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Abstract

Recent empirical studies indicated that using autonomous vehicles (AVs) can reduce com-

muters’ value of time. In this context, this paper investigates how variation in value of

time for AVs will reshape the commuting dynamics in the short-run and the implication on

AV-related policies in the long run. We find that in the short-run, the adoption of AV can

create more congestion delay since delay becomes cheaper for commuters. In the long-run,

a number of external factors such as ownership cost and safety concerns may affect com-

muters’ preference for AVs as against to traditional vehicles (TVs). This will influence the

AV penetration, which in turn affects the daily commuting equilibrium. Multiple long-run

equilibria with different AV penetrations may exist, depending on the additional cost/benefit

of AVs with respect to TVs. Government subsidies may be needed to drive the system from

inefficient long-run equilibrium to a more efficient one.
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1 Introduction

With the rapid development of technologies, autonomous vehicles (AVs) are expected to

be ready for substituting traditional non-autonomous vehicles (TVs) in the near future

(Cantarella and Di Febbraro, 2017). There is a growing interest towards planning and oper-

ation issues for autonomous vehicles systems. In particular, Fajardo et al. (2011) examined

automated intersection control in the context of autonomous vehicles. Zhu and Ukkusuri

(2015) explored the intersection control problem in a connected and autonomous traffic en-

vironment within a dynamic traffic assignment context. Levin and Rey (2017) proposed a

new protocol for reservation-based intersection control with AVs. The implementation of

AV zones or lanes was studied by Chen et al. (2016, 2017); mixed AV and TV lanes by Wu

et al. (2020). Under Vickrey’s single-bottleneck setting, van den Berg and Verhoef (2016)

and Lamotte et al. (2017) examined the dynamic traffic equilibrium in the peak hour with

autonomous vehicles. They have explored the improved capacity from driver-less cars. Park-

ing issues for AVs and the associated behavior patterns have been considered very recently

by Liu (2018). This study envisions the adoption of autonomous vehicles in the future and

examines both the short-run traffic equilibrium under given AV penetration among the travel

demand and the long-run travel equilibrium with an endogenous AV penetration.

Different from Lamotte et al. (2017) and Liu (2018), for the short-run traffic equilibrium,

this paper considers a mixed traffic environment with both AVs and TVs. One can expect

that it will take years to turn the existing stock of TVs into AVs where mixed traffic is

present (Cantarella and Di Febbraro, 2017). Thus, it is urgent to understand the travel

behavior and equilibrium characteristics with mixed TV and AV in the immediate future.

This paper further incorporates the prediction that AVs will reduce value of time for

commuters during trips. Recent empirical efforts (Steck et al., 2018) showed that value

of time can be substantially reduced by using AVs. This is because a range of activities

(e.g., work, rest, and entertainment) can be performed during the trip if the AV is highly

automated. This morning commute equilibrium with different values of time is studied by

van den Berg and Verhoef (2011, 2016). In particular, while van den Berg and Verhoef (2016)

focuses on the effects of road capacity variation and market competition with AVs, this paper

focuses on the effects of AV penetration on commuting equilibrium. We explicitly quantify

the total congestion delay against the AV penetration, identify the optimal AV penetration

that minimizes the total travel cost at the user equilibrium, establish the relationship between

queuing delay and AV penetration, and examine the relative efficiency of system optimum

with AV tolling.

More importantly, this study considers the long-run commuting equilibrium, where the
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AV penetration is endogenously determined and it evolves over time. Recently, in a different

context, Li et al. (2018) examined a mixed traffic equilibrium with both human-driven and

autonomous vehicles and its day to day evolution, which focuses on short-run static mixed

traffic equilibrium. Noruzoliaee et al. (2018) have characterized the market penetration

of autonomous vehicles (AVs) in urban transportation networks and quantified the traffic

equilibrium with AVs. However, they have not considered traffic dynamics and evolution of

AV penetration.

Following Liu (2018), the point-queue bottleneck model (Vickrey, 1969) is adopted to

capture the essentials of the traffic dynamics and the trade-off between congestion delay and

schedule delay. For a recent review on the bottleneck model, one can refer to e.g., Small

(2015). As one may notice, since AVs reduce the value of time for commuters, the commuting

equilibrium with both AVs and TVs is similar to that with heterogeneous commuters where

value of time varies. There is a branch of studies examining the commuting equilibrium with

heterogeneous commuters in the context of the bottleneck model (e.g., Arnott et al., 1994;

Lindsey, 2004; van den Berg and Verhoef, 2011; van den Berg, 2014; Xiao et al., 2011; Nie

and Liu, 2010; Liu and Nie, 2011; Liu et al., 2014, 2016). However, it is noteworthy that

the physical meaning and interpretation of the commuting equilibrium with heterogeneous

vehicle types is totally different from that with heterogeneous values of time.

As mentioned, besides modeling the short-run dynamic commuting equilibrium with given

AV and TV demands, this study further explores the long-run equilibrium where the owner-

ships of AVs and TVs among the population might change, i.e., AV penetration is endogenous

in the long-run equilibrium. Recently, Masoud and Jayakrishnan (2017) discussed a shared

ownership program under which households will share the ownership and ridership of a set

of autonomous vehicles. However, dynamic commuting equilibrium with mixed traffic is not

considered in their study. In the long-run, besides the direct cost components considered in

the short-run traffic equilibrium, many factors could affect adoption of AVs, and thus will

affect AV penetration. As discussed in Fagnant and Kockelman (2015) and Talebian and

Mishra (2018), safety issues, parking options, technology costs (as well as economies of scale),

perception of AVs, security and privacy issues may all affect the adoption of AVs. However,

the literature has not provided an analytical framework to model the long-run commuting

equilibrium where both the direct cost components in the short-run traffic equilibrium and

other factors are considered. This paper fills the mentioned gap at a strategic level. Partic-

ularly, a cost/benefit term related to the AV demand among the population is adopted to

capture the above mentioned factors in Fagnant and Kockelman (2015). Note that overall

this term is a cost if positive and is a benefit if negative (against the cost of TVs). There

are many studies that have modeled both the long-run and short-run equilibrium in trans-
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port (e.g., Peer and Verhoef, 2013). However, as far as the author knows, there is no study

theoretically examining the commuting equilibrium in both long-run and short-run contexts

for AVs. Only recently, Chen et al. (2016) proposed a computational work on the evolution

of AV market penetration and adoption of AV lanes. However, their study focused on static

traffic case and dedicated facilities for AVs (without direct flow interaction between AVs and

TVs).

This paper contributes to the literature in several ways. Firstly, this paper re-visits

the short-run dynamic commuting equilibrium with AVs and reduced value of time, and

further explicitly establishes efficiency of user equilibrium and system optimum against the

AV penetration. Secondly, this paper takes into account factors other than direct travel

cost components and examines the long-run endogenous AV penetration and commuting

equilibrium. Thirdly, this paper identifies analytical conditions for the inefficient stable long-

run equilibria, which correspond to realistic scenarios reflecting status quo. The effectiveness

of the subsidy scheme is discussed with the aim to steer the system to the optimal long-run

equilibrium. Overall, this paper sheds light on future AV adoptions, car ownership, and

traffic management.

The rest of the paper is organized as follows. Section 2 revisits the dynamic commuting

equilibrium with a reduced value of time for AVs, and analyzes the system efficiency against

the AV penetration, and proposes and evaluates the first-best tolling scheme with mixed

vehicle types. Section 3 discusses the long-run commuting equilibrium with endogenous

AV penetrations, examines the evolution of AV penetration, and discusses the effect of

government subsidy. Numerical illustrations are presented in Section 4. Finally, Section 5

concludes the paper and provides discussions for future research.

2 Short-run equilibrium with AVs

In this section, we start with a thumbnail description of the short-run commuting equilibrium

in the rush-hour with autonomous vehicles (AVs) and non-autonomous traditional vehicles

(TVs). For ease of presentation, later we refer to commuters traveling with AVs and TVs

as type a (for AVs) and b (for TVs), respectively. In the short-run, we consider that the

total travel demand is fixed, and the AV and TV ownerships among the travel demand

are also given. The short-run equilibrium is then the joint traffic equilibrium for the AV

commuters and TV commuters. It is assumed that all vehicles are owned privately by

individual commuters. It is worth mentioning that in the future AVs might be publicly

owned and operated to provide Mobility As a Service (see e.g., Fagnant and Kockelman,

2014, for shared autonomous vehicles services), which is not considered here.
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Figure 1: The city network.

