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Abstract 

 The current study tested whether the magnitude representation acuities of different 

types and ranges of numbers, as proposed in the integrated theory of numerical development 

(Siegler, 2016), are significantly related to each other.  A sample of 123 kindergarteners was 

assessed four times over the period from kindergarten to fourth grade on magnitude 

representation acuities of different types and ranges of numbers (nonsymbolic numerical 

magnitude in kindergarten, small whole-number magnitude in grade 1, large whole-number 

magnitude in grade 2, rational number magnitude in grade 4).  The children were also 

evaluated for their mathematics achievement, intelligence, working memory capacity, reading 

skills, attention level, and multiplication skills.  The results showed that the magnitude 

representation acuities of different types and ranges of numbers were significantly related to 

each other, and these numerical magnitude representation acuities were either directly or 

indirectly related to children’s mathematics achievement in grade 4.  The findings from this 

work provide empirical support to the core assumption of the integrated theory of numerical 

development and highlight the significance of numerical magnitude representations at an 

early developmental stage to the acquisition of more advanced numerical magnitude 

representations in later elementary school years. 

 Keywords: numerical magnitude, mathematics, development  



NUMERICAL DEVELOPMENT  3 
 

Are the Acuities of Magnitude Representations of Different Types and Ranges of Numbers 

Related?  Testing the Core Assumption of the Integrated Theory of Numerical Development. 

Children’s mathematical development has become a hot topic in the field of 

developmental psychology.  A search using the keyword “math” in PsycArticles yielded a 

total of 10382 results between the period of 2010 to 2019, a figure doubling that of the 

previous decade.  Researchers’ attention towards children’s numerical development is 

supported for a number of reasons.  First, being members of the numerate society, our 

mathematics skills are related to important outcomes in our lives, such as educational 

attainment, financial status, and psychological well-being (Parsons & Bynner, 2005; Ritchie 

& Bates, 2013).  Second, mathematics achievement in adolescence is strongly predicted by 

numerical skills at the age of 4 (Watts, Duncan, Siegler, & Davis-Kean, 2014), suggesting 

that early numerical skills play a vital role in our mathematical development.  Third, 

interventions targeting improvement in children’s numerical skills have been shown to be 

effective in boosting children’s arithmetic performance and mathematics achievement (e.g., 

Fuchs et al., 2013; Hyde, Khanum, & Spelke, 2014; Siegler & Ramani, 2009).  

 While there has been increasing attention paid to the field of numerical development, 

researchers have different foci within the field.  Some researchers concentrated on the core 

systems of our nonsymbolic numerical magnitude representations (Feigenson, Dehaene, & 

Spelke, 2004; Hyde, 2011), while others focused on comparing the relations between the 

acuities of varying forms of numerical magnitude representations (symbolic vs. nonsymbolic) 

and children’s mathematics achievement (DeSmedt, Noël, Gilmore, & Ansari, 2013; 

Schneider, Beeres, Coban, Merz, Schmidt, Stricker, & DeSmedt, 2016).  Most recently, the 

topic of rational numbers has become increasingly popular, probably based on its strong 

relation with mathematics achievement (Siegler et al., 2012; Torbeyns, Schneider, Xin, & 

Siegler, 2014) as well as the difficulties faced by children, adolescents, and adults in 
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processing them (Kloosterman, 2010; Rittle-Johnson, Siegler, & Alibali, 2001; Siegler & 

Lortie-Forgues, 2015).  These difficulties may stem from the nature of rational numbers 

itself (e.g., fractions, for example, consist of two whole numbers and lead people to 

automatically activate their primitive representation of whole numbers, Vamvakoussi, 2015), 

as well as certain culturally contingent factors (e.g., inadequate understanding of rational 

numbers among teachers; see Siegler & Lortie-Forgues, 2017, for a summary).  Although 

these topics seem rather diverse, they can be captured by a single unifying theme - the 

representation of numerical magnitude.  

An Integrated Theory of Numerical Development 

Synthesizing the existing literature on numerical development, Siegler and colleagues 

(Siegler, 2016; Siegler, Thompson, & Schneider, 2011) proposed the integrated theory of 

numerical development.  According to this theory, the core of children’s numerical 

development lies in their continuously improving understanding of numerical magnitude.  

The central assumption of this theory is that the numerical magnitude of all rational numbers 

can be located on the mental number line, which covers an increasingly larger range over 

time.  Starting with small-whole numbers, the mental number line expands to the right to 

cover larger whole numbers, interstitially to cover fractions and decimals, and to the left to 

cover negative numbers.  Numbers seem to be represented differently in varying 

developmental stages, and children’s response patterns in the number line estimation task 

reflect such changes.  Within a particular number range, children tend to exhibit a 

logarithmic response pattern for whole numbers (smaller whole numbers are separated further 

apart than larger whole numbers) initially.  With increasing exposure to whole numbers 

within that number range, the representation of numbers becomes increasingly linear (equal 

spacing between all consecutive whole numbers).  This change in response patterns 

observed in the number line estimation task is known as the log-to-linear shift (Siegler, 
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Thompson, & Opfer, 2009; but see Barth & Paladino, 2011, for an alternative explanation of 

the response pattern based on proportional judgment).  To truly understand numbers, 

especially fractions and decimals, we need to be aware of the fact that all forms of rational 

numbers have magnitudes that can be represented on particular points on the number line.  

As this numerical magnitude understanding is crucial to our numerical development, our 

numerical magnitude understanding should be causally related to our mathematics skills, and 

interventions that lead to improvement in numerical magnitude understanding should also 

bring about improvement in our mathematics achievement.  

On top of proposing these hypotheses concerning the development of numerical 

magnitude, Siegler (2016) further proposed four major stages of development for our 

numerical magnitude understanding.  Initially, we are born with a nonsymbolic numerical 

magnitude system (Izard, Sann, Spelke, & Streri, 2009; Xu & Spelke, 2000) that becomes 

increasingly precise with age.  While 3-year-olds children can discriminate numerosities 

differing in a ratio of 3:4, acuity improves to 5:6 among 6-year-olds (Halberda & Feigenson, 

2008).  With an increasingly precise representation of nonsymbolic numerical magnitude, 

we begin associating number symbols with this nonsymbolic numerical magnitude 

representation (Dehaene, 2005; Wong, Ho, & Tang, 2016) so that these number symbols are 

linked to their referents and acquire their meanings.  We then expand the range of numbers 

on our mental number line to include increasingly larger whole numbers. In the final step, we 

acquire the meanings of other forms of numbers (e.g., fractions and decimals) by realizing 

that although these numbers differ from whole numbers in various important ways (e.g., the 

absence of unique successors; does not necessarily get larger after multiplication, etc.), all 

rational numbers have magnitudes and therefore have their corresponding places on the 

mental number line.  As predicted by the integrated theory of numerical development, the 

acuities of all these numerical magnitude representations are significantly related to our 
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mathematics achievement (i.e., nonsymbolic numerical magnitude: Chen & Li, 2014; small 

whole-number magnitude: Schneider et al., 2016; large whole-number magnitude: Booth & 

Siegler, 2006; Friso-van den Bos et al., 2015; rational-number magnitude: Bailey, Hoard, 

Nugent, & Geary, 2012; Torbeyns et al., 2014).  Although children from different cultures 

seem to differ in terms of their understanding of numerical magnitude, its role in children’s 

mathematics achievement seems to be universal (Siegler & Mu, 2008; Torbeyns et al., 2014).  

Experimental evidence also supports the relations between the acuities of these numerical 

magnitude representations and children’s arithmetic skills and mathematics achievement 

(nonsymbolic numerical magnitude: Hyde et al., 2014; small whole-number magnitude: 

Siegler & Ramani, 2009; large whole-number magnitude: Kucian et al., 2011; rational-

number magnitude: Fuchs et al., 2013).  These data empirically support one of the 

assumptions of the integrated theory of numerical development: our understanding of 

numerical magnitude underlies the core of our numerical development. 

The Linkages Between the Magnitude Representations of Different Types and Ranges of 

Numbers 

 While Siegler (2016) has posited several major hypotheses regarding the development 

of numerical magnitude representation, these hypotheses are built upon a core assumption of 

the integrated theory of numerical development, i.e., “the development of numerical 

magnitude knowledge involves representing increasingly precisely an increasingly broad 

range of numbers on a mental number line” (Siegler, 2016, pp 353-354).  If all types and 

ranges of numbers are represented on the same mental number line, individual differences in 

the acuities of magnitude representations of different types and ranges of numbers should be 

related to each other even though the exact representation acuities for different types and 

ranges of numbers may differ due to different processing demands (e.g., place-value concept 

is needed for processing large, but not small, whole numbers).  Albeit being stated as a form 
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of conclusion in the integrated theory of numerical development, the longitudinal relations 

among the acuities of numerical magnitude representations for different types and ranges of 

numbers remain untested.  Evaluating such an assumption is of high theoretical importance 

as it may affect how researchers in the field conceptualize the construct of numerical 

magnitude.  While this hypothesis seems straightforward, there have been various 

theoretical accounts and alternative hypotheses suggesting otherwise.  

