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A Generalized Design Method for Learning-Based
Disturbance Observer

Minghui Zheng1, Ximin Lyu2, Xiao Liang3, and Fu Zhang4

Abstract—This paper presents a generalized disturbance
observer (DOB) design framework that is applicable to both
multi-input-multi-output (MIMO) and/or non-minimum phase
systems. The design framework removes conventional DOB’s
structure constraint, which allows minimizing the H-infinity
norm of the dynamics from disturbance to its estimation error
over a larger feasible set. The design procedure does not require
explicit plant inverse, which is usually challenging to obtain
for MIMO or non-minimum phase systems. Furthermore, the
generalized DOB is augmented by a learning scheme, which
is motivated by iterative learning control, to further enhance
the estimation and suppression of the disturbance when it has
repetitive components. Both numerical and experimental studies
are performed to validate the proposed learning-based DOB
design framework.

Index Terms—Disturbance Observer, H-infinity Synthesis,
Iterative Learning Control.

I. INTRODUCTION

Disturbance reconstruction is a powerful control technique
that estimates and compensates external disturbance without
additional sensors. The existing methods in current literature
usually fall into three categories: (1) the disturbance observer
(DOB) that is designed in frequency domain based on the
transfer functions of systems and has been widely applied to
linear-time invariant (LTI) systems (e.g., [1]); (2) the extended
state observer that is designed in time domain based on the
state-space models of systems and has been applied to both
LTI and nonlinear systems (e.g., [2], [3]); and (3) the data-
driven technique that is designed based on the input-output
data without explicitly considering system models and their
inverse (e.g., [4]). In this paper, we explore the first one,
the DOB method, which has been widely used in many
applications including hard disk drives [5], quad-rotors [6],
vehicles [7], and manipulators [8]. The DOB design methods
were comprehensively reviewed in [9].

In general, the traditional DOB design procedure involves
two key steps: a stable plant inverse design and a Q filter
design (i.e., [10], [11]). For multi-input-multi-output (MIMO)
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and/or non-minimum phase systems, conventional DOB design
would encounter lots of tuning effort. The non-minimum phase
systems have unstable zeros, which bring challenges to both
the plant inverse and the Q filter design. Several techniques
including approximation (e.g. [12]) of plant and robust control
theory (e.g., [13]–[17]) have been proposed. Most of these
techniques for single-input-single-output (SISO) systems. The
DOB design for MIMO systems is not an easy process either.
DOBs for MIMO systems have been designed either by (1)
ignoring the coupling effect of different input-output channels
of the plant (e.g., [18]), or by (2) decoupling the plant using the
nominal model and then following the standard DOB design
procedure for SISO systems (e.g., [19]). Most of these DOB
design techniques for MIMO systems are only applicable to
the systems with the same input and output dimensions (i.e.,
square systems). The application of these DOB techniques to
non-square systems, especially the ones with the inputs of
higher dimension than that of the outputs, is very challenging
or even impossible. To unnecessitate the design of the plant
inverse for the non-minimum phase and the non-square MIMO
systems, the DOBs without explicitly assuming any structure
have been designed in [5] for high-precision systems and in
[6] for UAVs. The design for these DOBs has been formulated
into an optimization problem based on H-infinity synthesis.

In spite of the optimization formulation proposed in [5],
the DOB’s disturbance suppression performance is still
fundamentally limited by the non-existence of an explicit
plant inverse. This paper is an extended paper based on our
previous conference papers [5], [6]. We first summarize the
disturbance observer design method presented in [5], [6] and
then augment it into a learning-based scheme by adding an
learning component that is motivated by iterative learning
control (ILC). The main purpose of the learning component
is to further enhance disturbance estimate when the main
components in the disturbance are repetitive and the plant
inverse does not exist or not stable. This learning-based DOB
framework enhances the DOB’s performance and in turn
extends the traditional ILC into an estimation problem. One
challenge of such learning-based DOB is the design of the
learning filter in a systematic way with guaranteed stability
and convergence. In this paper, the DOB’s learning filter is
designed via solving an optimal feedback control problem,
which can be further transformed into a convex optimization
problem.

