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ABSTRACT. In the paper, we give new improvements of the reverse Hölder and Minkowski integral
inequalities. These new results in special case yield the Pólya-Szegö’s inequality and reverse Minkowski’s

inequality, respectively.
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1. Introduction

In [7], Pólya and Szegö’s established a reverse Hölder’s inequality as follows (see also [4: p. 62]).

If 0 < m1 ≤ uk ≤M1 and 0 < m2 ≤ vk ≤M2, where k = 1, 2, . . . , n, then( n∑
k=1

u2k

)( n∑
k=1

v2k

)
≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
k=1

ukvk

)2

.

An integral analogue of the Pólya-Szegö’s inequality easy follows.

If (E,A, x) is a measure space and f, g : E → R be positive measurable functions and f2(x),
g2(x) are integrable on E. If 0 < m1 ≤ f(x) ≤M1 and 0 < m2 ≤ g(x) ≤M2, then(∫

E

f2(x)dx

)(∫
E

g2(x)dx

)
≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2(∫
E

f(x)g(x)dx

)2

. (1.1)

It should be noted that we write dx as a short replacement for dµ(x) in all integrals here and in
the sequel.

The Pólya-Szegö’s inequality was studied extensively and numerous variants, generalizations,
and extensions appeared in the literatures (see [9], [10], [11], [2], [3], [5], [12], [1], [6], [13], [8] and
the references cited therein). The first aim of this paper is to give a new improvement of the
Pólya-Szegö’s inequality, which is generalization of the Pólya-Szegö’s inequality.∫

E

(
Γp,q

(
m1m2

M1M2

)
f1/p(x)g1/q(x)− u1/p(x)v1/q(x)

)
dx

≥
(∫
E

(f(x)− u(x))dx

)1/p(∫
E

(g(x)− v(x))dx

)1/q

,

(1.2)
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where f(x), g(x) are positive, and u(x) and v(x) are non-negative measurable functions on the
measure space (E,A, x) and such that f(x) > u(x) and g(x) > v(x), p > 1, 1/p + 1/q = 1,
0 < m1 ≤ f(x) ≤M1 and 0 < m2 ≤ g(x) ≤M2, and

Γp,q(ξ) = p−
1
p · q−

1
q

1− ξ
(1− ξ1/p)1/p(1− ξ1/q)1/q

· ξ−1/pq, (1.3)

for all 0 < ξ ≤ 1. Here Γp,q(ξ) is continuous at ξ0 = 1, and defined

Γp,q(1) = lim
ξ→1

Γp,q(ξ) = 1.

Obviously, (1.1) is a special case of (1.2).

Another aim of this paper is to give the following new improvement of the well-known Pólya
and Szegö’s inequality.(∫

E

(
1

Γp
p, p

p−1
(m1,m2,M1,M2)

(f(x) + g(x))p − (u(x) + v(x))p
)

dx

)1/p

≥
(∫
E

[fp(x)− up(x)]dx

)1/p

+

(∫
E

[gp(x)− vp(x)]dx

)1/p

,

(1.4)

where f(x), g(x) be positive measurable functions on the measure space (E,A, x), and p > 1,
0 < m1 ≤ f(x)/(f(x) + g(x))p−1 ≤ M1 and 0 < m2 ≤ g(x)/(f(x) + g(x))p−1 ≤ M2. Here u(x),
v(x) are non-negative measurable functions with f(x) > u(x) and g(x) > v(x), and

Γp, p
p−1

(m1,m2,M1,M2) = min

{
1

Γp, p
p−1

(
m1

M1

) , 1

Γp, p
p−1

(
m2

M2

)}. (1.5)

In order to establish inequality (1.4), we establish the following Pólya and Szegö type inequality,
which is also a reverse Minkowski’s inequality.(∫

E

fp(x)dx

)1/p

+

(∫
E

gp(x)dx

)1/p

≤ 1

Γp, p
p−1

(m1,m2,M1,M2)

(∫
E

(f(x) + g(x))pdx

)1/p

. (1.6)

where f(x), g(x), m1, m2, M1, M2 and p are as in (1.4).

2. Results

We need the following Lemmas to prove our main results.