First, the relation between nonsymbolic and symbolic numerical magnitude 

representations has been debated.  A number of researchers have suggested that 

nonsymbolic numerical magnitude representation provides the basis upon which our 

symbolic numerical magnitude representation can be developed (Dehaene, 2004; Geary, 

2013).  Children then learn the meaning of the number symbols through making associations 

with nonsymbolic numerical magnitude representations.  Yet, other researchers have 

suggested that the two develop independently (Carey, 2001; LeCorre & Carey, 2007; Lyons, 

Ansari, & Beilock, 2012; Noël & Rousselle, 2011).  Empirical evidence tends to be mixed 

on this issue.  While findings from various studies support the relation between nonsymbolic 

and symbolic numerical magnitude representation acuities (Libertus, Odic, Feigenson, & 

Halberda, 2016; Toll, VanViersen, Kroesbergen, & VanLuit, 2015; VanMarle, Chu, Li, & 

Geary, 2014), other studies did not observe the same relation (Desoete, Ceulemans, 

DeWeerdt, & Pieters, 2012; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013).  The 

significance of our nonsymbolic numerical magnitude representation to our symbolic 

numerical magnitude representation for both small and large numbers, in particular, or our 

mathematics achievement, in general, remains controversial.  

Second, while much empirical evidence indicates that children’s representation of 

symbolic whole-number magnitude becomes increasingly precise and linear over an 

increasing number range across development (Siegler et al., 2009), there is little empirical 
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evidence showing that individual differences in the acuities of symbolic whole-number 

magnitude representations of varying number ranges are related to each other.  On one hand, 

Thompson and Opfer (2010) proposed that children may learn the magnitude of large 

numbers through making analogies with small numbers (e.g., seeing the similarities between 

how 600 is located between 0 and 1000 and how 6 is located between 0 and 10).  On the 

other hand, the log-to-linear shift observed in many studies (Siegler et al., 2009) suggests that 

children may not make proper use of their understanding of small whole numbers to grasp 

larger whole numbers in a spontaneous manner because they can demonstrate logarithmic 

response patterns in a particular number range even though they do exhibit a linear response 

pattern in a smaller number range (Siegler & Opfer, 2003).  If children do not spontaneously 

generalize their representation of small-whole numbers to understand large-whole numbers, it 

is unclear whether a precise representation of small whole-number magnitude actually 

facilitates the acquisition of large whole-number magnitude in natural development.  Given 

the complexity of our symbolic number system, knowledge pertaining to the symbolic 

number system, such as children’s understanding of place value, may actually play a larger 

role in the acquisition of large whole-number magnitude.  An empirical test on the relation 

between small and large whole-number magnitude representation seems necessary.  

Third, while various researchers have proposed that the understanding of whole-

number magnitude may facilitate the acquisition of rational-number magnitude as both 

“require the same type of encoding of each number relative to other numbers” (e.g., the 

encoding of 400 within the range of 0 to 1000 is similar to encoding 2/5 within the range of 0 

to 1; Bailey, Siegler, & Geary, 2014, p. 777), the whole number bias, on the other hand, 

suggests that the representations of whole-number versus rational-number magnitudes are 

qualitatively different.  The whole-number bias refers to the overgeneralization of whole-

number knowledge to rational numbers, resulting in errors (Ni & Zhou, 2005).  For 
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example, many children think that 1/4 is greater than 1/3 because 4 is greater than 3, and 0.83 

is smaller than 0.273 because 83 is smaller than 273 (Alibali & Sidney, 2015; Rittle-Johnson 

et al., 2001).  This whole number bias is suggested to be based on componential processing, 

meaning that people process rational numbers through their components (i.e., numerators and 

denominators in fractions) instead of the integrated magnitude as a whole (Bonato, Fabbri, 

Umiltà, & Zorzi, 2007; Braithwaite & Siegler, 2018).  This is probably because the 

components, which are usually natural numbers, are more primitive and thus more 

automatically activated from our long-term memory (Tzelgov, Ganor-Stern, Kallai, & Pinhas, 

2014; Vamvakoussi, 2015).  Only with adequate experience with rational-number 

magnitudes would people be able to override the intuitive processing (i.e., focusing on the 

components) with the analytic processing (i.e., integrating different components to access the 

magnitude of the rational number; Alibali & Sidney, 2015; Vamvakoussi, Van Dooren, & 

Verschaffel, 2012).  Although whole-number bias does tend to decrease with age 

(Braithwaite & Siegler, 2018; Durkin & Rittle-Johnson, 2015), signs of whole-number bias 

were still observed among eighth graders (Braithwaite &Siegler, 2018; Obersteiner, Van 

Hoof, Verschaffel, & Van Dooren, 2016).  The whole number bias suggests that the role of 

whole-number magnitude understanding in the acquisition of rational numbers may not be 

consistent with the proposal from the integrated theory of numerical development, and a 

direct examination of such a relation is therefore needed. 

Fourth, although there is evidence supporting the relations between the acuities of 

numerical magnitude representations in certain consecutive stages of development (e.g., 

Libertus et al., 2016; Toll et al., 2015; VanMarle et al., 2014; Mou et al., 2016; Rinne, Ye, & 

Jordan, 2017; Van Hoof, Verschaffel, & Van Dooren, 2017; Vukovic et al., 2014), it remains 

questionable whether the acuity of the earliest form of numerical magnitude representation is 

related to the acuity of the most advanced form of numerical magnitude representation after 
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all the intermediate stages of development and considering potentially confounding variables.  

The study by Fazio, Bailey, Thompson, and Siegler (2014) may provide a partial answer to 

this.  In that study, the acuities of magnitude representations of nonsymbolic versus 

symbolic numerical magnitude representations of both whole numbers and fractions among 

fifth graders were examined.  Although the acuities of both symbolic and nonsymbolic 

numerical magnitude representations uniquely predict mathematics achievement, the relation 

between the acuities of symbolic and nonsymbolic numerical magnitude just missed the 

cutoff for statistical significance (p = .10).  However, limited by the relatively small sample 

size (n = 53) and the cross-sectional nature of the study, the findings from Fazio et al. (2014) 

did not provide a complete answer to the proposed longitudinal relation between the acuities 

of the earliest and most advanced from of numerical magnitude representations.  Given 

various other theoretical accounts, such as the proposal that nonsymbolic and symbolic 

numerical magnitude representations are initially independent and only become associated 

with each other at a later stage of development (LeCorre & Carey, 2007; Noël & Rousselle, 

2011), the acuity of nonsymbolic numerical magnitude representation may or may not be 

longitudinally predictive of the acuity of more advanced forms of symbolic numerical 

magnitude representation, and the longitudinal relations among the acuities of magnitude 

representations of different types and ranges of numbers need to be examined.   

This study was therefore set out to examine the longitudinal relations among the 

acuities of numerical magnitude representations of different forms and ranges of numbers 

through a four-year longitudinal study.  Children’s acuities of magnitude representations of 

different types and ranges of numbers were tested using different numerical magnitude tasks 

in the corresponding developmental periods. As various domain-general cognitive measures 

(e.g., intelligence, working memory, attention), and reading performance have been shown to 

be significantly related to the acuities of magnitude representations of different types and 
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ranges of numbers (Jordan et al., 2013; Mou et al., 2016; Namkung & Fuchs, 2016; Resnick 

et al., 2016), the effects of these potentially confounding factors need to be controlled for.  A 

multiplication measure, a proxy of mathematical skills that was presumably less dependent 

on magnitude understanding because multiplications are mainly learned through rote verbal 

learning instead of relying on magnitude understanding (Dehaene, 2001; also see Lee & 

Kang, 2002, and Zhou et al., 2007, for relevant behavioural and neurological findings), was 

further included as a control variable to exclude the possibility that the performance in 

various numerical magnitude tasks were related simply because they all involved numbers.  

The significant relations observed among the acuities of magnitude representations of 

different types and ranges of numbers, after considering a comprehensive list of control 

variables, would provide empirical support to the core assumption made in the integrated 

theory of numerical development: the development of numerical magnitude understanding is 

about the ability to represent an increasingly broad range of numbers on the mental number 

line with increasing precision.  The relations between the acuities of these numerical 

magnitude representations and children’s mathematics achievement were also examined.  

The representation acuity of numerical magnitude, as indicated by children’s performance in 

various numerical magnitude measures, is expected to be related to the mathematics topics 

that are closely related to numbers (e.g., number knowledge, arithmetic), but not those that 

are less related to numbers (e.g., shapes and space, measures).  