We consider a stylized home-work city depicted in Figure 1 with a highway connecting

home and workplace. There is a highway bottleneck close to the workplace (city center),

which has a capacity of s. The free-flow travel time between home and bottleneck is a

constant tf . Every day there is a total number of N commuters traveling from home to the

city center. All commuters have a desired arrival time t∗ at the workplace. Early or late

arrivals at the workplace will be penalized. Also, all commuters drive, either with AVs or

TVs.

In the short-run, the total travel demand N is fixed, and car-ownership among the N

commuters is given. Without loss of generality, we assume N > 0 throughout the paper. Let

Na and Nb be the numbers of commuters traveling with AVs and TVs, respectively. Then,

we have Na +Nb = N . The short run equilibrium is the departure/arrival equilibrium of the

Na AV commuters and Nb TV commuters.

Based on the above setting, for commuters (i = a for those with AVs and i = b for those

with TVs) departing at time t, the travel cost can be written as

ci(t) = αi · T (t) + β · [t∗ − t− T (t)]+ + γ · [t+ T (t)− t∗]+ . (1)

where T (t) is the travel time experienced by the commuters , αi is the value of time when

the commuters are driving the AVs (i = a) or TVs (i = b), β and γ are the penalties for a

unit time of early and late arrivals at the destination for commuters, and [·]+ = max {0, ·}.
It is assumed that γ > αb > αa > β. Note that γ > αb > β is a standard assumption in

the literature, which is consistent with many empirical evidences. αb > αa means that AV

self-driving time is less costly than the driving time when commuters operate a TV. This is

expected in the future since AVs can drive themselves, and commuters have more flexibility

during commuting (e.g., the commuters might sleep, work, or have other entertainment

activities), see e.g., Steck et al. (2018). Moreover, αa > β means that while commuters can

have flexibility in AVs, in-vehicle travel delay is still more expensive than the early arrival
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penalty.1

In Eq.(1), the travel time T (t) consists of the free-flow travel time tf and the queuing delay

at the highway bottleneck, i.e., T (t) = tf + q(t)
s

where q(t) is the queue length experienced by

commuters departing from home at time t and s is the bottleneck capacity, and the free-flow

time for other road sections is zero. Note that the queue length at the bottleneck at time t

is equal to q (t− tf ).

2.1 Commuting equilibrium revisited

Suppose that both types of commuters depart simultaneously during a time duration with

a positive length, then dca(t)
dt

= dcb(t)
dt

= 0 must hold for this duration as the equilibrium

condition. It can be readily verified from Eq.(1) that this condition can never be satisfied.

Instead, the isocost curves can be constructed as shown in Figure 2, where commuters have

different values of time.

Figure 2: The isocost curves for the case with both AVs and TVs.

1If this is not the case, it means that commuters prefer staying in an AV rather than being early in the
office. While this might be possible in some certain circumstances, we consider that in general people have
more flexibility in an office or surrounding areas than in a car, and thus αa > β.
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The time points in Figure 2 are given as follows:

t1 = t∗ − γ

β + γ

N

s
; t2 = t∗ − γ

β + γ

Na

s
; t3 = t∗ +

β

β + γ

Na

s
; t4 = t∗ +

β

β + γ

N

s
. (2)

The type a commuters will arrive at work within [t2, t3] while the type b commuters will

arrive within [t1, t2] and [t3, t4]. This is because type a commuters (with AVs) value travel

delay relatively less against schedule delay penalties than type b commuters.

We can further derive the equilibrium departure rates (from home) for both types of

commuters by letting dci(t)
dt

= 0, which are

rei =
αi

αi − β
s; rli =

αi
αi + γ

s. (3)

where e and l represent early and late arrival (at work), respectively. It can be readily

verified that rea > reb > s > rla > rlb.

With the above results, the time-dependent equilibrium flow pattern can be plotted in

Figure 3, where the purple and blue solid lines represent the departure from home for type

a and b commuters, respectively, the purple and blue dashed line represent the arrivals at

the highway bottleneck for type a and b commuters, respectively, and the black solid line

represents the cumulative departure from the highway bottleneck (also the arrival at the city

center or the workplace). The time points in Figure 3 are given in Eq.(2).

It is shown in Figure 3 that the two types of commuters travel in different time windows

– AV users travel around the desired arrival time t∗ where the queuing time is longer and TV

users travel in the earlier and later windows where the schedule delay cost is larger. Such a

separation is motivated by the divergent preferences towards congestion delay and schedule

delay for AVs and TVs.

Based on the commuting equilibrium, the equilibrium individual travel costs for both

types of commuters can be derived as follows:

ca = αatf +
βγ

β + γ

(
Na

s
+
αa
αb

Nb

s

)
; cb = αbtf +

βγ

β + γ

Na +Nb

s
. (4)
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Figure 3: The departure/arrival pattern at User Equilibrium.

The above commuting equilibrium where AV and TV users have different VOTs is similar

to that established in van den Berg and Verhoef (2011, 2016). While van den Berg and

Verhoef (2016) examined the effects of road capacity variation with AVs, the capacity issue

is not considered in this paper; instead, this paper primarily focuses on the effects of AV

penetration on commuting equilibrium.

As new contributions to the short-run commuting equilibrium with AVs, the following

subsections will (1) explicitly analyze the effects of AV penetration on system efficiency,

(2) identify the optimal AV penetration that minimizes the total travel cost at the user

equilibrium, (3) establish the relationship between queuing delay and AV penetration, and

(4) examine the relative efficiency of system optimum with AV tolling.

2.2 Effects of AV penetration on system efficiency

Denote x = Na
N

the penetration proportion of AVs for any given N > 0, and thus Na = xN

and Nb = (1− x)N . The effects of AV penetration on short-term individual travel costs are

summarized in Lemma 1:

Lemma 1. The short-run individual travel cost by AV increases with the AV penetration

proportion and that by TV is invariant with the penetration.
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Proof. It follows from Eq.(4) that

∂ca
∂x

=
βγ

β + γ

N

s

(
1− αa

αb

)
> 0;

∂cb
∂x

= 0 (5)

Lemma 1 implies that in the short run where the AV technologies and supporting facilities

are fixed, the more people use AVs, the higher the cost is for AV users. This is brought by the

competition effect among the same user type who intend to travel in similar time windows.

In contrast, the AV penetration does not affect the travel cost of users who intend to travel

in other time windows, i.e., TV users.

We now proceed to examine the effect of AV penetration on system cost. Given the

individual travel costs in Eq.(4), the total travel cost of all commuters is

TC =
∑
i

ci ·Ni. (6)

The total travel cost TC can be written as a function of x. Now we examine the efficiency

of the equilibrium against the AV penetration x.

Proposition 1. The optimal AV penetration proportion to minimize TC in Eq.(6) is

(x)∗ =

 0.5 + 0.5 · αbtf
βγ
β+γ

N
s

≥ 0.5 tf <
βγ
β+γ

N
s

1
αb

1 tf ≥ βγ
β+γ

N
s

1
αb

. (7)

Proof. Based on Eq.(6) and Na = xN and Nb = (1− x)N , we can rewrite TC as a function

of x as follows:

TC = N

[
αatfx+ αbtf (1− x) +

βγ

β + γ

N

s

(
1−

(
1− αa

αb

)
(1− x)x

)]
. (8)

By taking the first-order and the second order derivatives of Eq.(8) with respect to x, we

have
dTC

dx
= N

[
αatf − αbtf −

βγ

β + γ

N

s

(
1− αa

αb

)
(1− 2x)

]
, (9)

and
d2TC

dx2
= N

[
2
βγ

β + γ

N

s

(
1− αa

αb

)]
> 0. (10)

Eq.(10) suggests that TC is strictly convex with respect to x. Moreover,
(
dTC
dx

)
x=0

< 0 holds

since αa < αb.
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When tf <
βγ
β+γ

N
s

1
αb

, it can be verified that
(
dTC
dx

)
x=1

> 0. Therefore, TC is minimized

at x = 0.5 + 0.5 · αbtf
βγ
β+γ

N
s

such that dTC
dx

= 0 (interior optimum). Since
αbtf
βγ
β+γ

N
s

≥ 0, we have

0.5 + 0.5 · αbtf
βγ
β+γ

N
s

≥ 0.5.

When tf ≥ βγ
β+γ

N
s

1
αb

, it can be verified that dTC
dx
≤ 0, and the equality at most holds at

x = 1. Therefore, TC is minimized at x = 1 (corner optimum).

