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Abstract

This paper studies deep learning approaches to find optimal reinsurance and divi-
dend strategies for insurance companies. Due to the randomness of the financial ruin
time to terminate the control processes, a Markov chain approximation-based iterative
deep learning algorithm is developed to study this type of infinite-horizon optimal con-
trol problems. The optimal controls are approximated as deep neural networks in both
cases of regular and singular types of dividend strategies. The framework of Markov
chain approximation plays a key role in building the iterative equations and initializa-
tion of the algorithm. We implement our method to classic dividend and reinsurance
problems and compare the learning results with existing analytical solutions. The fea-
sibility of our method for complicated problems has been demonstrated by applying
to an optimal dividend, reinsurance and investment problem under a high dimensional
diffusive model with jumps and regime-switching.
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1 Introduction

Since the pioneering work by Borch (1960), Borch (1962) and Arrow (1963), there has been
extensive research on optimal reinsurance. Reinsurance is a standard tool to reduce and
eliminate risks born by primary insurance carriers. The primary insurance carrier pays the
reinsurance company a certain part of premiums in return of protections from reinsurance
companies against the adverse claim volatilities. The recent book on reinsurance Albrecher
et al. (2017) provides an impressive list of references on the subject.

Dividend payment strategies are crucial to companies. It represents an important fi-
nancial signal about a firm’s future growth opportunities and may influence the wealth of
the shareholders. Optimal dividend strategies for insurance companies was first studied by
De Finetti (1957), who solved the problem in a discrete-time model by assuming that the
surplus process follows a simple random walk and that decision-makers aim to maximize the
expected discounted total dividends until financial ruin. Gerber (1972) provided solutions
for optimal dividend problem under both discrete and continuous models. Asmussen and
Taksar (1997) re-examined the problem using the theory of controlled diffusion processes.
Types of dividend controls such as regular, singular or impulse controls together with rein-
surance policies are investigated under various scenarios thereafter. See Høgaard and Taksar
(1999), Wei et al. (2010) and references therein. In past decades, a huge amount of research
has been devoted to finding optimal insurance strategies using analytical techniques under
various mathematical models. Due to increasing complexity of stochastic systems such as
considering regular, singular and impulse controls simultaneously, and multiple decision-
makers in a stochastic game framework, etc, closed-form solutions are virtually impossible
in many cases. Recently, there is emerging research on solving the optimization problems
numerically using finite difference or similar type methods. See Jin et al. (2013), Van Staden
et al. (2018) and Jin et al. (2018).

On the other hand, the fast developments of computer science, artificial intelligence
(AI), big data analytics, and machine learning are changing our society and life in almost
all aspects. More and more research has been conducted on what the impact of data science
on the insurance industry is, how we can use the high tech and data science to the insurance
industry, such as improve risk management by reducing losses, claim reserve estimation,
policy design and increasing profit. See Wüthrich (2018a), Wüthrich (2018b) and Aleandri
(2018). A comprehensive set of machine learning techniques in non-life insurance pricing
and data science such as regression trees, neural networks and unsupervised learning are
presented in Wüthrich and Buser (2019).

When managing an insurance portfolio, the decision-making process forms a stochas-
tic control problem, which generally is categorized into two types: finite-time horizon and
infinite-time horizon. There exists some literature on applying deep learning methods to
solve finite-time horizon problems. Han and E (2016) and E et al. (2017) expressed the
control family by parametric neural networks, and approximate the expectation of multiple
time-step objective by its Monte Carlo mean. Thus, searching for the optimal control strat-
egy is transferred to a simplified expectation maximization where a complicated function is
maximized over neural network parameters. Bachouch et al. (2019) and Huré et al. (2019)
integrated deep learning methods into Monte Carlo backward optimization algorithms. They
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used parametric neural networks to approximate control strategies as well, but the optimiza-
tion is conducted backwards in every time step. Recently, there are emerging application
of deep learning methods to various stochastic models in finance and risk management, see
Carmona and Laurìre (2019); Fecamp et al. (2019); Pereira et al. (2019). Overall, these
methods are dealing with optimization in finite time horizon.

For infinite-time horizon problems, since there is no fixed terminal time, we can hardly re-
formulate optimization problems as the maximization of a simple expectation of projections.
There exist very few literature on applying deep learning methods to optimize infinite-time
horizon stochastic controls. In this paper, the hybrid feature of the proposed algorithm lies
in the integration of deep learning method and Markov chain approximation method to solve
optimal dividend and reinsurance problem. Particularly, we approximate the controls with
neural networks, apply the Markov chain approximation method to identify a neighborhood
of optimal controls, fit the initial values of neural network’s parameters, and learn the op-
timal parameters of neutral networks with gradient descent algorithm. We benchmark the
existing theoretical results to justify the correctness of our method. Particularly, we work
on an optimal dividend and reinsurance problem that was studied in Høgaard and Tak-
sar (1999). Besides, we apply the proposed method for a problem with more factors being
controlled in a much more complicated jump-diffusion with the regime-switching stochastic
environment. The numerical results demonstrate the effectiveness of our method in solving
complex stochastic control problems.

Comparing with the existing numerical methods on infinite-time stochastic control prob-
lems, our proposed algorithm has two main advantages. First, as we all know, it is inevitable
to face the problem of “curse of dimensionality” when dealing with optimization problems
with multiple control variables and in high dimensional stochastic environment. The in-
troduction of machine learning framework enables us to replace the optimization over the
piecewise control grid for every state value by the simultaneous maximization among para-
metric neural networks for all state values. Now the computational complexity mainly comes
from the evaluation of gradients for every state value, and thus increases linearly with respect
to the number of points in the state lattice. Hence the computation efficiency can be im-
proved. Second, the accuracy of numerical results can be improved by the proposed method
as well. Traditional methods generally use piecewise constant controls to approximate the
optimal control. Then the accuracy of the control strategy is subject to the denseness of
the control grid. On the contrary, neural networks allow the control strategy to take values
in the continuous range and will conquer the difficulty of effectively selecting the scales of
control grid to meet the requirement of accuracy.

