introduced an extreme statis-

tic for two samples. Although both tests are powerful and robust with respect

to the population distributions, they have several limitations. For example, both

approaches are applicable to two populations only, and thus are not valid for mul-

tiple populations (i.e., more than two populations). Furthermore, the method of

Li and Chen (2012) focuses on nonsparse dense alternatives, where many small

disturbances may exist. In contrast, the method of Cai, Liu and Xia (2013)

focuses on sparse alternatives; that is, the number of nonzero elements of the

difference between the two covariance matrices is small. As a result, the test of

Li and Chen (2012) may result in unsatisfactory performance under the sparse



TESTING HOMOGENEITY OF COVARIANCE MATRICES 37

alternative, and that of Cai, Liu and Xia (2013) may not work well under the

nonsparse dense alternative. This is because these two testing procedures use

only one type of norm to characterize the distance between the two sample co-

variance matrices: the former utilizes the Frobenius norm, and the latter uses the

maximum norm. Yang and Pan (2017) proposed a weighted test statistic based

on random-matrix theory that is suitable for both sparse and dense alternatives.

Their approach involves complicated two-dimensional contour integrals that usu-

ally do not have explicit expressions, making the method difficult to implement in

practice. In addition, studies may require comparisons of more than two groups

with high-dimensional matrices. Schott (2007) and Srivastava and Yanagihara

(2010) addressed the problem of comparing multiple high-dimensional covariance

matrices. However, as mentioned earlier, such tests are typically restricted by

the Gaussian population assumption.

We develop a new method for testing the homogeneity of several high-

dimensional covariance matrices using a weighted combination of the pairwise test

statistics for testing two covariance matrices. The contributions of our method

are as follows:

(i) Our test can be used for both two-sample and multi-sample comparisons.

For testing the homogeneity of several high-dimensional covariance matri-

ces, existing methods (Schott (2007); Srivastava and Yanagihara (2010))

focus on Gaussian cases and thus may not work well in non-Gaussian situa-

tions. In contrast, our test statistic does not require distributional assump-

tions and demonstrates a substantial improvement over existing tests in-

volving multiple groups. Deriving the theoretical properties of the weighted

statistic is not a trivial extension of the case of two populations. In par-

ticular, the mutual dependence between pairwise components poses major

theoretical challenges.

(ii) Our test is suitable for both sparse and nonsparse alternatives. In practice,

the structure of the difference between two covariance matrices is typically

unknown. This poses problems when implementing existing methods, be-

cause they utilize only one type of norm to characterize the discrepancy be-

tween two samples, which is often inadequate. In contrast, our test statistic

is composed of two terms: the main term quantifies the Frobenius norm,

and thus captures the difference between two covariance matrices in a non-

sparse setting; the second term utilizes a screening technique with a maxi-

mum norm to enhance the power under sparse alternatives. By combining
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these two terms, the proposed test can be used to test both sparse and non-

sparse alternatives, or the mixture of the two. Our approach is much easier

to implement than that of Yang and Pan (2017). We conduct extensive

simulation studies to show that our test has comparable performance with

that of existing methods for two-sample populations. In certain cases, the

proposed test achieves significantly higher power.

(iii) For the asymptotic normality of the L2-norm statistic, our test requires

conditions that are more relaxed than those of existing methods. For ex-

ample, our test assumes only that the fourth moment of the samples exists,

whereas many existing methods, such as that of Li and Chen (2012), are

established upon the existence of the eighth moment. In addition, out test

needs conditions on the covariance matrices that are less regularized than

those of some existing tests. For example, the maximum eigenvalue of the

covariance matrices can be unbounded for the proposed method.

The remainder of the paper proceeds as follows. Section 2 presents the test

for the equality of multiple high-dimensional population covariance matrices.

The asymptotic distributions of the proposed test statistic are derived based

on random-matrix theory. The theoretical power of the proposed test is also

examined. Section 3 presents simulation results to demonstrate the superiority

of the proposed method when testing the homogeneity of two or more covariance

matrices. Section 4 analyzes a real data set as an illustration of the proposed

method. Section 5 concludes the paper with some remarks. All technical details

are presented in the Supplementary Material.

2. Testing Homogeneity of Multiple Covariance Matrices

2.1. The test statistic

For K groups, let {xk1, . . . ,xknk
} be independent samples from the kth p-

dimensional population with a mean vector µk and covariance matrix Σk, for

k = 1, . . . ,K, where nk is the sample size and xki = (xk1i, . . . , xkpi)
T . We are

interested in testing the equality of the population covariance matrices of these

K groups:

H0K : Σ1 = · · · = ΣK = Σ vs. HAK : Σ1, . . . ,ΣK are not all equal, (2.1)

where Σ is unknown and the subscript K in H0K and HAK indicates that K

populations are being compared. The sample covariance matrix of Σk is given
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by

Sk = (nk − 1)−1
nk∑
i=1

(xki − x̄k)(xki − x̄k)
T , k = 1, . . . ,K, (2.2)

where x̄k = (x̄k1, . . . , x̄kp)
T = n−1k

∑nk

i=1 xki is the sample mean of the kth popu-

lation.

