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A B S T R A C T   

Late-onset (LO) toxicities often arise in the new era of phase I oncology dose-finding trials with targeted agents or 
immunotherapies. The current LO toxicities modelling is often formulated in a weighted likelihood framework, 
where the time-to-event continual reassessment method (TITE-CRM) is commonly used. The TITE-CRM uses the 
patient exposure time as a weight for the censored observation, while there is large uncertainty on which weight 
function to be used. As an alternative, the fractional scheme formulates an efficient and robust paradigm to 
address LO toxicity issues in dose finding. We review the fractional continual reassessment method (fCRM) and 
compare its operating characteristics with those of the TITE-CRM as well as other competitive designs via 
extensive simulation studies based on both the fixed and randomly generated scenarios. The fCRM is shown to 
possess desirable operating characteristics in identifying the maximum tolerated dose (MTD) and deliver 
competitive performances in comparison with other designs. It provides an alternative efficient and robust 
paradigm for interpreting and addressing LO toxicities in the new era of phase I dose-finding trials in precision 
oncology. A real trial example is used to illustrate the practical use of the fCRM design.   

1. Introduction 

Dose finding is an essential and fundamental step in the development 
of a new treatment. This is particularly important in oncology, as it is 
believed that more than 90% of the failed large-scale randomized clin-
ical trials (RCTs) are attributable to an inefficient or inaccurate early- 
phase study to some extent [1]. The primary aim of dose-finding trials 
is to identify the maximum tolerated dose (MTD) or the recommended 
phase II dose (RP2D) to be utilized in subsequent trials. From a safety 
and therapeutic perspective, dose finding is conducted sequentially, 
assuming that dose levels are assigned to patients based on the observed 
side effects or toxicities of the previously treated patients. The standard 
principle for dose-escalation trials is to control the number of patients 
exposed to subtherapeutic doses, preserve patients’ safety and maintain 
efficient exploration of the dose space. 

Dose-limiting toxicities (DLTs) are typically defined as grade 3 or 4 
toxicities based on the National Cancer Institute (NCI) Common Ter-
minology Criteria for Adverse Events [2], and most of them are acute 
events occurring during the first cycle of treatment. However, it was 
shown that among 36 eligible trials, 57% of grade 3 or 4 toxicities 
occurred after the first treatment cycle [3]. A retrospective study 

including 54 trials with 35 different molecularly target agents (MTAs) 
showed that approximately half of the patients experienced grade 3 or 
higher toxicities after the first cycle of treatment [4]. Recently, a case 
study of dose optimization using data from bortezomib dose-finding 
clinical trials also indicated that almost 54% of a total of 13,008 
observed patients’ DLTs occurred after the first cycle of treatment [5]. If 
the DLT occurs after the end of the prespecified toxicity assessment 
period, it is called late-onset (LO) toxicity. The delayed outcome often 
results in censored or non-ignorable missing data that may not be 
available when a dose assignment decision is made for a new cohort [6]. 

Over the past decade, the time-to-event weighting method has been 
the primary framework for addressing the LO toxicity issues. The 
weighting scheme incorporates information from partially followed 
subjects who have not experienced DLTs through a weighted likelihood 
function. The weight is typically defined as a ratio of the completed 
period of follow-up and the planned, or a full weight of 1 is assigned to 
patients who have experienced DLTs. The time-to-event continual 
reassessment method (TITE-CRM) [7,8] and its variants [9–13] have 
been proposed along this direction. As an extension of the original CRM 
[14], the TITE-CRM is a sequential estimation procedure that uses a 
mathematical model to describe the relationship between dose levels 
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and the probabilities of DLT. An attractive feature of the TITE-CRM is 
that it leads to a much shorter trial duration compared with the CRM by 
allowing patients’ partial toxicity information to be incorporated into 
the dose-assignment decision before all patients’ outcomes are fully 
observed [8]. 

Nevertheless, there are some criticisms and practical challenges 
associated with the TITE-CRM. First, the TITE-CRM might be associated 
with a higher risk of treating patients at unsafe dose levels in the settings 
of LO toxicities and fast patient accrual due to the incomplete follow-up 
[10]. Second, very limited information is contained in the binary 
outcome, and the simple weighting scheme cannot accommodate all the 
information in the censored data. Third, there is enormous uncertainty 
in the choice of weight functions and different weight functions may 
lead to different trial operating characteristics. Fourth, in general the 
time-to-event weighting scheme can only be adopted in the 
likelihood-based dose-finding methods, such as CRM, the cumulative 
cohort design (CCD), and the escalation with overdose control (EWOC) 
design. 

