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Abstract: This paper examines the internal rectangular loading problems for an elastic halfspace 

where the shear modulus varies exponentially or linearly and the Poisson’s ratio keeps constant 

or varies linearly with depth. The numerical method is developed through applying the 

fundamental solution of layered elastic solids and integrating numerically it over the loading area. 

The adaptive integration of the displacement and traction integrals over the loading area is 

designed to calculate the nearly singular integral for the source point close to an element. The 

discretization approach is applied to deal with an arbitrarily depth-heterogeneous elastic solid. 

OpenMP directives are used to parallelize the internal loop, which controls element iterations so 

that a high computing speed can be obtained. For an axisymmetric internal loading problem, the 

displacements obtained with the present formulation are in very good agreement with existing 

closed-form solutions. Finally, stresses and displacements in non-homogeneous halfspaces 

induced by horizontally and vertically uniform rectangular loadings are presented. Results 

illustrate the effect of non-homogeneous properties on the stress and displacement fields.  
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1. Introduction 

1.1 Background 

Intact soils and rocks exhibit strong spatial variations in the material properties because of 

their natural formation process (Zhao et al., 2016; Guo & Zhao, 2016). In some cases, materials 

has their physical and mechanical properties variable along a given coordinate and keeping 

constant along the other two coordinates perpendicular to the given coordinate. For example, the 

geotechnical investigations to soils showed that the shear modulus of undrained soils varied 

linearly with depth (Abbiss, 1979). It has been well recognized that non-homogeneity of 

materials has a significant effect on the stresses and deformations in the material region under 

loadings. The elastic responses of non-homogeneous solids subjected to loadings have been of 

great interest to many researchers and engineers in applied mechanics and many branches of 

engineering (Selvadurai, 2007). 

The problems related to the mechanics of non-homogeneous geo-materials are much difficult 

to be solved and can be simplified via the following assumptions. The first is to model the geo-

material as a homogeneous or piece-wisely homogeneous elastic solid in engineering analysis 

(Chen, 1971; Pan, 1989; Yue, Yin & Zhang, 1999; Pan et al., 2007; Zhang, Liu & Lin, 2016; 

Zhang et al. 2016). The second is to assume that the shear modulus of a non-homogeneous 

medium varies continuously with depth. Some of the earliest researchers (Rostovtsev, 1964) 

used a power law function for considering the variations of shear modulus with depth. As a 

special case of the power law function, the linear variation of shear modulus with depth was 

widely applied by Gibson (1967). The exponential variation of shear modulus with depth has 

also been assumed for analysis of non-homogeneous geo-materials under different types of loads 

by Selvadurai et al. (1986), Rajapakse et al. (1989), Stark et al. (1997), etc. For easy analysis, it 

is usually assumed that the Poisson’s ratio of the nonhomogeneous solids keeps constant and 

does not vary with depth. 

The displacements and stresses resulting from a footing load are important parameters in the 

design of foundations. This kind of loads uniformly distributed on the horizontal surface plays a 

predominant role for engineering design, and the distributed rectangular loading can be 

considered as a realistic loading situation. The numerical solutions of such loading can have 

direct applications to many problems encountered in geo-mechanics and engineering. Marmo et 

al. (2016) and Marmo &  Rosati (2016) developed the analytical solutions of elastic fields within 

an homogeneous isotropic halfspace subject to linearly varying horizontal loads distributed on 

polygonal regions of its surface. Marmo et al. (2017) further presented analytical expressions of 
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transversely isotropic halfspaces subject to linearly distributed vertical pressures applied over 

arbitrary regions of the halfspace boundary. However, it is much difficult to obtain the solution 

of the analytical solutions of the non-homogeneous halfspaces subjected to complex loadings. It 

should be pointed out that Booker et al. (1985) developed a numerical procedure to determine the 

surface displacements of a non-homogeneous soil subjected to various surface loads, such as 

point and line loads or uniformly distributed tractions. Furthermore, Doherty et al. (2003) 

developed the scaled boundary finite-element method for analysis of a non-homogeneous elastic 

halfspace subjected to a variety of surface loadings. In the above analyses, a power-law function 

is used to describe the variation of elastic modulus with depth. More recently, Katebi & 

Selvadurai (2013) and Selvadurai & Katebi (2013) analyzed the axisymmetric problem of the 

internal loading of incompressible halfspaces with an exponential variation with depth. Actually, 

depth-dependent non-homogeneity is distributed in a much complex form and an effective 

analyzing approach should model arbitrary variations with depth. 