In the existing literature, many tests for (2.1) focus on the case of K = 2, and

are often established based on two types of norms of Sk1−Sk2 , for 1 ≤ k1, k2 ≤ K.

For example, Li and Chen (2012) used the statistic tr(Sk1 − Sk2)
2, and Cai, Liu

and Xia (2013) considered the maximum statistic max{δk1k2`1`2 , `1, `2 = 1, . . . , p},
where

δk1k2`1`2 =
(sk1`1`2 − sk2`1`2)2

n−1k1 θ̂k1`1`2 + n−1k2 θ̂k2`1`2
, (2.3)

with θ̂k`1`2 = n−1k
∑nk

i=1{(xk`1i − x̄k`1)(xk`2i − x̄k`2) − sk`1`2}2 and sk`1`2 being

the (`1, `2)th entry of Sk for `1, `2 = 1, . . . , p, and k = k1, k2. Each of the two

test statistics has its own advantages and disadvantages. For example, the first

trace-based statistic can capture many small differences. Therefore, it possesses

high power when testing dense Σk1 − Σk2 , but usually incurs some power loss

for sparse Σk1 − Σk2 . The second statistic is able to detect large disturbances

when Σk1 −Σk2 is sparse, but usually fails to achieve high power when testing

dense alternatives. If we know a priori that Σk1−Σk2 possesses a dense or sparse

structure, the test procedures of Li and Chen (2012) and Cai, Liu and Xia (2013)

can be adaptively chosen to suit the respective targeted alternatives. However,

in real applications, the structure of Σk1 − Σk2 is typically unknown and may

have a complicated structure, such as a mixture of dense and sparse signals. As

a result, we need to develop a test statistic that attains desirable power under

both dense and sparse cases. Using only one norm is inadequate for this purpose.

A natural approach is to take a linear combination of the two aforementioned

statistics, as in Yang and Pan (2017). However, this results in a complex limiting

distribution owing to the correlation between the two statistics. In addition, few

methods exist for testing (2.1) with K ≥ 3, and extensions of the methods of Li

and Chen (2012) and Cai, Liu and Xia (2013) to multiple samples are nontrivial.

We are particularly interested in applications involving several covariance

matrices, for which current methods do not work well. To incorporate the

strength from the trace-based and maximum norms, we propose a new statis-

tic, TK = TK1 + TK2, with
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TK1 =
∑

1≤k1<k2≤K
ωk1k2tr[(Sk1 − Sk2)

2],

TK2 = K0 max
1≤k1<k2≤K

[I{ max
1≤`1≤`2≤p

δk1k2`1`2 > s(nk1 , nk2 , p)}].

Here, {ωk1k2 , 1 ≤ k1 ≤ k2 ≤ K} are the prespecified weights, ωk1k2 ≥ 0 and∑
1≤k1<k2≤K ωk1k2 = 1, K0 is a large positive number, I{·} is an indicator func-

tion, and s(nk1 , nk2 , p) is a prespecified threshold that depends on the sample

sizes nk1 and nk2 and the dimension p. When K = 2, the proposed procedure re-

duces to the homogeneity test for two covariance matrices, with the test statistic

given by T2 = T21 + T22, where T22 = K0I{max1≤`1≤`2≤p δ12`1`2 > s(n1, n2, p)}
and T21 = tr[(S1 − S2)

2]. As a result, the proposed statistic TK can be treated

as a weighted average of the statistics T2 for all paired populations. However,

it is challenging to establish the limiting distributions of this weighted statistic

because its components are not independent. Using random-matrix theory, we

derive the limiting distributions of TK under both the null hypothesis H0K and

the alternative hypothesis HAK .

The proposed statistic is similar in spirit to the power-enhancement test

statistic proposed by Fan, Liao and Yao (2015). The first term TK1 plays a

dominant role when testing dense cases. With a properly chosen threshold

s(nk1 , nk2 , p), the second term TK2 serves a screening purpose, converging to

zero under the null hypothesis, and converging to a large number if δk1k2`1`2 ex-

ceeds the threshold s(nk1 , nk2 , p). As a result, the proposed statistic TK tends to

become large quite quickly, as long as sparse disturbances are detected by TK2 if

K0 is sufficiently large. For further discussion on the choice of K0, see Fan, Liao

and Yao (2015).

2.2. Limiting distributions

We first impose two assumptions commonly used in random-matrix theory.