Lemma 2.1 ([5]). Let (E,A, x) be a measure space and f, g : E → R be positive measurable func-
tions, and f1/pg1/q is integrable on E. Let p, q > 0, 1

p + 1
q = 1. If 0 < m ≤ f(x)/g(x) ≤ M ,

then (∫
E

f(x)dx

)1/p(∫
E

g(x)dx

)1/q

≤ Γp,q

(m
M

)∫
E

f1/p(x)g1/q(x)dx, (2.1)

where Γp,q
(
m
M

)
is as in (1.3).
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Lemma 2.2. Let (E,A, x) be a measure space and f, g : E → R be positive measurable functions,
and f1/pg1/q is integrable on E. Let p, q > 0, 1p + 1

q = 1. If 0 < m1 ≤ f(x) ≤ M1 and 0 < m2 ≤
g(x) ≤M2, then(∫

E

f(x)dx

)1/p(∫
E

g(x)dx

)1/q

≤ Γp,q

(
m1m2

M1M2

)∫
E

f1/p(x)g1/q(x)dx, (2.2)

where Γp,q

(
m1m2

M1M2

)
is as in (1.3).

P r o o f. This follows immediately from Lemma 2.1 with m1

M2
≤ f(x)

g(x) ≤
M1

m2
. �

A special case of inequality (2.2) can be found in the book [6: p. 64].

Lemma 2.3. Let (E,A, x) be a measure space and f, g : E → R be positive measurable functions,
and fp, g1/q and (f + g)p are integrable on E. If p > 1, 0 < m1 ≤ f(x)/(f(x) + g(x))p−1 ≤ M1

and 0 < m2 ≤ g(x)/(f(x) + g(x))p−1 ≤M2, then(∫
E

fp(x)dx

)1/p

+

(∫
E

gp(x)dx

)1/p

≤ 1

Γp, p
p−1

(m1,m2,M1,M2)

(∫
E

(f(x) + g(x))pdx

)1/p

, (2.3)

where Γp, p
p−1

(m1,m2,M1,M2) is as in (1.5).

P r o o f. Noting that∫
E

(f(x) + g(x))pdx =

∫
E

f(x)(f(x) + g(x))p−1dx+

∫
E

g(x)(f(x) + g(x))p−1dx,

and let q > 0 and 1
p + 1

q = 1, and by using Lemma 2.1, we obtain

Γp,q

(
m1

M1

)∫
E

f(x)(f(x) + g(x))p−1dx ≥
(∫
E

f(x)pdx

)1/p(∫
E

(f(x) + g(x))(p−1)qdx

)1/q

,

and

Γp,q

(
m2

M2

)∫
E

g(x)(f(x) + g(x))p−1dx ≥
(∫
E

g(x)pdx

)1/p(∫
E

(f(x) + g(x))(p−1)qdx

)1/q

.

Hence∫
E

(f(x) + g(x))pdx ≥

(
1

Γp,q

(
m1

M1

)(∫
E

f(x)pdx

)1/p

+
1

Γp,q

(
m2

M2

)(∫
E

g(x)pdx

)1/p
)

×
(∫
E

(f(x) + g(x))pdx

)1/q

.

Therefore(∫
E

(f(x) + g(x))pdx

)1/p

≥ min

{
1

Γp,q

(
m1

M1

) , 1

Γp,q

(
m2

M2

)}((∫
E

f(x)pdx

)1/p

+

(∫
E

g(x)pdx

)1/p
)
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= min

{
1

Γp, p
p−1

(
m1

M1

) , 1

Γp, p
p−1

(
m2

M2

)}((∫
E

f(x)pdx

)1/p

+

(∫
E

g(x)pdx

)1/p
)

= Γp, p
p−1

(m1,m2,M1,M2)

((∫
E

f(x)pdx

)1/p

+

(∫
E

g(x)pdx

)1/p
)
.

This completes the proof. �

We denote the set of non-negative real numbers by R+ in the rest of the paper.

Lemma 2.4 ([1: p. 38] Bellman’s inequality). Let p > 1 and n ∈ N. Moreover let

Dn = {x = (x0, x1, x2, . . . , xn) ∈ Rn+1
+ |xp0 ≥ x

p
1 + xp2 + · · ·+ xpn}

and

φ(x) =

(
xp0 −

n∑
i=1

xpi

)1/p

(x = (x0, x1, x2, . . . , xn) ∈ Dn).

Then φ : Dn → R is superadditive (i.e., x, y ∈ Dn implies x+ y ∈ Dn and

φ(x+ y) ≥ φ(x) + φ(y), (2.4)

with equality if and only if x = µy where µ is a constant).

Lemma 2.5 ([6: p. 58] Popoviciu’s inequality). Let p > 0, q > 0, 1
p + 1

q = 1, and a = {a1, . . . , an}

and b = {b1, . . . , bn} be two series of positive real numbers and such that ap1 −
n∑
i=2

api > 0 and

bq1 −
n∑
i=2

bqi > 0. Then

(
ap1 −

n∑
i=2

api

)1/p(
bq1 −

n∑
i=2

bqi

)1/q

≤ a1b1 −
n∑
i=2

aibi, (2.5)

with equality if and only if a = µb, where µ is a constant.

Our main results are given in the following theorems.