1.2 Aim and approach of this study 

The objective of this paper is to present numerical solutions for a non-homogeneous half-

space subjected to internal loadings in both vertical and horizontal directions, as shown in Fig. 1. 

The loadings are uniformly distributed on a rectangular area. The rectangular loading area is 

horizontally parallel to the boundary surface. To the authors’ best knowledge, the numerical 

solutions for this elastic problem are not available in the relevant literature. The geo-materials to 

be studied can have their elastic properties exhibiting arbitrary variations in depth and keeping 

constant in lateral directions. 

The numerical method to be utilized is based on the fundamental solutions for a multilayered 

elastic solids of infinite extent subjected to concentrated body force vectors developed by Yue 

(1995). Using this fundamental solution, Xiao, Yue, & Zhao (2012) developed the numerical 

methods for analyzing elastic fields in heterogeneous rocks due to reservoir water impoundment. 

This paper further develops this numerical method to obtain highly accurate solutions of a non-

homogeneous solid subjected to different types of distributed loads. The proposed method 

utilizes the integral method on the loading area and discretizes the loading area by four- or eight-

noded elements. The integral on every element is executed using effective numerical methods. 

The proposed numerical method is characterized by a parallel nature. A straight approach is to 

use OpenMP directives to parallelize the loop for element iterations. It is known that the elastic 

fields vary sharply as the field point has a very small distance to a loading area. In this paper, an 

improved numerical method will be developed to obtain a highly accurate solution. Specially, the 
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variations of the Poisson’s ratio with depth are considered. Results show the influence of the 

non-homogeneity on the displacements and stresses of a non-homogeneous elastic halfspace 

under uniform internal loading over a rectangular area. 

2. The numerical method of analyzing a non-homogeneous halfspace 

2.1 Fundamental solutions of multi-layered solids subject to concentrated point loads 

The fundamental solution is the analytical solution for the elastostatic field in a layered 

solid of infinite extent due to the action of concentrated point loads. The dissimilar homogeneous 

layers adhere an elastic solid of upper semi-infinite extent and another elastic solid of lower 

semi-infinite extent. The interface between any two connected dissimilar layers is fully bonded. 

It was given by Yue (1995) and also called as Yue’s solution (Maloney et al., 2008; Buxboim et 

al., 2010; Merkel et al., 2007). 

The results illustrated that numerical evaluation of the solution can be achieved with 

controlled accuracy. The solution is characterized by an elastic solid with any layers and high 

efficiency. The convergence of the solution has been verified and the solution satisfies all the 

required conditions including the basic equations and the interfacial conditions as well as the 

loading conditions. Yue and his co-workers (e.g. Xiao & Yue, 2014; Xiao et al., 2018, 2019) 

incorporated this fundamental solution into the classical BEMs for the analysis of the fracture 

mechanics in layered solids and found the solutions for many specific problems of interests in 

science and technology. The fundamental solution of infinite multilayered media is also suitable 

for the layered media of semi-infinite extent. In an infinite layered solid, the elastic modulus of 

the upper semi-infinite solid is given an extremely small value, such as E0=1×10-10MPa  and the 

Poisson’s ratio of the solid ν0=0.3. In this way, the fundamental solution of a layered solid of 

semi-infinite extent is obtained. 