(A1) The vector xki satisfies the independent component structure xki = µk +

Γkwki, where wki = (wk1i, . . . , wkpi)
T and the elements {wk`i, k = 1, . . . ,K;

` = 1, . . . , p; i = 1, . . . , nk} are independent, with Ewk`i = 0, E(w2
k`i) = 1,

and βk = E(w4
k`i) − 3. Moreover, for each k = 1, . . . ,K, the maximum

eigenvalue of Σk is bounded or tr(Σq
k) = O(pq) for q = 1, 2, 3, 4.

(A2) The asymptotic regime is satisfied; that is, p/nk → ck ∈ (0,∞).

Assumption (A1) requires that the populations have an independent component

structure. The population fourth moment of wk`i is required to exist, but no other
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distributional assumptions are imposed. The dimension and the sample size are

assumed to tend to infinity proportionally under Assumption (A2). These are

regular assumptions in deriving the asymptotic distributions of high-dimensional

statistics; for instance, see Bai and Silverstein (2004), Bai and Silverstein (2010),

and Li and Chen (2012). The limiting null distributions of TK1 and TK are

established as follows.

Theorem 1. Under H0K and Assumptions (A1)–(A2), for multi-sample com-

parisons with k = 1, . . . ,K, we have

σ−1K (TK1 − µ̂K1 − µK)
d→ N(0, 1), σ̂−1K (TK1 − µ̂K1 − µ̂K)

d→ N(0, 1).

Furthermore, if the threshold s(nk1 , nk2 , p) satisfies s(nk1 , nk2 , p)− 4 log p ≥ 0 for

any 1 ≤ k1 < k2 ≤ K, and the conditions (C1), (C2∗), and (C3) in Cai, Liu and

Xia (2013) are satisfied, then

σ−1K (TK − µ̂K1 − µK)
d→ N(0, 1), σ̂−1K (TK − µ̂K1 − µ̂K)

d→ N(0, 1),

where

µ̂K1 =
∑

1≤k1<k2≤K
ωk1k2

[ ∑
k=k1,k2

(n2k − nk − 1)n−1k (nk − 1)−2(trSk)
2

]
,

µK =
∑

1≤k1<k2≤K
ωk1k2

{ ∑
k=k1,k2

[
(nk + 1)(nk − 1)−2tr(Σ2)

+βknk(nk − 1)−2
p∑
`=1

(eT` Σe`)
2

]}
,

σ2K = 4
∑

1≤k1<k2≤K
ω2
k1k2 [(nk1 − 1)−1 + (nk2 − 1)−1]2[tr(Σ2)]2

+8
∑

1≤k1<k2<k3≤K
ωk1k2ωk2k3(nk2 − 1)−2[tr(Σ2)]2

+8
∑

1≤k1<k3<k2≤K
ωk1k2ωk3k2(nk2 − 1)−2[tr(Σ2)]2

+8
∑

1≤k2<k1<k3≤K
ωk2k1ωk2k3(nk2 − 1)−2[tr(Σ2)]2,

µ̂K =
∑

1≤k1<k2≤K
ωk1k2

∑
k=k1,k2

{
(nk − 2)−2

nk∑
i=1

[
(xki − x̄k)

T (xki − x̄k)− trSk
]2

−nk(nk + 2)−2[tr(S2
k)− (nk − 2)−1(trSk)

2]

}
,
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and σ̂2K is obtained by replacing tr(Σ2) by tr(S2)− (n1 + · · ·+ nK −K)−1(trS)2

in σ2K with S = (n1 + · · ·+ nK −K)−1
∑K

k=1(nk − 1)Sk.

Theorem 1 establishes the asymptotic normality of TK under the null hy-

pothesis. The detailed proof is given in the Supplementary Material.

Remark 1. In deriving the central limit theorem for Theorem 1, we obtain that

the variance term in the limiting distribution of tr[(Sk1 − Sk2)
2] under H0K is

4[tr(Σ2)]2[(nk1 − 1)−1 + (nk2 − 1)−1]2. Then, a reasonable weight is given by

ωk1k2 =
[(nk1 − 1)−1 + (nk2 − 1)−1]−1∑

1≤i<j≤K [(ni − 1)−1 + (nj − 1)−1]−1
, 1 ≤ k1 < k2 ≤ K,

which is large when the variance of tr[(Sk1 −Sk2)
2] is small for 1 ≤ k1 < k2 ≤ K.

As a special case, when K = 2, the proposed test statistic T2 is able to test

the homogeneity of two high-dimensional covariance matrices. Its asymptotic

null distribution follows immediately.

Proposition 1. Under the conditions of Theorem 1, for the two-sample case

with k = 1, 2, we have

σ̂−12 (T21 − µ̂21 − µ̂2)
d→ N(0, 1).