Apart from the TITE-CRM, several other time-to-event weighting 
dose-finding methods have been developed. For example, the time-to- 
event cumulative cohort design (TITE-CCD) [15] incorporates weights 
into the CCD for updating the cumulative toxicity probability at each 
dose level. The time-to-event escalation with overdose control 
(TITE-EWOC) [16] identifies the optimal dose level by ensuring the 
probability of the dose exceeding the MTD to be less than a feasibility 
bound, which is equivalent to placing a higher penalty on overdosing 
than underdosing [17–19]. The time-to-event Bayesian optimal interval 
(TITE-BOIN) design accelerates phase I trials by allowing real-time dose 
assignment for new patients while some enrolled patients’ toxicity data 
are still pending; and as a follow-up, a general methodology of 
model-assisted designs can be used to handle the LO issues [20,21]. 

Currently, the landscape of drug development in oncology has 
evolved dramatically, primarily due to the emergence of MTAs and 
immunotherapies, which have different toxicity profiles from traditional 
cancer treatments, as they typically lead to more long-lasting mild or 
moderate toxicities as well as LO toxicities [22]. The time-to-event 
weighting paradigm for MTAs has been recommended by the NCI Ra-
diation Therapy Oncology [23]. On the other hand, fractional designs, 
such as the fractional continual reassessment method (fCRM) [24] and 
the fractional nonparametric overdose control (fNOC) design [25], can 
be regarded as effective alternative strategies to addressing the LO 
toxicity issues, as these designs possess several desirable properties:  

1. Efficiency: The fractional design can borrow information from all the 
doses and does not require the toxicity outcome to be ascertainable 
shortly after the treatment, thus substantially shortening the trial 
duration.  

2. Safety: The fraction design does not raise the overall percentage of 
toxicities, which is often a vital concern for physicians.  

3. Intuition and ease of interpretation: The fractional contribution is the 
conditional probability of experiencing toxicity in the remaining 
assessment period given that the patient has not yet experienced 
toxicity based on the nonparametric Kaplan-Meier estimator. 

4. Robustness: For the LO toxicities, the accrual rate and the distribu-
tion of times to toxicity would affect the censored cases during the 
trial. However, the fractional design inherits the nonparametric 
property of the Kaplan-Meier estimator and thus is less sensitive to 
the time-to-event distribution and performs well even when the 
speed of accrual is high.  

5. Flexibility: The fractional imputation approach, which is the unique 
scheme based on the Kaplan-Meier estimator (i.e., the nonparametric 
maximum likelihood estimator of the survival function), can be 
easily incorporated into any existing dose-finding methods, such as 
NOC [25] and BOIN [26]. The fractional toxicity outcome of each 
patient replaces the unobserved toxicity outcome that is censored 

prior to the complete follow-up, leading to the fractional designs: 
fNOC and fBOIN. 

We review the fCRM methodology, illustrate the trial implementa-
tion and examine its performances in comparison with the TITE-CRM 
and many other weighting and fractional designs, aiming to demon-
strate that the fCRM has desirable operating characteristics and can 
serve as an alternative approach to address LO toxicity issues. 

2. Methods 

2.1. TITE-CRM 

Under the time-to-event weighting framework, TITE-CRM [7] ad-
dresses the late-onset toxicity issue by using patients’ exposure times as 
weights in a pseudo-binomial likelihood function. Intuitively, a patient 
who has not experienced toxicity at the decision-making time is uni-
formly weighted by the actual follow-up time with respect to the pre-
specified assessment period. As a result, the longer the follow-up time, 
the higher the weight since it is believed the more information is carried 
by the patient. Patients who have already experienced toxicity are given 
a full weight of 1. 