It is worth mentioning that, though there are many
works on the combination of iterative learning control and
disturbance observer (i.e., [20]–[24]), most of them use
them independently. That is, in the state-of-the art methods,
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disturbance observer is usually to reject the non-repetitive
components and the iterative learning control is usually to
reject the repetitive components (eg., [20]). In this paper,
the iterative learning component is to further enhance the
DOB’s estimation performance when the main components
of the disturbance are repetitive. This is motivated by
the fact that DOB may not work well even for repetitive
disturbance because of the modeling uncertainty and the
non-minimum phase property. Especially in real applications,
DOB cannot be designed too aggressively otherwise it might
be easy to become unstable because of modeling uncertainties
and non-minimum phase property. Adding such a learning
component allows a “mild” design of the DOB while further
enhancement is done by the feedforward ILC component
which does not affect the stability.

The following contributions are briefly summarized: the
DOB framework presented in this paper mitigates the design
efforts of the plant inverse and the Q filter, removes the
conventional DOB’s structure constraint, and minimizes the
norm of the dynamics from disturbance to its estimation
error. Furthermore, the proposed DOB is augmented into a
learning scheme, which further enhances the compensation of
disturbance with competitive components via learning from
historical information. The design framework is proposed in a
general form such that it can be readily applied to non-square
or non-minimum phase systems.

The remainder of this paper is organized as follows.
Section II briefly revisits conventional DOB basics and design
considerations. Section III reformulates the DOB design
into an optimization problem and generalizes the design
method by removing of the conventional structure constraint
of the DOB. Section IV extends the generalized DOB into a
learning-based scheme such that the DOB could improve the
performance via learning from historical information. Section
V provides numerical and experimental studies to validate
the proposed generalized DOB design framework as well as
the self-enhancement capacity of the learning-based DOB.
Section VI concludes the paper.

II. CONVENTIONAL DOB AND DESIGN CONSIDERATIONS

The structure of a conventional DOB is illustrated in
Figure 1, in which z is the Z-transform variable, G(z) is
the plant transfer function in discrete time and Gn(z) is its
nominal model, C(z) is a well-designed baseline feedback
controller, and Q(z) is a to-be-designed filter that maintains
the causality of the DOB. The conventional DOB design is to
utilize the plant inverse to reconstruct the plant’s input signal:
ue+d. As the control signal ue is known, the disturbance d can
be estimated as the difference between the constructed input
and the known control signal. The conventional DOB includes
G−1n (z) and Q(z) (in the dotted box in Figure 1) which will
be designed such that d̂ is close to d and the DOB is causal.

The following is to find the relationship between the
disturbance and its estimation error. For simplicity, we only
write the mathematical derivation for the case when the plant
is a SISO system and the reference r is zero. The MIMO case
is more complex using the traditional structure of the DOB.

Fig. 1. A general system with the conventional DOB. In this system, r denotes
the reference; y denotes the output; u denotes the controller signal from the
baseline controller C(z); d denotes the external disturbance and d̂ denotes
its estimate; ue denotes the augmented control signal combined by u and d̂.

Define Tf (z) as the transfer function from d to d−d̂. It is
obtained as follows

d− d̂

=

[
1− Q[G−1n G+GC][1 +GC]−1

(1−Q) +Q[GG−1n +GC][1 +GC]−1

]
d

, Tf (z)d

(1)

Here z is omitted for simplicity. The characteristic equation
of the closed-loop system with DOB is derived from Tf in
Eq. (1) by setting

(1−Q) +Q(G−1n G+GC)(1 +GC)−1 = 0 (2)

By multiplying (1 +GC) to each term, we have

(1 +GC) (1−Q) +Q
(
GG−1n +GC

)
= 0 (3)

It is worth noting that if (1) Q(z)=1 and (2) G−1n (z)G(z)=1,
then d=d̂. The stability of the closed-loop system would not be
affected by the DOB: plugging Q(z)=1 and G−1n (z)G(z)=1
into Equation (3) results in 1+G(z−1)C(z−1)=0, which is
the closed-loop characteristic equation without DOB.

