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Transverse field Ising model is a common model in quantum magnetism and is often illustrated as an
example for quantum phase transition. Its physical origin in quantum magnets, however, is actually not quite
well-understood. The quantum mechanical properties of this model on frustrated systems are not well-understood
either. We here clarify the physical origin, both extrinsic one and intrinsic one, for the transverse field of the
quantum Ising model, and then explain the quantum effects in the kagome system. We discuss the quantum
plaquette order and the quantum phase transition out of this ordered state in the rare-earth kagome magnets. Our
specific results can find their relevance in the rare-earth tripod kagome magnets.
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I. INTRODUCTION

The classical Ising model is a textbook model in the
field of magnetism and statistical physics. The exact solution
by Lars Onsager for the two-dimensional Ising model is a
milestone of modern statistical physics and proved the very
existence of continuous phase transitions with only short-
range interactions [1]. The far-reaching impact of Onsager’s
solution goes much beyond the original motivation [2,3]. Its
quantum extension, the transverse field Ising model, contains
the ingredient of the quantum phase transition and emergent
low-energy quantum field theories at the criticality [4]. For the
unfrustrated Ising interaction on systems like a square lattice,
the transverse field Ising model can be well-understood from
the high-dimensional classical Ising model and its thermal
transition. On the frustrated systems, however, new ingredi-
ents may arise from the interplay between the quantum fluctu-
ation and the geometrical frustration of the underlying lattices.

Besides the interesting physical properties of the transverse
field Ising models, the physical origin of the transverse field
Ising models is actually not well understood. This is related
to the physical realization of this simple and important model.
The Ising model requires a strong spin anisotropy in the spin
space, and this almost immediately implies that, the magnetic
system must have a strong spin-orbit coupling. Indeed, the
localized moments of the proposed Ising magnets, such as
quasi-1d magnets CoNb2O6, BaCo2V2O8, SrCo2V2O8, and
various 2d/3d rare-earth magnets, do arise from the strong
spin-orbit entanglement, and the local moments have a strong
orbital character [5–12]. In the case of the Co2+ local moment,
the ion has a 3d7 electron configuration and has one hole in the
lower t2g shell, and the spin-orbit coupling is active here. As a
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result, the ion has a total spin S = 3/2 and an effective orbital
angular momentum L = 1, and the resulting total moment is
given by the spin-orbit-entangled Kramers doublet. Because
of the involvement of the orbital degrees of freedom, the
exchange interaction between the Kramers doublet has to be
anisotropic. This is indeed the underlying driving force for
the Kitaev interactions in the Co-based honeycomb magnets
Na2Co2TeO6 and Na3Co2SbO6 [13,14], and the anisotropic
interaction in the pyrochlore cobaltate NaCaCo2F7 [15–17].
For the case of quasi-1d magnets CoNb2O6, BaCo2V2O8,
and SrCo2V2O8, because of the local Co2+ environment and
the special lattice geometry, the system realizes the Ising
interactions between the local moments. The transverse field
is then introduced externally by applying a magnetic field
normal to the Ising spin direction. This is feasible because
the Co2+ local moment is a Kramers doublet and all the three
components of the moments are magnetic. This is the external
origin of the transverse field.

Is there an intrinsic origin of the transverse field? Our suc-
cessful modeling [20] of the intertwined multipolar physics in
the triangular lattice magnet TmMgGaO4 [18,19] suggests a
positive answer. We start from our early understanding about
the Tm3+ ion in TmMgGaO4 and then give an answer for the
general cases. The 4 f electrons of the Tm3+ ion has a total
spin S = 1 and orbital angular momentum L = 5, then the

FIG. 1. The Tm3+ magnetic ions in TmMgGaO4 form a trian-
gular lattice [18–20]. The lowest two crystal field singlets can be
modelled as an effective spin-1/2 degree of freedom, and the weak
crystal field splitting is modelled as a transverse field. This aspect of
microscopics and physical model have been clarified in Ref. [20].
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spin-orbit coupling leads to a total moment J = 6. As we show
in Fig. 1, the two lowest crystal field states of the Tm3+ ion are
two singlets and they comprise two independent singlet irre-
ducible representations of the D3d point group rather than one
single two-dimensional irreducible representation. Because
the total moment, J , is integer in nature, there is no Kramers
theorem, and there is always a crystal field energy gap sepa-
rating these two singlets [20]. This differs fundamentally from
the usual non-Kramers doublet whose degeneracy is protected
by the two-dimensional irreducible representation of the D3d