Furthermore, if the threshold s(n1, n2, p) satisfies s(n1, n2, p) − 4 log p ≥ 0 and

the conditions (C1), (C2∗), and (C3) in Cai, Liu and Xia (2013) are satisfied,

then

σ̂−12 (T2 − µ̂21 − µ̂2)
d→ N(0, 1),

where

µ̂21 =
∑
k=1,2

(n2k − nk − 1)n−1k (nk − 1)−2(trSk)
2,

µ̂2 =
∑
k=1,2

(nk − 2)−2
nk∑
i=1

[(xki − x̄k)
T (xki − x̄k)− trSk]

2

−
∑
k=1,2

nk(nk + 2)−2[tr(S2
k)− (nk − 2)−1(trSk)

2],

σ̂22 = 4[(n1 − 1)−1 + (n2 − 1)−1]2[tr(S2)− (n1 + n2 − 2)−1(trS)2]2,

with S = [(n1 − 1)S1 + (n2 − 1)S2]/(n1 + n2 − 2).

Remark 2. In practice, to apply the proposed test to two groups, we need to

specify the value of s(n1, n2, p). There are many choices for the threshold, as

long as under H02, P (max1≤`1≤`2≤p δ12`1`2 ≤ s(n1, n2, p)) converges to one as
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n1, n2 →∞. For simplicity, the threshold is set as

s(n1, n2, p) =

[
{log log(n1/2 + n2/2)− 1}2

4
+ 1

]
(4 log p− log log p) + q,

where exp{−(8π)−1/2 exp(−q/2)} = 0.985 and max1≤`1≤`2≤p δ12`1`2 − 4 log p +

log log p converges to a type I extreme value distribution under the null hypothesis

and some proper conditions (Cai, Liu and Xia (2013)). For multiple populations

with K ≥ 3, owing to multiple pairwise comparisons, we set the threshold as

s(nk1 , nk2 , p) =

[
{log log(nk1/2 + nk2/2)− 1}2

4
+ 1

]
(4 log p− log log p) + q,

where exp{−(8π)−1/2 exp(−q/2)} = 1 − 0.015/[K(K − 1)/2], based on Bonfer-

roni’s correction, to control the inflation of the type I error rate. It is obvious

that both the thresholds s(nk1 , nk2 , p) and s(n1, n2, p) satisfy the condition that

s(nk1 , nk2 , p)− 4 log p ≥ 0. The choice of K0 is discussed extensively in Fan, Liao

and Yao (2015). In general, K0 should be large enough to reject the null once

sparse signals are detected; here, we set K0 = p2.

2.3. Power comparison

According to Theorem 1, the acceptance region of the statistic TK with

respect to the nominal size α is

{(xk1, . . . ,xknk
, k = 1, . . . ,K) : TK − µ̂K1 − µ̂K ≤ z1−ασ̂K},

where z1−α is the (1−α)th quantile of the standard normal distribution N(0, 1).

Therefore, the power function for testing (2.1) is

gK(Σ1, . . . ,ΣK) = PHAK
(TK − µ̂K1 − µ̂K > z1−ασ̂K)

≥ PHAK
(TK1 − µ̂K1 − µ̂K > z1−ασ̂K),

because TK = TK1 + TK2 with TK2 ≥ 0.

To investigate the power of the proposed test, let

µAk1k2 =

tr[(Σk1 −Σk2)
2]

+

[
(nk1 + 1)(nk1 − 1)−2tr(Σ2

k1) + βk1nk1(nk1 − 1)−2
p∑
`=1

(eT` Σk1e`)
2

]

+

[
(nk2 + 1)(nk2 − 1)−2tr(Σ2

k2) + βk2nk2(nk2 − 1)−2
p∑
`=1

(eT` Σk2e`)
2

]
,

σ2Ak1k2 = 4
[
(nk1 − 1)−1tr(Σ2

k1) + (nk2 − 1)−1tr(Σ2
k2)
]2
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+8(nk1 − 1)−1(nk2 − 1)−1
{

[tr(Σk1Σk2)]
2 − tr(Σ2

k1)tr(Σ
2
k2)
}

+4(nk1 − 1)−1

{
2tr[Σk1(Σk1 −Σk2)]

2 + βk1

p∑
`=1

[
eT` Σ

1/2
k1

(Σk1 −Σk2)Σ
1/2
k1

e`

]2}

+4(nk2 − 1)−1

{
2tr[Σk2(Σk1 −Σk2)]

2 + βk2

p∑
`=1

[
eT` Σ

1/2
k2

(Σk1 −Σk2)Σ
1/2
k2

e`

]2}
,

σ2Ak1k2k2k3 =

4[n−1k2 tr(Σ2
k2)]

2 + 4(nk2 − 1)−1

[
2tr(Σ4

k2) + βk2

p∑
`=1

(eT` Σ2
k2e`)

2

]

−4(nk2 − 1)−1

[
2tr(Σ3

k2Σk3) + βk2

p∑
`=1

eT` Σ
1/2
k2

Σk3Σ
1/2
k2

e`e
T
` Σ2

k2e`

]