However, it is normally difficult to design the plant inverse
and guarantee the stability when G(z) is a non-minimum
phase plant system, i.e., when it has unstable zeros. The main
design challenge comes from the simultaneous design of an
approximate stable plant inverse and a Q-filter to guarantee the
stability without re-modifying the original baseline feedback
controller. Consider a SISO plant,

G(z−1) =
z−qB(z−1)

A(z−1)
=
z−qBs(z−1)Bu(z−1)

A(z−1)
(4)

where we use z−1 as the variable instead of z without
changing the transfer functions (e.g., G(z) is identical to
G(z−1)) to explicitly include a system’s delay q. Bu(z−1)
consists of the unstable zeros and Bs(z−1) consists of the
stable ones. With a non-minimum plant (4) with unstable
zeros in Bu(z−1) and the DOB structure in Figure 1, the
following conventional design for G−1n (z−1) in Equation (5)
with Q(z−1) = z−q cannot always preserve the stability of
the original closed-loop system without DOB,

G−1n (z−1) = zq
A(z−1)

Bs(z−1)[Bu(z−1)]#
(5)
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where [Bu(z−1)]# is an approximation of Bu(z−1) with
stable zeros.

The explanation is provided as follows. Considering that
characteristic equation of the closed-loop system with DOB is
Equation (3), plugging Equation (5) into Equation (3) results
in the closed-loop system’s characteristic equation as follows

(1 +GC)(1−Q)[Bu(z−1)]#

+Q([Bu(z−1)] +GC[Bu(z−1)]#) = 0
(6)

which implies the design of [Bu(z−1)]# can affect the
stability. In this case we need a coupled design method for
G−1(z−1), Q(z−1) and the baseline controller C(z−1), which
makes it difficult to design DOB as an add-on algorithm.

As stated above, in traditional DOB, the design effort for
G−1n (z−1) and Q(z−1) are not trivial for non-minimum phase
systems. The design effort would be significantly increased
in the MIMO case: when G(z) is a MIMO plant system that
has more inputs than the outputs, i.e., G(z) ∈ Cm×n where
m < n, there does not exist an explicit plant inverse such
that G−1n (z)G(z) = Inn ∈ Rn×n. To reduce the design effort
for G−1n (z−1) and Q(z−1), in Section III, we systematically
formulate the DOB design into an H-infinity optimization
problem, which is formulated directly for MIMO case and
does not exclude the non-minimum phase system..

III. REFORMULATION AND GENERALIZATION OF DOB
A. Reformulation

This subsection reformulates the DOB design into an
optimization problem. We assume that Tf (z) has the minimum
state-space realization of (Ac, Bc, Cc, Dc), where Ac, Bc, Cc

and Dc are algebra matrices with compatible dimension. Since
Tf (z) is the transfer function from the disturbance to its
estimation error, it is natural to quantify the DOB performance
via the norm of Tf (z). Therefore, we formulate the DOB
design into the following optimization problem

min
G−1

n (z), Q(z)
‖Tf (z)‖∞

s.t. Q(z)G−1n (z) is causal
λi(Ac) ≤ 1 ∀i

(7)

where λi(Ac) is the ith eigenvalue of Ac.
In this paper, we particularly study the closed-loop transfer

function from the disturbance to its estimate error, i.e., Tf (z).
It is worth mentioning that, studying the closed-loop transfer
function from the disturbance to the error is an alternative
solution and design our method is applicable as well. One
reason that we consider the closed-loop transfer function from
disturbance to disturbance estimation error instead of to the
system error is that, the purpose of this method is not only to
suppress the disturbance, but also to estimate the disturbance.
Such estimate can be used for further studies of the properties
of the disturbance.

It is challenging to solve the non-convex optimization
problem (7). To simplify this problem, here we introduce a
new variable D(z) as follows,

D(z) = [D1(z) D2(z)]

= [−Q(z) Q(z)G−1n (z)]
(8)

The variable transformation leads to a new expression of Tf (z)
with respect to D(z), as described in the following remark.