point group. The two singlet wave functions primarily in-
volve the Jz = ±6 components, and the group representation
forbids Jz = ±1 here [20]. If one defines a pseudospin-1/2
degree of freedom that operates on these two singlets, only
the z component of the pseudospin carries the magnetic dipole
moment, and the remaining two components are high order
multipole moments that are related to high order products of
J moments. Because of this very unique property, the external
magnetic field only acts on the z component of the pseudospin,
regardless of the direction of the external magnetic field. Thus
the transverse field cannot be generated externally. Remark-
ably, our mother nature builds the transverse field intrinsically
in this material [20] and brings quantum phenomena within
itself. The observation is from the weak crystal field splitting
that was modelled by us as the transverse field on the trans-
verse multipolar component of the pseudospin [20].

What can we learn from the successful and special exam-
ple of TmMgGaO4? The two weakly separated crystal field
singlets of the Tm3+ ions are the consequences of the singlet
representations of the point group and the non-Kramers nature
of the ion. More generally, the point group symmetry of other
rare-earth magnets is not as high as the D3d point group, and
thus it is more common to have the singlet crystal field states
for non-Kramers ions with integer spins. Therefore, in the
rare-earth magnets with a low point group symmetry, if the
two lowest singlets are well separated from the higher excited
crystal field states, then we can single them out and build up a
pseudospin-1/2 degree of freedom. This pseudospin-1/2 de-
grees of freedom will be responsible for the low-temperature
magnetic properties. Like our case for the Tm3+ ion, the
longitudinal component of the pseudospin is the dipolelike,
and the transverse component is the multipolelike. If the terms
of the wave functions for the two singlets are far apart in
the Jz basis, then the exchange interaction will be mostly
Ising-like because it is a bit difficult for the system to flip
“Jz” multiple times during the superexchange process. More
importantly, the remaining splitting between the two singlets
could be modelled as the transverse field on the multipole
component [20].

The above discussion clarifies an intrinsic origin for the
transverse field of the transverse field Ising model that can
potentially be relevant for many rare-earth magnets. To further
explore the quantum properties on the frustrated system, we
turn to a specific frustrated lattice that is kagome lattice. Ap-
parently, the tripod rare-earth kagome magnets have already
existed [21–24]. Moreover, the rare-earth kagome magnets
can be obtained from the rare-earth pyrochlore magnets from
the dimensional reduction by applying an external magnetic
field along the [111] crystallographic direction that polarizes
one sublattice [25–27]. For a kagome lattice, the twofold

degenerate non-Kramers doublet is not allowed by the lattice
symmetry, and there should always be a splitting between
two lowest crystal field states. This naturally provides the
transverse field. The major parts of this paper are to probe
the existence and explore the experimental consequences of
this intrinsic transverse field. Due to the strong geometrical
frustration, the pure transverse field Ising model with an
antiferromagnetic Ising interaction on the kagome lattice is
known to have no transition throughout all parameter regime
[28], and the system is smoothly connected to the polarized
state in the strong transverse field limit. To create more
structures from the geometrical frustration and the transverse
field, we apply an external magnetic field to the system and
establish a phase diagram with a phase transition. We show
that, at the weak transverse field regime, the system develops a
quantum plaquette order. There can be a direct quantum phase
transition from this quantum plaquette order to the disordered
state. We explain the dynamical properties in different regime
and discuss some key experimental consequences.

The remaining parts of the paper are organized as follows.
In Sec. II, we introduce our physical model and justify our
introduction of the external magnetic field. In Sec. III, we
carry out the perturbative treatment in the Ising limit and
establish the quantum plaquette order. In Sec. IV, we regard
the quantum plaquette ordered state as the parent state and
demonstrate the relation between this state and the disordered
state. We show that, the quantum plaquette order can be re-
garded as a confining phase of the compact U(1) gauge theory
and the disordered state can be regarded as the Higgs phase.
In Sec. V, we explain the thermodynamic properties and
establish the excitations inside the disordered phase, and this
excitation spectrum would be a strong evidence for the intrin-
sic transverse field in the system and the multipolar structure
of the local moments. Finally, in Sec. VI, we conclude with a
discussion of the experimental relevance and consequences.