Proposition 1 and its proof have several implications. Firstly, the optimal penetration

proportion of AVs to maximize the efficiency of the traffic equilibrium is always greater than

or equal to 50%. Secondly, when free-flow travel time is relatively large (tf ≥ βγ
β+γ

N
s

1
αb

),

the cost saving from reduced value of time for AVs is relatively significant, i.e., a larger tf

indicates a larger (αb − αa) tf . Therefore, we should always let all commuters to use AVs.

Thirdly, when free-flow travel time is relatively small (tf <
βγ
β+γ

N
s

1
αb

), to let all commuters

use AVs is non-optimal. This is because when x increases, travel cost ca for AV commuters

in Eq.(1) increases. As a result, the benefit of using AVs against TVs decreases.

We now take a further look at the congestion delay cost as part of the total travel cost.

Here we focus on the congestion delay because the total free-flow time is fixed to be N · tf .
The total congestion delay is:

TCD =

(
0.5

αa

βγ

β + γ

Na

s
+

1

αb

βγ

β + γ

Nb

s

)
Na +

(
0.5

αb

βγ

β + γ

Nb

s

)
Nb (11)

Similar to that of TC, we examine how TCD changes with the penetration proportion of

AVs.

Proposition 2. The total congestion delay TCD in Eq.(11) increases with the AV penetra-

tion proportion.

Proof. Given that Na = xN and Nb = (1 − x)N , we rewrite TCD as a function of x as

follows:

TCD = 0.5
βγ

β + γ

N2

s

(
x2

αa
+

1− x2

αb

)
(12)

By taking the first-order derivative of Eq.(12) with respect to x, we have

dTCD

dx
= 0.5

βγ

β + γ

N2

s

(
2x

αa
− 2x

αb

)
. (13)

Since αa < αb and x ≥ 0, we have dTCD
dx
≥ 0 and the equality only holds when x = 0. This

completes the proof.

Proposition 2 indicates that while an AV allows flexibility for the commuter during the
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trip and reduces the cost for a unit of travel time, it will result in more congestion delays.

More intuitively speaking, when delay is cheaper for commuters, they will queue more to

seek less schedule delay cost.

The implication of Proposition 2 is important. The external cost of congestion is not fully

captured in this paper – in reality, larger congestion delay normally means more energy con-

sumption and more crowded road/urban environment. When taking all these complications

into account, the adoption of AVs can yield inefficient outcomes for society. The implica-

tion of this proposition raises the need for future research and practice to comprehensively

examine all benefits and costs from the adoption of AVs for the society.

2.3 Congestion tolling and system optimum

In this section, a time-dependent toll will be developed to achieve the system optimum. At

the system optimum, the following conditions should hold: (1) the queuing delay should

be completely eliminated (i.e., minimum queuing delay is equal to zero); (2) the schedule

delay cost should be minimized (travels are concentrated around t∗). To satisfy these two

conditions, firstly, the departure rates of both types of commuters from home should be

equal to the bottleneck capacity s (and then there is zero queuing delay); and secondly, the

arrival times (at work) for commuters should be within [t1, t4].

Suppose τ(t) is the toll we impose on commuters arriving at the bottleneck at time t,

then the following design of τ(t) can drive the system to optimum.

τ(t) =



0 t ∈ (−∞, t1)

β
(
t− t∗ + γ

β+γ
N
s

)
t ∈ [t1, t

∗)

γ
(
t∗ − t+ β

β+γ
N
s

)
t ∈ [t∗, t4]

0 t ∈ [t4,+∞)

, (14)

Note that since there is a positive free-flow travel time, the toll experienced by the commuters

departing from home at time t is equal to τ(t + tf ).
2 The total toll revenue is TTR =

0.5 · βγ
β+γ

N2

s
, and the total system cost is TSC = αatfNa + αbtfNb + 0.5 · βγ

β+γ
N2

s
.

To analyze how the adoption level of AVs could affect the efficiency of the tolling, we

define the following relative efficiency of the system optimum against the user equilibrium.

θ =
TC − TSC

TC − (αatfNa + αbtfNb)
. (15)

2How to derive the toll is omitted here to save space while interested readers may refer to e.g., van den
Berg and Verhoef (2011).
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In Eq.(15), TC − (αatfNa + αbtfNb) is the total reducible cost, and TC − TSC is the total

cost reduction at the system optimum against user equilibrium. θ measures the relative

efficiency of the first-best tolling to reduce the reducible cost.

Proposition 3. The relative efficiency of system optimum against user equilibrium satisfies

1− 0.5

0.75 + 0.25 · αa
αb

≤ θ ≤ 0.5. (16)

Proof. Let x = Na
N

(note that we only consider N > 0), which is the penetration proportion

of AVs. Based on Eq.(6), Eq.(15) and TSC = αatfNa+αbtfNb+0.5· βγ
β+γ

N2

s
, we can establish

the following

θ = 1− 0.5

1 +
(

1− αa
αb

)
(x2 − x)

. (17)

Note that 0 ≤ x ≤ 1. One can readily verify that θ reaches the maximum when x = 0 or 1,

which is 0.5, and θ reaches the minimum when x = 0.5, which is 1− 0.5
0.75+0.25·αa

αb

.

The above results indicate that the relative efficiency of tolling reaches the maximum

when all commuters travel with identical vehicle (either AV or TV). This is explained as

follows. The efficiency gain of system optimum is from the elimination of congestion delay

cost, which is given by

TCDC =

(
0.5

αa

βγ

β + γ

Na

s
+

1

αb

βγ

β + γ

Nb

s

)
Na · αa +

(
0.5

αb

βγ

β + γ

Nb

s

)
Nb · αb

=
βγ

β + γ

N2

s

((
1− αa

αb

)
x2 −

(
1− αa

αb

)
x+ 0.5

)
. (18)

It follows that
dTCDC

dx
=

βγ

β + γ

N2

s

(
1− αa

αb

)
(2x− 1) , (19)

d2TCDC

dx2
= 2

βγ

β + γ

N2

s

(
1− αa

αb

)
> 0. (20)

It can be readily verified that TCDC reaches the minimum at x = 0.5 and the maximum

at x = 0 or x = 1.

3 Long-run equilibrium with AVs

While the previous section analyzes the short-run commuting equilibrium under given vehicle

type distribution, this section looks into the long-run equilibrium where both the vehicle type
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distribution and travel pattern are endogenous. With developments of self-driving technolo-

gies, infrastructures, and facilities, costs associated with AV ownership and maintenance may

evolve and public concerns for licensing and safety issues are also subject to change. This

is to say that the ‘functional barriers’ and ‘psychological barriers’ studied in Talebian and

Mishra (2018) may be resolved gradually. These are expected to be reflected in commuters’

preferences between AV and TV. This section aims to incorporate the external factors and

explore how they affect the AV penetration and the commuting equilibrium in the long-run.

The long-run AV penetration depends on the long-run average cost of using AV as opposed

to TV. In addition to the daily commuting cost discussed in the previous section, we need to

take into account the discrepancy of any additional vehicle type-specific cost associated with

the external factors mentioned above. The latter term is driven by commuter’s perception

of the relative external cost or benefit associated with using AV with respect to TV.

Viewing the usage of TV as the benchmark, the additional cost associated with TV is

normalized to zero, and the long-run average cost of using TV is equal to the short-run

commuting cost. To reflect the discrepancy between AV and TV, a term δ is introduced

to capture commuter’s perception of the relative external cost or benefit associated with

using AV with respect to TV. In contrast to previous studies (e.g., Talebian and Mishra,

2018) investigating specific adoption barriers of AV, this paper considers a general δ term

assuming that the explicit function forms and associated parameters are attainable elsewhere.

The term δ can be either positive or negative and is referred to as the “average usage cost

of AV” thereafter. When δ is positive, it implies that AV is less advantaged than TV in

users’ perception, and that traveling with AV imposes additional cost. In contrast, δ being

negative means that AV’s advantages outweigh disadvantages and that traveling with AV

brings additional benefit (when compared with TVs). As such, the long-run average cost

(per day) of traveling with each vehicle type is the sum of daily commuting cost and usage

cost, i.e.,

Ca = ca + δ;Cb = cb, (21)

where Ca and Cb represent the long-run average cost associated with AV and TV respectively

and ca and cb are the daily commuting cost given by Eq.(4).