With the definition of Tf (z) in Equation (1) and the
definition of D(z) in Equation (8), Tf can be rewritten as

Tf (z) = Fl (M(z), D(z))

= M11(z)

+M12(z)D(z)

(
I −

[
M22(z)
M32(z)

]
D(z)

)−1 [
M21(z)
M31(z)

] (9)

where Fl stands for the linear fractional transformation (LFT),
and

M11 = I, M12 = −I
M21 = −C(z) [I +G(z)C(z)]

−1
G(z)

M22 = I − C(z) [I +G(z)C(z)]
−1
G(z)

M31 = [I +G(z)C(z)]
−1
G(z)

M32 = [I +G(z)C(z)]
−1
G(z)

(10)

and M(z) is the transfer function from [d, d̂]T to
[d− d̂, ue, y]T . Then the optimization problem (7) is
reformulated as

min
D(z), causal

‖Fl(M(z), D(z))‖∞

s.t. λi(Ac) ≤ 1 ∀i
D2(z) = −D1(z)G−1n (z)

(11)

in which the constraint D2(z)=−D1(z)G−1n (z) is required by
the conventional structure of the DOB.

B. Generalization

This subsection proposes a generalized DOB with a
systematic design framework based on H-infinity synthesis.
This generalized DOB aims to handle the challenging
design problems of the plant inverse for non-square MIMO
or non-minimum phase systems in a systematic design
framework, which returns an optimal disturbance observer
with guaranteed stability and causality. Specifically, we
remove the explicit structure constraint of conventional DOB,
and alternatively treat the DOB as a black box from ue and
y to d̂. With this idea, the generalized DOB structure is
illustrated in Figure 2.

Fig. 2. Generalized DOB in a standard feedback system

By removing the structure constraint, the DOB design
problem becomes as follows in which D(z) is the design
variable:

min
D(z), causal

γ

s.t. λi(Ac) ≤ 1 ∀i
‖Tf (z)‖∞ ≤ γ

(12)
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This optimization problem will return the best DOB D(z)
in terms of the smallest ‖Tf (z)‖∞, i.e., the minimum
amplification for the disturbance. It is easy to reformulate
(12) into a convex optimization problem; details can be found
in an analogous way in [25] and thus be omitted in this paper.

The requirement that D(z) is causal in the optimization
problem (12) guarantees the causality and thus the realizability
of the designed DOB. The constraint that Ac is Schur in
(12) guarantees the stability of the closed-loop system. The
resulting D(z) is a MIMO system, of which the input consists
of the control signal and the measurement, and the output
consists of the disturbance estimate. Via designing D(z) in
this way, the causality of D(z) and the stability of the closed-
loop system are guaranteed.

Fig. 3. A general system with the generalized DOB.

It is noted that the conventional DOB shown in Figure 1 is
a special case of the proposed DOB: when D(z) is designed
to satisfy (8), the proposed DOB is equivalent to the one
shown in Figure 1. The conventional DOB essentially adds the
constraint (i.e., D2(z)=−D1(z)G−1n (z)) to the optimization
problem in Equation (7). Removing the constraint can benefit
the DOB design in the following two aspects: (1) the newly
formulated DOB design optimization has a larger feasible
set and consequently a smaller γ; (2) the newly formulated
optimization problem is a standard H-infinity optimal control
design problem which can be designed easily.

It is noted that, while we use a SISO system when we
introduce the traditional DOB structure in Section II, the DOB
design method presented in this section is directly derived
based on a general MIMO system. The reason for this is
that (1) the traditional DOB introduced for a SISO system
in Section II is only a brief introduction and is to motivate
our generalized DOB that does not require an explicit plant
inverse; and (2) the MIMO case would be complex if we
design the DOB using the traditional way. In addition, the
generalized DOB presented in this section does not exclude the
non-minimum phase system. In brief, The generalized DOB
formulation removes the structure constraints and allows the
formulation of an optimization problem in a compact and
easy way, which significantly simplify the design process that
otherwise would involve lots of efforts for MIMO and/or non-
minimum phase systems.