II. KAGOME LATTICE TRANSVERSE FIELD
ISING MODEL

We start with a brief introduction of the rare-earth tripod
kagome magnet A2RE3Sb3O14 where A = Mg, Zn and RE
refers to the rare-earth atom (Pr, Nd, Gd, Tb, Dy, Ho, Er,
Yb, and Tm) [21–24]. Various interesting phases and results
have already been suggested for this new family of materials.
The Nd3+, Dy3+, Er3+, and Yb3+ ions have odd number of
electrons per ion and thus support a Kramers doublet locally.
For these Kramers doublet local moments, if the Ising spin
is realized, the transverse field has to be generated externally.
The Gd3+ ion is special and has a half-filled 4 f shell with a
total spin S = 7/2 and a quenched orbital angular momentum,
the atomic spin-orbit coupling is inactive for this ion. The
remaining ones all have integer total moments. Unlike the
rare-earth pyrochlore magnets where non-Kramers doublets
exist in many compounds, there is no such non-Kramers
doublet in the tripod kagome magnets. The symmetry of the
kagome lattice is too low to support a twofold non-Kramers
degeneracy. There is always a finite crystal field splitting
between the would-be non-Kramers doublet. Similar to the
context of the pyrochlore magnets, we can still introduce
an effective spin-1/2 degree of freedom here except that we
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need to introduce a transverse field to take care of the crystal
field splitting between the two singlets of the non-Kramers
doublets. Like the case for the Tm3+ ion in TmMgGaO4, the
transverse field is of intrinsic origin. The resulting model is
given as

H =
∑

i j

[
Ji jS

z
i Sz

j + · · · ] −
∑

i

hSx
i , (1)

where “· · · ” refers to the XY-like spin flipping term (S+
i S−

j )
and the pair-flipping term (S+

i S+
j ) that can be written down

from the symmetry analysis, and these extra terms would have
a strong bond dependence and bring the quantum fluctuations
to the Ising part. This kind of anisotropic spin model has been
widely studied in the context of the rare-earth pyrochlores
and the triangular lattice spin liquid materials. This anistropic
interaction on the kagome lattice has not yet been discussed in
the literature and we will address it in an another paper. Here,
since the intrinsic transverse field already brings quantum
properties into the system, we will focus on this transverse
field Ising model. From the materials’ point of view, we
have learned from the experience of the rare-earth pyrochlore
magnets that some materials such as Ho2Ti2O7 do behave
quite Ising-like [29]. It is natural to expect that, in the tripod
kagome system, this Ising feature could persist. Indeed, it
was proposed that the Dy-based and Ho-based tripod kagome
magnets do behave Ising-like where the intrinsic transverse
field was indicated for the Ho-based one [30].

The ferromagnetic quantum Ising model does not lead to
any unknown properties even on this frustrated lattice. Thus
we consider an antiferromagnetic Ising interaction and restrict
ourselves to the nearest neighbors. It was actually studied
numerically long time ago that the transverse field Ising model
on the kagome lattice has neither phase transition nor sym-
metry breaking. The system remains disordered throughout
the parameter space [28]. This was referred as “disorder-by-
disorder” [28], in contrast to the “order-by-disorder” [31,32]
for the transverse field Ising model on the triangular lattice in
the weak field regime [31–34]. The essential reason for the
disordered state even in the weak field regime arises from
the fact that the up-up-down and down-down-up triangular
plaquettes are degenerate and both of them appear in the
low-energy manifold. To create more structures to the phase
diagram, we here apply an external magnetic field to the
system. Only the dipolar component (Sz) of the pseudospin
will couple to the external magnetic field regardless to the ori-
entation of the external magnetic field. This field could have
the effect of removing half of the active spin configurations in
each triangular plaquette. So our model now becomes

H =
∑
〈i j〉

JSz
i Sz

j −
∑

i

hSx
i −

∑
i

BSz
i , (2)

where only the nearest-neighbor interaction is considered. In
the absence of the intrinsic transverse field h, an infinitesimal
external magnetic field B would already select all up-up-down
spin configuration and create a magnetization plateau. This
magnetization plateau persists up to the field value of J/2
without extra interactions. This plateau regime in B ∈ (0, J/2)
is identical to the “kagome spin ice” that was obtained from
the classical pyrochlore spin ice by applying a magnetic field