Theorem 2.1. Let (E,A, x) be a measure space and f, g : E → R be positive measurable functions

and ui(x) and vi(x) non-negative measurable functions such that f(x)−
n∑
i=1

ui(x) > 0 and g(x)−
n∑
i=1

vi(x) > 0, where i = 1, 2, . . . , n. If 0 < m1 ≤ f(x) ≤ M1, 0 < m2 ≤ g(x) ≤ M2, and p, q > 0,

1
p + 1

q = 1. then∫
E

(
Γp,q

(
m1m2

M1M2

)
f1/p(x)g1/q(x)−

n∑
i=1

u
1/p
i (x)v

1/q
i (x)

)
dx

≥

(∫
E

(
f(x)−

n∑
i=1

ui(x)

)
dx

)1/p(∫
E

(
g(x)−

n∑
i=1

vi(x)

)
dx

)1/q

,

(2.6)

where Γp,q

(
m1m2

M1M2

)
is as in (1.3).
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P r o o f. First, we prove the statement for n = 1. From Hölder’s inequality and Lemma 2.2, we
obtain

Γp,q

(
m1m2

M1M2

)∫
E

f1/p(x)g1/q(x)dx ≥
(∫
E

f(x)dx

)1/p(∫
E

g(x)dx

)1/q

, (2.7)

and ∫
E

u
1/p
1 (x)v

1/q
1 (x)dx ≤

(∫
E

u1(x)dx

)1/p(∫
E

v1(x)dx

)1/q

. (2.8)

From (2.7) and (2.8) and by using Lemma 2.5, we have∫
E

(
Γp,q

(
m1m2

M1M2

)
f1/p(x)g1/q(x)− u1/p1 (x)v

1/q
1 (x)

)
dx

≥
(∫
E

f(x)dx

)1/p(∫
E

g(x)dx

)1/q

−
(∫
E

u1(x)dx

)1/p(∫
E

v1(x)dx

)1/q

≥
(∫
E

(f(x)− u1(x))dx

)1/p(∫
E

(g(x)− v1(x))dx

)1/q

.

This shows that (2.6) is true when n = 1.

Suppose that (2.6) holds when n = k − 1, we have∫
E

(
Γp,q

(
m1m2

M1M2

)
f1/p(x)g1/q(x)−

k−1∑
i=1

u
1/p
i (x)v

1/q
i (x)

)
dx

≥
(∫
E

(f(x)−
k−1∑
i=1

ui(x))dx

)1/p(∫
E

(g(x)−
k−1∑
i=1

vi(x))dx

)1/q

,

(2.9)

From (2.8) and (2.9) and by using Lemma 2.5, we have∫
E

(
Γp,q

(
m1m2

M1M2

)
f1/p(x)g1/q(x)−

k∑
i=1

u
1/p
i (x)v

1/q
i (x)

)
dx

≥
(∫
E

(
f(x)−

k−1∑
i=1

ui(x)

)
dx

)1/p(∫
E

(
g(x)−

k−1∑
i=1

vi(x)

)
dx

)1/q

−
(∫
E

uk(x)dx

)1/p(∫
E

vk(x)dx

)1/q

≥
(∫
E

(
f(x)−

k∑
i=1

ui(x)

)
dx

)1/p(∫
E

(
g(x)−

k∑
i=1

vi(x)

)
dx

)1/q

.

The completes the proof. �

Remark 1. Putting n = 1, (2.6) becomes (1.2) stated in the introduction. For ui(x) = vi(x) = 0,
(2.6) reduces to (2.2).
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If taking for p = q = 2 and ui(x) = vi(x) = 0 (i = 1, 2, . . . , n) in (2.6), and in view of

Γ2,2

(
m1m2

M1M2

)
=

1

2

(
4

√
M1M2

m1m2
+ 4

√
m1m2

M1M2

)
,

then (2.6) changes to the following result.

(∫
E

f(x)dx

)1/2(∫
E

g(x)dx

)1/2

≤ 1

2

(
4

√
M1M2

m1m2
+ 4

√
m1m2

M1M2

)∫
E

f1/2(x)g1/2(x)dx, (2.10)

with equality if and only if f(x) and g(x) are proportional. Replace f1/2(x) and f1/2(x) by f(x)

and g(x) in (2.10), respectively and hence in view of m
1/2
i (x) and M

1/2
i (x) are replaced by mi and

Mi (i = 1, 2), respectively. Therefore

(∫
E

f2(x)dx

)1/2(∫
E

g2(x)dx

)1/2

≤ 1

2

(√
M1M2

m1m2
+

√
m1m2

M1M2

)∫
E

f(x)g(x)dx.

This is just the Pólya-Szegö integral inequality (1.1).