−4(nk2 − 1)−1

[
2tr(Σ3

k2Σk1) + βk2

p∑
`=1

eT` Σ
1/2
k2

Σk1Σ
1/2
k2

e`e
T
` Σ2

k2e`

]

+4(nk2 − 1)−1

[
2tr(Σk1Σk2Σk3Σk2)

+βk2

p∑
`=1

eT` Σ
1/2
k2

Σk1Σ
1/2
k2

e`e
T
` Σ

1/2
k2

Σk3Σ
1/2
k2

e`

]
,

for 1 ≤ k1, k2, k3 ≤ K. The limiting distributions of TK1 and TK under the

alternative hypothesis HAK are given as follows.

Theorem 2. Under Assumptions (A1)–(A2) and denoting Ak1k2 = Σk1 − Σk2

for 1 ≤ k1 < k2 ≤ K, for multi-sample comparisons with K groups, we have

σ−1AK(TK1 − µ̂K1 − µAK)
d→ N(0, 1),

where µAK =
∑

1≤k1<k2≤K ωk1k2µAk1k2 and

σ2AK =
∑

1≤k1<k2≤K
ω2
k1k2σ

2
Ak1k2 + 2

∑
1≤k1<k2<k3≤K

ωk1k2ωk2k3σ
2
Ak1k2k2k3

+2
∑

1≤k1<k3<k2≤K
ωk1k2ωk2k3σ

2
Ak1k2k2k3 + 2

∑
1≤k2<k1<k3≤K

ωk1k2ωk2k3σ
2
Ak1k2k2k3 ,

with weights {ωk1k2 , 1 ≤ k1, k2 ≤ K} and ωk1k2 = ωk2k1. Under the condition

that E|(xk`i−Exk`i)/
√
σk``|8+ε < c0 for some positive c0, and min1≤`1≤`2≤p θk`1`2

(σk`1`1σk`2`2)
−1 ≥ τk, where Σk = (σk`1`2)

p
`1,`2=1 and θk`1`2 = Var[(xk`1i−Exk`1i)

(xk`2i − Exk`2i)], ε and τk are some positive constants for 1 ≤ `, `1, `2 ≤ p,

i = 1, . . . , nk, and k = 1, . . . ,K. Then we have
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TK2 −K0
a.s.→ 0

and

σ−1AK(TK −K0 − µ̂K1 − µAK)
d→ N(0, 1)

if there exists a pair of (k1, k2) satisfying s(nk1 , nk2 , p) ≤ max1≤i≤j≤p[(σk1ij −
σk2ij)

2(θk1ij/nk1 + θk2ij/nk2)
−1].

Based on the asymptotic normality of TK1 and TK , as shown in Theorem 2,

we obtain the following corollary on the power of the proposed test.

Corollary 1. Under the conditions of Theorem 2, the following three results

hold.

(i) When n1, . . . , nK , p are sufficiently large, we have gK(Σ1, . . . ,ΣK) ≥ α with

the nominal size α. In particular, when max{tr(A2
ij), 1 ≤ i < j ≤ K} > c1

for a small positive constant c1, we have gK(Σ1, . . . ,ΣK) > α.

(ii) When tr(A2
ij)→∞ for some 1 ≤ i < j ≤ K, we have gK(Σ1, . . . ,ΣK)→ 1

as n1, . . . , nK , p→∞.

(iii) When there exists a pair of (k1, k2) satisfying s(nk1 , nk2 , p) + 4 log p ≤
0.5 max1≤i≤j≤p[(σk1ij − σk2ij)2(θk1ij/nk1 + θk2ij/nk2)

−1], we have

gK(Σ1, . . . ,ΣK)→ 1

as n1, . . . , nK , p→∞.

Corollary 1 shows that the proposed test TK is asymptotically unbiased. As

long as there exists a pair of (i, j) with tr(A2
ij) > c1, the power function is greater

than the nominal size. In addition, if tr(A2
ij) → ∞, the power function tends

to one. Theorem 2 and Corollary 1 with K = 2 facilitate a power comparison

between the proposed tests T2 and T21 and those of Li and Chen (2012) and Cai,

Liu and Xia (2013). In particular, we define the power function of the statistic

T21 as

g21(Σ1,Σ2) = PHA2
(T21 − µ̂21 > µ̂2 + z1−ασ̂2),

and denote those of Li and Chen (2012) and Cai, Liu and Xia (2013) as gLC(Σ1,Σ2)

and gCLX(Σ1,Σ2), respectively.

First, because T2 = T21+T22 with T22 ≥ 0, we have g2(Σ1,Σ2) ≥ g21(Σ1,Σ2).