Under the original CRM model [14], the true toxicity probability pj is 
linked with πj in a parametric power model via a single unknown 
parameter, pj(α) = πexp(α)

j , j = 1, ⋯, J, where πj is the pre-specified 
toxicity probability at dose level j, and π1 < ⋯ < πJ. The TITE-CRM 
continuously updates the posterior toxicity probabilities as more data 
are collected during the trial. The next cohort of patients is assigned to 
the dose moving one level toward the optimal dose that has an estimated 
toxicity probability closest to the target toxicity probability. Briefly, in 
the TITE-CRM, the first cohort of patients are treated at the lowest dose 
level or the physician prespecified dose level. Subsequently, dose esca-
lation or de-escalation is restricted to one dose level of change between 
adjacent dose levels. Furthermore, a safety rule is imposed to ensure the 
trial would be terminated early if the lowest dose under consideration is 
still overly toxic. Once the maximum sample size is exhausted, 
TITE-CRM eventually identifies the MTD as the dose whose toxicity 
probability is closest to the target toxicity probability. 

2.2. fCRM 

In the paradigm of the fractional design, we model the time to 
toxicity via the Kaplan-Meier estimator by redistributing the mass of 
each censored case to the right [24,27,28]. This is a well-known tech-
nique to reconstruct the Kaplan-Meier estimator for censored observa-
tions [29]. Suppose that after being recruited into a trial each patient is 
followed up to a prespecified toxicity evaluation period [0, τ]. If a patient 
during the follow-up period [0, τ] has experienced the DLT by the 
decision-making time (i.e., dose assignment for a new cohort of pa-
tients), then the corresponding toxicity outcome is y = 1; if a patient has 
not experienced the DLT by the decision-making time, we record a 
censored observation. By redistributing the mass of each censored 
observation to the right, we obtain a fraction of 1 (i.e., a value between 
0 and 1) as the contribution of the censored toxicity outcome. In addi-
tion, it is worth noting that, taking τ as a boundary, subjects who have 
not experienced toxicity after τ (i.e., y = 0) still contribute to the risk set 
in the Kaplan-Meier estimator, because we treat those patients with y =

0 as censored observations at τ. 
Similar to TITE-CRM, fCRM requires a pre-specified skeleton, say 

π1 < ⋯ < πJ. The true toxicity probability pj is linked with πj in a power 
model via a single unknown parameter, 

pj(α)= πexp(α)
j , j = 1, ⋯, J 

We assign α a normal prior distribution, e.g., α ̃ N(0, 2). At each 
decision-making time, the fCRM models the toxicity event as time-to- 
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event data and redistributes censored observations to the right through 
the Kaplan-Meier estimator. Within the evaluation window [0, τ], if a 
patient experiences the DLT, we take the toxicity event y = 1; if a pa-
tient has not experienced the DLT by the time of decision making, the 
toxicity event is censored and we can split the point mass of 1 between 
the censoring time and the time point that is larger than τ. More spe-
cifically, for subject i, let ti denote the time to toxicity, and let ui(ui ≤ τ)
denote the actual follow-up time that may censor ti. Assume that ui is 
independent of ti. The toxicity event is censored for patients who have 
not yet experienced toxicity (ui < ti) and have not been fully followed up 
to τ(ui < τ). If the toxicity event of subject i is censored, we calculate the 
fractional contribution via the conditional probability of the occurrence 
of toxicity in the remaining follow-up period (ui) given that the toxicity 
event has not occurred by ui, that is, 

Pr(ti < τ |ti > ui)=
Pr(ui < ti < τ)

Pr(ti > ui)

which can be estimated by 

ŷi =
Ŝ(ui) − Ŝ(τ)

Ŝ(ui)

where Ŝ( ⋅) is the Kaplan-Meier estimator. 
Once the censored observations are fractionalized, the fCRM 

continuously updates the unknown parameter as well as the estimate of 
the DLT probability. Each cohort is then assigned to the dose that has an 
estimated toxicity probability closest to the target toxicity probability, 
while no dose skipping is allowed. Moreover, a safety rule is imposed to 
ensure the trial can be terminated early if the lowest dose under 
consideration is still overly toxic. In detail, the procedure of fCRM can be 
described as follows.  

1. Treat the first cohort of patients at the lowest dose level or the 
physician prespecified dose level.  

2. At the preliminary stage, we fully follow each cohort of patients until 
the first DLT occurs,  
a. If no DLT occurs, escalate to the next higher dose level;  
b. If the current dose level is the highest one J, stay at the current 

dose level;  
c. Once the first DLT is observed, the trial seamlessly enters into the 

fCRM design.  
3. Suppose the current dose level is j, then the optimal dose level j* for 

the next cohort of patients is determined as the one whose posterior 
toxicity probability is closest to the target toxicity probability,  
a. If j > j*, then de-escalate to dose level j − 1;  
b. If j < j* and j < J, then escalate to dose level j+ 1;  
c. Otherwise, stay at the current dose level j.  