IV. LEARNING-BASED DISTURBANCE OBSERVER

This section extends the generalized DOB into a learning-
based scheme. Since there does not exist an explicit plant

inverse for the non-square MIMO or non-minimum phase
systems, the DOB’s performance would be severely degraded.
The proposed learning-based DOB is motivated by the iterative
learning control (ILC) and is promising to further enhance the
estimation of the disturbance with repetitive components. The
idea is to iteratively refine the disturbance estimate based on
the historical data of the system.

It is worth mentioning that, even if the disturbance is purely
repetitive, neither pure DOB or ILC can handle the disturbance
suppression perfectly if the plant inverse does not exist or is
unstable. Because of the plant inverse issue, DOB without
the ILC component cannot fully recover the disturbance. ILC
without the DOB can only start to suppress the disturbance
after the first iteration, and the performance of the first iteration
may be affected severely by the disturbance. In this paper,
the iterative learning component is added to the disturbance
estimate, aiming to further enhance the DOB’s performance
when accurate plant inverse is not available and the main
components in the disturbance are repetitive.

The scheme of the learning-based DOB is proposed in
Figure 4, in which the output of the DOB is denoted as d̂o.
A recursive disturbance estimate modification d̂f is generated
by the learning component and added to d̂o to enhance the
disturbance estimate over iterations. Note that the d̂f of current
iteration is generated based on the one and the tracking error
from previous iteration, i.e.,

d̂fj+1 = d̂fj + L(z)ej (13)

in which j is the index iteration, ej=rj−yj , and L(z) is the
to-be-designed learning filter. Define Hr(z), Hf (z) and Hd(z)
respectively as the closed-loop transfer functions, including the
disturbance observer D, from r to y, df to y and d to y, i.e.,

y = Hr(z)r +Hf (z)d̂f +Hd(z)d (14)

That is, the jth iteration’s closed-loop dynamics can be neatly
written as

yj = Hr(z)rj +Hf (z)d̂fj +Hd(z)dj (15)

In the following, we will analyze the dynamics between ej
and ej+1. If the norm of ej+1 is less than the norm of ej , we
can conclude that the learning-based DOB (as illustrated in
Figure 4) with the learning law (13) will further enhance the
disturbance compensation. The step-by-step analysis is given
as follows.

Plugging Equation (13) into the closed-loop system
dynamics (14) in the (j+1)th iteration, we have

yj+1 = Hr(z)rj+1 +Hf (z)d̂fj+1 +Hd(z)dj+1

= Hr(z)rj+1 +Hf (z)[d̂fj + L(z)(rj − yj)]
+Hd(z)dj+1

(16)

Considering (15), we have

Hf (z)d̂fj = −Hr(z)rj −Hd(z)dj + yj (17)
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Fig. 4. Scheme for the proposed learning-based DOB

which further implies

yj+1 = Hr(z)rj+1 +Hf (z)d̂fj +Hf (z)L(rj − yj)
+Hd(z)dj+1

= (1−Hf (z)L(z))yj +Hr(z)(rj+1 − rj)
+Hd(z)(dj+1 − dj) +Hf (z)L(z)rj

(18)

Therefore,

rj+1 − yj+1

= rj+1 + rj − (I −Hf (z)L(z))yj −Hr(z)(rj+1 − rj)
−Hd(z)(dj+1 − dj)−Hf (z)L(z)rj − rj

= (I −Hf (z)L(z))(rj − yj)
+ (I −Hr(z))(rj+1 − rj)−Hd(z)(dj+1 − dj)

(19)

Assuming that r and d are consistent over iterations, i.e.,
rj+1=rj and dj+1=dj , we have

rj+1 − yj+1 = (I −Hf (z)L(z))(rj − yj) (20)

i.e.,
ej+1 = (I −Hf (z)L(z))ej (21)

The stability of the closed-loop system with the proposed
learning-based DOB and the learning convergence are
guaranteed. The explanation is provided as follows. Since the
learning signal that is added to the DOB is in the feedforward
loop, as shown in Fig. 4, the closed-loop system’s stability
is not affected and has been guaranteed by D(z) designed
in Section III. The learning convergence (i.e., the estimation
error is reduced over iterations) can be achieved by designing
a learning filter L(z) such that ‖I−Hf (z)L(z)‖∞ is less than
1. Thus, the tracking error e will be reduced over iterations
and the disturbance estimate will be iteratively refined.