In other words, the power of T2 is greater than or equal to that of T21 owing

to the positivity of T22. Typically, when tr(A2
12) → 0, but there is at least

one entry (`1, `2) of A12 greater than 4
√

(θ1`1`2/n1 + θ2`1`2/n2) log p, we have
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P (max1≤`1≤`2≤p δ12`1`2 > s(n1, n2, p)) → 1 under condition (C2∗) in Cai, Liu

and Xia (2013), which leads to T22 → K0 almost surely. As a result, the power

functions of gCLX(Σ1,Σ2) and g2(Σ1,Σ2) converge to 1 as n1, n2, p → ∞ if K0

is sufficiently large. On the other hand, in this situation, g21(Σ1,Σ2) → α and

gLC(Σ1,Σ2) → α (Cai, Liu and Xia (2013)), demonstrating that the screening

term T22 enhances the power of T21. This property of the proposed test T2 is

confirmed by the simulation results in Scenario 3 of the next section.

Second, if tr(A2
12)→∞, none of the absolute entries of A12 are greater than

[min{n1, n2}]−(1+ε) log p with ε > 0, and θk`1`2 has uniform positive lower and

upper bounds, then we have

gCLX(Σ1,Σ2)→ α, gLC(Σ1,Σ2)→ 1, g2(Σ1,Σ2)→ 1, g21(Σ1,Σ2)→ 1,

as T22 → 0. That is, when all entries of Σ1 −Σ2 are small nonzeros, the power

of the test in Cai, Liu and Xia (2013) may be relatively small. However, our test

T2 and that in Li and Chen (2012) can discriminate between Σ1 and Σ2 with

high power, which corresponds to Scenarios 1 and 2 in the simulation studies.

Third, in some situations, when Σ1 −Σ2 is composed of a mixture of dense

and sparse signals, both the terms T21 and T22 contribute to detecting distur-

bances between Σ1 and Σ2. As a result, the proposed method may deliver higher

power than those of Li and Chen (2012) and Cai, Liu and Xia (2013). We examine

this situation in Scenario 4 in the simulation studies.

3. Simulation Studies

We evaluate the finite-sample performance of the proposed test with two

populations and three populations using extensive simulation studies. To test

the equality of two population covariance matrices, we compare our test T2
with five existing methods: YP (Yang and Pan (2017)), LC (Li and Chen

(2012)), CLX (Cai, Liu and Xia (2013)), SC (Schott (2007)), and SY (Srivas-

tava and Yanagihara (2010)). For the three-sample covariance matrix testing

problems, we consider three methods: T3, SC, and SY. The sample sizes are

taken as nk = 60, 100, 200, 300 for k = 1, 2, 3, and the dimension p is 100 or 300.

The observations are drawn from xki = Γkwki, where {wk`i, i = 1, . . . , nk; ` =

1, . . . , p; k = 1, 2, 3} are independent and identically distributed (i.i.d.) from the

standard normal (Gaussian) distribution N(0, 1) or the shifted gamma distri-

bution gamma(4, 2) − 2. The nominal test size is 5%, and we conduct 5,000

replications to summarize the empirical proportion of rejecting the null hypoth-

esis under each case. Four scenarios are considered for the comparison.
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Scenario 1. Let Σ1 = Ip and Σk = ΓkΓ
T
k , where Γk = Ip + θk (ukij)

p
i,j=1

for k = 2, . . . ,K, with Ip being the p×p identity matrix. We consider {u2ij , i, j =

1, . . . , p} i.i.d.∼ Unif(−n−0.751 , n0.751 ) and {u3ij , i, j = 1, . . . , p} i.i.d.∼ Unif(−n−0.91 , n0.91 ).

To test Σ1 = Σ2 with K = 2, we evaluate the empirical test size using θ1 = θ2 = 0

and the empirical power with (θ1, θ2) = (0, 1). To test the equality of three co-

variance matrices, Σ1 = Σ2 = Σ3 with K = 3, we evaluate the empirical test

size with θ1 = θ2 = θ3 = 0 and the empirical power with (θ1, θ2, θ3) = (0, 1, 1).

This configuration enables us to examine the performance of the proposed test

under the dense alternative.

Scenario 2. The observation xki = (xk1i, . . . , xkpi)
T is generated from

xkji = wkji + 2wk,j+1,i + θkwk,j+2,i for k = 1, . . . ,K (Li and Chen (2012)). To

test Σ1 = Σ2 with K = 2, we evaluate the empirical test size with θ1 = θ2 = 0

and the empirical power with (θ1, θ2) = (0, 0.6). To test the equality of three

covariance matrices, Σ1 = Σ2 = Σ3 with K = 3, we evaluate the empirical test

size with θ1 = θ2 = θ3 = 0 and the empirical power with (θ1, θ2, θ3) = (0, 0.4, 0.6).

Scenario 2 corresponds to the case with a relatively sparse alternative.