The evolution of δ can be driven by a variety of factors, such as developments of self-

driving technologies, infrastructures, and facilities, financial investments, and commuter’s

psychological perception of AV. Amongst, ‘price’ and ‘safety’ may be the major factors for

users. It is generally expected that the increase in AV penetration will have positive exter-

nalities on AV usage. Firstly, due to economies of scale, the average costs associated with

the research, production, and maintenance of AVs will be reduced, and thus operating an
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AV will be less expensive. Secondly, when there are more AVs, larger proportions of sur-

rounding vehicles can be connected and coordinated. This expects to increase the reliability

and efficiency of traffic (Talebpour and Mahmassani, 2016). Thirdly, with more AVs, there

will be more AV-friendly infrastructures and facilities to support self-driving.3

When the AV technology is sufficiently mature and the whole population travel with AV,

as an extreme case, it is expected that AV will be more advantaged than TV. To own and

to use an AV will be relatively cheaper than a TV as the total production is much larger,

and traveling with an AV will be safer as the vehicle is aware of all vehicles around. In

another extreme where no one uses AV, the impedance of adopting AV is fairly large due to

high manufacturing costs, safety concerns, etc. Without loss of generality, we introduce the

following assumption regarding δ.

Assumption 1. δ = δ(Na) is a continuously differentiable function of Na, Na ∈ [0, N ];

when Na = 0, δ(Na) > 0; when Na = N , δ(Na) < 0.

In general, the increase of AV penetration expects to reduce the average ‘price’ of owning

and operating AVs due to economies of scale. However, the penetration may have mixed

effects on ‘safety’. On one hand, when there are more AVs, the traffic can be more efficiently

coordinated; on the other hand, the presence of surrounding AVs may psychologically impose

anxiety on human drivers, which will negatively influence the driving behavior and cause

dangers for both TVs and AVs. When the latter effect dominates, increasing AV penetration

may lead to less safe traffic. This may happen when the AV penetration is within in a certain

range.

Overall, there is not yet an established relationship between the average usage cost δ

and Na. The increase in Na may have positive and negative effects. When the positive

effects (e.g., economies of scale) dominate, δ decreases with Na; and otherwise when the

negative effects (e.g., safety concerns) prevail. Therefore, in this paper, we consider δ a

general function of Na without assuming any specific forms.

Assumption 1 guarantees the existence of δ′(Na) while allowing for flexibility on the

sign (δ′(Na)). Although δ′(Na) can be either positive or negative, Assumption 1 governs

that it cannot always be positive throughout Na ∈ [0, N ]. It is assumed that besides Na,

other factors influencing δ are assumed to be exogenous and given to us.

3In addition to ‘price’ and ‘safety’, many other factors may play a role, such as energy, legislative, and
privacy considerations. The variations of these exogenous factors are out of the scope of this paper.
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3.1 Long-run equilibria with endogenous vehicle type and daily

commuting choices

In the long run, the choice of a commuter is twofold – the vehicle type choice (between AV and

TV) and the daily commuting travel choice (departure time choice). Correspondingly, the

long-run equilibrium entails both an equilibrium vehicle type distribution and an equilibrium

daily commuting traffic pattern. The former, reflected by the equilibrium AV penetration,

is driven by the long-run average cost associated with each vehicle type. The latter, as

established in Section 2, is in turn governed by the penetration proportion. Therefore,

the endogenous penetration proportion is the key to characterize the long-run equilibrium.

Thereafter, the long-run equilibrium refers to the equilibrium AV penetration, namely the

demand distribution between Na and Nb.

In particular, the long-run equilibrium can be characterized by the following equilibrium

conditions:

Ni · (Ci − µ) = 0,∀i ∈ {a, b} (22a)

Ci − µ ≥ 0,∀i ∈ {a, b} (22b)

N −Na −Nb = 0 (22c)

Ni ≥ 0,∀i ∈ {a, b} (22d)

where µ is equal to the minimum travel cost at the long-run equilibrium. The above condi-

tions can be derived based on the Karush-Kuhn-Tucker (KKT) conditions of the equilibrium

assignment problem (one may refer to, e.g., Sheffi, 1985, for detailed derivations). The equi-

librium conditions dictate that the long-run equilibrium can be achieved where the long-run

average cost of AV and TV is equal (the interior equilibrium) or all commuters travel with

one type of vehicle with lower cost (the boundary equilibrium).

It is evident that the feasible set of {Ni} defined by Eqs.(22c)-(22d) is non-empty, compact

and convex, and that the cost functions Ci, ∀i ∈ {a, b} are continuous. Therefore, there exist

at least one equilibrium solution for Eq.(22); however, the uniqueness of the equilibrium is

not guaranteed. Depending on δ(Na) and the resultant Ca, there can be various cases where

the equilibrium governed by Eq.(22) is achieved, and in some cases multiple equilibria may

arise.

Since Nb = N −Na, based on Eqs.(4) and (21), the long-run average costs of AV and TV
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can be respectively rewritten as

Ca = αatf +
βγ

β + γ

(
Na

s
+
αa
αb

N −Na

s

)
+ δ (Na) , (23a)

Cb = αbtf +
βγ

β + γ

N

s
. (23b)

The effect of AV penetration on long-run cost can be characterized by taking the derivative

of long-run costs with respect to the number of AV users:

dCa
dNa

=
βγ

β + γ

1

s

(
1− αa

αb

)
+ δ′ (Na) , (24a)

dCb
dNa

= 0. (24b)

Eq.(24a) dictates that when AV penetration changes, the changing direction of its long-run

average cost is unclear. This is because the first term on the right-hand side, representing

the marginal effect of AV penetration on daily commuting cost, is positive, as established in

Lemma 1. The second term, representing the marginal effect of AV on the external usage

cost, can be either positive or negative according to the assumption we made on δ(Na). In

contrast, Eq.(24b) prescribes that AV penetration has no effect on the cost of traveling with

TV.

When the whole population travel with AV, as an extreme case, Na = N , and the long-

run average cost of AV is CN
a = αatf + βγ

β+γ
N
s

+ δ (N). It can be readily verified that based

on the assumptions of δ(Na) we have

CN
a < Cb (25)

In another extreme where no one uses AV (Na = 0 and Nb = N), the long-run average

cost of AV is C0
a = αatf + βγ

β+γ
N
s
αa
αb

+δ(0) > αatf + βγ
β+γ

N
s
αa
αb

. There is no clear-cut relationship

between C0
a and Cb. We thus classify all possible scenarios into three cases according to the

relationship between these two values: (I) C0
a > Cb; (II) C0

a < Cb; (III) C0
a = Cb. Figure 4

presents some representative scenarios for each case respectively (i.e., 5 scenarios for Case

I, 8 scenarios for Case II, and 2 scenarios for Case III). Each subfigure (a)-(f) conveys one

or more possible scenario(s), in which the distance between the vertical axes is equal to

N , the total number of commuters by AV and TV combined which is fixed. The long-run

average cost of AV, Ca, is measured to the right from the left-hand axis, and that of TV,

Cb, is measured to the left from the right-hand axis. The long-run average cost of TV is

represented by the horizontal line in green color, as given in Eq.(21). We note that the
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long-run average cost of AV may appear in various forms, but it is tedious to elaborate all

possibilities.

In Figure 4, we present some representative appearances of Ca for each case. Each dotted

curve represents one possible Ca. While there might be numerous other appearances of Ca

(e.g., with more than four intersections with Cb) that are not shown, the scenarios covered

in Figure 4 are representative to illustrate how boundary and interior equilibria look like,

respectively. The general trend is that the long-run average cost of AVs is less than TVs

when the whole population use AVs. Some scenarios involve oscillations of Ca, which is the

sum of daily travel cost and the additional usage cost. The oscillations reflect the uncertain

tradeoffs between positive and negative externalities of AV penetration. When negative

externalities play the major role, Ca increases with Na.