Method 

Participants and Procedures 

 The data reported in the current study came from a longitudinal study on children’s 

numerical development.  The initial sample consisted of 210 Chinese kindergarteners (mean 

age = 6 years and 1 month; SD = 4 months; 110 of them were male) from 17 different 
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kindergartens in Hong Kong1.  All the participants spoke Cantonese as their mother tongue. 

As a result of attrition, 123 of the participants remained in the final sample (mean age = 10 

years and 1 month; SD = 4 months; 65 of them were male).  The attrition was mainly 

because of parental refusal of participation as well as failure to contact the participants during 

the follow-up phases.  The final sample (FS) did not differ significantly from the drop-out 

sample (DOS) in the two measures assessed at Time 1, i.e., the nonsymbolic numerical 

magnitude measure, mean zFS = .056, SD = .794, mean zDOS = -.080, SD = .834, t(208) = 1.19, 

p = .234, and the working memory measure, mean zFS = .012, SD = 1.11, mean zDOS = -.018, 

SD = .813, t(207.434) = .228, p = .820.  In Hong Kong, most children learn one-digit 

numbers when they are in kindergarten.  Multi-digit numbers, fractions, and decimals are 

introduced in grades 1, 3, and 4, respectively.  Children should have had adequate 

experience working with the relevant form of numbers by the time the relevant numerical 

magnitude representation was assessed.  

  Parental consent was obtained through the kindergartens before the initial assessment.  

The participants were then assessed in their own kindergartens at Time 1 when they were 6-

years-olds (mean age = 6 years and 1 month).  They were assessed three more times (Time 

2: middle of grade 1; mean age = 6 years and 6 months; Time 3: end of grade 2, mean age = 

8 years and 1 month; Time 4: end of grade 4, mean age = 10 years and 1 month; SD = 4 

months for all four time points) in their homes.  The measures were conducted at different 

time points: measures of nonsymbolic numerical magnitude representation acuity and 

working memory at Time 1 (kindergarten); measures of small-number magnitude 

representation acuity and intelligence at Time 2 (Grade 1); measures of large-number 

magnitude representation acuity, word reading, multiplication skills, and demographic 

 
1There was no effect of kindergarten on participants’ performance in any of the measures (ps > .1 in all Kruskal-

Wallis tests). The effect of elementary school on participants’ performance was not assessed due to the small 

number of participants per school (i.e., < 2). 
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information at Time 3 (Grade 2); and measures of rational-number magnitude representation 

acuity, mathematics achievement, and attention rating at Time 4 (Grade 4).  The measures 

were conducted with appropriate timing (i.e., after the relevant concept had been formally 

introduced in school).  Each assessment took roughly two hrs to complete.  All the 

assessments were conducted either by the author or by trained psychology majors.  

Souvenirs and/or supermarket coupons were given to the participants after each assessment 

as tokens of appreciation. 

Measures 

All the numerical magnitude measures were computerized measures, while the 

mathematics achievement and control measures were conducted either verbally or using 

paper and pencil. 

Nonsymbolic numerical magnitude representation acuity.  Participants’ acuity of 

nonsymbolic numerical magnitude representation was assessed employing two nonsymbolic 

tasks - the nonsymbolic comparison task and nonsymbolic arithmetic task.  Both tasks rely 

on the same nonsymbolic numerical magnitude system (Barth et al., 2006; Feigenson et al., 

2004; McCrink & Spelke, 2010; Xu & Spelke, 2000), and the ratio effect observed for both 

tasks supports such a claim (Barth et al., 2006; Halberda & Feigenson, 2008; McCrink & 

Spelke, 2010).  The nonsymbolic numerical comparison task was adopted from Piazza, 

Izard, Pinel, Le Bihan, and Dehaene (2004).  For each item, participants were presented 

with two arrays of dots, and they had to identify the array with more dots by pressing the 

corresponding keys (“F” when the left array was larger; “J” when otherwise).  One array 

always consisted of 16 dots (which appeared on either side in a pseudo-random manner), 

while the other array consisted of 10 to 22 dots (resulting in 10 different ratios from 1.6 to 

1.063).  There were five practice trials with feedback followed by 50 experimental trials.  
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The larger array was presented on the left side for half of the trials, and on the right for the 

other half of the trials.   

The nonsymbolic arithmetic task consisted of three conditions: addition, subtraction, 

and multiplication. The nonsymbolic addition condition was constructed based on the a 

similar task from Gilmore, McCarthy, and Spelke (2010), while the nonsymbolic subtraction 

and multiplication conditions were developed by the author based on similar logic.  For all 

three conditions, the participants first saw an array of dots in the lower-left corner.  The dots 

were then covered up by a rectangular shade.  With the addition condition, another array of 

dots moved into the shade, while in the subtraction condition, a number of the dots in the 

original array moved away from the shade.  In the multiplication condition, one, two, or 

three identical shades came from the original shade, meaning that the array was multiplied by 

2, 3 and 4, respectively (see Figure 1)2.  Animations illustrating the aforementioned 

operations, with the shades faded away to reveal the transformed array at the end, were 

shown to the participants together with experimenters’ explanation before each condition so 

as to ensure their understanding.  The participants had to judge whether the final array in the 

shade(s) was more or less numerous than the comparison array presented on the right side 

and then respond by pressing the corresponding keys (“F” when the left array was more 

numerous; “J” when otherwise).  There were three practice trials with feedback followed by 

24 experimental trials for each of the three conditions.  In both nonsymbolic tasks, all the 

dots presented varied in size.  The average dot size was positively related to numerosity in 

half of the trials and negatively related to numerosity in another half.  These two types of 

trials were intermixed, which prevented participants from judging numerosity based on total 

occupied area.  No time limit was imposed on the nonsymbolic numerical magnitude tasks, 

 
2 This approach is expected to make the idea of multiplication more explicit to the participants as compared to 

the procedures used by McCrink and Spelke (2010).   
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but both the instruction (they were explicitly told not to count) and reaction times (mean 

reaction time ≤ 2.2 s; SD ≤ .8s) suggested that the participants did not count during these 

tasks.  As indicated by Inglis and Gilmore (2014), performance in these tasks was reflected 

by accuracy3.  Cronbach’s ɑs were .63 and .68 for the two nonsymbolic tasks. 

Small whole-number magnitude representation acuity.  The number comparison 

task, adopted from the Dyscalculia Screener from Butterworth (2003), was utilised to 

determine participants’ acuity of symbolic numerical magnitude representation of small 

whole numbers.  Participants were shown two Arabic numerals ranging from 1 to 9, and 

they had to pick the one with a larger numerical value.  They pressed the “F” key when the 

numeral on the left was larger, and “J” when it was otherwise.  The larger number was 

presented on the left side for half of the trials, and on the right on the other half of the trials.  

There were four practice trials with feedback followed by 36 experimental trials.  As the 

overall accuracy was high (mean accuracy >95%), the reaction time (in seconds), which is a 

commonly used index that captures individual variation in the number comparison task (De 

Smedt et al., 2013), was employed as the indicator of participants’ symbolic numerical 

magnitude-processing skills.  The Cronbach’s α of the reaction time was .95. 

Large whole-number magnitude representation acuity.  The whole number-line 

task, modified from Siegler and Opfer (2003), was adopted to assess participants’ 

representation acuity of numbers ranging from 0 to 1000.  The participants saw a number 

line on the computer screen with 0 on the left and 1000 on the right.  They also saw a 

number above the line, and they had to locate the number to the right position on the number 

line.  There were three practice trials (i.e., 500, 250, 750) with feedback, and the feedback 

focused on participants’ performance (i.e., whether their estimates appeared to be accurate) 

 
3Replacing accuracy with inverse efficiency (accuracy divided by reaction time) render the correlations with 

large number magnitude and rational number magnitude non-significant.  
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instead of giving them the correct answers (e.g., 500 should be over here).  There were 22 

experimental trials (items: 3, 7, 19, 52, 103, 158, 240, 297, 346, 371, 438, 475, 502, 586, 613, 

690, 721, 760, 835, 874, 907, and 962) with an oversampling over the small number range. 

Such oversampling serves as increase the sensitivity of the measure as children make larger 

errors on numbers over this range (Siegler & Booth, 2004).  Similar to many other studies 

(Schneider et al., 2018), participants’ performance was indicated by the percentage absolute 

error (PAE) calculated using the following formula: 𝑃𝐴𝐸 =
|estimate−target number|

range
.  

Cronbach’s ɑ of this task was .85.  