The rest of the paper is organized as follows. A general formulation of surplus, divi-
dend and reinsurance strategies and assumptions are presented in Section 2. Section 3 deals
with the case of restricted dividend payment rate. The deep learning Markov chain approx-
imation method is presented. The neural networks are constructed accordingly. The case
of unrestricted dividend payment rate is investigated in Section 4. A complicated optimal
dividend, reinsurance, and investment problem under multi-dimensional regime-switching
jump-diffusion model is presented in Section 5. Numerical examples are provided in Section
6 to illustrate the performance of the algorithms in all cases. Some concluding remarks are
provided in Section 7.
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2 Formulation

Let (Ω,F ,F,P) be a complete filtered probability space where F := {Ft} is a right-continuous,
P-complete filtration. We consider an insurance company that collects the premiums and
purchases reinsurance policies to share the risks with reinsurance companies. Similarly to
Høgaard and Taksar (1999), we denote the claim process as Z(t) and formulate Z(t) by the
diffusion-approximation of the classical Cramér-Lundberg model:

dZ(t) = adt− σdW (t), (2.1)

where constants a > 0 and σ > 0 represent the mean and the volatility of the claim process
respectively, and W (t) is a standard P-Brownian motion. The premium is paid continuously
at a constant rate c = (1 + η)a, where η > 0 is the safety loading. Then the dynamics of the
insurer’s surplus process is given by

dR̃(t) = cdt− dZ(t)

= aηdt+ σdW (t).

We assume that the insurer can purchase proportional reinsurance to manage insurance
business risks. Denote by φ(t) ∈ [0, 1] the reinsurance strategy of the insurer at time t.
It means the reinsurance company will compensate the insurer for 1 − φ(t) of claims at
time t, therefore the net liability for the insurance company will be φ(t) of original claims.
Suppose that the reinsurance premium is also determined by the expected value premium
principle. Under the proportional reinsurance contract φ(t), the reinsurance premium rate is
κ = (1 + ρ)(1− φ(t))a with safety loading ρ ≥ η. When ρ = η, we call it cheap reinsurance.
Therefore, the surplus process with such a proportional reinsurance treaty is governed by

dR(t) = cdt− φ(t)dZ(t)− κdt
= [(η − ρ) + ρφ(t)]adt+ σφ(t)dW (t),

(2.2)

where (η − ρ) ≤ 0.

A dividend strategy D(·) is an Ft-adapted process {D(t) : t ≥ 0} corresponding to the
accumulated amount of dividends paid up to time t such that D(t) is a nonnegative and
nondecreasing stochastic process that is right continuous and has left limits with D(0−) = 0.
Two types of dividend controls will be considered: regular and singular control. The regular
dividend control problem corresponds to the cases where the dividend payments are paid
continuously. In the restricted dividend payment rate case, we consider dividend strategies
in the form of dD(t) = u(t)dt, where the control variable u(·) represent a restricted dividend
rate. The singular dividend control corresponds to the situation where the dividend process
is not continuous, and the surplus level changes drastically on a dividend payday. Hence the
dividend payment rate is unrestricted in this case. We will consider the dividend policies
in restricted and unrestricted cases, respectively. Denote X(t) as the surplus process in the
presence of dividend payments. In both cases, X(t) can be written as

dX(t) = dR(t)− dD(t), (2.3)
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where X(0) = x.

By choosing the optimal reinsurance and dividend payment strategies, we aim to maxi-
mize the present value of cumulative discounted dividend payments until financial ruin. Let
γ be the constant discount factor. We assume that γ > 0. For an arbitrary pair of controls
π(·) = (φ(·), D(·)), the objective function is defined as

J(x, π) = Ex
(∫ τ

0

e−γtdD(t)

)
, (2.4)

where τ = inf{t ≥ 0 : X(t) < 0} represents the time of ruin, and Ex denotes the expectation
conditioned on X(0) = x. Hence, the value function V (x) = supπ J(x, π).

3 Restricted Dividend Payment Rate

In this section, we consider how to optimize reinsurance and dividend strategy under the
case where there is a bound M on the dividend rate. Since the optimal dividends policy is
either a barrier or a band strategy, D(t) is an absolutely continuous process. We write D(t)
as

dD(t) = u(t)dt, 0 ≤ u(t) ≤M, (3.1)

where u(t) is an Ft-adapted process and 0 < M <∞. Then the surplus process X(t) in the
presence of dividend payments is given by

dX(t) = dR(t)− u(t)dt, X(0) = x ≥ 0 (3.2)

for all t < τ and we impose X(t) = 0 for all t > τ . Suppose the dividend is paid at a
rate u(t), where u(t) is an Ft-adapted process, and the optimal payout strategy is applied
subsequently. Then the expected discounted dividend until ruin is given by

J(x, π(·)) = Ex
[∫ τ

0

e−γtu(t)dt

]
, (3.3)

where Ex denotes the expectation conditioned on X(0) = x. The value function of maximiz-
ing expected dividend payoff is defined by the following optimization problem:

V (x) = sup
φ∈[0,1],u∈[0,M ]

J(x, π(·)). (3.4)

3.1 Markov Chain Approximation Method (MCAM)

In this subsection, a brief introduction of Markov chain approximation method (MCAM) is
presented. We will formulate the transition probabilities of MCAM to construct an iterative
computational scheme. A comprehensive introduction of MCAM can be referred to Kushner
and Dupuis (2001). In Section 3.2, deep learning neural networks will be introduced to
approximate control functions and will be used along with the recursive equation constructed
here to locate the optimal control strategy.
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In what follows, we first define some notations:

π , (φ, u) ;

Π , [0, 1]× [0,M ] ;

α (x, π) ,
1

2
σ2φ2;

β (x, π) , (η − ρ+ ρφ)a− u;

δ (x, π) , u;

ω (x, π) , |β (x, π)|∆x+ 2α (x, π) ;

∆t (x, π) ,
∆x2

ω (x, π) + γ∆x2
;

where ∆x is the step size of states. Then for a given control strategy π, the change of
objective value can be approximated by the following Markov chain:

S (x, V, π) ≈e−γ∆t(x,π) [p (x, x+ ∆x|π)V (x+ ∆x) + p (x, x−∆x|π)V (x−∆x)]

+ δ (x, π) ∆t,
(3.5)

where transition probabilities are defined as follows:

p (x, x+ ∆x|π) ,
α (x, π) + max {β (x, π) , 0}∆x

|β (x, π)|∆x+ 2α (x, π)
,

p (x, x−∆x|π) ,
α (x, π) + max {−β (x, π) , 0}∆x

|β (x, π)|∆x+ 2α (x, π)
.