FIG. 2. The sixth order degenerate perturbation process from
the intrinsic transverse field within the degenerate “up-up-down”
spin configurations. The red arrows indicate the application of the
transverse field on this site. “+” refers to spin-up, and “−” refers to
spin-down. See the main text for the detailed discussion.

along the [111] direction to polarize one sublattice [25,26,35].
However, this is classical physics. In the following section,
we analyze the quantum effect of the intrinsic transverse
field within this degenerate spin manifold. Some aspects of
this model such as the ordered structure have been estab-
lished in the early numerical study [31,32]. Our purpose is
to propose this model for the rare-earth kagome magnets with
non-Kramers doublets. We further propose the fractionalized
nature of the phase transition based on the lattice gauge the-
ory, and explore the experimental consequences of different
phases and the transition due to the multipolar nature of the
local moments. The experimental signature of the intrinsic
transverse field is emphasized.

III. PERTURBATION THEORY AND QUANTUM
PLAQUETTE ORDERS

We continue to work within the degenerate “up-up-down”
spin configurations due to our introduction of the external
magnetic field on the dipolar component of the pseudospin.
Once a weak transverse field is introduced, the extensive
degeneracy will be lifted, and a degenerate perturbation theory
is needed. The leading effect comes from the sixth order, that
is depicted in Fig. 2, is summarized below,

H6 = −J6

∑
�

Sx
1Sx

2Sx
3Sx

4Sx
5Sx

6, (3)

where J6 ∼ O(h6/J5) > 0 and the “−” sign takes care of even
number of perturbation series. The lower order perturbations
either vanish or give a constant shift to the classical energies.
Our sixth order effective Hamiltonian, H6, operates on the de-
generate manifold of “up-up-down” spin configuration. This
process can be mapped to a quantum dimer model on the dual
honeycomb lattice that is formed by connecting the centers of
the triangular plaquettes if the down spin is mapped to the
dimer convering on the bond connecting the centers of the
neighboring triangular plaquettes (see Fig. 3). This is an exact
mapping. The quantum dimer model is given as

H6 = −J6

∑
�

[|�1〉〈�2| + |�2〉〈�1|], (4)
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FIG. 3. The kagome lattice and its dual honeycomb lattice.
Dimer configurations 1 and 2 refer to two distinct dimer coverings
on the elementary hexagon. In the quantum plaquette ordered phase,
the hexagons with blue circles refer to the resonating hexagon where
the three dimers form a quantum linear superposition of the dimer
configurations 1 and 2.

where |�1〉 and |�2〉 refer to the two alternating dimer
coverings on the elementary hexagons of the dual honeycomb
lattice (see Fig. 3). This quantum dimer model is known to
have a plaquette dimer order by breaking the lattice translation
symmetry, and the unit cell has been tripled [36]. Returning
back to the spin language, this plaquette dimer order corre-
sponds to the quantum plaquette order where in the resonating
hexagon with a blue cirlce (see Fig. 4) the ground state
can be approximated as (|↑↓↑↓↑↓〉 + |↓↑↓↑↓↑〉)/

√
2. We

have listed the spin state for the six spins on the resonating
hexagon. This is an even cat state of six spins on the hexagon.

How does one probe this quantum plaquette order? Ther-
modynamically, there should a finite temperature phase tran-
sition as one lowers the temperature. Moreover, this or-
der breaks the lattice translation, and one should be able
to observe the magnetic Bragg peaks at the wavevectors
(±4π/3, 0) where we have set the original lattice constant
to unity. This corresponds to the momentum points K and
K ′ in Fig. 4. In this system, only Sz is time reversally odd

FIG. 4. The quantum plaquette order in terms of the spin con-
figuration. On the resonating hexagon, the six spins form a quantum
linear superposition of the alternating spin orientations. The ordering
wave vectors of the quantum plaquette order occur at K and K ′

points. The blue hexagon inside the big hexagon in (b) is the reduced
Brillouin zone when the system develops the quantum plaquette
order.

and can be detected from the conventional neutron scattering
measurements. So, we expect the magnetic Bragg peak to
be observed in the Sz-Sz correlator for an inelastic neutron
scattering measurement. Nuclear magnetic resonance (NMR)
measurement can also be a convenient probe of the number of
internal fields that are generated by the enlarged Sz magnetic
unit cell from the quantum plaquette order.