To enhance the robustness to modeling uncertainties at high
frequencies, the learning signal d̂f is usually processed by a

low-pass filter first before being injected into the next iteration,
i.e.,

d̂fj+1 = W (z)[d̂fj + L(z)ej ] (22)

where W (z) is a frequency-dependent weighting filter to
provide robustness to modeling uncertainties and additional
flexibilities to the design of L(z). As such, there exist a
residual term in steady state and the tracking error will reduce
into a bound. Here we consider the reference as zero (r = 0)
and the weighting filter matrix as W (z) = w(z)I where w(z)
is a scaler filter and I is the identify matrix with compatible
dimension,

ej+1 = W (z)(I −Hf (z)L(z))ej

+Hd(z)(d−W (z)d)
(23)

Denoting e0=Hd(z)d as the tracking error when implementing
the DOB without learning. In the steady state in iteration
domain, e∞=ej+1=ej yields

e∞ = [I −W (z)(I −Hf (z)L(z))]−1[I −W (z)]e0

, R(z)e0
(24)

As such, compared with the DOB without learning (proposed
in Section III), the disturbance attenuation by the learning-
based DOB (as illustrated in Figure 4 with the updating law
22) can be quantified by the norm of R(z).

Since convergence rate of the learning-based DOB can
be quantified by W (z)[I−Hf (z)L(z)] [26], [27], learning
filter L(z) can be designed through solving the following
optimization problem,

min
L(z)

‖W (z)(I −Hf (z)L(z))‖∞ (25)

Here we briefly explain that the optimization problem (25)
can be into an H∞ optimal control design problem. Figure 5
illustrates an equivalent dynamics from ej to ej+1, in which
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Fig. 5. Optimal learning filter design scheme

the learning filter L(z) is in the feedback loop. Therefore, we
have

Fl(N(z), L(z)) = W (z)(I −Hf (z)L(z)) (26)

where

N(z) =

[
W (z) −W (z)Hf (z)
I 0

]
(27)

As such, the learning filter design can be formulated into an
optimal feedback control design which can be transformed to
a convex optimization problem and solved readily [25].

Remarks: The learning-based DOB presented in this section
is to further improve disturbance estimation performance when
(1) the DOB cannot work perfectly well (e.g., the plant is a
non-minimum phase system whose accurate plant inverse does
not exist), and (2) the disturbance is approximately periodical.
It is also wroth noting that, the learning filter design using H-
infinity theory does not explicitly consider quantified modeling
uncertainties. It works well in general when the modeling
uncertainties are within a reasonable range, as demonstrated in
the numerical studies in Section V, Part A. When the modeling
uncertainties are relatively large, µ synthesis instead of H-
infinity synthesis in robust control theory can be utilized to
explicitly include modeling uncertainties in the learning filter
design.

V. STUDY CASES

We present two study cases in this paper: (1) a non-square
MIMO system and (2) a non-minimum phase system. The
first example originally comes from a dual-stage hard disk
drive (HDD) with dual inputs and single output. The second
example comes from a tail-sitter vertical take-off and landing
unmanned aerial vehicle (UAV) whose attitude dynamics is a
non-minimum phase system.

A. Non-square MIMO System

This subsection applies the DOB design for the non-square
dual-input-single-output plant, whose inverse does not exist.
The plant comes from a dual-stage HDD, as shown in Figure
6 [28], in which Pv(z) and Pm(z) denote the two sub-plants
(i.e., VCM and PZT) with two baseline controllers Cv(z) and
Cm(z) respectively. The P̂m(z) denotes the nominal plant of
Pm(z). The parameters are provided in Table 1.