Scenario 3. The covariance matrix is Σk = C+δ0Ip+θkUk and Γk = Σ
1/2
k

for k = 1, . . . ,K, where C = (0.2I{|i−j|>0})pi,j=1. In addition, Uk is a p × p

symmetric matrix with four nonzero entries from Unif(0, 2) randomly located in

the upper triangle, and another four located in the lower triangle, by symmetry

(Cai, Liu and Xia (2013)). As a result, the differences between Σk are extremely

sparse. To test Σ1 = Σ2 with K = 2, δ0 = |min{λmin(C+U2), λmin(C)}|+0.05,

and we evaluate the empirical test size with θ1 = θ2 = 0 and the empirical power

with (θ1, θ2) = (0, 1). To test Σ1 = Σ2 = Σ3 with K = 3, δ0 = |min{λmin(C +

U2), λmin(C+U3), λmin(C)}|+0.05, and we evaluate the empirical test size with

θ1 = θ2 = θ3 = 0 and the empirical power with (θ1, θ2, θ3) = (0, 1, 1).

Scenario 4. The covariance matrix is Σk = (σkij)
p
i,j=1 and Γk = Σ

1/2
k

with σkij = θk[I{k = 2}(2 log p/3)E11 + I{k = 3}(log p/2)E22 + I{k = 2}ukij ] +

(0.1|i−j| + 0.2|i−j|)/2, where Eij is the matrix with the (i, j)th entry equal to

one, and the rest equal to zero. In addition, ukij ∼ Unif(−n−0.8, n−0.8), with

n =
∑K

k=1 nk for k = 1, . . . ,K. To test Σ1 = Σ2 with K = 2, we evaluate the

empirical test size with θ1 = θ2 = 0 and the empirical power with (θ1, θ2) = (0, 1).

To test Σ1 = Σ2 = Σ3 with K = 3, we evaluate the empirical test size with

θ1 = θ2 = θ3 = 0 and the empirical power with (θ1, θ2, θ3) = (0, 1, 1). Scenario 4

investigates the tests based on a mixture of sparse and dense alternatives.

The simulation results for the two-sample testing problems are summarized

in Tables S1–S4 of the Supplementary Material. The results for three samples



48 ZHENG ET AL.

with Gaussian populations are presented in Figure S1 and those with gamma

populations are provided in Figure S2 of the Supplementary Material. For test-

ing the equality of two covariance matrices, our test, LC, and CLX maintain

empirical test sizes well for both the Gaussian and the gamma populations. In

contrast, YP and SC work for the Gaussian population only. The performance

of SY under the two-sample cases suffers from size distortion in some scenarios,

especially when p is close to or larger than n. Thus, we do not present the re-

sults for SC under the gamma population or those for SY under the two-sample

cases. For the alternatives, we compare the empirical power of our test, LC,

and CLX. In Scenarios 1 and 2 (i.e., dense and relatively sparse cases, respec-

tively), our test is as powerful as LC, and produces higher power than CLX.

In Scenario 3, for extremely sparse alternatives, the empirical power of the pro-

posed method is slightly lower than that of CLX, but much higher than that

of LC. In Scenario 4, where both large and small disturbances exist between

the two population covariance matrices, our test outperforms the other meth-

ods. In addition, we consider the ultra high-dimensional setting with p = 500

and 1,000. The simulation results of the new test are presented in Table S5

of the Supplementary Material. We conclude that our T2 test still performs

well when p is much larger than n. Moreover, if we change the threshold to

s(n1, n2, p) = [{log log(n1/2 + n2/2) − 1}2 + 4](log p − log log p/4) + q, with

exp{−(8π)−1/2 exp(−q/2)} = 0.99, the performance of T2 is similar.

For testing the homogeneity of three covariance matrices, we examine the

performance of the statistic T31, which is the first term of the proposed T3.

Our goal is to investigate the gain from the screening term T32, especially in

the sparse cases. The simulation results are similar to those in the two-sample

cases. Moreover, the T3 test demonstrates substantial advantages over the T31
test when sparse but large disturbances exist under the alternative hypothesis,

and the empirical sizes for these two tests are comparable.

4. Real Data Analysis

To illustrate our proposed test, we present an analysis of the gene expression

data set from the breast cancer study by Schmidt et al. (2008). The data are

available from “Bioconductor”, and include gene expression patterns of 200 tu-

mors of patients who were not treated by systemic therapy after surgery. Patients

were classified into three groups according to the tumor grade: group 1, with a

well-differentiated tumor (n1 = 29); group 2, with a moderately differentiated tu-
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500,000 1,000,000 1,500,000 500,000 1,000,000 1,500,000

Figure 1. Plots of values of sk1`1`2 − sk2`1`2 to quantify the difference between Σk1
and

Σk2 for the breast cancer data set, for `1, `2 = 1, . . . , 1,280.

mor (n2 = 137); and group 3, with a poor differentiated/undifferentiated tumor

(n3 = 35). The heterogeneous nature of breast cancer facilitates the development

of prognostic and predictive classification algorithms based on the related genes,

and the choice of the classification methods relies on whether the covariance ma-

trices are homogeneous. Hence, we are interested in testing the homogeneity of

the variance–covariance matrices of these three groups.