Rational-number magnitude representation acuity.  Both fraction and decimal 

number-line tasks were employed to more comprehensively capture the construct of rational-

number magnitude representation as stated in the integrated theory of numerical development 

(Siegler, 2016).  In the fraction number-line task, participants were shown a number line 

ranging from 0 to 1. For each item, they saw a fraction (ranging from 0 to 1) above the 

number line, and their task was to locate the fraction to its corresponding position on the 

number line using the mouse.  The items were 1/19, 2/25, 1/9, 3/16, 1/5, 2/9, 4/15, 1/3, 6/17, 

9/22, 3/7, 4/9, 1/2, 7/12, 3/5, 11/18, 2/3, 12/17, 3/4, 4/5, 11/13, 7/8, 10/11, and 22/23.  The 

decimal number-line task was similar to the fraction number-line task except that the 

participants saw decimals instead of fractions above the number line.  The decimals had 

similar numerical values as the fractions in the fraction number-line task, but they were 

rounded to different decimal places, with one-third of the items being rounded to the tenth 

(.1, .2, .4, .5, .6, .7, .8, .9), hundredth (.08, .22, .33, .44, .61, .66, .75, .85), and thousandth 

decimal places (.053, .188, .267, .353, .429, .583, .875, .957), respectively.  The rounding to 

different decimal places prevented children from using the whole number strategy (i.e., to 

ignore the “0.” and treat the decimal numbers as integers).  To familiarize the participants 

with the task, the same number line was present on the instruction page so the participants 
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could try moving the cursor on the number line.  There was a total of 24 experimental trials 

in both tasks, and the items were evenly distributed on the number line.  Both measures 

yielded robust reliabilities (Cronbach’s α = .91 for fraction number line and .89 for decimal 

number line).  Performance in these two tasks was indicated by PAE.  

Mathematics achievement.  Participants’ mathematics achievement was evaluated 

using the Learning and Achievement Measurement Kit 3.0 (LAMK 3.0; Hong Kong 

Education Bureau, 2015).  The LAMK 3.0 is a series of achievement tests developed by the 

local education bureau to assess students’ achievement in three major subjects (i.e., Chinese, 

English, and mathematics).  The fourth-grade mathematics version employed in this study 

covered all major topics in fourth-grade mathematics curriculum, including numbers (e.g., 

number knowledge, eight items; arithmetic, 14 items; numerical magnitude, six items), 

measures (six items), shapes and space (10 items), and data handling (six items). Participants 

were given 45 minutes to complete all 50 items.  The raw score was utilised to indicate 

participants’ mathematics achievement.  The Cronbach’s α was .91 for this task.  

Control measures. 

Working memory.  The backward digit span was employed to assess participants’ 

working-memory capacity.  The experimenter orally presented a series of digits at a pace of 

one digit per second.  After listening, the participants had to recite the digits backward.  

The participants had to recall all digits correctly to gain one mark.  A practice trial was 

presented to ensure participants’ understanding.  A total of 10 items was arranged in five 

difficulty levels, from two digits per item in level 1 to six digits per item in level 5.  The task 

was discontinued when the participant failed both items in a level.  Raw scores were used in 

the analyses.  The Cronbach’s α was .50. 

Intelligence.  Participants’ nonverbal intelligence was assessed using Raven’s 

Standard Progressive Matrices (Raven, 1976).  For each item, participants were shown a 
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visual pattern with a missing piece.  They had to choose one out of six-to-eight pieces that 

could fill the missing space in the visual pattern.  There was a total of 36 items in the short 

form (Sets A to C).  The Cronbach’s α was .84.  Raw scores were converted into scaled 

scores based on the local norm.  

Reading. The word reading subtest of the Hong Kong Test of Specific Learning 

Difficulties in Reading and Writing for Primary School Students, second edition (HKT-P(II)) 

(Ho et al., 2007) was used to assess participants’ reading skills.  The HKT-P(II) is a locally 

standardized assessment tool for the diagnosis of dyslexia in the local setting.  In the word-

reading subtest, the participants are asked to read aloud a list of 150 two-character Chinese 

words.  Participants received one mark for each correctly read word, and the task was 

discontinued if they failed to score in 15 consecutive items.  Raw scores were used in the 

analyses.  The Cronbach’s α was .98 for this task. 

Multiplication.  The author constructed a whole-number multiplication task as a 

measure of mathematical skills that was relatively independent of numerical magnitude 

understanding.  The tasks consisted of 10 whole-number multiplication problems (ranging 

from single-digit to two-digit multiplications).  The items were presented both visually (on 

question cards) and verbally (experimenter read out the items).  Participants were allowed to 

work out the answers using paper and pencils.  No time limit was imposed.  Raw scores 

were used in the analyses.  The Cronbach’s α of this task was .64.  

Attention.  The Chinese version of the inattention and hyperactivity subscale of the 

Strengths and Difficulties Questionnaire (Lai et al., 2010) was utilised to assess participants’ 

attention levels.  Parents rated the participants based on their level of sustained attention and 

hyperactivity on a 3-point scale from 0 (not true) to 2 (certainly true).  There were five items 

in total.  Examples of items include “easily distracted, concentration wanders” and “sees 

tasks through to the end, good attention span”.  Sum of the ratings of all items indicated 
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participants’ level of inattention and hyperactivity.  Reliability (α = .76) and validity 

(significantly discriminate the clinical sample from the community sample) of the subscale 

have been demonstrated in a local validation study (Lai et al., 2010).  The Cronbach’s α 

from the current study was .67. 

Results 

Descriptive statistics and correlations 

 Before conducting the analysis, the data were first converted into standardized scores. 

The standardized scores of the nonsymbolic numerical comparison task (M = 36.15, SD = 

4.28) and nonsymbolic arithmetic task (M = 49.56, SD = 4.43) were averaged to form a 

nonsymbolic numerical magnitude composite, and the standardized scores of the PAE of the 

fraction number line (M = 17.28%, SD = 11.13%) and decimal number line (M = 12.70%, SD 

= 8.65%) were averaged to form the rational-number magnitude composite.  The outliers (z 

> 3 or < -3) were then identified and Winsorized (replaced with a z value of 3 or -3) to reduce 

the influences of extreme values (Tabachnick & Fidell, 2007).  A total of 9 outliers had been 

Winsorized.  Table 1 features the descriptive statistics, reliabilities, and correlations among 

the variables.  While the reliabilities of the nonsymbolic numerical magnitude tasks (α = .63 

and .68), backward digit span (α = .50), the inattention and hyperactivity subscale of SDQ (α 

= .67), and the multiplication task (α = .64) were relatively low, all other measures were 

reliable.  The reaction time for the number comparison task, the PAE of the number-line 

tasks, and the inattentiveness ratings are multiplied by -1 so that positive values indicate 

better performance.  All the numerical magnitude measures were significantly correlated 

(except for the one between nonsymbolic arithmetic and fraction number line, r = .11, p 

= .22), with magnitudes ranging from r = .18 to r = .47, and all numerical measures correlated 

significantly with children’s mathematics achievement (.25 ≤ r ≤ .50).  The correlations 

provided preliminary support to the integrated theory of numerical development: the acuities 
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of all numerical magnitude representations were significantly correlated with each other and 

with children’s mathematics achievement.  

Mediation analyses 

 To examine whether the magnitude representation acuities of different types and 

ranges of numbers were related to each other, a mediation analysis (a combination of several 

regression analyses) was conducted using the PROCESS Statistical Package for the Social 

Sciences (SPSS) macro (Hayes, 2013).  Structural equation modelling was not used because 

of the limited sample size.  Instead of examining indirect effects through the Sobel test, the 

bootstrapping procedure with bias-corrected confidence intervals was applied because the 

latter does not assume normal distribution of the indirect effect (Hayes & Scharkow, 2013).  

The bootstrapping procedure employed in the current study involved selecting 5,000 

bootstrap samples with replacement.  The point estimates for the indirect effects were 

calculated within each sample.  The 95% confidence intervals were then calculated based on 

the sampling distributions of these estimates (Hayes & Scharkow, 2013).  The indirect 

effects were considered statistically significant if 0 lies outside the 95% confidence interval.   