(3.6)

The optimal iterative control strategy and value function are given as

V (x) = sup
π∈Π

S(x, V, π),

π∗ = arg max
π∈Π

S(x, V, π).

3.2 Deep Learning Markov Chain Approximation Method

In this part, we will present a new method as an integration of Markov chain approximation
method and deep learning method, which can preserve the stable convergence of MCAM,
the strong generalizability of neural network, and the high computation efficiency of machine
learning at the same time. Considering the fact that the neural network owns outstanding
capability of fitting non-linear functions, we adopt neural networks to model the relationship
between control strategy π = (φ, u) and state value x as in Figure 1. Without loss of
generality, we assume the neural network only contains two hidden layers of three nodes.

Remark 3.1. Generally speaking, neural networks with more layers are equipped with
stronger ability to learn more complicated control strategies. However, if the neural network
is far more complicated than it is required by the optimization problem, excessive parameters
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Input State

Hidden Layer I Hidden Layer II

Control Strategy

φ

x

u

1Figure 1: Control Network

will more probably lead to issues of gradient vanishing or local minimum. We find that the
two-layer neural networks perform well in both the simple and complex numerical examples
in Section 6. The rule we choose the layers of neural networks is as follows: For complex
problems which our method is targeting at, the architecture of neural networks can be chosen
by referring to the results of similar simple problems.

The computational structure of every neural node follows the pattern in Figure 2. Be-
sides, given the different admissible ranges of reinsurance and dividend strategies, we use
independent neural networks for the dividend strategy u and the insurance strategy φ.

i[2] w2 Σ f

Activation
Function

y

Node
Output

i[1] w1

i[3] w3

Weights

Bias
b

Node Inputs

1Figure 2: Neural Node Computation

The output range of neural networks should match the admissible range of the corre-
sponding control, where the output of φ should be in [0, 1], and u should be in [0,M ]. This
is achieved by assigning a specific output function to the neural network. Moreover, the
architecture of the neural network, e.g. the number of nodes in every layer, the number of
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hidden layers, and the intermediate activation functions, should be appropriately determined
according to the property and complexity of the problem. Excessively complicated neural
networks may overestimate the sophistication of the relationship between the state value and
the optimal control values, which will potentially cause the disappearance of gradients, and
then result in the failure of the learning algorithm. However, a relatively simple structure will
suffer from the insufficient ability of generalization, which makes the family of parametric
neural network control strategies not big enough to effectively approximate the admissible
control family.

Define Θ as the collection of all weights and bias terms in two neural networks, then
denote the neural network control strategy by:

π̂ (x) , N (x|Θ) = (φ̂, û).

Given a state lattice, {xi}ni=1, define the global improvement function G as:

G , G (V (x1) , V (x2) , · · · , V (xn)) .

The global improvement function G reflects, how much the iterative value function will
improve globally through the iterative Markov chain. The choice G should serve the goal
that the value function will be improved on most states rather than on every state of the
state lattice. This global improvement is achieved by iteratively adopting the neural network
control strategy π̂ which is optimized in every iteration. This is equivalent to searching for Θ
maximizing G with a given iterative value function. Usually, G can be chosen as the average
value of the value function:

G (V (x1) , V (x2) , · · · , V (xn)) =
1

n

n∑
i=1

V (xi) .

Remark 3.2. We can choose other general global improvement functions such as the weighted
average of V (xn). The impact to efficiency depends on the formulation of the infinite horizon
optimization problem. For the present formulation, it does not show much difference, so we
choose the average value for simplicity.

Assuming we are currently in the k-th iteration with the iterative value function V k−1

obtained from the previous iteration, the best parameters in the current iteration Θk is
determined by:

Θk = arg max
Θ

G
(
Sk (x1) , Sk (x2) , · · · , Sk (xn)

)
, (3.7)

Sk (x) = S(x, V k−1,N (x|Θ)).

We will show how to search for Θk by gradient descent algorithm in section 3.3. With Θk,
the iterative control strategy is expressed as:

π̂k (x) = N
(
x|Θk

)
,

which can be adopted in (3.5) to obtain the k-th iterated value function:

V k (xi) = S(xi, V
k−1, π̂k (xi)), 1 ≤ i ≤ n.
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The above iteration will repeat until the termination condition is met:

n∑
i=1

(
V k(xi)− V k−1(xi)

)2
< εI ,

where εI is a predefined small positive number.

Overall, the iteration constructed in this section can be summarized as a computational
flow in Figure 3.

NN Strategy

Global Improvement

Specified α,β,γ, and δ
Input

x
Transition
Probability

p Σ {pV } V k (x)

N πN Transition
Drift

d E [V ]

Θ + S G

Update V k+1 (x)

Optimize

Θk+1

1Figure 3: Iterative Learning Cycle

3.3 Determining The Iterative Neural Network Control Strategy

In every iteration step, the fundamental job is to obtain the iterative control strategy, where
Θk+1 is located through maximizing G by the gradient descent algorithm. The implementa-
tion of this algorithm will be briefly described with respect to the following optimization:

Θk = arg max
Θ

G
(
Sk (x1) , Sk (x2) , · · · , Sk (xn) Θ

)
. (3.8)

Given an initial value Θk
0, we construct the following iterative sequence:

Θk
l+1 = Θk

l + h

[
∂G (·,Θ)

∂Θ Θ=Θkl

]
, (3.9)

where h is called learning rate. It can be proved that:

lim
l→∞

Θk
l = Θk. (3.10)

There exists rich literature on improvements of the standard gradient descent algorithm,
where an outstanding one is called Adam algorithm, which will adjust the learning rate
adaptively along with the learning process (see Kingma and Ba (2014) for details). Further,
the gradient descent algorithm will terminate when∣∣G (·,Θk

l

)
−G

(
·,Θk

l+1

)∣∣ < εD, (3.11)
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where εD is a pre-defined small value for the acceptable precision.

The accuracy of gradient computation plays an essential role in the effective implemen-
tation of the gradient descent algorithm. Here we adopt automatic differentiation method,
which follows the idea that most functions are just sequence of simple operations, and every
simple operation can be easily differentiated. Thus, the gradient can be evaluated recursively
using gradients of this sequence of simple operations. Precisely, the computational process
of ∂G

∂Θ
in the k-th iteration follows

∂G
(
Sk (x1) , Sk (x2) , · · · , Sk (xn) |Θ

)
∂Θ

=
n∑
i=1

{
∂G
(
Sk (x1) , Sk (x2) , · · · , Sk (xn) |Θ

)
∂Sk (xi)

∂Sk (xi)

∂π̂ (xi)

∂π̂ (xi)

∂Θ

}
.