How about the elementary excitations? Again, As only
Sz-Sz correlator is detectable, we analyze the physics content
that is contained in this correlator. If the magnetic state only
has 〈Sz〉 
= 0, the Sz-Sz correlator can only detect two-magnon
excitations and would not be able to observe coherent magnon
excitations. Because of the transverse field, 〈Sx〉 
= 0 both
on the ordered side and on the disordered side. Inside the
quantum plaquette ordered state, the Sz-Sz correlator will be
able to observe the coherent magnon modes, as the Sz operator
creates spin-flipping events for the Sx configurations and this
corresponds to the coherent magnon creation. This is also the
underlying reason that we can observe the coherent magnon
excitations for the triangular lattice magnet TmMgGaO4 and
make a reasonable comparison with the spin wave theory.
This could persist to the disordered side, although the number
of modes will be restored to the one without the translation
symmetry breaking.

Finally, in contrast to the ordered state from the quantum
order by disorder for the triangular lattice case [31], the
quantum plaquette order for the kagome system is more
complicated as it is a quantum entangled state within the
enlarged unit cell, and the conventional spin wave theory fails.
Although this quantum plaquette order would manifest itself
as Bragg peaks in the neutron scattering measurements, its
quantum nature distinguishes itself from other conventional
magnetic orders. The magnetic excitation cannot be captured
well by the spin wave theory that is based on the single
site magnetic orders. To compute the magnetic excitation
spectrum inside the quantum plaquette ordered phase in the
future, one needs to first resolve the local energy states within
the enlarged unit cell because of the entangled nature of
the ground state and represent these states/operators with a
restructured flavor wave theory.

IV. NONPERTURBATIVE TREATMENT

Having established that our model has a quantum plaquette
order in the weak intrinsic transverse field limit, we continue
to understand the structure of this phase when the field is large.
Certainly, in the strong field limit, the ground state is a trivial
disordered state and all the spins try to align themselves with
the transverse field. The natural questions are whether there
exists other competing phase between these two phases in the
two opposite limits. If there is no intermediate phase, what
would be the quantum phase transition between these two
phases? To address these questions, we first provide another
perspective of the quantum plaquette order and then regard
this state as a parent state. We will explore the instability of
this state and see what states we can obtain.

It is well-known that the quantum dimer model on the
bipartite lattice is described by the compact U(1) lattice
gauge theory, so is the dimer model for our dual honeycomb
lattice. For two spatial dimensions, this U(1) lattice gauge
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theory is confining due to the proliferation of the spacetime
monopole events. Our quantum plaquette order is essentially
the consequence of the confinement. The role of the transverse
field in the quantum plaquette ordered state is to create the
spinon-antispinon pair, allow the spinons to hop, and lower
the energy of the spinons gradually, although the spinons
are actually confined. Here the spinon/antispinon refers to
the defect triangular plaquette that violates the up-up-down
condition. Under this picture, eventually the spinon band gap
vanishes and the spinons are condensed, the resulting phase
would be a Higgs phase of the compact U(1) lattice gauge
theory.

A. Transition between the confinement and the Higgs phases

To describe the transition out of the quantum plaquette
ordered phase, we focus on the spinon matter and construct
a mean-field description to trace the spinons. To access the
transition, we ignore the confined nature of the spinons in the
quantum plaquette ordered state. This should be appropriate
at the transition where the translation symmetry is restored,
but is not a good approximation in the quantum plaquette
ordered phase as the translation symmetry is broken. We
first recast the microscopic Hamiltonian into the following
form:

H =
∑
�r

J

2

⎛
⎝∑

i∈�r

Sz
i − 1

2

⎞
⎠

2

− h
∑

i

Sx
i , (5)

where the first term takes care of the up-up-down condition
from the introduction of the external field on the dipolar
component Sz, and “�r” refers to the triangular plaquette that
is centered at r. As it is known from Fig. 3, the centers of the
triangular plaquettes on the kagome lattice form a honeycomb
lattice. We here introduce the spinon operators in the spirit
similar to the one used in the context of pyrochlore spin ice
system [37],