2.2 The basic equations and numerical methods 

The numerical method by Xiao, Yue & Zhao (2012) is further developed for evaluating the 

elastic fields of a non-homogeneous solid induced by a distributed load. In using the proposed 

numerical method for the analysis of a non-homogeneous halfspace exhibiting arbitrary 

variations in depth, the halfspace is discretized into a large number of homogeneous layers, as 

shown in Yue et al. (1999). It can be found that the development of the basic equations analyzing 

the elastic layered problem is relatively straightforward. These analyzing equations are presented 

for completeness. 
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As shown in Fig. 1, a non-homogeneous halfspace is subjected to internal loads in the x, y 

and/or z directions. The displacements and stresses at any points of the non-homogeneous solid 

are expressed as 

     * ,i ik kS
u Q u Q P t P dS                                                         (1) 

     * ,ij ijk kS
Q Q P t P dS                                                        (2) 

where  PQuik ,*  and  PQijk ,*  are the fundamental solutions of the layered solid presented by 

Yue (1995);  PQuik ,*  are the i-th component of the displacement at the field point Q produced 

by the k-th component of a unit force applied at the source point P;  PQijk ,*  are the stresses at 

the field point Q produced by the k-th component of a unit force applied at the source point P; 

 Ptk  is the traction at the source point P; the integral domain S is the loading area. It should be 

noted that the subscript k is a dummy index. 

The loading area S is discretized into ne elements. The variable-node element similar to the 

one of boundary element methods (Xiao & Yue, 2014) is employed to discretize the loading area. 

In global and local coordinate systems, there are the following transform relationships of 

coordinate and traction values 
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where  1 2,N    is the shape function of the element and is presented in Appendix A. 

Considering Eqs. (1) and (2) with (3), we have the following discretized forms 
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where J is the Jacobian determinant. 

It is very important to obtain the accurate and efficient integration of the displacement and 

traction integral over the loading area. In Eqs. (4) and (5), three types of integrals exist and are 

calculated as follows: 

(1) When the source point Q is not located at and is not close to the integral element, the 

integrals of Eqs. (4) and (5) are executed in the local coordinates and are calculated using the 

regular Gaussian quadrature. 
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 (2) If the field point Q is located at the integral element, the integrand of Eq. (4) is of 

singularity  1O r   and the integrand of Eq. (5) is of singularity  2O r  , where r is the distance 

between the points P and Q. The weakly singular integral of Eq. (4) is computed by applying an 

integration scheme based on a linear coordinate transformation (Beer et al., 2008; Gao & Davies, 

2002) and the strongly singular integral of Eq. (5) is computed by using an indirect method. 

 (3) When the field point Q is not located on the loading area and the distance r between 

the points P and Q has a small value, the kernel functions *
iku  and *

ijk  in Eqs. (4) and (5) have 

sharp variations. This type of integral is referred to as nearly singular integral, which will be 

discussed in the next section. 

3 The subdivision scheme for nearly singular integral 

3.1 Subdivision of an element 

It has been found that the accuracy of calculating nearly singular integral is much related to 

the ratio of the length of an element to the distance from a field point to the element. As in Beer 

et al. (2008), an element may be further divided into sub-regions to solve nearly singular integral. 

In the ensuing, numerical integration techniques are developed to deal with nearly singular 

integral. 

As shown in Fig. 2, the element is divided into several sub-regions. The number of sub-

regions 
1ξ

M  in the direction 1ξ  and 
2ξ

M  in the direction 2ξ is determined by 

 
1 1min

/ / ( / )ξ ξM INT r L r L                                                           (6) 

 
2 2min

/ / ( / )ξ ξM INT r L r L                                                            (7) 

where the symbol INT denotes rounding off the results, r is the distance from the field source to 

the element, 
1ξ

L  and 
2ξ

L  are, respectively, the lengths of the element along the directions 1ξ  and 

2ξ ,  min
/r L  is the minimum value of  r/L for obtaining the integration error 10-3 when the four 

Gaussian points is collocated. Erberwien et al. (2005) found that  min
/r L   0.79263, 1.67767 

for  1O r   and  2O r  , respectively. 

The integration expressions on each element in Eqs.  (4)  and (5) can be further written as 
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The relationships between the local coordinates  1 2,ξ ξ  and  1 2,ξ ξ  are 
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where  ss
21 ,  and  ee

21 ,  define the starting and ending sides of the sub-region shown in Fig. 2.  