Wherever the equilibrium conditions Eq.(22) are satisfied is an equilibrium point, each of

which refers to a long-run equilibrium allocation of (Na, Nb). Specifically, where Ca intersects

with Cb (Ca = Cb) yields an interior equilibrium; and where all commuters use one type of

vehicle with strictly lower cost (i.e., Ni = N and Nj = 0 where Ci < Cj, i, j ∈ {a, b}, i 6= j)

characterizes a boundary equilibrium. Each equilibrium point is marked by a blue or red

circle in Figure 4 (the color of the circle indicates the stability of the equilibrium, which

will be examined in the next section). In line with the above discussion, there exist at least

one equilibrium in each possible scenario and there might be multiple equilibria in some

scenarios, depending on the appearance of Ca.
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Figure 4: Representative long-run equilibria with endogenous AV penetration.
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3.2 Evolution of AV penetration and stability of long-run equilib-

ria

Section 3.1 discusses possible long-run equilibria that may arise with different forms of long-

run average costs. We now proceed to envisage the evolution of AV penetration among

population and the associated effect on long-rum equilibria. Let k denote the calendar time

(which is assumed to be continuous) and Ṅa = dNa
dk

, which represents how Na evolves over

time. Note that Na is suffice to characterize the demand distribution between AV and TV

given Na + Nb = N and Ṅb = −Ṅa. To examine the stability of the dynamical system, we

assume that commuters swap from TV to AV at a rate proportional to the cost difference

between Ca and Cb, following the standard “proportional swap” principle in the literature

(e.g., Smith, 1984), such that

Ṅa = ρ · (N −Na) · [Cb − Ca]+ − ρ ·Na · [Ca − Cb]+ , (26)

where ρ > 0 and [·]+ = max {0, ·}.4 Equation (26) describes how the number of AV users

evolve with the long-run cost difference between AV and TV. When the AV cost is smaller

than TV, users shift from TV to AV at the rate proportional to the number of TV users and

cost difference. When the AV cost is greater than TV, users shift backwards TV at the rate

proportional to the number of AV users and cost difference.

The parameter ρ represents the proportional swap rate, which reflects the sensitivity

of users with respect to the long-run cost difference. In the present paper, we assume

the parameter is exogenously given; however, in practice, the sensitivity needs dedicated

calibration analysis.

The evolutions of Na and Nb (i.e., AV penetration) in the long-run will influence the

short-run commuting equilibrium analyzed in Section 2.1. According to the equilibrium

established in Figure 2 and Figure 3, when AV users increase, more travelers (AV users) will

travel around the desired arrival time t∗, leading to longer queuing time for AV users. It

follows from Lemma 1 that the AV short-run cost increases with the AV penetration; and

the short-run travel cost of TV users is invariant, as they always travel in the early and late

time windows and are not affected by the AV queues.

We introduce the following Lyapunov Theorem that defines the stability of the dynamical

system:

4There is a branch of studies examining the day-to-day evolution of traffic dynamics, e.g., Cascetta and
Cantarella (1991), Guo and Liu (2011), Watling and Cantarella (2013), Xu et al. (2014), Guo et al. (2015),
where dynamical systems have been developed. This study, while focuses on evolution of AV penetration,
follows a similar dynamical modeling framework to the literature.
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Definition 1. The Lyapunov Theorem (Smith, 1984):

The dynamical system Eq.(26) is stable if there is a continuously differentiable scalar

function V (Na), defined on [0, N ], such that

(1) V (Na) ≥ 0, ∀Na ∈ [0, N ];

(2) V (Na) = 0 if and only if Na is an equilibrium, and

(3) dV (Na)
dNa

· Ṅa < 0 if Na is not an equilibrium.

Following Smith (1984), we introduce the following Lyapunov function

V (Na) = (N −Na) ·
(
[Cb − Ca]+

)2
+Na ·

(
[Ca − Cb]+

)2
. (27)

It can be readily verified that (1) V (Na) ≥ 0 for all Na ∈ [0, N ], and (2) V (Na) = 0

if and only if Na is an equilibrium. In addition, since both Ca and Cb are continuously

differentiable, V (·) is continuously differentiable. To verify condition (3) of Definition 1, we

examine sign{dV (Na)
dNa

· Ṅa} given a nonequilibrium Na.

To ease the presentation, we denote ∆C the discrepancy between the long-run average

costs of AV and TV, and thus we have

∆C = Ca − Cb = − βγ

β + γ

(
1− αa

αb

)
N −Na

s
+ δ (Na) . (28)

Taking the derivative with respect to Na on both sides of Eq.(28), we obtain the marginal

effect of AV penetration on the cost difference:

d∆C

dNa

=
βγ

β + γ

(
1− αa

αb

)
1

s
+ δ′ (Na) . (29)

Given that Na is not an equilibrium solution, ∆C 6= 0. When ∆C > 0, we have Ṅa = −ρ ·
Na ·∆C < 0, and V (Na) = Na · (∆C)2. It then follows that dV (Na)

dNa
= ∆C ·

(
∆C + 2Na · d∆C

dNa

)
.

When ∆C < 0, Ṅa = −ρ · (N −Na) ·∆C > 0, and V (Na) = (N −Na) · (∆C)2. It follows

that dV (Na)
dNa

= ∆C ·
(
−∆C + 2 · (N −Na) · d∆C

dNa

)
. Based on the above, we thus have

dV (Na)

dNa

· Ṅa =

 −ρ ·Na · (∆C)2 ·
(

∆C + 2Na · d∆C

dNa

)
∆C > 0

−ρ · (N −Na) · (∆C)2 ·
(
−∆C + 2 · (N −Na) · d∆C

dNa

)
∆C < 0

(30)

Regarding the stability of the dynamical system Eq.(26), we have the following proposi-

tion:

Proposition 4. An AV penetration Na is a stable equilibrium if any of the following is valid
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(i) Ca > Cb and Na = 0,

(ii) Ca < Cb and Na = N , or

(iii) Ca = Cb and Ċa · Ṅa > 0.

Proof. When (i) Ca > Cb and Na = 0, ∆C > 0. It is readily verified that the equilibrium

condition Eq.(22) is satisfied, and thus Ca > Cb and Na = 0 secure an equilibrium solution.

∀Na 6= 0 in the neighborhood {B : ‖Na − 0‖ < ε}, ε > 0,

lim
ε→0

dV (Na)

dNa

· Ṅa = lim
Na→0

−ρ ·Na · (∆C)2 ·
(

∆C + 2Na ·
d∆C

dNa

)
< 0.

When (ii) Ca < Cb and Na = N , ∆C < 0. Similarly, it can be verified that the equilibrium

condition Eq.(22) is satisfied, and thus Ca < Cb and Na = N secure an equilibrium solution.

∀Na 6= N in the neighborhood {B : ‖Na −N‖ < ε}, ε > 0,

lim
ε→0

dV (Na)

dNa

· Ṅa = lim
Na→N

−ρ · (N −Na) · (∆C)2 ·
(
−∆C + 2 · (N −Na) ·

d∆C

dNa

)
< 0.

When (iii) Ca = Cb and Ċa ·Ṅa > 0 prevail, they combined secure an equilibrium solution.

We denote the equilibrium AV penetration as N̂a. Given Ċa · Ṅa > 0, dCa
dNa

> 0, and it follows

that d∆C

dNa
= dCa

dNa
− dCb

dNa
= dCa

dNa
> 0. ∀Na 6= N̂a in the neighborhood {B : ‖Na − N̂a‖ < ε},

ε > 0,

limε→0
dV (Na)
dNa

· Ṅa

= limNa→N̂a


−ρ ·Na · (∆C)2 ·

(
∆C + 2Na · d∆C

dNa

)
< 0 ∆C > 0

−ρ · (N −Na) · (∆C)2 ·
(
−∆C + 2 · (N −Na) · d∆C

dNa

)
< 0 ∆C < 0

Based on Definition 1, the dynamical system Eq.(26) is stable in the neighborhood of the

equilibria governed by condition (i), (ii), or (iii).

Proposition 4 elucidates the stability of the long-run equilibria established in Section 3.1.

Recall that we present in Figure 4 representative equilibria and highlight the stable equilibria

by blue circles. One could verify that each stable equilibrium point falls into one of the three

situations (i)-(iii) in Proposition 4.

In addition to the three situations (i)-(iii), there is one more situation that entails a long-

run equilibrium, i.e., (iv) Ca = Cb and Ċa ·Ṅa < 0. Note that conditions (i)-(iv) are complete

in terms of characterizing the long-run equilibria such that they cover all possible situations
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that satisfy the generic equilibrium condition Eq.(22); at the same time, they are mutually

exclusive. However, different from the previous three conditions, the equilibrium governed

by condition (iv) is unstable. Consider any equilibrium AV penetration Na that satisfies

condition (iv). When there is a small perturbation that changes the AV penetration, the

dynamical system will deviate from the current equilibrium. If perturbation increases the

penetration by a small amount such that Ṅa > 0 (‘positive perturbation’), the penetration

will continue to increase as the long-run average cost of AV falls below that of TV given

Ċa < 0; and vice versa if the direction of perturbation is reversed. In Figure 4, red circles

signifies those equilibria in line with condition (iv) and the associated arrows represent the

evolving direction of AV penetration given positive perturbations.