S+
i = �†

r �r′s+
rr′ , (6)

Qr = ηr

⎛
⎝∑

i∈�r

Sz
i − 1

2

⎞
⎠, (7)

where Sx
i = (S+

i + S−
i )/2, and the site i is the shared site

of two neighbor triangular plaquettes at r and r′. Here, we
choose r to be in the I sublattice of the honeycomb lattice
and r′ to be in the II sublattice of the honeycomb lattice, s+

rr′
is the U(1) gauge link variable, and Qr counts the spinon
number density with ηr = ±1 for I/II sublattice. �†

r (�r) is
the creation (annihilation) operator for the spinon at r. We
have the commutation relations

[�r, Qr′] = �rδrr′ , (8)

[�†
r , Qr′] = −�†

r δrr′ . (9)

Under the parton construction, the physical Hilbert space of
the spins is enlarged to the ones by �r, Qr and the gauge link.
Once the Hilbert space constraint is imposed, the physical

Hilbert space is restored [37]. With this transformation, the
physical Hamiltonian can be expressed as

H =
∑

r

J

2
Q2

r − h

2

∑
〈rr′〉

[�†
r�r′s+

rr′ + H.c.]. (10)

This model then describes the spinon hopping on the dual
honeycomb lattice that is minimally coupled with the U(1)
gauge link. The first term of the above Hamiltonian is the
energy penalty that constrains the spinon density fluctua-
tions. To solve this model, we carry out the standard gauge
mean-field treatment and set �r = e−φr with [φr, Qr′] = iδrr′ .
From the knowledge of the previous sixth order perturbation
calculation, the system would prefer a zero-flux sector for
the spinons, and we can choose s±

rr′ = 1/2 to fix the U(1)
gauge link. Then, under the coherent state path integral for
the bosonic spinons, the dispersions of the spinons can be
established and are given by

ω±(k) =
⎡
⎣2J

⎛
⎝λ ± h

4

∣∣∣∣∣∣
∑
{bi}

eik·bi

∣∣∣∣∣∣
⎞
⎠

⎤
⎦

1
2

, (11)

where λ is the lagrangian multiplier to fix the unimodular con-
dition for |�r| = 1 and the spinon is condensed at the 	 point.
In addition, {bi} is the set of three nearest-neighbor bonds of
the dual honeycomb lattice. As the spinon is condensed at the
	 point, the resulting spin state is a disordered state with a
finite and uniform 〈Sx〉, i.e.,〈

Sx
i

〉 = 1
2 [s+

rr′ 〈�†
r 〉〈�r′ 〉 + H.c.], (12)

where the expectation is taken with respect to the spinon con-
densate at the 	 point. The above description would suggest a
direct transition from the confining phase to the Higgs phase,
and the numerical calculation finds the critical point occurs
at hc = 1.26J . This transition is continuous at the mean-field
level and may become weakly first order when the low-energy
gauge fluctuation is included [38].

B. Fractionalization and continuum at the criticality

To probe the possible existence of the fractionalization at
the transition or at least above the energy scale where our
mean-field theory would work, we suggest the meansurement
of the S+-S− spin correlation function. This spin correlator
contains the information about the spinon dynamics. It corre-
sponds to the creation of the spinon-antispinon, the evolution
of them in space and time, and eventually, the annihilation
of them. Thus the S+-S− correlator would detect the 2-spinon
continuum. Although this correlator is not directly measurable
in the inelastic neutron scattering measurement for the non-
Kramers doublet local moments, as this model does not have
the sign problem for the quantum Monte Carlo simulation, it
can be useful to probe this correlator in the future numerical
simulation. For the triangular lattice, this model has been ex-
tensively simulated [31–34] where the dynamical correlation
properties and effect of long-range dipolar interaction were
numerically studied recently [39,40]. On the triangular lattice,
the system does not have exotic ground state and the physics
is well captured within the conventional symmetry breaking
[32,33] and the associated spin wave like quasiparticle picture
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FIG. 5. The lower and upper excitation edges of the 2-spinon
continuum at the phase transition. We plot the excitation continuum
with respect to the parallelogram-shaped Brillouin zone. The contin-
uum is gapless at the 	 point. The right panel is the Brillouin zone
with all four equivalent 	 points marked.