(3.12)

Here ∂G
∂Sk(xi)

relies on the form of global improvement function G, and ∂Sk(xi)
∂π̂(xi)

is derived from

Markov chain computational rule (3.5) as

∂Sk (xi)

∂π̂ (xi)

=
∂S(xi, V

k−1, π̂ (xi))

∂π̂ (xi)

= −γe−γ∆t(xi,π̂(xi))
[
p (xi, xi+1|π̂ (xi))V

k−1 (xi+1) + p (xi, xi−1|π̂ (xi))V
k−1 (xi−1)

] ∂∆t (xi, π̂ (xi))

∂π̂ (xi)

+ e−γ∆t(xi,π̂(xi))

[
∂p (xi, xi+1|π̂ (xi))

∂π̂ (xi)
V k−1 (xi+1) +

∂p (xi, xi−1|π̂ (xi))

∂π̂ (xi)
V k−1 (xi−1)

]
+
∂δ (xi, π̂ (xi))

∂π̂ (xi)
∆t (xi, π̂ (xi)) + δ (xi, π̂ (xi))

∆t (xi, π̂ (xi))

∂π̂ (xi)
,

where

∂∆t (xi, π̂ (xi))

∂π̂ (xi)
=
∂∆t (xi, π̂ (xi))

∂α (xi, π̂ (xi))

∂α (xi, π̂ (xi))

∂π̂ (xi)
+
∂∆t (xi, π̂ (xi))

∂β (xi, π̂ (xi))

∂β (xi, π̂ (xi))

∂π̂ (xi)
,

∂p (xi, xi±1, π̂ (xi))

∂π̂ (xi)
=
∂p (xi, xi±1, π̂ (xi))

∂α (xi, π̂ (xi))

∂α (xi, π̂ (xi))

∂π̂ (xi)
+
∂p (xi, xi±1, π̂ (xi))

∂β (xi, π̂ (xi))

∂β (xi, π̂ (xi))

∂π̂ (xi)
.

Note that ∂p(xi,xi±1,π̂(xi))
∂α(xi,π̂(xi))

, ∂p(xi,xi±1,π̂(xi))
∂β(xi,π̂(xi))

, ∂∆t(xi,π̂(xi))
∂α(xi,π̂(xi))

, and ∂∆t(xi,π̂(xi))
∂β(xi,π̂(xi))

can be easily derived

from functions in (3.6). And ∂α(xi,π̂(xi))
∂π̂(xi)

, ∂β(xi,π̂(xi))
∂π̂(xi)

, and ∂δ(xi,π̂(xi))
∂π̂(xi)

are characterized by the
stochastic optimization problem itself, thus are straight-forward computations. The last
required element making (3.12) complete is ∂π̂(xi)

∂Θ
, which follows the backward propagation

differentiation method for neural networks.

In addition to the accurate computation of gradients, an appropriate choice of initial Θ
is of great importance to successfully run the gradient descent algorithm as well. Due to
the complexity of stochastic optimization problem, the learning objective is a sophisticated
nested function of parameters Θ, which will lead to the issue that the learning objective has
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some local maximal points. Although we can randomly generate several initial combinations
of parameters, it cannot guarantee that we will reach the global maximum. Finding a way
to determine the starting values of parameters is always a key step. Due to the curse of
dimensionality, MCAM will mostly give inaccurate result, which however will preserve a
rough shape of the control strategy. Based on this idea, we propose a method to locate
the initial value of Θ using the information collected from running MCAM on a small state
lattice. Specifically, in every iteration, we run standard MCAM on a small state lattice and
a control grid to obtain the piecewise control values. These values will keep the rough shape
of control strategy, and then we can improve the neural network control strategy from this
general shape to avoid searching for the best Θ in a very big space.

Denote the small state lattice by {yj}mj=1 with m < n. Focusing iteration step k, suppose

we have obtained the piecewise control strategy on the small lattice denoted as
{
π̃k (yj)

}m
j=1

,

then the initial value of Θk
0 is obtained from fitting neural network control strategy N (x|Θ)

against π̃k (y):

Θk
0 = arg min

Θ

m∑
j=1

[
π̃k (yj)− N(yj|Θ)

]2
.

Note Θk
0 is obtained by gradient descent algorithm as well. Now the initial neural network

control strategy π̂(·|Θk
0) will preserve the almost same information as the resulted control

from ordinary MCAM. This is where we will start from to further improve the strategy
through maximizing objective G.

Remark 3.3. Since only a rough shape of control strategy is needed, the step size of the
piecewise control grid should be relatively large to accelerate the computation.

Remark 3.4. It is generally known that the local minimal issue does not matter much when
fitting smooth functions by neural networks. Thus the initial value of Θ for running fitting
step can be generated randomly.

3.4 Description and Discussion of The Algorithm

To summarize all above construction, a complete description of the algorithm will be given
here. The algorithm starts from following initialization steps.

Initialization 1: Construct the state lattice for deep learning algorithm denoted as
{xi}ni=1, and the state lattice for obtaining initial value of Θ denoted as {yj}mj=1. These
two state lattices satisfy following conditions:

x0 = y0, xn = ym, m ≤ n.

Initialization 2: Choose three sets of computation precision ε and a maximal number of
learning times. They are used to obtain initial values of Θ0, to determine iterative control
strategy N(x,Θk), and to stop the MCAM iteration respectively.

Initialization 3: Pick up an appropriate function f (x) to compute initial value for itera-
tion. The choice is subject to properties of the problem. Compute U0 as:

U0(yj) = f(yj), j = 1, · · · ,m.
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Initialization 4: Use the same function f (x) as in Initialization 3 to compute V 0 as:

V 0(xi) = f(xi), i = 1, · · · , n,

After initialization, the algorithm will repeat below iterative steps. The repetition will
stop until the algorithm achieves the desired precision, which is set up in Initialization 2.

Step 1: For j = 1, · · · ,m, π̃k(yj) is obtained from standard MCAM. The input values
Uk−1 are from Initialization 3 or Step 4 in the last round.

Step 2: Fit against π̃k(y) by the gradient descent algorithm to obtain parameter starting
values Θk

0:

Θk
0 = arg min

Θ

m∑
j=1

(
π̃k (yj)− N(yj|Θ)

)2
.