In the first mediation model, nonsymbolic numerical magnitude representation acuity 

was the independent variable, rational-number magnitude representation acuity was the 

dependent variable, and small and large whole-number magnitude representation acuities 

served as the mediators (see the upper half of Figure 2).  The effects of intelligence, working 

memory, reading, attention, and multiplication were controlled for in the model.  All the 

regression coefficients reported subsequently are standardized.  The results suggested that 

the numerical magnitude representation acuity at each stage was significantly predicted by 

the numerical magnitude representation acuity in the previous stage as stated in the integrated 

theory of numerical development (nonsymbolic to small-whole number: β = .296, p = .007, 

95% CI = .083 to 509; small-whole number to large-whole number: β = .189, p = .047, 95% 
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CI = .002 to .375; large-whole number to rational number: β = .336, p < .001, 95% CI = .204 

to .468).  The total indirect effect from nonsymbolic numerical magnitude representation 

acuity to rational-number magnitude representation acuity was also significant (β = .152, 

95% CI = .047 to .309), as were the indirect effects through only small whole-number 

magnitude representation acuity (β = .047, 95% CI = .010 to .119), only large whole-number 

magnitude representation acuity (β = .087, 95% CI = .009 to .215), and through both small 

and large whole-number magnitude representation acuities (β = .019, 95% CI = .002 to .064; 

see Table 2 for a summary of the indirect paths).  Nonverbal intelligence and multiplication 

significantly predicted rational-number magnitude representation acuity (β = .151, p = .03, 

95% CI = .014 to .289 for nonverbal intelligence; β = .160, p = .024, 95% CI = .022 to .299 

for multiplication), but not small and large whole-number magnitude representation acuities 

(ps > .07), while word reading predicted small whole-number magnitude representation 

acuity (β = .189, p = .03, 95% CI = .017 to .362), but not large and rational-number 

magnitude representation acuities (ps>.1).  Working memory and attention were not 

predictive of any of the magnitude measures (ps > .07).  The variables together accounted 

for 44.9% of the variance in rational-number magnitude representation acuity.  The results 

supported the core assumption of the integrated theory of numerical development by 

demonstrating that the acuities of magnitude representations of different types and ranges of 

numbers were significantly related to each other.    

To further determine whether the magnitude representation acuities of various types 

and ranges of numbers were significantly related to children’s mathematics achievement, 

another mediation analysis was carried out.  Children’s mathematics achievement was now 

the dependent variable, while their rational-number magnitude representation acuity became 

the third mediator (see Figure 2).  Again, the effects of intelligence, working memory, 

reading, attention, and multiplication were controlled for in the model.  The results 
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suggested that all the acuities of numerical magnitude representations were either directly 

(large whole-number magnitude representation acuity: β = .160, p = .037, 95% CI = .010 

to .310; rational-number magnitude representation acuity: β = .216, p = .027, 95% CI = .026 

to .407) or indirectly (nonsymbolic numerical magnitude representation acuity: β = .115, 95% 

CI = .020 to .254; small whole-number magnitude representation acuity: β = .095, 95% CI 

= .030 to .200; see Table 2 and Figure 2) related to children’s mathematics achievement.  

Word reading (β = .234, p <.001, 95% CI = .102 to .366), attention rating (β = .149, p = .023, 

95% CI = .021 to .277), and multiplication skills (β = .187, p = .012, 95% CI = .041 to .333), 

but not nonverbal intelligence (p = .20) or working memory (p = .26), significantly predicted 

children’s mathematics achievement.  All the variables together accounted for 55.7% of the 

variance in children’s mathematics achievement.  The results confirmed the significance of 

numerical magnitude representations in children’s mathematics learning.  

As the mathematics achievement test utilised in the current study consisted of a 

variety of topics (e.g., number knowledge, numerical magnitude, arithmetic, shapes and 

space, measures, data handling), further mediation analyses were conducted to establish the 

relations between different numerical magnitude measures and performance for different 

mathematics topics.  Table 3 shows the results.  The total indirect effects from 

nonsymbolic numerical magnitude representation acuity to the mathematics topics were 

significant for number knowledge (β = .119, 95% CI = .025 to .267), numerical magnitude (β 

= .146, 95% CI = .036 to .298), and arithmetic (β = .120, 95% CI = .024 to .260), while their 

indirect effects on topics such as shapes and space (β = .027, 95% CI = -.052 to .138), 

measures (β = .025, 95% CI = -.064 to .140), and data handling (β = .068, 95% CI = -.018 

to .172) were not statistically significant.  The direct effects from acuities of certain 

numerical magnitude representation to various mathematics topics were also significant (e.g., 

from rational-number magnitude representation acuity to number knowledge, β = .268, p 
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= .015, 95% CI = .053 to .483; from small whole-number representation acuity, β = .176, p 

= .033, 95% CI = .014 to .338, and rational-number magnitude representation acuity, β 

= .335, p = .003, 95% CI = .118 to .552, to numerical magnitude; and from large whole-

number magnitude representation acuity to arithmetic, β = .241, p = .005, 95% CI = .074 

to .408).  These findings support the hypothesis that the acuities of numerical magnitude 

representation are significantly related to topics that are closely related to numbers (e.g., 

number knowledge, numerical magnitude, and arithmetic), but not to those topics that are 

distally related to numbers (e.g., shapes and space, measures, data handling).  

Discussion 

 This study examined the integrated theory of numerical development (Siegler, 2016; 

Siegler et al., 2011) by testing its core assumption: the development of numerical magnitude 

understanding can be reflected by the representation of an increasingly broad range of 

numbers on the mental number line with increasing precision.  A sample of 123 

kindergarteners was followed for four years until they were in the fourth grade.  They were 

assessed on the acuities of magnitude representations of different types and ranges of 

numbers at the appropriate time.  The results indicated that the acuities of magnitude 

representations of different types and ranges of numbers were significantly related to each 

other, and the acuities of these numerical magnitude representations were either directly or 

indirectly related to children’s mathematics achievement.  Theoretical and practical 

implications are discussed in the following. 

Relations Between the Acuities of Magnitude Representations of Different Types and 

Ranges of Numbers 

 According to the integrated theory of numerical development, Siegler et al. (Siegler, 

2016; Siegler et al., 2011) proposed that the growth of numerical magnitude representation is 

the core of numerical development.  This growth can be described in four major stages: the 
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refinement of the nonsymbolic numerical magnitude representations, the connection between 

small whole-number magnitude representations and the corresponding nonsymbolic 

numerical magnitude representations, the representations of large whole-number magnitude, 

and, finally, the extension of whole-number magnitude representation to the representation of 

rational-number magnitudes.  If different types and ranges of numbers are encoded on the 

same mental number line, the measures of these numerical magnitude representations should 

at least be related to each other.  This assumption, although seemingly straightforward, has 

either remained untested (cf. Fazio et al., 2014) or led to contradictory findings (Desoete et 

al., 2012; Sasanguie et al., 2013).  The current results demonstrated that the acuities of 

magnitude representations of different types and ranges of numbers were significantly related 

to each other with reasonable magnitudes (β between consecutive forms of numerical 

magnitudes ranged from .19 to .34).  The use of different measures for varying types and 

ranges of numbers further eliminated the possibility that the observed relations were 

explained by the commonality in the measurement method.  Furthermore, numerical 

magnitude representation acuity, as indicated by children’s performance in different 

numerical magnitude measures, predicted performance in mathematics topics that involve 

numbers (e.g., number knowledge, arithmetic) but not those of which the relevance to 

numbers is minimal (e.g., shapes and space), thus providing both convergent and discriminant 

validity to the construct.  It should be noted that for topics such as number knowledge (e.g., 

identifying the highest common factor and lowest common multiple between two numbers) 

and arithmetic, the processing of numerical magnitude should not be assumed (e.g., 

arithmetic problems can be solved through learned procedures, such as reciting the 

multiplication table).  The significant relations observed between numerical magnitude 

representation acuity and these topics suggest that numerical magnitude representation plays 

a role in solving these problems even though numerical magnitude information is not 
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explicitly asked for, and the fact that the relation survived even after another aspect of 

numerical skills (i.e., multiplication skills) had been controlled for, thereby suggesting that it 

is numerical magnitude, but not other aspects of numerical understanding, that contributes to 

the mastery of these topics.  With a reasonable sample size, three important domain-general 

cognitive skills, reading skills, and multiplication as control variables, as well as a 

bootstrapping procedure with 5,000 samples, the current findings are robust, providing 

tentative support to the assumption that the magnitude representations of different types and 

ranges of numbers are represented on the same mental number line. 

 While the results as a whole are theoretically interesting because they support the core 

assumption of the integrated theory of numerical development, the connections between each 

consecutive stage of numerical magnitude development are also intriguing.  First, the 

association between symbolic and nonsymbolic numerical magnitude representations has 

been heatedly debated.  Certain researchers believe that our innate nonsymbolic numerical 

magnitude representations constitute the basis upon which our symbolic numerical magnitude 

representations can be developed (Dehaene, 2004; Geary, 2013).  Others have suggested that 

the two developed independently (LeCorre & Carey, 2007; Lyons et al., 2012).  A 

significant relation between nonsymbolic and symbolic numerical magnitude representation 

acuities was observed in this study, and this remained true even after the potentially 

confounding factors were controlled for.  The findings are in line with those that found 

positive evidence for the relation between symbolic and nonsymbolic numerical magnitude 

representations (Libertus et al., 2016; Toll et al., 2015; van Marle et al., 2014), but contrasted 

with those of Fazio et al. (2014).  It is worth noting that although the relation between 

symbolic and nonsymbolic numerical magnitude representation acuities failed to reach 

significance in Fazio et al. (2014), the magnitude (i.e., β = .25) is comparable to the values 

observed in the current study (β = .30).  Therefore, the insignificant relation observed in 
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Fazio et al. (2014) can be because of the small sample size (N = 53) in that study.  