To apply the proposed design framework, the control
scheme in Figure 6 is transformed to Figure 7 by separating
D from the known dynamics, in which

C(z) =

[
(Cm(z)P̂m(z) + 1)Cv(z)

Cm(z)

]
P (z) =

[
Pv(z) Pm(z)

] (28)

TABLE I
PARAMETERS IN PLANT AND CONTROLLER

System Parameters

Pv(z)
0.001335z3+0.0233z2+0.01665z−0.03664

z4−3.201z3+3.664z2−1.724z+0.2611

Pm(z) 0.5332z2+0.07978z+0.4815
z3−0.1508z2+0.8646z−0.2729

Cv(z)
1.62z3−4.78z2+4.7z−1.541
z3−2.275z2+1.556z−0.2818

Cm(z) 1.227z−0.09939
z−0.9158

Fig. 6. The control scheme of a dual-stage HDD with the proposed DOB.
The signals are defined as follows: reference r, output y, disturbances dv and
dm, control signals uv and um, and the position error signal (PES) e=r−y.

Fig. 7. H∞-based DOB design scheme
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Fig. 9. Position error signals (PESs) with and without DOB

Figures 8 and 9 respectively illustrate the disturbance
estimation in both two input channels and the position error
signal (PES) reduction. Particularly, we add the following
metrics (Table II) to compare the performance with and
without DOB quantitatively. Though there is no explicit plant
inverse for such a non-square system, the disturbances have
been mostly recovered (Figure 8) and the PES has been
significantly reduced (Figure 9).

TABLE II
COMPARISON OF PES WITH AND WITHOUT DOB

2-norm of PES Maximum magnitude of PES

Without DOB 5.897 0.6153

With DOB 2.675 0.2732

PES without DOB

PES with DOB

Fig. 10. Comparison of the 2-norm of the PES with and without DOB
across various systems randomly sampled from the nominal system with 10%
perturbation.

Additional numerical studies have been conducted to
evaluate the robustness of the proposed DOB, in which
we purposely perturbed the systems Pm and Pv with 10%
uncertainties in the following way:

Pm,purturbed = Pm(1 + 0.1∆m)

Pv,purturbed = Pv(1 + 0.1∆m)
(29)

where ∆m and ∆v are positive-real uncertain linear dynamic
systems with the bound of 1. We used 20 random samples
from the perturbed systems, Pm,purturbed and Pv,purturbed, and
run the simulations on these systems with and without DOB
respectively. We compared the 2-norms of the PES from these
systems and the results are provided in Fig. 10. It shows that,

the PES without DOB lies in the range of 5∼7 and the PES
with DOB lies in the range of 2∼3.

B. Non-minimum Phase System

In this subsection, the proposed DOB is implemented
on the attitude control of a tail-sitter vertical take-off and
landing (VTOL) UAV [29]. This UAV inherits both the
maneuverability of the rotary-wing UAV and the efficiency
of the fix-wing UAV. However, it has the drawback of being
very sensitive to cross-wind during hovering flight [30] in
which the DOB has the potential to enhance the robustness to
external disturbance. Its attitude dynamics is a non-minimum
phase system. As discussed in [6], the attitude dynamics can
be represented by the following transfer function,

G(z) =
0.14131 (z + 1.716)

(z − 1) (z − 0.9447)
(30)

where z = −1.716 is an unstable zero. The baseline feedback
PID controller has been designed as

C(z) =
0.9002 (z − 0.8343) (z − 0.9987)

z (z − 1)
(31)

It is noted that in the UAV experimental test, the
disturbance was purposely added to validate the proposed
learning-based algorithm for a non-minimum phase system
whose plant inverse is not stable. Therefore, the purposely
added disturbance mainly includes repetitive components
and random noise. In addition, this experimental study
based on the non-minimum phase system is to validate
(1) the effectiveness of the proposed disturbance observer
for non-minimum phase system and (2) the learning-based
DOB can be used to further improve the performance when
the disturbance is close to periodical. The UAV is only an
experimental test bed to test this algorithm. Therefore in
the experimental test, the UAV is not flying and is given
near-repetitive disturbances purposely.