The fitting process will stop if the desired precision is achieved or if the maximal number of
fitting iteration is reached, whichever comes first.

Step 3: Maximize G
(
Sk (x1) , Sk (x2) , · · · , Sk (xn)

)
by the gradient descent algorithm to

obtain the iterative control strategy. The input values V k−1 are from Initialization 4 or Step
5 in the last round. The learning process will stop if the desired precision is achieved or if
the maximal number of learning iteration is reached, whichever comes first. Now, we have
Θk, which yields π̂k(x) = N

(
x|Θk

)
.

Step 4: For j = 1, · · · ,m, iterate to Uk (yj) in the following way:

Uk (yj) = S(yj, U
k−1, π̂k(yj)).

Step 5: For i = 1, · · · , n, iterate to V k (xi) in the following way:

V k (xi) = S(xi, V
k−1, π̂k(xi)).

Step 6: Compute
∑n

i=1

(
V k(xi)− V k−1(xi)

)2
, and then check the termination condition:

• If
∑n

i=1

(
V k(xi)− V k−1(xi)

)2
< ε, stop.

• If
∑n

i=1

(
V k+1(xi)− V k(xi)

)2
> ε,

– If the maximal number of iterations is reached, stop.

– Otherwise, go to Step 1.

Remark 3.5. The parameter m is the size of lattice used to obtain the rough shape of the
control strategy. Since the algorithm requires to conduct a traversal on the control grid for
each state of the lattice, the smaller m will improve the time-efficiency. However, smaller
m will lead to higher numerical error introduced by the longer distance of the lattice, which
will make the rough shape not suitable for later learning. In practice, we will make m as
small as possible as long as it will generate a stable guess of optimal controls.

Remark 3.6. The overall algorithm involves two layers of loop. The outer loop is the
iteration of the value function, which follows the computation rule of Markov chain approx-
imation. For every sub-step of the outer loop, there are two different iterations for different
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purposes. One is to locate the rough shape of neural network control strategy by fitting
against piecewise controls, while the other one is to further improve the neural network
control strategy through maximizing the objective G by the deep learning algorithm.

Remark 3.7. In step 4 and step 5, the same control strategy π̂k = N
(
·|Θk

)
is used to

update both Uk and V k, since we want to keep Uk owning a comparably similar shape as
V k to make the π̃k+1 meaningful to use in Step 2 of the next round.

Remark 3.8. Sometimes, we can let the small state lattice {yj}mj=1 be a subset of {xi}ni=1

with yj = xij , 1 ≤ j ≤ m, and then let Uk (yj) = V k
(
xij
)
, 1 ≤ j ≤ m. Thus, we can avoid

iteration of values on two lattices simultaneously.

After describing our hybrid method in detail, we will discuss its pros and cons in two
main aspects: the curse of dimensionality and the accuracy of control value.

Bellman (1961) raises the problem of the curse of dimensionality in numerically solving
controls that the computation nodes of optimal controls grow exponentially when state vari-
ables increase. A combination of all states should be considered for finding optimal controls
on the lattice. The classical MCAM suffers from the curse of dimensionality, since, for every
point in the state lattice, we need to conduct a traversal over the control value grid. As a
result, the computational complexity of MCAM is of the same order of the product of the
number of points in the state lattice and the number of nodes in the control value grid. In
order to enhance the accuracy of the result, we need to narrow the difference distance of
the state lattice and introduce a more precise piecewise control value grid. However, this
exponential increase of computational time-consumption makes this method become an un-
affordable choice for obtaining accurate results. This phenomenon is especially outstanding
when the stochastic dynamic is driven by high dimensional randomness, or there are several
factors being controlled.

With the help of the deep learning method, the optimization over the piecewise control
grid can be avoided by calibrating neural network parameters for all states of the lattice
simultaneously. The algorithmic complexity is mainly determined by the operation of eval-
uations of gradient, which is linearly with the size of the state lattice. The enhancement of
algorithm efficiency brings more practical feasibility than existing lattice traversal methods.
For simple problems, a finer difference can be applied to the construction of the state lattice
in order to lower the error in numerical results. Many complicated problems, whose com-
putational cost is beyond acceptance under the implementation of the ordinary MCAM, are
now numerically solvable by our method.

The accuracy of the control strategy is another aspect to be improved by our method.
In the implementation of the ordinary MCAM, the control strategy is optimized among
a control value grid which only contains a finite number of nodes. Thus, the accuracy
of the control strategy is always subject to the denseness of the control value grid. By
contrast, neural networks allow the control strategy to take values in a given continuous
range and will easily conquer the difficulty of effectively selecting the preciseness of the
control grid. Moreover, when considering to approximate admissible control strategy by
piecewise controls, we have no idea which range should be more precise to account for the
rapid change of control. However, in our method, by the gradient descent algorithm, the
neural network control strategy will be adjusted appropriately according to the sensitivities
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of value function towards the control strategy. Furthermore, for some problems, admissible
controls can take values from infinite real intervals, but we can only fix a large finite range
to draw control values. This raises a general problem that how can we effectively select
such large enough intervals. With the flexibility of neural networks, this can be easily solved
by mapping the output of parametric control neural networks to the required infinite real
interval.

Besides the above two main aspects, our method also preserves the main virtue of MCAM
that the numerical result will converge to the optimal result in a very stable way. This
stability of convergence is kept by using a small number of state nodes to obtain a rough shape
of the control. As the source of stability, this shape is incorporated into the neural network
control strategy through the information captured by the initial value of Θ. Maximizing G
will improve the value on most states on top of MCAM result by enabling controls to take
values in continuous ranges. Overall, with the integration of MCAM and deep learning, we
can achieve the stable convergence, the high computational efficiency, and the good accuracy
of control strategy simultaneously.

4 Unrestricted Dividend Payment Rate

In this section, we consider dividend strategy as a singular control and use the convention
that D(0−) = 0. The jump size of D at time t ≥ 0 is denoted by ∆D(t) := D(t) −D(t−),
and Dc(t) := D(t)−∑0≤s≤t ∆D(s) denotes the continuous part of D(t).