Theorem 2.2. Let (E,A, x) be a measure space and f, g : E → R be positive measurable functions

and ui(x) and vi(x) non-negative measurable functions such that fp(x)−
n∑
i=1

upi (x) > 0 and gp(x)−
n∑
i=1

vpi (x) > 0, where i = 1, 2, . . . , n. If p > 1, 0 < m1 ≤ f(x)/(f(x) + g(x))p−1 ≤ M1 and

0 < m2 ≤ g(x)/(f(x) + g(x))p−1 ≤M2, then for n ∈ N

(∫
E

(
Γ−p
p, p

p−1
(m1,m2,M1,M2)(f(x) + g(x))p −

n∑
i=1

(ui(x) + vi(x))p
)

dx

)1/p

≥
(∫
E

(
fp(x)−

n∑
i=1

upi (x)
)

dx

)1/p

+

(∫
E

(
gp(x)−

n∑
i=1

vpi (x)
)

dx

)1/p

,

(2.11)

where Γp, p
p−1

(m1,m2,M1,M2) is as in (1.5).

P r o o f. First, we prove the statement for n = 1. From Minkowski’s inequality and Lemma 2.3, it
is easy to obtain

Γ−1
p, p

p−1
(m1,m2,M1,M2)

(∫
E

(f(x)+g(x))pdx

)1/p

≥
(∫
E

fp(x)dx

)1/p

+

(∫
E

gp(x)dx

)1/p

, (2.12)

and (∫
E

(u1(x) + v1(x))pdx

)1/p

≤
(∫
E

up1(x)dx

)1/p

+

(∫
E

vp1(x)dx

)1/p

. (2.13)

826
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From (2.12), (2.13) and by using Lemma 2.4, we have(∫
E

(
Γ−p
p, p

p−1
(m1,m2,M1,M2)(f(x) + g(x))p − (u1(x) + v1(x))p

)
dx

)1/p

≥

{[(∫
E

fp(x)dx

)1/p

+

(∫
E

gp(x)dx

)1/p]p
−
[(∫

E

up1(x)dx

)1/p

+

(∫
E

vp1(x)dx

)1/p]p}1/p

≥
(∫
E

[fp(x)− up1(x)]dx

)1/p

+

(∫
E

[gp(x)− vp1(x)]dx

)1/p

.

(2.14)
This shows that (2.11) is true when n = 1.

Suppose that (2.11) holds when n = k − 1, we have(∫
E

(
Γ−p
p, p

p−1
(m1,m2,M1,M2)(f(x) + g(x))p −

k−1∑
i=1

(ui(x) + vi(x))p
)

dx

)1/p

≥
(∫
E

[
fp(x)−

k−1∑
i=1

upi (x)

]
dx

)1/p

+

(∫
E

[
gp(x)−

k−1∑
i=1

vpi (x)

]
dx

)1/p

,

(2.15)

On the other hand(∫
E

(ui(x) + vi(x))pdx

)1/p

≤
(∫
E

upi (x)dx

)1/p

+

(∫
E

vpi (x)dx

)1/p

. (2.16)

From (2.15), (2.16) and by using Lemma 2.4 again, we have(∫
E

(
Γ−p
p, p

p−1
(m1,m2,M1,M2)(f(x) + g(x))p −

k∑
i=1

(ui(x) + vi(x))p
)

dx

)1/p

≥

{[(∫
E

[fp(x)−
k−1∑
i=1

upi (x)]dx

)1/p

+

(∫
E

[gp(x)−
k−1∑
i=1

vpi (x)]dx

)1/p]p

−
[(∫

E

upi (x)dx

)1/p

+

(∫
E

vpi (x)dx

)1/p]p}1/p

≥
(∫
E

[
fp(x)−

k∑
i=1

upi (x)

]
dx

)1/p

+

(∫
E

[
gp(x)−

k∑
i=1

vpi (x)

]
dx

)1/p

.

This completes the proof. �

Remark 2. Putting n = 1, (2.11) becomes (1.6) stated in the introduction. For ui(x) = vi(x) ≡ 0,
(2.11) reduces to (2.3).

Taking for p = q = 2 and ui(x) = vi(x) ≡ 0 in (2.11), (2.11) changes to the following result.(∫
E

f2(x)dx

)1/2

+

(∫
E

g2(x)dx

)1/2

≤ Γ−12,2(m1,m2,M1,M2) ·
(∫
E

(f(x) + g(x))
2

dx

)1/2

.
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[4] HARDY, G. H.—LITTLEWOOD, J. E.—PÓLYA, G.: Inequalities, Cambridge Univ. Press, Cambridge, 1934.
[5] LIU, X. H.: On reverse Hölder inequality, Math. Pract. Theory 1990 (1990), 84–88.
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