[20]. In contrast, for our kagome system, we would encounter
fractionalization [41–43]. Theoretically, one could obtain the
structure of the 2-spinon continuum within the mean-field
approach in the previous section. This is established by the
energy-momentum conservation with

q = k1 + k2, (13)

Eq = ωμ(k1) + ων (k2), (14)

where q is the total crystal momentum and Eq is the total
energy of the two spinons. Here μ and ν are the branch indices
for the spinons and take ±. The minima and maxima of Eq

define the lower and the upper excitation edges of the 2-spinon
continuum. The lower and upper edges are plotted in Fig. 5
using the mean-field parameters at the transition, and the
continuum covers a large energy bandwidth. The mean-field
theory qualitatively captures the fractionalized nature of the
excitations at the transition.

V. PHYSICAL PROPERTIES OF THE DISORDERED PHASE

When the transverse field is large, the system will be
in a disordered state with the Ising spin language. For the
model in the absence of the external field, the transverse field
Ising model on the kagome lattice remains disordered for
all parameter range. From the experimental point of view,
it would be quite useful to extract the parameters in the
model. For this purpose, as we show below, the conventional
thermodynamic measurements would be sufficient. Moreover,
the unique multipolar structure of the local moments generates
peculiar structures in the dynamic spin structure factor mea-
surements.

A. Thermodynamic properties

As the external magnetic field only couples to the dipole
component Sz, we now view the B field as a probing field.
The magnetization is nonvanishing only along the z direction.
Due to the intrinsic transverse field, the model does not
have any continuous spin rotational symmetry. The mag-
netic susceptibility should simply be a constant in the zero

temperature limit. This constant magnetic susceptibility can
be obtained by a conventional self-consistent mean-field treat-
ment with

H =
∑
〈i j〉

JSz
i Sz

j − h
∑

i

Sx
i − B

∑
i

Sz
i

→
∑
〈i j〉

JSz
i

〈
Sz

j

〉 − h
∑

i

Sx
i − B

∑
i

Sz
i (15)

where the expectation is taken with respect to the mean-field
ground state. From the induced magnetization, it is ready to
obtain the zero-temperature magnetic susceptibility,

χ0 = 1

N

∑
i

∂
〈
Sz

i

〉
∂B

∣∣∣∣
B→0

= 1

2h + 4J
, (16)

where N is the total number of spins. Besides the susceptibil-
ity in the zero-temperature limit, the Curie-Weiss temperature
from the high-temperature magnetic susceptibility provides
another quantitative information with z

CW = −J where only
the z component is meaningful. With χ0 and z

CW, it is
sufficient to extract the couplings.

B. Dynamic properties

The magnetic excitations are measured by inelastic neu-
tron scattering through the Sz-Sz correlation. Here only Sz-Sz

correlation is contained in the inelastic neutron scattering
spectrum because only Sz is coupled to the neutron spin. In
the disordered state, 〈Sx〉 is nonvanishing. As Sz does not
commute with Sx, what Sz does is to flip Sx and create coherent
excitations. Thus Sz-Sz correlation measures the coherent
excitations with respect to the disordered state. This result
really arises from the multipolar nature of the local moment.
As the disordered state is smoothly connected to the finite
temperature paramagnetic state, the coherent excitations, that
are recorded in the Sz-Sz correlation, would persist to the finite
temperatures. Experimentally, this may be mysterious.

We consider the model with B = 0, and set the spin wave
transformation as

Sz
i = 1

2i
(bi − b†

i ), (17)

Sx
i = 1

2
− b†

i bi. (18)

The linear spin wave Hamiltonian is then given as

Hsw =
∑

k

∑
μ

h b†
kμ

bkμ +
∑

k

∑
μ 
=ν

Aμν (k)b†
kμ

bkν

+
∑

k

∑
μ 
=ν

[Bμν (k)b†
kμ

b†
−kν

+ H.c.], (19)

where μ refers to the sublattices of the kagome lattice, and we
have

Aμν (k) = J

2
cos(k · aμν ), (20)

Bμν (k) = −J

4
cos(k · aμν ). (21)
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FIG. 6. The dispersions of the three magnetic excitations in the
disordered phase. Here we set h/J = 2. The lattice constant is set to
unity.