The physical meanings of equilibrium conditions (i)-(iv) are significant in the sense that

each equilibrium showcases a representative scenario in the evolution process of AV adoption

among population. When condition (i) stands, Ca > Cb and Na = 0. The long-run cost

of AV is larger than that of TV and very few people commute with AV. This represents

the status quo in practice – significantly high cost, lack of supporting infrastructure, and

widespread safety concerns associated with self-driving – the AV penetration is almost zero

in the population.

In contrast, condition (ii) (Ca < Cb and Na = N) signifies another extreme where the

whole population commute with AV and the long-run cost of AV is reduced to below that

of TV. As discussed above, given the economy of scale of AV manufacturing, the develop-

ment of self-driving technologies, facilities and infrastructures, and the elimination of safety

concerns, this may be realized some day in the future. Conditions (i) and (ii) both yield

stable equilibrium because in both scenarios the whole population is stick to the option with

significantly lower cost and no one has the incentive to swap.

Condition (iii) represents an intermediate scenario where part of the population commute

with AV. Ca = Cb and Ċa · Ṅa > 0 imply that the two options have identical cost but the

cost of AV increases with the penetration (primarily because of the increasing commuting

time as discussed in Section 3.1). It is a stable equilibrium because if someone swaps from

TV to AV, it will marginally increase the cost of AV, and evidently the higher cost of AV

will prevent her/him from doing so; and vice versa for swapping from AV to TV.

Proposition 4 implies that scenario (i)-(iii) each corresponds to a stable equilibrium of

the dynamical system Eq.(26), and requires external interventions to break the equilibrium

status when needed.

As a complement to condition (iii), condition (iv) describes the scenario where the two

options have identical cost but the average cost of AV decreases with the penetration (pri-

marily because of the decreasing usage cost as discussed in Section 3.1). As discussed above,
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where Ca = Cb and Ċa · Ṅa < 0 corresponds an unstable equilibrium. Intuitively, if some-

one swaps from TV to AV, it will marginally reduce the cost of AV. The lower cost of AV

will encourage more commuters to swap from TV to AV and thus the AV penetration will

continue to grow, namely, such an equilibrium is unstable.

3.3 Discussions on the equilibrium efficiency and AV subsidy

Section 3.2 identifies three cases that may arise with a stable equilibrium. This section

examines the efficiency of the equilibrium from the system’s perspective. Denote LTC the

system-wide long-run total cost, which is the sum of long-run cost of all AV users and TV

users, i.e.,

LTC = Na · Ca +Nb · Cb. (31)

Let LTC(m), m ∈ {i, , ii, iii} represents the long-run total cost at the equilibrium governed

by condition (i)-(iii) respectively. When condition (i) stands, Ca > Cb, Na = 0, and thus

LTC(i) = 0 · Ca + (N − 0) · Cb = N · Cb; when condition (ii) stands, Ca < Cb, Na = N , and

thus LTC(ii) = N ·CN
a + 0 ·Cb = N ·CN

a ; when condition (iii) stands, Ca = Cb, Ċa · Ṅa > 0,

and thus LTC(iii) = Na · Cb + (N − Na) · Cb = N · Cb. Given the relationship CN
a < Cb

established in Eq.(25), we have

LTC(i) = LTC(iii) > LTC(ii). (32)

Eq.(32) shows that equilibrium condition (ii) yields the lowest long-run total cost among

the three conditions and it is actually the minimum LTC that the system can achieve. The

other two conditions, whilst each lead to a stable equilibrium, incur larger LTC. Based on

the comparison, the equilibrium under condition (ii) is featured as an “efficient equilibrium”,

and “inefficient equilibrium” under condition (i) or (iii). From the system’s point of view,

the efficient equilibrium (system optimum) is preferable than inefficient ones (system non-

optimum) as it leads to lowest deadweight loss.

As established in Section 3.2, the evolution of AV penetration may incur multiple equilib-

rium statuses, including both stable equilibrium and unstable equilibrium. When the system

reaches an unstable equilibrium, a small perturbation will destroy the equilibrium and the

system will evolve to other status automatically. However, when it hits a stable equilibrium,

the system being disturbed (by small perturbations) will rebound to the current equilibrium,

and thus is more likely to stabilize at the current status. If the stable equilibrium is an ef-

ficient one, it leads to the lowest LTC and it is the best scenario can be achieved from the

system’s point of view. If it is an inefficient equilibrium, however, the system cost is not
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the optimal but the system will stabilize at the current equilibrium. This, to some extent,

explains the current situation where purchase price is high, safety concern is present, and

AV adoption rate is very low. Without external intervention that is able to reduce LTC or

δ, the system is unlikely to move elsewhere.

To prevent the system from staying at an inefficient equilibrium and further steer it to

the optimum, external intervention is necessary. With such intention, the government may

consider to provide subsidies that confer the advantage. The design of a subsidy scheme

should aim to bridge the discrepancy between the long-run average costs of AV and TV. The

most common subsidy in the transportation sector is the ones provided to the public trans-

port users or operators in order to lower their costs or supplement their income (Frankena,

1981; Wang et al., 2017). In the same spirit, the recipient of the AV subsidy could be the

AV users so that the subsidy will compensate part of the cost Ca. Alternatively, the subsidy

could be provided to upstream stakeholders, expecting that the spillover effect will reduce

the usage cost δ imposed on AV users. Relevant stakeholders may include those involved

in the development of self-driving technologies, AV manufacturing and maintenance, and/or

AV infrastructure and facility upgrades, etc. By subsidizing the expenses of these stakehold-

ers, the aggregate cost of manufacturing and supporting AVs will be lower and self-driving

will be safer, which in turn reduces the average usage cost of each individual user.

Without loss of generality, the following analysis will focus on the subsidy to be provided

to each individual user to achieve the system optimum. In reality, when considering subsi-

dizing relevant stakeholders, the amount of subsidy should guarantee that the spillover effect

on AV user’s cost is significant enough to bridge the gap between AV and TV costs.

In terms of the time of implementation, the subsidy scheme should take effect when the

system reaches an inefficient equilibrium until it hits an unstable equilibrium from where the

system itself will evolve towards the efficient equilibrium.

Therefore, given any AV penetration Na, the amount of subsidy to be provided per capita

should be

φ(Na) = max{Ca(Na)− Cb, 0}+ ε, (33)

where max{Ca(Na)−Cb, 0} represents the lower bound of the subsidy and ε > 0 represents

a buffer amount exceeding the minimum. Theoretically, ε could be infinitely small but it

must be positive in order to ensure the system will evolve to the optimum. The value of ε

has influences on the convergence speed of the system, for which sensitivity test is done in

Section 4.2.3.

Figure 5 illustrates the subsidy required to conquer the stable equilibrium governed by

condition (i) or (iii), and to steer the system to an unstable equilibrium. The lower bound

23



of the subsidy is represented by blue arrows which exactly cover the gap between Ca (black

curve) and Cb (green line). If the government intends to provide a constant subsidy to cover

the whole period, the amount should be able to bridge the maximum gap between the costs,

i.e., max{Ca} − Cb. The provided constant subsidy will translate the Ca curve downwards

to the dotted curve, which is entirely below Cb meaning that adoption of AV will be almost

automatic.

Figure 5: The AV subsidy takes effect from the stable equilibrium governed by condition (i)
or (iii).

4 Numerical studies

This section presents some numerical experiments to illustrate the proposed model and

analysis. We start with the major common numerical settings. Following Liu et al. (2015),

the value of time αb is 9.91($/h), the early arrival penalty β is 4.66($/h), and the late arrival

penalty γ is 14.48($/h). Empirical studies suggest that commuters’ value of time will be

reduced by around 30% when traveling with AV as oppose to TV. We let αb = 0.7 · αb =

6.94($/hour). It is assumed that the free-flow travel time is tf = 0.25(hour), the total demand

is N = 10000(veh/hour), and the capacity of the highway bottleneck is s = 3000(veh/hour).

Based on these settings, we numerically establish the short-run and long-run equilibria with

AVs and explore their characteristics respectively.