Furthermore, the current study extended the previous findings by demonstrating that 

children’s nonsymbolic numerical magnitude reprensetation acuity was either directly or 

indirectly related to the magnitude representation acuity of symbolic numbers in different 

number ranges as well as their mathematics achievement.  Children’s rational-number 

magnitude representation acuity and their mathematics achievement in grade 4, for example, 

was both significantly and indirectly predicted by their nonsymbolic numerical magnitude 

representation acuity in kindergarten.  These relations would not be expected if nonsymbolic 

numerical magnitude representation develops independently from symbolic numerical 

magnitude representation (LeCorre & Carey, 2007; Lyons et al., 2012).  These findings also 

illustrate why nonsymbolic numerical magnitude representation acuity sometimes fails to 

predict arithmetic skills when symbolic numerical magnitude factors have been taken into 

account (Lyons, Price, Vaessen, Blomert, & Ansari, 2014).  Instead of playing no roles in 

our arithmetic skills, the effect of nonsymbolic numerical magnitude representation on our 

mathematics achievement seems to be fully mediated through our symbolic numerical 

magnitude representations.  

 Second, while it has been assumed that understanding of small whole-number 

magnitude representation paves the way for understanding large whole number magnitude, 

such a relation has remained largely untested.  The findings that second graders demonstrate 

a linear response pattern in a 0-100 number line but a logarithmic response pattern in a 0-

1,000 number line (Siegler & Opfer, 2003) suggest that children’s understanding of small 

whole numbers may not be spontaneously generalized to large whole numbers (note that the 

difference in familiarity over different number ranges alone does not explain such different 

response patterns as a change in response pattern can occur without exposure to numbers 

within the unfamiliar number range; Opfer & Siegler, 2007).  The current findings, on the 
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contrary, indicate that the relation between small and large whole-number magnitude 

understanding does exist.  Children who were faster in comparing single-digit numbers in 

grade 1 were also more accurate in locating two- and three-digit numbers on the 0-1,000 

number line.  These findings are in agreement with the hypothesis that we develop our 

understanding of large whole numbers by bootstrapping our understanding of small whole 

numbers (Thompson & Opfer, 2010).  Children may gain a better understanding of large 

whole numbers (e.g., the relative magnitude of 600 and 1,000) by analogizing them with 

small whole numbers (e.g., relative magnitude of 6 and 10), and progressively aligning 

numbers within different number ranges facilitates children in making such an analogy 

(Thompson & Opfer, 2010).   

 Third, the relation between the acuities of whole-number magnitudes and rational-

number magnitudes also deserves attention because of the complicated relations between 

whole numbers and rational numbers.  While some researchers consider the representation 

of rational numbers as qualitatively different from that of whole numbers (Leslie, Gelman, & 

Gallistel, 2008; Wynn, 1995), the integrated theory of numerical development posits that both 

types of numbers share a central property - they all have magnitudes and can be located on 

the mental number line (Siegler, 2016).  From this point of view, a more precise 

representation of whole-number magnitude may enable a child to use this symbolic numerical 

magnitude system to understand other kinds of symbolic numbers, such as fractions and 

decimals.  The current findings provide support to the integrated theory of numerical 

development by showing that both small and large whole-number magnitude representation 

acuities significantly predicted future understanding of rational numbers.  Similar findings 

have been observed in other studies (Bailey, Siegler, & Geary, 2014; Mou et al., 2016; 

Vukovic et al., 2014).  

Limitations 
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 While confirming the relations among different numerical magnitude representation 

acuities, the current findings can be further strengthened if the relevant autoregressor effects 

have been controlled for.  Furthermore, readers should note that the current findings do not 

confirm the mechanisms involved in the process.  With the integrated theory of numerical 

development, Siegler (2016) proposed that association and analogy are the two major 

processes facilitating the development of numerical magnitude.  Association may explain 

how symbolic numbers acquire their meanings through connecting with the corresponding 

nonsymbolic numerical magnitude representation (Dehaene, 2004; Wong et al., 2016), while 

analogy may describe how children bootstrap their small whole-number magnitude 

understanding to larger number ranges (Thompson & Opfer, 2010), as well as how children 

bootstrap their whole-number magnitude understanding to acquire rational-number 

magnitude (Bailey et al., 2014).  Future studies are necessary for confirming the 

aforementioned proposed mechanisms.  A related issue is that while analogy has been put 

forth as the mechanism through which our small whole-number magnitude representations 

are bootstrapped to understand large whole numbers, this process does not seem to occur 

without purposefully aligning numbers within different ranges (Thompson & Opfer, 2010).  

It remains to be explored whether such an analogy can be made gradually owing to children’s 

increasing knowledge about the symbolic number system, or whether other mechanisms are 

involved during this spontaneous bootstrapping process.  Finally, two issues concerning the 

measures need to be noted. The first one concerns about the number line tasks. Opfer, 

Thompson and Kim (2016) had demonstrated that providing anchors to participants before 

the number line tasks altered their response patterns. Although participants in this study were 

only informed about their performance (i.e., whether their responses were close to the correct 

answers) but not the anchors (i.e., the exact locations of the target numbers), it is still possible 

that such feedback might have led to a slight improvement in the number line estimation 
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performance. Despite such a possibility, the key findings of the current study (i.e., the 

interrelations among the acuities of the magnitude representations of different types and 

ranges of numbers) should not be affected. The second issue concerns about the reliability of 

the measures. The reliabilities of a number of the measures in the current study (nonsymbolic 

numerical magnitude measures, working memory, inattention rating and multiplication) were 

relatively low, and such low reliabilities may result in an underestimation of the relevant 

correlations (Goodwin & Leech, 2006).  Readers should be aware of this when interpreting 

the current findings.  Future studies may also increase the reliability of the measures through 

increasing the total number of trials or the use of adaptive testing procedure (Lindskog, 

Winman, Juslin, & Poom, 2013). Modelling techniques such as Ratcliff diffusion modelling, 

which enables researchers to take accuracy, reaction time, and their interactions in a binary 

response choice task into account (Ratcliff, Thompson, & McKoon, 2015), may also help 

improve the accuracy in estimating participants’ acuities of numerical magnitude 

representation.  

Theoretical and Practical Significance 

 The present results have both theoretical and practical significance.  Theoretically, 

they bolster the core assumption underlying the integrated theory of numerical development - 

the development of numerical magnitude understanding can be reflected by the representation 

of an increasingly broad range of numbers on the mental number line with increasing 

precision.  This is the first piece of longitudinal evidence linking the acuities of magnitude 

representations of four different types and ranges of numbers, and the interrelations among 

the acuities of these numerical magnitude representations survived even after a 

comprehensive set of control variables were included in the model.  As the study was 

conducted in the Asian context, the current findings further support the integrated theory of 

numerical development by indicating that it can be generalized to other cultures.  In 
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particular, the findings highlight the role of an early form of numerical magnitude 

representation (nonsymbolic numerical magnitude) in the development of later forms of 

numerical magnitude representations.  The nonsymbolic numerical magnitude 

representation acuity also indirectly predicted children’s mathematics achievement four years 

later through other forms of numerical magnitude representations.  By dividing the 

mathematics achievement test into different subtopics, the current findings further suggest 

that nonsymbolic numerical magnitude representation acuity is related to various mathematic 

topics (e.g., number knowledge, arithmetic), but not others (e.g., shapes and space, 

measures).  All these lines of evidence support the importance of nonsymbolic numerical 

magnitude representation in children’s mathematics learning.  While several nonsymbolic 

numerical magnitude interventions have been proven successful (Hyde et al., 2014; Park & 

Brannon, 2013), these interventions only target a narrow set of outcomes (both studies focus 

on symbolic whole-number arithmetic only).  With the current findings, it would be 

interesting to examine whether the effect of such interventions can be generalized to other 

mathematical domains (e.g., the understanding of rational-number magnitudes and general 

mathematics achievement).  

Conclusions 

 Arising from a four-year longitudinal study with 123 kindergarteners, the current 

findings support the integrated theory of numerical development by demonstrating that the 

acuities of magnitude representations of different types and ranges of numbers are either 

directly or indirectly related to each other.  In addition, our results highlight the significance 

of early forms of nonsymbolic numerical magnitude representation in developing later forms 

of symbolic numerical magnitude representations.  Future intervention studies could further 

investigate whether nonsymbolic numerical magnitude plays a causal role in the development 

of advanced symbolic numerical magnitude representations.   