4. Terminate the trial once the maximum sample size is exhausted or 
the safety rule is triggered (i.e., the lowest dose level is still overly 
toxic). 

Once the maximum sample size is exhausted, the fCRM eventually 
identifies the MTD as the dose whose toxicity probability is closest to the 
target toxicity probability. 

2.3. A hypothetical trial example 

To illustrate the differences between fCRM and TITE-CRM, we 
consider a hypothetical phase I trial which aims to find the MTD with a 
target toxicity probability of 30% among six prespecified dose levels. 
The maximum sample size is 36 and patients are treated in a cohort size 
of 3. The DLT assessment period is 3 months and the inter-arrival time 
between two consecutive cohorts is 1 month. Fig. 1 shows the dose- 
assignment paths of the trial under the fCRM and TITE-CRM designs, 
respectively. Both the true and estimated DLT probabilities of the six 

Fig. 1. A hypothetical phase I dose-finding trial using fCRM (A) and TITE-CRM (B) respectively. For each patient, horizontal line segment represents the follow-up, 
on which DLT is indicated by a yellow dot, no DLT by a blue dot and censoring by a cross. The number in each box indicates the dose level used for the corresponding 
cohort of patients. The dotted lines indicate the decision-making times for the 3rd, 4th and 6th cohorts respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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dose levels step-by-step are presented in Table 1. The trial starts with the 
first cohort of patients assigned to dose level 1, and no DLT is observed. 
According to the dose-escalation rule, the first cohort of patients is fully 
followed and so is the second cohort until the first DLT is observed 
(between months 4 and 5); the trial then enters into the main phase. For 
the fCRM design, the fractional contributions of the censored observa-
tions in the first two cohorts are calculated using the Kaplan-Meier 
estimator, which are {(0,0,0), (0,0, 1)}, and the next cohort is 
assigned to dose level 3. The same dose level is also recommended by the 
TITE-CRM design, in which the weights for the first six patients are 
{(1,1, 1), (0.67,0.67,1)} and the estimated toxicity probabilities of the 
six dose levels are also presented in Table 1. The next four cohorts of 
patients are treated at dose level 3, which are the same under both the 
fCRM and TITE-CRM designs. However, the difference occurs for cohort 
7 on month 9. Based on the data from the first six cohorts, the posterior 
toxicity probabilities of the six dose levels are (0.169,0.253,0.347,
0.444,0.537,0.622) and, as a result, the fCRM recommends dose level 2 
to cohort 7. By contrast, the TITE-CRM with the posterior toxicity 
probabilities of the six dose levels (0.153,0.242,0.341,0.443,0.540,
0.627) recommends dose level 3. The subsequent cohort under fCRM 
remains at dose level 2 while that under TITE-CRM remains at dose level 
3. Afterwards, the remaining four cohorts are all treated at dose level 3, 
which is the same in both designs. At the end of the trial, a total of 11 
DLTs are observed under the fCRM design which recommends dose level 
3 as the MTD with the estimated toxicity probability p̂3 = 0.346. With 
11 DLTs observed under the TITE-CRM design, the same dose level 3 is 
recommended to be the MTD with p̂3 = 0.332. 

2.4. Simulation studies 

To examine the operating characteristics and evaluate the perfor-
mances of fCRM and two commonly used approaches (i.e., TITE-CRM 

and CRM) for the late-onset toxicities, simulations with ten scenarios 
given in Table 2 are performed. The power model is adopted, where the 
skeleton is chosen using the model calibration method [30] with a 
halfwidth of the indifference interval of 0.05. We consider a total of six 
dose levels and a maximum sample size of 36 patients with a cohort size 
of 3. The first cohort is treated at the lowest dose level. The toxicity 
assessment period is 3 months and the inter-arrival time between two 
consecutive cohorts is 1 month. We assume that the time to toxicity at 
each dose level follows a Weibull distribution, whose shape and scale 
parameters are chosen such that the survival function at the end of the 
follow-up is equal to one minus the toxicity probability of that dose, and 
only 10% of toxicity outcomes would occur in the first half of the 
assessment period. The target toxicity probability is 30%. For each 
scenario, 5000 replications are carried out. We also remove the stopping 
rule to achieve a fair comparison. Three types of statistics are used to 
quantify the operating characteristics of each design: (i) accuracy 
assessment, including the percentage of correct selection (PCS) of the 