4.1 Short-run commuting equilibrium

We firstly look at the short-run commuting equilibrium. Following Section 2, we assume in

the short-run, a commuter’s vehicle type is fixed and so is the number of AV users among
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population. Given any AV penetration rate, commuters optimize their departure time choices

to minimize their daily commuting travel cost. In equilibrium, the departure/arrival pattern

is shown in Figure 3. Figure 6 presents how the key cost terms change with the number of

AV users (AV usage). The left panel conveys the individual travel costs (ca and cb) and the

total travel cost (TC). The right panel contains the total congestion delay (TCD), and the

total congestion delay cost (TCDC).

When the AV penetration rate increases from zero to one, the individual travel cost of

AV uses represented by the solid blue line in Figure 6 increases from 9.97($) to 13.49($), and

that of TV users (the dotted blue line) remains to be 14.23($). In accordance with Lemma

1, the growth of AV penetration leads to the increase of commuting cost of AV users, but has

no direct effect on the commuting cost of TV users. This is due to the competition among

the same user type (AV users) who intend to travel in similar time windows. However, it

does not affect the travel cost of other type of users (TV users) who intend to travel in other

time windows.

The total travel cost, represented by the dashed red curve decreases with the AV pene-

tration when it is relatively small; when it exceeds a certain value, the total cost increases

with the penetration. This is because increasing AV penetration reduces the total travel

time cost (enabled by a reduced value of time) but increases the individual cost of AV users

(due to the competition). The former effect dominates when AV penetration is small while

the latter is more significant when the penetration is large. The cut-off AV usage is 6054

where the penetration rate is greater than 0.6 (as anticipated in Proposition 1).

Figure 6 also shows that the total congestion delay time (the dashed blue curve) mono-

tonically increases with the AV penetration. When the time is multiplied by the value of

time of AV and TV users respectively, the total congestion delay cost (the solid red curve)

has a minimum at 5000, where the penetration rate is 0.5 (in line with Proposition 2).
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(a) ca, cb, and TC (b) TCD and TCDC

Figure 6: The changes of (a) individual travel costs and total cost, (b) total congestion delay
and total congestion delay cost with respect to the number of AV users at the short-run
commuting equilibrium.

4.2 Long-run evolution of the AV penetration

This section incorporates the AV usage cost δ function and explores the evolution of the AV

penetration in the long run. Following the analysis in Section 3, we introduce the δ(Na)

function defined in the interval Na ∈ [0, N ]; when Na = 0, δ(Na) > 0; when Na = N ,

δ(Na) < 0. Section 3.1 described numerous scenarios of the long-run equilibria with various

functional forms of δ. In reality, the barrier of adopting AVs is currently tremendous since

the purchase price of AV is high and the safety concern of self-driving is significant. It is thus

more relevant to focus on the scenarios reflecting such concerns. The numerical analysis will

therefore only consider scenarios that fall into Case I in Figure 4, with the understanding

that the equilibria yielded from Case II and III can be reviewed as special cases of those

from Case I and thus are expected to exhibit similar properties.

A particular δ function can be either monotonic or non-monotonic. We introduce two

particular functions to represent each and to illustrate the evolution of the dynamical system

established in Section 3.2 as well as the stability of long-run equilibria. The exponential

function

δexp(Na) = 10

{
1− exp

[
− 10000

(
1

Na

− 1

10000

)]}
− 3 (34)

is designated as the monotonic form, which is an adopted version from the well-known Newell
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model (Newell, 1961). The non-monotonic function is represented by a polynomial function

δpoly(Na) = −1.8× 10−10N3
a + 2.8× 10−6N2

a − 1.28× 10−2Na + 18.88 (35)

In the following sections, we will present numerical results with the two functions, respec-

tively. It would be interesting to identify and calibrate the “true” functions for δ, which is

beyond the scope of this study.

4.2.1 With the monotonic δexp function

Figure 7 depicts the long-run average cost of AV and TV users, which includes both the

commuting cost and usage cost. The usage cost of a TV is normalized to zero and thus

the long-run average cost is identical to the daily commuting cost, i.e., 14.23($). It is

represented by the dashed red line in Figure 7. The usage cost of an AV thus reflects

the discrepancy between the two vehicle types. Given the monotonic function Eq.(34),

the change of usage cost with the number of AV users is represented by the downward-

sloping dotted blue curve. The combined cost of AV users, representing by the solid red

curve, steadily increases from 16.97($) to the maximum 17.48($), and then drops to 10.49($)

when the AV penetration increases from zero to one. When the number of AV users is

5735, the long-run average cost of the two vehicle types is identical. Following the long-run

equilibrium condition Eq.(22), the scenario presented in Figure 7 involves two boundary

equilibria at E1
exp(N

1
a = 0, C1

eq = 14.23) and E3
exp(N

3
a = 10000, C3

eq = 10.49), and one interior

equilibrium at E2
exp(N

2
a = 5735, C2

eq = 14.23). Since the boundary equilibria E1
exp and E3

exp

satisfy condition (i) and (ii) of Proposition 4 respectively, they are expected to be stable

equilibrium statuses. The interior equilibrium E2
exp arises at which the AV cost decreases

with penetration – condition (iii) of Proposition 4 is violated. Thus, E2
exp is expected to be

an unstable equilibrium.
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Figure 7: Long-run average costs with the monotonic δexp function.

Figure 8 and Figure 9 present the evolutions of Na and (Ca−Cb) of the dynamical system

Eq.(26) starting from different initial Na values. The parameter ρ is set to be 0.001 (extensive

sensitivity analysis shows that the value of ρ only affects the convergence speed – it influences

neither the convergence nature nor the stability of any equilibrium status). It is shown in

Figure 8 and Figure 9 that the evolution processes starting from an initial Na ∈ [0, 5735)

converge to the lower boundary equilibrium E1
exp(0, 14.23) where the average cost of AV is

higher than TV (cost difference is positive) and no one uses AV. Those starting from an ini-

tial Na ∈ (5735, 10000] evolve to the upper boundary equilibrium E3
exp(10000, 10.49) where

the average cost of AV is below TV (cost difference is negative) and the whole population

commute with AV. Such an observation validates the anticipation from Proposition 4 that

E1
exp and E3

exp are stable equilibria. The two intervals [0, 5735) and (5735, 10000] are the ‘at-

traction domains’ of the two equilibrium points E1
exp and E3

exp respectively (for the definition

of ‘attraction domain’, one may refer to Bie and Lo, 2010).

The dynamical system starting exactly from the interior equilibrium (N2
a = 5735) stays

at this point. We find that any small deviation in the initial value leads to other statuses. For

example, with an initial Na = 5700 < N2
a , the system evolves to E1

exp; with Na = 5800 > N2
a ,

it evolves to E3
exp. In line with the analysis in Section 3.2, the numerical results demonstrate

that the interior equilibrium E2
exp is unstable since a small perturbation will destroy the
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equilibrium, from which the system will evolve to other status automatically.

Figure 8: Evolution of AV usage with different initial Na values (with the monotonic δexp
function).

Figure 9: Evolution of long-run average cost difference with different initial Na values (with
the monotonic δexp function).
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4.2.2 With the non-monotonic δpoly function

We now proceed to present the numerical results where the non-monotonic δpoly function

given in Eq.(35) prevails. Figure 10 shows how the long-run average costs of AV and TV users

change with the AV penetration. It is shown that the average usage cost δpoly (represented

by the dotted blue curve) oscillates up and down around zero leading the combined AV cost

Ca (solid red curve) oscillates in a parallel manner, with a range around Cb (dashed red line).

Such a system yields five equilibrium points, i.e., E1
poly(N

1
a = 0, C1

eq = 14.23), E2
poly(N

2
a =

1849, C2
eq = 14.23), E3

poly(N
3
a = 5220, C3

eq = 14.23), E4
poly(N

4
a = 8331, C4

eq = 14.23), and

E5
poly(N

5
a = 10000, C5

eq = 2.47). It is evident that E1
poly, E

5
poly, and E3

poly satisfy condition (i),

(ii), and (iii) of Proposition 4, respectively. Thus, they are expected to be stable equilibrium

that will attract the system to evolve from other statuses. The other two interior equilibria

with descending AV cost (E2
poly and E4

poly) are expected to be unstable equilibrium.

Figure 10: Long-run average costs with the non-monotonic δpoly function.

The non-monotonic δpoly function is implemented in the dynamical system to exam-

ine the existence and stability of the equilibria. It is shown in Figure 11 and Figure 12

that the dynamical system indeed entails five equilibrium points as listed above. The sys-
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tem will evolve to E1
poly, E

3
poly, and E5

poly when the initial Na value falls in the interval of

[0, 1849), (1849, 8331), and (8331, 10000] respectively. This endorses the stability of these

three equilibria and identifies their attraction domains respectively. The other two equilibria

E2
poly(N

2
a = 1849) and E4

poly(N
4
a = 8331) act as the watersheds of the attraction domains.