Here, aμν is the nearest-neighbor vector connecting sublattice
μ and sublattice ν for the convention μ > ν.. The magnetic
excitations have three branches with the dispersions,

�1(k) = (h2 − hJ )
1
2 ,

�2(k) =
[2h2 + hJ − hJ

[
3 + 2

∑
aμν

cos(2k · aμν )
] 1

2

2

] 1
2

,

�3(k) =
[2h2 + hJ + hJ

[
3 + 2

∑
aμν

cos(2k · aμν )
] 1

2

2

] 1
2

,

where the first band is a flat band. The dispersions are plotted
in Fig. 6. The flat band here is not due to the frustration of
the interaction and the lattice, but is from the fact that the
exchange part only involves the exchange/hopping of bi − b†

i

and does not involve bi + b†
i . The latter is the origin of the flat

dispersion.

VI. DISCUSSION

In this discussion section, we will do three things. We first
review the tripod kagome magnets with the rare-earth ions,
and then discuss the kagome magnets from the rare-earth
pyrochlore magnets via the dimensional reduction, and finally
provide some perspectives about the transverse field Ising
magnets on the frustrated lattices.

Most of the research about the tripod kagome magnets
are experimental [21,22,30]. This is a bit different from the
kagome lattice Heisenberg-like magnets such as the Herbert-
smithite families where both theories and experiments are
quite active [44]. It is thus beneficial to this new topic of
kagome magnets if the theoretical inputs are provided. Due
to some similiarity with the rare-earth pyrochlore and the
rare-earth triangular lattice magnets, it would be interesting
to explore the generic anisotropic spin model on the kagome
lattice. The rare-earth tripod kagome magnets can be an-
other platform to study the interplay between the spin-orbit
entanglement and the geometrical frustration. Because this
is a 2d lattice with relatively lower symmetries, more spin
interactions (beyond the ones for pyrochlore and triangular
lattices) are allowed, and new magnetic orders and phases

may thus be stabilized. While for the Kramers ion, the above
expectation may be a simple and natural extension from other
lattices. The tripod kagome magnets, however, do bring addi-
tional features for the non-Kramers ions. The low symmetry
of the kagome lattice removes the non-Kramers doublets
completely and splits them into multiple singlets. The physics
that we have introduced in this paper is about the magnetically
active lowest two singlets that can be approximately treated
as an effective pseudospin-1/2 non-Kramers doublets with
an intrinsic transverse field. The quantum plaquette orders
and the phase transitions could be potentially tested in future
experiments. Moreover, as along as the Ising spin condition is
maintained, even in the presence of the weak transverse spin
exchange interactions that could exist in real materials, our
results in this paper will still hold.

It is well-known that the kagome lattice magnets can
also be obtained from the rare-earth pyrochlore magnets
by applying an external magnetic field along the [111]
direction [26]. Due to the anisotropic coupling to the external
magnetic field, one sublattice will be polarized. If the py-
rochlore system is in the spin ice regime, the reduced kagome
system would be in the kagome ice regime. The original non-
Kramers doublets of the pyrochlore magnets will remain to be
non-Kramers doublets under this setting, and thus there is no
intrinsic transverse field here. This, however, may not be the
end of the story. To generate the intrinsic transverse field, one
could grow the pyrochlore thin film along the [111] direction
and place it on a substrate. The strain from the substrate
will modify the lattice symmetry and remove the twofold
degeneracy of the non-Kramers doublet. On the other hand,
the system has the magnetoelastic coupling. This coupling
was suggested by D. Khomskii to induce the electric dipole
moment once the spin configuration is modified from the spin
ice one [45]. The distortion of the lattice and/or the displace-
ment of the ions will necessarily lower the lattice symme-
try and generate a finite splitting among the non-Kramers
doublet, and this can be treated as an intrinsic transverse
field.

In this paper, we have delivered the frustrated quantum
Ising model with an intrinsic transverse field on the kagome
lattice. Since the mechanism for the intrinsic transverse field
with low crystal symmetries can generally apply to the non-
Kramers ions, the quantum Ising model can be realized and
explored among other frustrated rare-earth magnets such as
the FCC double perovskites [46].
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