Table 1 
The true and estimated DLT probabilities with cumulative cohorts of patients in the hypothetical trial with the target toxicity probability of 0.30  

Cohort True and estimated DLT probabilities Recommended dose 

Dose 1 0.12 Dose 2 0.20 Dose 3 0.30 Dose 4 0.40 Dose 5 0.50 Dose 6 0.59 

3 
fCRM 0.157 0.231 0.316 0.406 0.497 0.583 3 
TITE-CRM 0.154 0.243 0.342 0.444 0.541 0.628 3 
4 
fCRM 0.121 0.190 0.273 0.365 0.460 0.550 3 
TITE-CRM 0.106 0.183 0.276 0.377 0.478 0.572 3 
5 
fCRM 0.137 0.213 0.302 0.397 0.492 0.581 3 
TITE-CRM 0.141 0.227 0.325 0.427 0.525 0.614 3 
6 
fCRM 0.169 0.253 0.347 0.444 0.537 0.622 3 
TITE-CRM 0.153 0.242 0.341 0.443 0.540 0.627 3 
7 
fCRM 0.176 0.262 0.357 0.455 0.548 0.632 2 
TITE-CRM 0.152 0.241 0.340 0.442 0.539 0.626 3 
8 
fCRM 0.188 0.277 0.373 0.472 0.564 0.646 2 
TITE-CRM 0.152 0.240 0.339 0.441 0.538 0.625 3 
9 
fCRM 0.151 0.234 0.329 0.428 0.523 0.611 3 
TITE-CRM 0.146 0.232 0.331 0.433 0.531 0.619 3 
10 
fCRM 0.154 0.239 0.336 0.434 0.529 0.616 3 
TITE-CRM 0.146 0.233 0.332 0.433 0.530 0.619 3 
11 
fCRM 0.124 0.201 0.293 0.392 0.490 0.582 3 
TITE-CRM 0.146 0.233 0.332 0.434 0.531 0.619 3 
12 
fCRM 0.128 0.206 0.300 0.399 0.497 0.587 3 
TITE-CRM 0.146 0.233 0.332 0.434 0.5731 0.620 3 
MTD Selection 
fCRM 0.162 0.249 0.346 0.446 0.541 0.627 3 
TITE-CRM 0.146 0.233 0.332 0.434 0.531 0.620 3  

Table 2 
Ten toxicity scenarios with the target toxicity probability of 0.3 (in boldface).  

Scenario Dose Level 

1 2 3 4 5 6 

1 0.30 0.38 0.45 0.60 0.68 0.75 
2 0.17 0.30 0.43 0.55 0.65 0.80 
3 0.05 0.13 0.30 0.38 0.65 0.85 
4 0.08 0.12 0.15 0.30 0.45 0.65 
5 0.06 0.08 0.10 0.20 0.30 0.50 
6 0.01 0.04 0.08 0.10 0.15 0.30 
7 0.08 0.10 0.12 0.15 0.31 0.55 
8 0.05 0.10 0.15 0.28 0.40 0.58 
9 0.15 0.29 0.36 0.43 0.52 0.59 
10 0.06 0.12 0.18 0.27 0.37 0.45  
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MTD and the percentage of patients treated at the MTD, for which the 
larger the better; (ii) safety statistics, including the percentage of pa-
tients allocated to overdoses; the risk of high toxicity, defined as the 
percentage of trials leading to the DLT rate greater than the target 
toxicity probability; and the percentage of patients experiencing DLTs, 
for which smaller values are considered more desirable and ethical as 

they reflect the safety aspects of a trial; and (iii) trial duration, which is 
calculated as the average trial duration over all simulated trials, for 
which the shorter the better. 

Fig. 2 provides the comparison among CRM, fCRM, and TITE-CRM. 
In terms of PCS of the MTD, fCRM performs slightly better than TITE- 
CRM with an average of 2% improvement, and achieves a comparable 

Fig. 2. (A) The percentage of correct MTD selection, (B) the percentage of patients treated at the MTD, (C) the percentage of patients allocated to overdoses, (D) risk 
of high toxicity (%), (E) the percentage of patients experiencing DLTs, and (F) the average trial duration of the CRM, fCRM and TITE-CRM designs. Avg represents the 
average value over 10 scenarios. 
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performance to CRM. For the percentage of patients treated at the MTD, 
fCRM yields a similar performance to TITE-CRM, while CRM performs 
the best as it uses the complete information with a full follow-up for 
estimating the toxicity probabilities. Regarding the safety of the three 
designs, fCRM performs similarly to TITE-CRM in terms of all three 
metrics. The average trial durations of fCRM and TITE-CRM are com-
parable but much shorter than that of CRM. 