The Jacobian determinant J  is given by 
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3.2  The lengths of an element and the minimum distance rmin 

The lengths of an element along the directions 1ξ  and 2ξ  can be calculated using the 

following 
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The lengths 
1

L  and 
2

L  expressed in
 

Eq. (11) can be calculated using the Gaussian 

quadrature method. The iteration method developed by Gao & Davies (2002) can be used to 

calculate the minimum distance rmin from a field source to an element. The local coordinate 

origin of the element is chosen as a starting point for an iterating process. Taylor’s theorem is 

used to obtain the r distance for the next step. 

3.3 Numerical verification of the subdivision scheme 

A numerical example is presented to verify the efficiency and accuracy of the proposed 

subdivision scheme. As shown in Fig. 3, the loading square-shaped area with a side length of a 

on the boundary surface of a homogeneous halfspace is considered. Assume that the elastic 

modulus E0 and the Poisson’s ratio ν=0.3. The uniform compressive traction fz=1 is acted on the 

loading area, which is discretized using a 4-noded element. Using Eqs. (4) and (5),  0,0,zu z  

and  0,0,zz z  can be expressed as 
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                (13) 

In the following, the numerical results will be compared with the closed-form solution 

presented by Xiao & Yue (2013).  

Fig. 4a illustrates the variation of the relative errors of   00,0, /z zu z E f a  with the number of 

sub-regions of an element at different z value. Using Eq. (6), 
1 2

79M M M     for the 

integration error 10-3 at z/a=0.01. It can be found that the relative error of 

  00,0, / 0.01 /z zu z a E f a  decreases rapidly with M increasing and is equal to 0.02349271 for 

M=19. Correspondingly, at z/a=0.01 the numerical result   00,0, /z zu z E f a =1.01617 whereas 

the accurate result   00,0, /z zu z E f a =1.01593. It is obvious that the numerical result is much 

close to the accurate value.  At z/a=0.1, the relative error of   00,0, /z zu z E f a  decreases rapidly 

with M increasing and is equal to 0.00016408 for M=7 whereas M=7 using Eq. (6) for the 

integration error 10-3. At z/a=0.5, the relative error of   00,0, /z zu z E f a  is equal to 0.00072358 

for M=1 whereas M=1 using Eq. (6) for the integration error 10-3. 

Fig. 4b illustrates the variation of the relative errors of  0,0, /zz zz f  with the number of 

sub-regions of an element at different z values. At z/a=0.03 and 0.05, the relative errors of 

 0,0, /zz zz f  decrease rapidly with M increasing and are, respectively, 0.13662 and 0.00347 

for M=19. Correspondingly, at z/a=0.03 the numerical result  0,0, /zz zz f =0.99847 whereas 

the accurate result  0,0, /zz zz f =0.99983. It is obvious that the numerical result is much close 

to the accurate value. At z/a=0.03 and 0.05, M=55 and 33 respectively using Eq. (7) for the 

integration error 10-3. At z/a=0.1 and 0.5, M=16 and 3 respectively using Eq. (7) for the 

integration error 10-3 and the relative error of  0,0, /zz zz f  is equal to 0.59026 and 0.27×10-10  

at M=16 and 3. 

Table 1 presents the minimum number of M for the relative errors less than 1%. These data 

are much useful for discretizing the loading area. By comparing the numerical result with the 

closed-form solution, the accuracy of the proposed numerical quadrature can be evaluated and 

verified. Using the proposed method, the accurate numerical results can be obtained. 

4. Parallelization of the proposed numerical method 
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Based on the expressions presented above, a computer program in Fortran has been written. 

In order to obtain the highly accurate numerical solution of an arbitrarily depth-heterogeneous 

elastic solid, the solid needs to be discretized into solids with a large number of layers in depth. 

Meanwhile, the loading area needs to be discretized into a fine mesh. All these induce a large 

scale of computations. In order to obtain the high efficiency and accuracy of computations, 

parallel computing can be implemented in the proposed numerical method. 

OpenMP is a parallel programming model for shared memory and distributed shared memory 

multiprocessors (Chandra et al., 2001; Cunha et al., 2004). It allows parallelizing an application 

step-by-step, without concerns about how data and workload are distributed across multiple 

processors. Herein, we develop the parallelized computation for the proposed numerical method 

using OpenMP. 