NUMERICAL DEVELOPMENT  31 
 

References 

Alibali, M. W., & Sidney, P. G. (2015). Variability in the natural number bias: Who, when, 

how, and why. Learning and Instruction, 37, 56–61. 

https://doi.org/10.1016/j.learninstruc.2015.01.003 

Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions 

predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 

113(3), 447–455. https://doi.org/10.1016/j.jecp.2012.06.004 

Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school 

fraction knowledge. Developmental Science, 17(5), 775–785. 

https://doi.org/10.1111/desc.12155 

Barth, H. C., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-

symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222. 

https://doi.org/10.1016/j.cognition.2004.09.011 

Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence 

against a representational shift. Developmental Science, 14(1), 125–135. 

https://doi.org/10.1111/j.1467-7687.2010.00962.x 

Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The Mental Representation of 

Numerical Fractions: Real or Integer? Journal of Experimental Psychology: Human 

Perception and Performance, 33(6), 1410–1419. https://doi.org/10.1037/0096-

1523.33.6.1410 

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure 

numerical estimation. Developmental Psychology, 42(1), 189–201. 

https://doi.org/10.1037/0012-1649.41.6.189 

Braithwaite, D. W., & Siegler, R. S. (2018). Developmental changes in the whole number 

bias. Developmental Science, 21(2). https://doi.org/10.1111/desc.12541 



NUMERICAL DEVELOPMENT  32 
 

Butterworth, B. (2003). Dyscalculia Screener. London, UK: nferNelson Publishing Company 

Limited. 

Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenisis. Mind and 

Language, 16(1), 37–55. https://doi.org/10.1111/1468-0017.00155 

Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic 

number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–

172. https://doi.org/10.1016/j.actpsy.2014.01.016 

De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-

symbolic numerical magnitude processing skills relate to individual differences in 

children’s mathematical skills? A review of evidence from brain and behavior. Trends in 

Neuroscience and Education, 2(2), 48–55. https://doi.org/10.1016/j.tine.2013.06.001 

Dehaene, S. (2004). Evolution of human cortical circuits for reading and arithmetic : The 

“ neuronal recycling ” hypothesis . In S. Dehaene, J. R. Duhamel, M. Hauser, & G. 

Rizzolatti (Eds.), From Monkey Brain to Human Brain: A Fyssen Foundation 

Symposium (Vol. 34, pp. 133–157). Cambridge, Massachusetts, Massachusetts: MIT 

Press.  

Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict 

mathematical learning disabilities from symbolic and non-symbolic comparison tasks in 

kindergarten? Findings from a longitudinal study. The British Journal of Educational 

Psychology, 82, 64–81. https://doi.org/10.1348/2044-8279.002002 

Durkin, K., & Rittle-Johnson, B. (2015). Diagnosing misconceptions: Revealing changing 

decimal fraction knowledge. Learning and Instruction, 37, 21–29. 

https://doi.org/10.1016/j.learninstruc.2014.08.003 

Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different 

types of numerical magnitude representations to each other and to mathematics 



NUMERICAL DEVELOPMENT  33 
 

achievement. Journal of Experimental Child Psychology, 123(1), 53–72. 

https://doi.org/10.1016/j.jecp.2014.01.013 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in 

Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002 

Friso-van den Bos, I., Kroesbergen, E. H., Van Luit, J. E. H., Xenidou-Dervou, I., Jonkman, 

L. M., Van der Schoot, M., & Van Lieshout, E. C. D. M. (2015). Longitudinal 

development of number line estimation and mathematics performance in primary school 

children. Journal of Experimental Child Psychology, 134(October), 12–29. 

https://doi.org/10.1016/j.jecp.2015.02.002 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., … 

Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of 

Educational Psychology, 105(3), 683–700. https://doi.org/10.1037/a0032446 

Geary, D. C. (2013). Early Foundations for Mathematics Learning and Their Relations to 

Learning Disabilities. Current Directions in Psychological Science, 22(1), 23–27. 

https://doi.org/10.1177/0963721412469398 

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities 

and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 

394–406. https://doi.org/10.1016/j.cognition.2010.02.002 

Goodwin, L. D., & Leech, N. L. (2006). Understanding correlation: Factors that affect the 

size of r. Journal of Experimental Education, 74(3), 249–266. 

https://doi.org/10.3200/JEXE.74.3.249-266 

Halberda, J., & Feigenson, L. (2008). Developmental Change in the Acuity of the “Number 

Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds and Adults. 

Developmental Psychology, 44(5), 1457–1465. https://doi.org/10.1037/a0012682 

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: 



NUMERICAL DEVELOPMENT  34 
 

A regression-based approach. New York: Guilford Press. https://doi.org/978-1-60918-

230-4 

Hayes, A. F., & Scharkow, M. (2013). The Relative Trustworthiness of Inferential Tests of the 

Indirect Effect in Statistical Mediation Analysis: Does Method Really Matter? 

Psychological Science, 24(10), 1918–1927. https://doi.org/10.1177/0956797613480187 

Ho, C. S.-H., Chan, D., Chung, K., Tsang, S.-M., Lee, S.-H., & Cheng, R. W.-Y. (2007). The 

Hong Kong Test of Specific Learning Difficulties in Reading and Writing for Primary 

School Students. Hong Kong: Hong Kong Specific Learning Difficulties Research Team. 

Hong Kong Education Bureau. (2015). The learning and achievement measurement kit 3.0. 

Hong Kong: Hong Kong SAR. 

Hyde, D. C. (2011). Two Systems of Non-Symbolic Numerical Cognition. Frontiers in 

Human Neuroscience, 5(November), 1–8. https://doi.org/10.3389/fnhum.2011.00150 

Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number 

practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 

92–107. https://doi.org/10.1016/j.cognition.2013.12.007 

Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta 

Psychologica, 145(1), 147–155. https://doi.org/10.1016/j.actpsy.2013.11.009 

Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract 

numbers. Proceedings of the National Academy of Sciences of the United States of 

America, 106(25), 10382–10385. https://doi.org/10.1073/pnas.0812142106 

Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). 

Developmental predictors of fraction concepts and procedures. Journal of Experimental 

Child Psychology, 116(1), 45–58. https://doi.org/10.1016/j.jecp.2013.02.001 

Kloosterman, P. (2010). Mathematics Skills of 17-Year-Olds in the United States: 1978 to 

2004. Journal for Research in Mathematics Education, 41(1), 20–51. 



NUMERICAL DEVELOPMENT  35 
 

https://doi.org/10.2307/40539363 

Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … Von Aster, M. 

G. (2011). Mental number line training in children with developmental dyscalculia. 

NeuroImage, 57(3), 782–795. https://doi.org/10.1016/j.neuroimage.2011.01.070 

Lai, K. Y. C., Luk, E. S. L., Leung, P. W. L., Wong, A. S. Y., Law, L., & Ho, K. (2010). 

Validation of the Chinese version of the strengths and difficulties questionnaire in Hong 

Kong. Social Psychiatry and Psychiatric Epidemiology, 45(12), 1179–1186. 

https://doi.org/10.1007/s00127-009-0152-z 

Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of 

the conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438. 

https://doi.org/10.1016/j.cognition.2006.10.005 

Lee, K. M., & Kang, S. Y. (2002). Arithmetic operation and working memory: Differential 

suppression in dual tasks. Cognition, 83(3), 63–68. https://doi.org/10.1016/S0010-

0277(02)00010-0 

Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural number 

concepts. Trends in Cognitive Sciences, 12(6), 213–218. 

https://doi.org/10.1016/j.tics.2008.03.004 

Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2016). The precision of mapping 

between number words and the approximate number system predicts children’s formal 

math abilities. Journal of Experimental Child Psychology, 150, 207–226. 

https://doi.org/10.1016/j.jecp.2016.06.003 

Lindskog, M., Winman, A., Juslin, P., & Poom, L. (2013). Measuring acuity of the 

approximate number system reliably and validly: The evaluation of an adaptive test 

procedure. Frontiers in Psychology, 4(AUG), 1–14. 

https://doi.org/10.3389/fpsyg.2013.00510 



NUMERICAL DEVELOPMENT  36 
 

Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence against a 

strong association between numerical symbols and the quantities they represent. Journal 

of Experimental Psychology: General, 141(4), 635–641. 

https://doi.org/10.1037/a0027248 

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical 

predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714–726. 

https://doi.org/10.1111/desc.12152 

McCrink, K., & Spelke, E. S. (2010). Core multiplication in childhood. Cognition, 116(2), 

204–216. https://doi.org/10.1016/j.cognition.2010.05.003 

Mou, Y., Li, Y., Hoard, M. K., Nugent, L. D., Chu, F. W., Rouder, J. N., & Geary, D. C. 

(2016). Developmental foundations of children’s fraction magnitude knowledge. 