We design the DOB based on the proposed framework and
apply it to the attitude control of the VTOL UAV. The bode
plots of the designed DOB are provided in Figure 11 and the
experimental test results are provided in Figures 13-15.
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Fig. 11. Bode plots of the designed DOB

Figure 11 shows that D1(z) is approximately a low-pass
filter with the DC gain of 1, which plays a similar role of the Q
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filter to the one in conventional DOB. D2(z) is approximately
the plant inverse. Figure 11 also provides the bode plot of the
system from d to d̂ (i.e., Gdd̂), which is close to 1 at low
frequencies.
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Fig. 12. Bode plots for the designed learning-based DOB

We further leverage the proposed DOB into the learning
scheme (as illustrated in Figure 4) with the learning algorithm
in (13). With the following designed weighting filter,

W (z) =
0.53z2 + 1.06z + 0.53

z2 − 0.8252z + 0.2946
(32)

we obtain the learning filter by solving the optimization
problem in (25). Figure 12 provides the bode plots of the
resulting W (z)(1 − Hf (z)L(z)). It shows that W (z)(1 −
Hf (z)L(z)) is below 0dB, which grantees the stability and
convergence of the learning-based disturbance observer.

Without DOB With learning-

based DOB

Fig. 13. Experimental setup and attitude control comparison. This figure
captures the largest attitude error with (right) and without (left) the proposed
learning-based DOB.

With the proposed DOB (related filters are provided in
Figure 11) and the learning scheme (related filters are provided
in Figure 12), we test the DOB with and without learning on
a VTOL UAV platform. In the experiment, we intentionally
add some disturbance signal to emulate a periodic disturbance.
The added disturbance is band-limited noise within 1Hz. To
verify the effectiveness of the proposed learning-based DOB
method, we test three cases: (1) the DOB is off (i.e., only
the baseline controller is running); (2) the DOB is turned on
without learning; and (3) the full DOB with learning is turned
on.

It is noted that the experimental UAV testbed is built
to test the proposed learning-based DOB for a SISO non-
minimum phase system whose plant inverse does not exist
(i.e., is not stable) and the approximate plant inverse is not
trivial to get. In the experimental test, the UAV is not actually
flying. Instead it is mounted to a fixed frame. We purposely
add near-repetitive disturbances (i.e., periodical disturbances
plus random noises) in the experiments to test the learning
capability of the proposed algorithm.

DOB OFF

DOB ON

Learning-based DOB ON

Learning transience

Error                   

Fig. 14. Error reduction by turning on DOB and learning-based DOB

Figure 13 shows the experimental setup and video captures.
We captured the largest attitude error, which shows that
with the proposed learning-based DOB, the attitude error is
considerably reduced. Figure 14 shows the attitude error in
the three tests. It implies that the attitude error is reduced
when the DOB is turned on, and is further reduced after the
learning scheme is turned on. The decay of the attitude error
with respect to the learning iterations is provided in Figure 15.

First iteration

Last

iteration

Error

reduction

Fig. 15. Error reduction via learning-based DOB
From Figure 14, it is noted the learn transience starts at

130 seconds and approximately ends at 230 seconds, which
implies that after 10th iteration the system goes into the steady
state process. In Figure 15, we compared the attitude error
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of the first iteration and the tenth iteration. For the given
validation example, 10 iterations are needed to enhance the
DOB’s performance. For a general system, the number of
required iterations depends on several factors including the
model accuracy, the requirement of tracking accuracy, and the
baseline DOB.

VI. CONCLUSIONS

This paper has proposed a generalized design method
for the disturbance observer (DOB) and augmented it into
a learning scheme. This method is applicable to various
types of systems including non-minimum phase and non-
square multiple-input-multiple-output systems, for which the
DOB design is traditionally challenging. The proposed DOB
method has removed the internal structure constraint in the
conventional DOB. The design problem has been formulated
into an H-infinity optimal control problem to minimize the
norm of the dynamics from the disturbance to its estimate. The
proposed learning scheme for the DOB has further enhanced
the estimation of the disturbance with repetitive components.
Both numerical and experimental studies have validated the
proposed DOB design framework and the effectiveness of the
proposed DOBs with and without learning.
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