The proposed numerical method is characterized by a parallel nature. Since the computation 

of the coefficients of tractions in Eqs. (4) and (5) for each element is independent of the other, 

the loop iterations for elements can be safely performed concurrently. Here, a straight approach 

is to use OpenMP directives to parallelize the internal loop, which controls element iterations. 

These directives take the form of source code comments identified by the $OMP prefix and are 

simply ignored by a non-OpenMP compiler. Thus, the same source code can be used to compile 

a serial or parallel version of the application. 

The application of OpenMP directives is demonstrated in the following reduced version of 

the code, listed in Table 2. In calculating the stresses on the loading surface and the fundamental 

solution, the similar parallelized computations are also applied. 

5. Numerical results and verifications 

5.1 General 

In order to describe the variation of the shear modulus of elasticity in soils, Selvadurai & 

Katebi (2013) performed linear and exponential fittings for the data provided by Burland, 

Longworth, & Davis (1977), who investigated the depth variation of the geotechnical properties 

of Oxford clay. Katebi & Selvadurai (2013) further suggested that the variations of the shear 

modulus of the depth z were described by the following expressions 

  0
zG z G e                                                                  (14) 

   0 1+G z G mz                                                           (15) 

where G0 , λ and m are constant coefficients. It is further assumed that the Poisson’s ratio keeps 

constant with depth. 
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In the following analysis, the segmental variations of the elastic shear modulus with depth 

are restricted in the following 

  0
zG z G e , z d  and   0

dG z G e , z d                                    (16) 

   0 1+G z G mz , z d  and    0 1+G z G md , z d                    (17) 

It means that the elastic shear modulus of the solid varies with depth for z d  and keeps 

constant for z>d. 

5.2 Example 1: non-homogeneous halfspace subjected to uniform circular load 

The first example given below is to validate numerically the solutions of the non-

homogeneous halfspace subjected to the internal loads. The classical result of Katebi & 

Selvadurai (2013) is used for comparison purpose. By using the integral transform technique, 

Katebi & Selvadurai (2013) presented an exact analysis of stresses and displacements in a non-

homogeneous elastic halfspace subjected to internal uniform circular loads along the z direction 

(radius r=a). For a non-homogeneous solid with an exponential variation of the shear modulus 

described in Eq. (16), there are the following conditions: Poisson’s ratio ν=0.5, the loading depth 

h=a and the thickness of the nonhomogeneous layer d=a. 

For z d , the non-homogeneous solid is closely approximated by n bonded layers of elastic 

homogeneous media. Each layer has the thickness equal to d/a and the shear modulus is equal to 

 G z  at the bottom depth of this layer, i.e., for the i-th layer, /z id n  (i=1,2,3,…,n). A 

homogeneous halfspace is bonded to the non-homogeneous solid with the thickness d. Fig. 5 

illustrates an approximation of the continuous depth variation of the shear modulus by a large 

number of piece-wisely homogenous layers, where λ=2 and n=100. It can be found that a close 

approximation of the shear modulus variation can be obtained using a large number of n. 

As shown in Fig. 6, the circular loading area is discretized into 180 eight-noded elements 

and 573 nodes. We compare the present results with those given by Katebi & Selvadurai (2013). 

The four cases λ=0.5,1,2,3 are analyzed using the layered approximations. Table 3 shows the 

vertical displacement at the point (x,y,z)=(0,0,0). It can be found that the layered approximation 

(n=100) results in excellent results for the vertical displacement at the point. For λ=0.5,1,2,3, the 

absolute error between the results of the two methods are equal to 0.000901, 0.000277, 

0.0006391 and 0.000733, respectively. It should be noted that the absolute error between the 

vertical displacements of a homogeneous halfspace for the point (x,y,z)=(0,0,0) for these two 

methods is 0.00043. 
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The example above is further analyzed to demonstrate the efficiency of the proposed 

procedure by comparing with results from the commercial finite element software ABAQUS. To 

make sure the high accuracy of results from the software, the fine FEM mesh with 12336 

elements and 13549 nodes are employed. For  λ=0.5,1,2,3,  the vertical displacement at the point 

(x,y,z)=(0,0,0) are, respectively, 0.219219, 0.132187, 0.048264 and 0.017920 and the 

corresponding absolute errors are 0.002377,  0.002530, 0.000745 and 0.000204 respectively. In 

our numerical simulation, only 180 elements and 573 nodes are used and the results with high 

accuracy can be obtained. Hence, the proposed procedure has a high efficiency in analyzing the 

behavior of vertically heterogeneous solids under the action of internal loads. 