Considering the dividend payment, the surplus process in the presence of dividend pay-
ments is written as

dX(t) = dR(t)− dD(t), X(0) = x ≥ 0, (4.1)

where x is the insurer’s initial surplus. The performance function is the expected value of
discounted future dividend payments

J(x, π(·)) = Ex
(∫ τ

0

e−γtdD(t)

)
, (4.2)

where τ is the time of ruin, and Ex denotes the expectation conditioned on X(0) = x. The
value function of maximizing expected dividend payoff is defined by the following optimiza-
tion problem:

V (x) = sup
π
J(x, π(·)), (4.3)

where π(·) = (φ(·), D(·)). By applying MCAM to (4.3) again, we have the following iterative
solution:

B(x, V, φ) , e−γ∆t(x,φ) [p (x, x+ ∆x|φ)V (x+ ∆x) + p (x, x−∆x|φ)V (x−∆x)]

+δ (x, φ) ∆t (x, φ) ,

L (x) = sup
φ∈[0,1]

B(x, V, φ).

Here we adopt same notations p and ∆t as in (3.6), where the corresponding terms are
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defined as follows

α (x, φ) ,
1

2
σ2φ2;

β (x, φ) , (η − ρ+ ρφ)a;

δ (x, φ) , 0.

Let
K (x) = V (x−∆x) + ∆x.

By combining above two parts, we now can construct the new iterative rules. Precisely,
the reinsurance strategy is obtained as:

φ(k+1) = arg max
φ∈[0,1]

B(x, V k, φ). (4.4)

Then we have the value by inputting the reinsurance strategy (4.4) as

Lk+1 (x) = sup
φ∈[0,1]

B(x, V k, φ). (4.5)

When dividend is paid out, the value changes as

Kk+1 (x) = V k (x−∆x) + ∆x.

Then the new value function is obtained as

V k+1 (x) = max
{
Lk+1 (x) , Kk+1 (x)

}
. (4.6)

Meanwhile, the cutting point for dividend strategy can be approximated as:

ũk+1 (x) = max
{
x : Lk+1 (x)−Kk+1 (x) < 0

}
− 1

2
∆x. (4.7)

Since it is impossible to guarantee that there always exists a point in state lattice making
Lk+1 (x)−Kk+1 (x) = 0, this approximation will bound the error by the half of step size.

To apply our deep learning method, we only model the relation between the state x and
the reinsurance strategy by a neural network as

φN , N (x|Θ) .

Observing from (4.5), the optimization over admissible control values are conducted only for
evaluation of L, thus we define the global improvement function G on L instead of V as:

G , G (L (x1) , L (x2) , · · · , L (xn)) .

By inputing previous value function V k, we can determine the iterative reinsurance strategy
and the iterative function Q as:

Θk+1 = arg max
Θ

G (L (x1) , L (x2) , · · · , L (xn)) ,
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Lk+1 (xi) = B(xi, V
k,N

(
xi|Θk+1

)
) 1 ≤ i ≤ n.

Here the gradient descent algorithm can be run again to search for the best Θ. After
obtaining Qk+1, we can use same functions as (4.7) and (4.6) in MCAM to compute the
iterative dividend strategy uk+1 and to iterate the value function to V k+1. As well, this
iteration procedure will be repeated until:

n∑
i=1

(
V k+1(xi)− V k(xi)

)2
< ε.

Remark 4.1. This unrestricted case is used to offer basic illustration about how to extend
our method for more general stochastic optimization problems in actuarial field. For more
complex controlled dynamics or more complicated objectives, the optimization may involve
selecting from maximums of different parts such as possible capital injections to avoid finan-
cial ruin. It does not add much difficulty to learn such types of impulse controls. Since the
crucial logic of our method relies on improving the function which directly reflects the opti-
mization over control values, we just need to apply deep learning method for every function
we need to independently optimize.

5 Optimal Dividend Reinsurance and Investment un-

der Regime-Switching Jump Diffusion Model

In this section, we will use the proposed algorithm to solve the optimal dividend reinsurance
and investment problem under a complicated regime-switching jump-diffusion model where
no analytical results are available. A numerical example will be provided in Section 6 to
illustrate the performance of the algorithm.

To delineate the random environment and other random factors, we use a continuous-time
Markov chain χ(t) whose generator is Q = (qrs) ∈ Rh×h and state space is M = {1, . . . , h}.
Let ζj be the arrival time of the j-th claim. Corresponding to each r ∈M, Λr(t) = max{j ∈
N : ζj ≤ t} is the number of claims up to time t, which is a Poisson counting process.

The surplus process under consideration is a regime-switching jump-diffusion. LetHr(t) :=∑Λr(t)
j=1 Yk, j = 1, 2, . . . , the accumulated claims in regime i up to time t. For r ∈ M,

the claim arrival process Λr(t) is a Poisson process with intensity λr > 0, and claim sizes
Yj, j = 1, 2, . . . , are i.i.d random variables with density function g(x) that is independent of
Λr(t). Suppose that the claim size has finite first and second moments, respectively. Further,
we assume for each r ∈M, the premium rate c(r) follows the expectation premium principle:

c (r) = (1 + ι)λrE [Y ] .

Let φ be an exogenous retention level, which is a control chosen by the insurance company
representing the proportional reinsurance policy. We allow the insurance companies to con-
tinuously reinsure a fraction of its claim with the retention level φ ∈ [0, 1]. By using the
variance premium principle, the reinsurance premium rate at time t is

ψ(φ) = (1− φ)E[Y ] + ν(1− φ)2Var[Y ]. (5.1)
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where ν > 0 is the safety loading of the reinsurer. We use different premium principles for
insurers and reinsurers since we aim to show the feasibility of our numerical method for a
general model. Other types of premium principles are also accepted.

Following the work in Yang and Zhang (2005), we assume the surplus process is invested
in a financial market under the regime-switching progress with a risk free asset whose price
follows

dS0(t) = S0(t)r0(χ(t))dt

and K risky assets whose prices are given by

dSi(t) = Si(t)(µi(χ(t))dt+
K∑
j=1

σij(χ(t))dWj(t)),

where W (t) = (W1(t), . . . ,Wk(t))
′ is an K-dimensional standard Brownian motion. In the

above and hereafter, A′ denotes the transpose of A with A being either a vector or a matrix
with appropriate dimensions, and |A| denotes the Euclidean norm of A. Set

B(χ(t)) = (µ1(χ(t))− r0(χ(t)), . . . , µK(χ(t))− r0(χ(t)))′, and σ(χ(t)) = (σij(χ(t)))K×K .
(5.2)

We use the proportional portfolio $(t) = ($1(t), . . . , $K(t))′ to represent an investment
strategy, where $i(t) is the percentage in the total wealth of the capital invested in the
i-th risky asset. To better reflect the reality in certain markets where short selling is not
allowed, we further set a borrowing constraint on the investment strategy, which means∑K

i=1$i(t) ≤ 1 at any time. Denote

[0, 1]K = [0, 1]× [0, 1]× · · · × [0, 1],

and denote the constraint set of the controls as

Γ :=

{
$ ∈ [0, 1]K :

K∑
i=1

$i ≤ 1

}
. (5.3)

The surplus process with dividend payment is given by

dX(t) = {X(t)[r0(χ(t)) +$′(t)B(χ(t))] + c(χ(t))dt− λχ(t)ψ(φ)}dt
+X(t)$′(t)σ(χ(t))dW (t)− φdHχ(t)(t)− dD(t).