When starting from exactly E2
poly or E4

poly, the system will stay; a small deviation in the

initial Na will lead the system to one of the three stable equilibrium statuses (E1
poly, E

3
poly,

and E5
poly), implying that E2

poly and E4
poly represent an unstable equilibrium status each.

As a remark, extensive sensitivity analysis is conducted to test the robustness of the

results involving various parameter values and different forms of the δ function. We find that

the general observation – the stability of the long-run equilibrium is governed by Proposition

4 – is robust to the variations. The parameter values will influence where equilibrium arises

and how fast the system converges to equilibrium.

Figure 11: Evolution of AV usage with different initial Na values (with the non-monotonic
δpoly function).
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Figure 12: Evolution of long-run average cost difference with different initial Na values (with
the non-monotonic δpoly function).

4.2.3 Effect of subsidy

As analytically examined in Section 3.3, discrepancy exists in the levels of efficiency yielded

from different equilibrium points. In terms of the system-wide long-run total cost LTC

defined in Eq.(31), the equilibrium confronted with condition (ii) of Proposition 4 yields

the lowest LTC and thus is the most efficient equilibrium (system optimum). However, the

attraction domain of this equilibrium does not cover the whole feasible domain. Instead,

in many cases the dynamical system converges to other equilibrium status and is stuck in

an inefficient equilibrium. The status quo in practice can be interpreted by an inefficient

equilibrium status where the cost of AV is much higher than TV and the AV penetration is

almost zero in the population (such as E1
exp and E1

poly). If we consider commuters as lower-

price seekers, they do not have the incentive to adopt the AV. Thus, small increments in the

AV penetration are unstable – the system is likely to rebound to the initial equilibrium and

stabilize thereafter.

To swerve the system from the inefficient equilibrium and steer it to the optimum, external

intervention is necessary. We examine the effect of subsidy scheme proposed in Section 3.3,

the amount of which is given in Eq.(33). In the numerical analysis, the buffer amount ε is

set to be 0.1 to retrieve the effect of a fully tailored subsidy scheme with minimum amount.

Based on the dynamical system with δpoly, the tailored subsidy scheme is presented in Figure

13. Comparing with Figure 10, the subsidy is in effect only when the long-run average cost
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of AV exceeds that of TV and the amount is equal to to cost difference (plus a small buffer).

Figure 14 and Figure 15 present the effect of the subsidy scheme. It is shown that provided

with the minimum subsidy, the dynamical system is able to converge to the system optimum

E5
poly with the lowest LTC, regardless of the initial status.

Figure 13: A fully tailored subsidy scheme for the dynamical system with δpoly.

Figure 14: Evolution of AV usage with AV subsidy.
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Figure 15: Evolution of long-run average cost difference with AV subsidy.

In the subsidy formula Eq.(33), a buffer term (a small positive constant ε) is added to

ensure that the subsidy is strictly greater than the cost difference. The value of ε determines

the convergence speed of the system. A sensitivity test is conducted to examine the effect.

Figure 16 shows the evolution of Na from the same initial point but with various values of

ε. The benchmark ε is 0.1, in line with previous examples. When ε takes the value of 0.025,

0.05, 0.1, 0.2, and 0.4, the social optimum is achieved after 10000, 7200, 3680, 2080, and 1440

iterations, respectively. It is shown that increasing the amount of buffer term (AV subsidy)

will speed up the convergence to social optimum, but the marginal effect decreases with the

buffer value.
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Figure 16: Convergence of AV usage with various ε.

5 Conclusions

To envisage the adoption of autonomous vehicles in both short run and long run, this paper

investigates the short-run traffic equilibrium under a given AV penetration and explores

the long-run travel equilibrium with an endogenous AV penetration. When examining the

long-run equilibrium with AVs, this paper takes into account factors other than travel cost

components. This paper is the first analytical framework in the literature to consider both

short-run and long-run equilibria with AVs, which sheds light on future AV adoptions, car

ownership, and traffic management.

Different from many previous studies focusing on a pure AV context, the short-run model

considers a more general situation where the traffic is a mixture of AVs and TVs. This will

reflect the reality for years before the whole stock of TVs is replace by AVs. In light of recent

empirical studies, the model further incorporates the prediction that the value of travel time

can be substantially reduced by using AVs. Base on this, we establish the short-run morning

commute equilibrium where commuters optimize their departure time choices. We find that

the two types of commuters travel in different time windows. AV users travel around the

desired arrival time t∗ where the queuing time is longer and TV users travel in the earlier

and later windows where the schedule delay cost is larger. Such a separation is motivated

by the divergent preferences towards congestion delay and schedule delay.

The observation from the short-run analysis has important implications. Firstly, due to
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the competition among the same type of users who intend to travel in a same time window,

the more people use AV, the higher the cost is for AV users. In contrast, the AV penetration

does not affect the travel cost of TV users who intend to travel in other time windows.

Secondly, while an AV allows flexibility for the commuter during the trip and reduces the

cost for a unit of travel time, it will result in more congestion delays. This is to say, when

delay is cheaper for commuters, they will queue more to seek less schedule delay cost. Thirdly,

the optimal AV penetration (efficient in the short run) is determined by the tradeoff between

in-vehicle travel time cost and schedule delay cost.

The short-run analysis assumes the vehicle type that each commuter owns is fixed and

thus the AV penetration rate is exogenously given. When considering a longer time period,

however, commuters may replace their vehicles and may shift to another type of vehicle in

the meantime. Therefore, the long-run analysis takes into account the endogenous vehicle

type choice, which depends on the long-run average cost of using AV as oppose to TV. This

includes not only the daily commuting cost but also an ownership-related external cost. The

average usage cost δ term is introduced to capture commuter’s perception of the relative

external cost or benefit associated with using AV with respect to TV, which is driven by

the number of AV users. In this context, the long-run equilibrium condition is established

with the existence of equilibrium guaranteed. Multiple equilibria may arise depending on

the relationship between Ca and Cb. By examining the dynamical system where the AV

penetration evolves over time with the change of Ca, the conditions for an equilibrium to

be a stable one is established, which falls into three different scenarios. One of the scenario

reflects the status quo in practice, where the combined cost of an AV is higher than TV, and

the AV penetration rate is very low. There exists other more efficient equilibrium with lower

total cost system-wise. However, because the status quo is a stable equilibrium, external

intervention is needed to drive it elsewhere.

We also examine the effect of subsidy provided to AV users or relevant stake holders as a

compensation for their expenses or income. In order to prevent the system from staying at

an inefficient equilibrium and further steer it to the optimum, the amount of subsidy should

effectively cover the cost difference whenever the long-run average cost of AV exceeds that

of TV. Numerical experiments show that even with the minimum subsidy, the dynamical

system is able to converge to the system optimum with the lowest system cost, regardless of

the initial status.

The analysis of this paper can be fruitfully extended in the following avenues. Firstly,

the road capacity may be improved when AVs come into play. It is generally expected

that when there is a larger proportion of AVs in the mixed traffic, the vehicles could be

better coordinated and thus yield a larger effective road capacity. Future studies could
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investigate the traffic equilibrium where the road capacity is driven by the AV penetration

(Lamotte et al., 2017; van den Berg and Verhoef, 2016), or even stochastic (Lindsey, 2009;

Xiao et al., 2015). However, it should be noted that how AVs and TVs are mixed on road

may significantly affect the capacity even with the same AV penetration. Secondly, this study

focuses on the split of commuters into AV and TV while treating the total demand as fixed.

In reality, not only commuters have other transport options, public transit operators could

also upgrade their services to compete with the driving mode. Following the notion of Zhang

et al. (2016, 2018); Zhang and Liu (2019), future studies could examine the responses of both

transit operators and commuters in a multi-modal system. Thirdly, parking is usually an

important concern in daily commuting with private cars and may influence travel choices

when the availability is limited (Arnott et al., 1991; Zhang et al., 2008; Yang et al., 2013). It

is expected that autonomous vehicles can search for parking in larger areas with much less

human effort. Liu (2018) and Zhang et al. (2019) studied the departure time and parking

location choices when all commuters travel with AV. We expect that more insights can be

generated by examining the problem with endogenous vehicle type choices and mixed traffic

characteristics to reflect the immediate future.
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