Cognitive Development, 39, 141–153. https://doi.org/10.1016/j.cogdev.2016.05.002 

Namkung, J. M., & Fuchs, L. S. (2016). Cognitive predictors of calculations and number line 

estimation with whole numbers and fractions among at-risk students. Journal of 

Educational Psychology, 108(2), 214–228. https://doi.org/10.1037/edu0000055 

Ni, Y., & Zhou, Y.-D. (2005). Teaching and Learning Fraction and Rational Numbers: The 

Origins and Implications of Whole Number Bias. Educational Psychologist, 40(1), 27–

52. https://doi.org/10.1207/s15326985ep4001_3 

Noël, M.-P., & Rousselle, L. (2011). Developmental Changes in the Profiles of Dyscalculia: 

An Explanation Based on a Double Exact-and-Approximate Number Representation 

Model. Frontiers in Human Neuroscience, 5(December), 1–4. 

https://doi.org/10.3389/fnhum.2011.00165 

Obersteiner, A., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2016). Who can escape the 

natural number bias in rational number tasks? A study involving students and experts. 

British Journal of Psychology, 107(3), 537–555. https://doi.org/10.1111/bjop.12161 



NUMERICAL DEVELOPMENT  37 
 

Opfer, J. E., & Siegler, R. S. (2007). Representational change and children’s numerical 

estimation. Cognitive Psychology, 55(3), 169–195. 

https://doi.org/10.1016/j.cogpsych.2006.09.002 

Opfer, J. E., Thompson, C. A., & Kim, D. (2016). Free versus anchored numerical estimation: 

A unified approach. Cognition, 149, 11–17. 

https://doi.org/10.1016/j.cognition.2015.11.015 

Park, J., & Brannon, E. M. (2013). Training the Approximate Number System Improves Math 

Proficiency. Psychological Science, 24(10), 2013–2019. 

https://doi.org/10.1177/0956797613482944 

Parsons, S., & Bynner, J. (2005). Does Numeracy Matter More ? National Research and 

Development Centre for Adult Literacy and Numeracy, 1–37. 

https://doi.org/1905188090 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for 

approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. 

https://doi.org/10.1016/j.neuron.2004.10.014 

Ratcliff, R., Thompson, C. A., & McKoon, G. (2015). Modeling individual differences in 

response time and accuracy in numeracy. Cognition, 137, 115–136. 

https://doi.org/10.1016/j.cognition.2014.12.004 

Raven, J. C. (1976). Standard Progressive Matrices: sets A,B,C,D & E. Oxford: 

Psychologists Press. 

Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. S. 

(2016). Developmental growth trajectories in understanding of fraction magnitude from 

fourth through sixth grade. Developmental Psychology, 52(5), 746–757. 

https://doi.org/10.1037/dev0000102 

Rinne, L. F., Ye, A., & Jordan, N. C. (2017). Development of fraction comparison strategies: 



NUMERICAL DEVELOPMENT  38 
 

A latent transition analysis. Developmental Psychology, 53(4), 713–730. 

https://doi.org/10.1037/dev0000275 

Ritchie, S. J., & Bates, T. C. (2013). Enduring Links From Childhood Mathematics and 

Reading Achievement to Adult Socioeconomic Status. Psychological Science, 24(7), 

1301–1308. https://doi.org/10.1177/0956797612466268 

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual 

understanding and procedural skill in mathematics: An iterative process. Journal of 

Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-0663.93.2.346 

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate 

number sense, symbolic number processing, or number-space mappings: What underlies 

mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431. 

https://doi.org/10.1016/j.jecp.2012.10.012 

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, 

B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing 

with mathematical competence: a meta-analysis. Developmental Science, 20(3), e12372. 

https://doi.org/10.1111/desc.12372 

Schneider, M., Merz, S., Stricker, J., De Smedt, B., Torbeyns, J., Verschaffel, L., & Luwel, K. 

(2018). Associations of Number Line Estimation With Mathematical Competence: A 

Meta-analysis. Child Development, 00(0), 1–18. https://doi.org/10.1111/cdev.13068 

Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. 

Developmental Science, 19(3), 341–361. https://doi.org/10.1111/desc.12395 

Siegler, R. S., & Booth, J. (2004). Development of numerical estimation in young children. 

Child Development, 75(2), 428–444. https://doi.org/10.1111/j.1467-8624.2004.00684.x 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … 

Chen, M. (2012). Early Predictors of High School Mathematics Achievement. 



NUMERICAL DEVELOPMENT  39 
 

Psychological Science, 23(7), 691–697. https://doi.org/10.1177/0956797612440101 

Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. 

Journal of Educational Psychology, 107(3), 909–918. 

https://doi.org/10.1037/edu0000025 

Siegler, R. S., & Lortie-Forgues, H. (2017). Hard Lessons: Why Rational Number Arithmetic 

Is So Difficult for So Many People. Current Directions in Psychological Science, 26(4), 

346–351. https://doi.org/10.1177/0963721417700129 

Siegler, R. S., & Mu, Y. (2008). Chinese children excel on novel mathematics problems even 

before elementary school. Psychological Science, 19(8), 759–763. 

https://doi.org/10.1111/j.1467-9280.2008.02153.x 

Siegler, R. S., & Opfer, J. E. (2003). The Development of Numerical Estimation: Evidence 

for Multiple Representations of Numerical Quantity. Psychological Science, 14(3), 237–

243. https://doi.org/10.1111/1467-9280.02438 

Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular 

ones—improves low-income preschoolers’ numerical understanding. Journal of 

Educational Psychology, 101(3), 545–560. https://doi.org/10.1037/a0014239 

Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One 

learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3(3), 

143–150. https://doi.org/10.1111/j.1751-228X.2009.01064.x 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole 

number and fractions development. Cognitive Psychology, 62(4), 273–296. 

https://doi.org/10.1016/j.cogpsych.2011.03.001 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Pearson, 24. 

https://doi.org/10.1037/022267 

Thompson, C. a, & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: effect of 



NUMERICAL DEVELOPMENT  40 
 

progressive alignment on representational changes in numerical cognition. Child 

Development, 81(6), 1768–1786. https://doi.org/10.1111/j.1467-8624.2010.01509.x 

Toll, S. W. M., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. H. (2015). The 

development of (non-)symbolic comparison skills throughout kindergarten and their 

relations with basic mathematical skills. Learning and Individual Differences, 38, 10–

17. https://doi.org/10.1016/j.lindif.2014.12.006 

Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction 

understanding is central to mathematics achievement in students from three different 

continents. Learning and Instruction, 37, 5–13. 

https://doi.org/10.1016/j.learninstruc.2014.03.002 

Tzelgov, J., Ganor-Stern, D., Kallai, A., & Pinhas, M. (2014). Primitives and Non-primitives 

of Numerical Representations. 

https://doi.org/10.1093/oxfordhb/9780199642342.013.019 

Vamvakoussi, X. (2015). The development of rational number knowledge: Old topic, new 

insights. Learning and Instruction, 37, 50–55. 

https://doi.org/10.1016/j.learninstruc.2015.01.002 

Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for 

reaction time evidence for a natural number bias in adults. Journal of Mathematical 

Behavior, 31(3), 344–355. https://doi.org/10.1016/j.jmathb.2012.02.001 

Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2017). Number sense in the transition from 

natural to rational numbers. British Journal of Educational Psychology, 87(1), 43–56. 

https://doi.org/10.1111/bjep.12134 

van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number 

system and preschoolers’ quantitative development. Developmental Science, 17(4), 492–

505. https://doi.org/10.1111/desc.12143 



NUMERICAL DEVELOPMENT  41 
 

Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. 

(2014). Sources of individual differences in children’s understanding of fractions. Child 

Development, 85(4), 1461–1476. https://doi.org/10.1111/cdev.12218 

Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s Past Is 

Prologue: Relations Between Early Mathematics Knowledge and High School 

Achievement. Educational Researcher, 43(7), 352–360. 

https://doi.org/10.3102/0013189X14553660 

Wong, T. T.-Y., Ho, C. S.-H., & Tang, J. (2016). The relation between ANS and symbolic 

arithmetic skills: The mediating role of number-numerosity mappings. Contemporary 

Educational Psychology, 46, 208–217. https://doi.org/10.1016/j.cedpsych.2016.06.003 

Wynn, K. (1995). Infants Possess a System of Numerical Knowledge. Current Directions in 

Psychological Science, 4(6), 172–177. https://doi.org/10.1111/1467-8721.ep10772615 

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. 

Cognition, 74(1), 1–11. https://doi.org/10.1016/S0010-0277(99)00066-9 

Zhou, X., Chen, C., Zang, Y., Dong, Q., Chen, C., Qiao, S., & Gong, Q. (2007). Dissociated 

brain organization for single-digit addition and multiplication. NeuroImage, 35(2), 871–

880. https://doi.org/10.1016/j.neuroimage.2006.12.017 

 