Furthermore, to overcome the subjectivity in choosing specific 
toxicity scenarios, we randomly generate 1000 scenarios, as illustrated 
in the Supplementary Fig. S1, via a modified pseudo-uniform algorithm 
[1]. A total of 1000 replications are conducted under each scenario. As 
shown by Fig. 3, the simulation study based on 1000 randomly gener-
ated scenarios further corroborate the similar performances of fCRM and 
TITE-CRM. 

2.5. Sensitivity analysis 

The percentage of censored observations is controlled by two factors: 
the ratio of the assessment period and inter-arrival time (A/I ratio) and 
the time-to-event distribution. When the A/I ratio is high, each new 
cohort arrives rapidly, and the trial requires more frequent decision 
making on dose assignment. As a result, the cohorts that have already 
entered the trial are only followed for a short period of time, which thus 
would result in a high percentage of unobserved or censored toxicity 
outcomes. On the other hand, if the distribution of the time to toxicity is 
highly skewed toward the end of the assessment period, more unob-
served toxicity outcomes are expected when a new cohort arrives. This 
can be controlled via the adjustment of the proportion of DLT occur-
rences in the first half of the assessment period. To evaluate the 

Fig. 3. The average percentages of correct MTD selection, patients treated at the MTD, patients allocated to overdoses, patients experiencing DLTs, risk of high 
toxicity and the average trial duration under the CRM, fCRM and TITE-CRM designs based on 1000 randomly generated scenarios each with 1000 simulated trials. 

Fig. 4. The average percentages of correct MTD section, patients treated at the MTD, patients allocated to overdoses, patients experiencing DLTs, and risk of high 
toxicity under the CRM, fCRM, fNOC, fBOIN, TITE-CRM, TITE-mTPI, and TITE-Keyboard designs based on 1000 simulated studies over the ten fixed scenarios. 
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influence of these trial aspects, we take the A/I ratio to be 4 or 6 and 
consider three different Weibull distributions by tuning the proportion 
of DLT occurrences in the first half of the assessment period (i.e., 10% or 
30%). 

As shown in the Supplementary Figs. S2–S4, fCRM is robust and 
yields desirable PCS of the MTD and the percentage of patients treated at 
the MTD is comparable with that under TITE-CRM. As expected, the 
safety statistics of both fCRM and TITE-CRM are slightly deteriorated as 
the A/I ratio and the proportion of DLT occurrences in the first half of 
the assessment period become large. The average trial duration of fCRM 
is similar to that of TITE-CRM, while both are much shorter than that of 
CRM. 

2.6. Comparisons with other methods 

Moreover, we carry out a comprehensive comparison among several 
popular designs, including the CRM, fCRM, fNOC, fBOIN, TITE-CRM, 
and TITE-mTPI [31] as well as TITE-Keyboard [21]. As shown in 
Fig. 4, fCRM outperforms fNOC, fBOIN, TITE-mTPI, and TITE-Keyboard 
in terms of both the percentage of correct MTD selection and the per-
centage of MTD allocation. The safety of fCRM is slightly deteriorated in 
terms of the percentage of overdoses allocation. 

2.7. Cisplatin trial in pancreatic cancer 

To illustrate the fCRM with a real trial, we consider a cisplatin trial in 
pancreatic cancer [32]. Preclinical studies had shown that the combi-
nation of gemcitabine and cisplatin could produce synergistic cytotox-
icity without loss of radiosensitization, which might lead to improved 
control of pancreatic cancer. The objective of the trial was to identify the 
MTD of cisplatin which would be combined with the full-dose gemci-
tabine and radiation therapy. The trial involved four doses of cisplatin: 
20 mg/m3, 30 mg/m3, 40 mg/m3, and 50 mg/m3. The sample size was 

18 and patients were treated in a cohort size of 1. The target probability 
of DLT was 0.20. The initial dose of cisplatin was 30 mg/m3 and the 
assessment window was 9 weeks. The dose assignment for each 
incoming patient was determined by TITE-CRM [32]. 