(5.4)

We are working on a filtered probability space (Ω,F , {Ft}, P ), where Ft is the σ-algebra
generated by {χ(s),W (s),Λr(s) : 0 ≤ s ≤ t, r ∈M}.

Here the dividend rate is bounded by M as well, thus dD(t) = u(t)dt. For r ∈ M, and
V (·, r) ∈ C2(R), define an operator L by

LV (x, r) = Vx(x, r)[x(r0(r) +$′B(r)) + c(r)− λrψ(φ)− u] +
1

2
x2Vxx|$′σ(r)|2

+λr

∫ x

0

[V (x− φz, r)− V (x, r)]g(z)dz +QV (x, ·)(r),
(5.5)
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where Vx and Vxx denote the first and second derivatives with respect to x, and

QV (x, ·)(r) =
∑
s 6=r

qrs(V (x, s)− V (x, r)),

where qrs is the transition rate from regime r to regime s. In this case, denote the control

as π := (φ, u,$) ∈ [0, 1]× [0,M ]×
{

[0, 1]L ∩
{∑K

l=1$i ≤ 1
}}

.

As before, we define following terms:

α (x, r, π) ,
1

2
x2

K∑
j=1

(
K∑
i=1

$iσij(r)

)2

;

β (x, r, π) , (r0(r) +$′B(r))x+ c(r)− λrψ(φ)− u;

δ (x, r, π) , u;

ω (x, r, π) , |β (x, r, π)|∆x+ 2α (x, r, π)− qrr∆x2;

∆t (x, i, π) ,
∆x2

ω (x, r, π) + γ∆x2
.

To simplify the derivation, the Markov chain update rule will be given directly for the state
lattice {xi}ni=0 as:

V k (xi, r) = sup
π∈Π



(1− λr∆t (xi, r, π)) e−∆t(xi,r,π)γ

[
p (xi, r, xi+1, r|π)V k−1 (xi+1, r)

+ p (xi, r, xn−1, r|π)V k−1 (xn−1, r)

]
+ (1− λr∆t (xi, r, π)) e−∆t(xi,r,π)γ

∑
s6=r

p (xi, r, xi, s|π)V k−1(xi, s)

+ λr∆t (xi, r, π) e−∆t(xi,r,π)γ

i−1∑
j=0

m (xi, r, xj, r|π)V k−1(xj, r)

+ δ (xi, r, π) ∆t (xi, r, π)


,

where transition probabilities are defined as follows:

p (xi, r, xi+1, r|π) ,
α (xi, r, π) + max {β (xi, r, π) , 0}∆x

ω (xi, r, π)
;

p (xi, r, xn−1, r|π) ,
α (xi, r, π)−min {β (xi, r, π) , 0}∆x

ω (xi, r, π)
;

p (xi, r, xi, s|π) , qrs∆t (xi, r, π) ;

m (xi, r, xj, r|π) ,
∫ xi−xj

φ

xi−xj−1
φ

g(z)dz, 0 < j < i;

m (xi, r, x0, r|π) ,
∫ ∞
xi−x1
φ

g(z)dz.
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6 Numerical Examples

Computation precision ε and maximal numbers of learning times for locating the initial
value of Θ, for determining iterative control strategy Θk, and for iteratively updating value
function V k are as follows:

Triggering Error Max # of steps

Control Fit 10−3 10 000

Gradient Descent 10−6 5 000

Global Iteration 10−7 50 000

Due to the fact the value function is concave, root function
√
x is used as the initial guess

of the value function. All methods are coded by Python with TensorFlow package and run
on x64 platform of Intel Xeon E-2186 2.90GHz CPU with 64GB RAM and NVIDIA Quadro
P5200 GPU with 16GB RAM.

6.1 Restricted Dividend Payment Rates

In this case, we exactly follow the framework of Høgaard and Taksar (1999) and assume the
bound for dividend rate M is 1.0. The effectiveness of the proposed method will be examined
numerically against the setup as follows:

η ρ σ γ

0.1 0.1 0.2 0.125

According to the analytical results in Høgaard and Taksar (1999), the closed-form solutions
for optimal restricted reinsurance strategy, optimal dividend strategy are obtained with
feedback control type. The optimal controls and value function with above parameters are
as follows

u (x) = 1{x≥0.4283},

φ (x) = min {1, 5x} ,

V (x) =


0.5267 (5x)0.5 , x < 0.2,

− 0.3648e−6.0355x + 0.5169e1.0355x, 0.2 ≤ x < 0.4283,

8− 7.6633e−0.1385x, x ≥ 0.4283.

(6.1)

For the deep learning Markov chain approximation method, the value function and the
control strategies after different numbers of iterations are plotted in Figure 4. To better
demonstrate the change of control strategy and the value function during the course of
iterations, we will also show the convergence for the first 1000 iterations as shown in Figure
5. To examine the effectiveness of our method, the theoretical results computed from explicit
solutions are provided as benchmarks.

It can be observed from Figures 4 and 5 that the control strategy converges much faster
than the value function. After the first 1000 iterations, the control strategy almost converges
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to the optimal, but the value function does not rise much. This is due to the fact the iterative
control strategy is updated using the information of the shape of the value function instead
of the absolute location of the value function. Our method is of more help to achieve faster
convergence of the control by introducing deep learning to improve the shape of the value
function globally.
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Figure 4: Convergences of Value Function and Control Strategies
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Figure 5: Convergence of Value Function and Control Strategies in First 1000 Iterations

6.2 Unrestricted Dividend Payment Rates

All setups and parameters of the numerical test remain the same in this section. Similar to
the case of restricted dividend payment rates, the closed-form solutions of optimal feedback-
type controls and value functions are obtained in Høgaard and Taksar (1999) as follows:
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D (x) = (x− 0.4493)+ ,

φ (x) = min {1, 5x} ,

V (x) =


0.5275 (5x)0.5 x < 0.2,

− 0.3653e−6.0355x + 0.5176e1.0355x 0.2 ≤ x < 0.4493,

x+ 0.3507 x ≥ 0.4493.