The breast cancer data set contains 22,283 features, yielding a high-dimen-

sional hypothesis testing problem. To alleviate the computational burden, we

perform a feature-screening procedure (http://bioconductor.org/packages/

release/bioc/html/genefilter.html) in which we filter out the features with

coefficients of variation that fall outside the range (0.25, 1.0) and control at least

30% of the selected features that have intensities above five. After the preliminary

screening procedure, 1,280 features are kept for the analysis. Let Σ1,Σ2, and Σ3

be the covariance matrices of these 1,280 features in patients with tumor grades

of 1, 2, and 3, respectively. To visualize the selected data set, we plot the values

of sk1`1`2 − sk2`1`2 for the pairwise comparisons in Figure 1. It is observed that

Σ2 − Σ1 has more elements concentrated around zero than Σ3 − Σ2 does. In

addition, one large disturbance (around the index of 20,000) may exist between

groups 1 and 2, whereas many moderate disturbances are present in Σ3 −Σ2.

We first apply the T2, LC, and CLX methods to test the null hypotheses

H
(1,2)
02 : Σ1 = Σ2 and H

(2,3)
02 : Σ2 = Σ3, separately. The nominal size is set

at 5%. Our T2 method rejects both null hypotheses H
(1,2)
02 and H

(2,3)
02 , whereas

LC and CLX reject only one of the two. Specifically, LC fails to detect the

http://bioconductor.org/packages/release/bioc/html/genefilter.html
http://bioconductor.org/packages/release/bioc/html/genefilter.html
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difference between Σ1 and Σ2 because there is only one large disturbance (feature

206023 at) between the two covariance matrices. On the other hand, CLX cannot

detect the large number of small disturbances between Σ2 and Σ3. This example

demonstrates that the structures of the differences between the two covariance

matrices indeed affect the performance of the LC and CLX tests, because each

is based on one type of norm statistic only. Without knowledge of the specific

structure of the difference between the covariance matrices, the proposed test

can identify both “few large” and “many tiny” disturbances, and thus leads to

higher power in homogeneity testing problems.

Next, we consider H03 : Σ1 = Σ2 = Σ3 to test the equality of the covariance

matrices of groups 1, 2, and 3. The observed test statistic based on the breast

cancer data set is 116.9, with a p-value extremely close to zero; thus, we reject

H03. Moreover, the observed statistic T31 is 5.3, with a p-value of 6.5 × 10−8,

indicating that both terms of the proposed test T3 play a role in detecting the

differences for dense and sparse alternatives.

5. Concluding Remarks

We have proposed a new test for the homogeneity of multiple high-dimensional

covariance matrices. In contrast to existing methods, which typically use only

one type of norm statistic, our test statistic is composed of two different norms.

The first detects many faint signals, and the second detects a few strong sig-

nals. By adaptively mixing the two norms, our test gains substantial power for

different situations. More importantly, we do not need to know a priori which

types of signals are present. The asymptotic properties of our tests are estab-

lished using modern random-matrix theory, which demonstrates the elegance of

the theoretical development.

The proposed statistic for testing several matrices is a weighted average of

the pairwise test statistics, where the weight is proportional to the inverse of

the sample size. A related question is to determine the optimal weight that

maximizes the power. In fact, the power function can be represented as

Φ

[
(µAK − µ̂K − z1−ασ̂K)

σAK

]

= Φ


{∑

1≤k1<k1≤K ωk1k2tr[(Σk1 −Σk2)
2]− z1−ασ̂K

}
σAK

+ o(1)
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≥ Φ

(∑
1≤k1<k1≤K ωk1k2tr[(Σk1 −Σk2)

2]

σAK

)
+ o(1),

where Φ(·) is the cumulative distribution function ofN(0, 1), σ2AK is the quadratic

form of {σAjj , σAijjk}, and µAK−µ̂K =
∑

1≤k1<k1≤K ωk1k2tr[(Σk1−Σk2)
2]+o(1).

As a result, the optimal weight {ωk1k2 , 1 ≤ k1 < k2 ≤ K} that maximizes the

power function can be determined by solving the Markowitz portfolio problem

(Markowitz (1952)), where
∑

1≤k1<k1≤K ωk1k2tr[(Σk1 − Σk2)
2] can be regarded

as the return and σ2AK can be treated as the risk. In addition, an interesting

extension of our method would be to the case of a large number of groups or

covariance matrices; that is, K is also large.

Supplementary Material

The Supplementary Material contains detailed proofs of the theoretical re-

sults and simulation results.
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