We reran the trial using fCRM, for which Fig. 5 shows the path of the 
dose assignments for all patients. The fCRM kicked in after patient 11 
experienced DLT, and patient 12 was assigned to dose 50 mg/m3. As 
shown in Table 3, the DLT probability estimates for the four doses given 
all the previously treated 12 patients were (0.050,0.078,0.109,0.143)
and the fractional contribution from patient 12 was 0.091, and thus 
patient 13 was assigned to dose 50 mg/m3. At the end of the trial, dose 
40 mg/m3 was selected as the MTD with the estimated DLT probability 
of 0.216. 

3. Discussion 

The TITE-CRM, embodying the spirit of the time-to-event weighting 

Fig. 5. The dose assignment path of the cisplatin trial using the fCRM design. For each patient, the horizontal line segment represents the follow-up time, on which 
the DLT is indicated by a yellow dot, no DLT by a blue dot. The number in each box indicates the dose level assigned to the corresponding patient. The dotted line 
indicates the decision-making time when patient 13 was ready for treatment. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Table 3 
The estimated DLT probabilities up to enrollment of patients 13–18 in the 
cisplatin trial using the fCRM with the target toxicity probability of 0.20  

Patient ID Currently estimated posterior DLT probability Optimal dose 
(mg/m3)  

20 mg/
m3  

30 mg/
m3  

40 mg/
m3  

50 mg/
m3  

13 0.050 0.078 0.109 0.143 50 
14 0.043 0.070 0.099 0.131 50 
15 0.087 0.128 0.170 0.214 50 
16 0.074 0.112 0.152 0.193 50 
17 0.105 0.152 0.190 0.244 40 
18 0.088 0.130 0.173 0.217 50 
MTD 

Selection 
0.118 0.167 0.216 0.264 40  
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method, has gained enormous popularity in addressing the issue of LO 
toxicities, which has been successfully implemented in several major 
academic cancer centers, such as Columbia University [33,34], Uni-
versity of Michigan [8,35] and the NCI Radiation Therapy Oncology 
Group [23]. As an alternative approach, we illustrate the fCRM design 
and make a comprehensive comparison of fCRM with other 
time-to-event weighting methods. As demonstrated in the simulation 
studies and sensitivity analysis, fCRM possesses a competitive perfor-
mance with other time-to-event weighting counterparts. Therefore, 
fCRM can serve as an alternative paradigm to addressing the issue of LO 
toxicities, commonly arising in dose-finding studies with novel MTAs 
[35] and immunotherapies [36]. Unlike the weighting scheme which 
may lead to different design properties depending on weighting func-
tions, the fractional scheme delivers a unique solution using the 
Kaplan-Meier estimator, which is nonparametric and thus robust. It 
simply fractionizes the outcome to a value between 0 and 1 if it is not 
observed yet. As a result, the fractional scheme is universally applicable 
to all dose-finding methods, which can be viewed as a response to the 
call for innovative adaptive phase I trial designs from the FDA [37] and 
the American Society of Clinical Oncology (ASCO) [38]. 

Moreover, the fractional contribution delivers a more clinically 
meaningful interpretation as it represents the conditional probability of 
experiencing DLT in the remaining assessment period given that the 
patient has not yet experienced it by the decision-making time [39,40]. 
In contrast, the weight in the TITE-CRM solely reflects the partial 
follow-up time for patients who have not experienced DLT. The fCRM, 
inheriting the robustness property of the Kaplan-Meier estimator, is less 
sensitive to the distribution of the time to toxicity. Note that we observe 
slight deterioration in the performance as the A/I ratio increases. This is 
expected as the larger the A/I ratio, the faster the enrollment as well as 
the higher frequency of decision making. In this case, decision making 
becomes more difficult and may result in aggregative dose escalation 
owing to the short follow-ups. In practice, due to the safety consider-
ation, seldom do we use such a high A/I ratio (i.e., 6), and the proba-
bility of DLT occurrence in the first cycle of treatment is generally less 
than 50% [3–5]. 

Extensive simulation studies should be conducted to evaluate the 
operating characteristics of the fractional design prior to the launch of a 
new trial. To facilitate the use of the fCRM, we have developed a Shiny 
App (https://demoyang.shinyapps.io/clinicaltrialdesignapp_fcrm/) and 
R software codes, which can be freely downloaded from the GitHub 
(https://github.com/ZhaoYangCICAMS/fCRM). 
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