(6.2)
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Figure 6: Convergences of Value Function and Control Strategies
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Figure 7: Convergence of Value Function and Control Strategies in First 1000 Iterations

The value function, reinsurance strategies, and accumulated dividend amount are plotted
in Figure 6, and the convergence for first 1000 iterations is in Figure 7.

Similarly as in Section 6.1, the value function and optimal controls are learned well
in 50 000 iterations. Due to the singularity of the dividend payment, the total amount of
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dividend payment is approximated directly. It is shown that total accumulated dividend pay-
ment converges to a ramp function, where the turning point represents the barrier to trigger
the dividend payment. This method does not rely on the technique of quasi-variational in-
equality which is generally referred to in the optimization problems with singular controls.
Instead, it deals with the objective functions directly to approximate the dividend payment
amount. In addition, we should bear in mind that it does not add extra difficulties to extend
this algorithm to optimization problems with more types of controls, such as investment and
capital injections.

6.3 Optimal Dividend Reinsurance and Investment

In this part, we will examine the effectiveness when our method is implemented under a com-
plicated random environment. Suppose there are two regimes with the following generator
matrix: [

−0.05 0.05

0.1 −0.1

]
.

Further we assume the claim follows exponential distribution with density g (x) = ζe−ζx,
and there are two risky assets available in the financial market. The parameters are setup
as follows:

ζ ν ι γ M

1 0.02 0.1 0.125 1.5

Regime λ r0 µ1 µ2 σ11 σ12 σ21 σ22

1 0.05 0.05 0.18 0.2 0.15 0.5 0.3 0.6

2 0.1 0.12 0.2 0.25 0.15 0.4 0.25 0.6

The convergence results are plots as Figure 8 for regime 1 and Figure 9 for regime 2. The
comparison of final results between regime 1 and regime 2 are plots as Figure 10.

It can be seen from figures that the value functions hardly change from 10 000 iterations
to 20 000 iterations, which indicates the convergence of numerical results is achieved by
our method. From the comparison of results, our method effectively learn the difference
between controls of different regimes, which demonstrates the effectiveness in searching for
the optimal strategy under complicated stochastic dynamics.

We also implement the original MCAM algorithm for this problem with the same size
of lattice on the same computational platform as a benchmark of time-efficiency. It turns
out that our method can approximately reduce 80% of the time consumed by the classical
MCAM method for this example. The reason is that, as the neural network control strategy
is approaching the optimal control strategy, the number of deep learning iterations decrease
dramatically. In other words, since the computation work is reduced to a small number
of deep learning iterations plus the valuation of the control value for every state using the
trained neural network, the time spent on conducting traversal over the control grid for every
state in the lattice can be saved.
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Figure 8: Convergences of Value Function and Control Strategies for Regime 1
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Figure 9: Convergences of Value Function and Control Strategies for Regime 2
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Figure 10: Comparison of Final Results between Regime 1 and Regime 2

In the following, we will provide an example to show how the efficiency and accuracy
can be improved. Consider a lattice of classical MCAM with N ×M computation nodes,
where N is the number of nodes of state and M is the number of nodes for controls. Now
we implement the propose algorithm in two steps: First, we deal with a lattice with N/5
computation nodes for rough guess. By using the MCAM, we need M nodes to determine
the initial guess of controls. Then the total step is N×M/5. Second, we use gradient descent
method to determine the parameters of the neural networks. Assume that the number of
gradient calculation nodes to obtain initial guess of parameter at each state is K1, and the
gradient calculation nodes for the parameter converge at each state is K2, the computation
for gradient descent is N × (K1 + K2). Thus, the total computation for our method is
N × (M/5 +K1 +K2).

Practically, the proposed deep learning algorithm’s total computation load N × (M/5 +
K1 + K2) is significantly smaller than the transversal grid in the classical MCAM with size
N × M when M is sufficiently large. Moreover, with larger M the control accuracy is
improved as well. Thus, if we compare results with the same accuracy level state lattice,
the proposed algorithm’s computation efficiency is significantly improved in finding optimal
controls for a given M . In addition, if the algorithm runs the same number of computation
nodes as MCAM, M can be set much larger in our method, marking approximating controls
more accurate.

7 Concluding Remarks

This paper develops a hybrid Markov chain approximation-based deep learning method to
approximate the optimal reinsurance and dividend strategies. The optimal controls are sub-
ject to a random termination stopping time, thus leading to an infinite-horizon optimization
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problem. The developed deep learning algorithm directly approximate the value function
and controls by deep neural networks.

The accuracy of approximating piecewise controls in MCAM much depends on the density
of the control grid. However, subject to the computation capability, the computation grids
cannot be arbitrarily dense. The proposed method implements the gradient descent method
to find the optimal control strategy. Hence we can obtain more accurate control values
from the continuous output of the neural network. Meanwhile, our proposed method can
also handle the curse of dimensionality from which existing numerical methods are suffering.
Given that the time spent on searching among the control grid has been saved, we can build
a finer state lattice with limited computing power.

In future studies, we will develop a deep learning algorithm to solve for optimization
problem with finite horizon. To find the optimal controls as neural networks of a class of
implicit parameters, we will simulate a set of Monte Carlo sample paths, and gradually im-
prove the strategies by training the neural network for each control. Also, similar to the
infinite-horizon case, the curse of dimensionality becomes even worse because of the addi-
tional time intervals. With the Markov chain approximation-based deep learning method,
we work on the optimization criteria directly, and only need more parameters and sample
paths when more states or control variables are included. Then the amounts of computation
work only increase linearly. Hence, the computation cost is largely reduced.

Further, we can also use stochastic approximation methods instead of gradient descent
method to train neural networks. Stochastic approximation method has its advantage to
approximate gradients in complex stochastic systems. A comprehensive introduction of
stochastic approximation can be referred to Kushner and Yin (2003). Then, the forward-
backwards propagation method will be applied to calibrate the neural networks to learn the
optimal strategies along the timeline.
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