Results also show that the accurate results can be obtained using the numerical method 

together with the layered discretization technique. In the ensuing, we will use the proposed 

numerical method for the analysis of the non-homogeneous solid subjected to internal 

rectangular loading. It should be pointed out that all numerical results are presented in non-

dimensional forms.  

5.3 Example 2: non-homogeneous halfspace subjected to uniform rectangular load 

The second example is designed to illustrate the numerical solutions of a point much close to 

the loading area. As shown in Fig. 1, the rectangular loading area is chosen to analyze the 

behavior of a non-homogeneous elastic solid, which has an exponential variation of the shear 

modulus described in Eq. (16). Assume that b=1.5a, d=a and h=a. The loading area is subjected 

to the vertical load fz. 

In order to obtain highly accurate numerical results, we choose four discretization meshes 

using eight-noded elements. Fig. 7 shows the Mesh 1 with 150 elements and 501 nodes. For 

simplicity, only the results along the vertical axis passing the corner (x, y, z) = (b, a, z) of the 

rectangular loading area are presented. Assume that the Poisson’s ratio of the non-homogeneous 

solid λ=0.3. Fig. 8 illustrates the variation of horizontal and vertical displacements induced by fz 

for four meshes, which are similar to ones shown in Fig. 7. The displacements are non-smoothly 

continuous across the loading surface. It can be found that all the four meshes can obtain good 

results for three displacement components, which are in very good agreement with the variation 

property mentioned above. 

According to the property of the fundamental solution, the stresses vary sharply when the 

points are very close to the loading plane. Fig. 9 presents the variation of  zz  induced by fz for 

the points close to the loading plane for four meshes. The three points with a distance of 0.007a, 

0.005a and 0.003a above or below the loading surface have almost the same results for Meshes 3 
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and 4. However, the point with a distance of 0.001a above or below the loading surface has 

different values for Meshes 3 and 4. 

Xiao & Yue (2013) found that the loading fz causes a jump discontinuity of the vertical stress  

zz  across the loading surface and the jump at the corner of the rectangular loading area is equal 

to 0.25fz. For two points with a distance of 0.003a from the loading surface, the jumps at the 

corner are, respectively, 0.252497fz and 0.248901fz for Meshes 3 and 4 and have the absolute 

errors of 0.002497fz and 0.001099 fz. Thus, we choose Mesh 4 to perform the following analysis 

and present the results of points with a distance greater than or equal to 0.003a from the loading 

surface. 

5.4 Example 3: Efficiency of the parallelization method 

The third example is designed to compare the CPU times based on the serial and parallel 

algorithms. Listed in Table 4 are the CPU times for calculating the stresses and displacements at 

one point for Meshes 1, 2 and 3, which are used in analyzing Example 2. For each mesh, the 

heterogeneous layer is discretized into 50 and 100 discrete layers. As can be observed, the 

parallel algorithm is much faster than the serial algorithm, in particular when the number of the 

points to be analyzed is very large. More specifically, for the given mesh and the same number 

of discrete layers, the parallel algorithm is about 14 times faster than the serial algorithm, and for 

a given mesh, the case of 50 homogeneous discrete layers is about 3 times faster than the case of 

100 discrete layers case using the two algorithms. 

6. Numerical results and analyses of new applications 

6.1 The elastic fields for an exponential variation of the shear modulus 

It is assumed that the non-homogeneous solid has an exponential variation of the shear 

modulus in Eq. (16) and the Poisson’s ratio of the non-homogeneous solid ν=0.3. The dimension 

of the rectangular loading area b=1.5a. The non-homogeneous solid with a thickness of d is 

discretized into 100 layers of homogeneous media with different values of the shear modulus 

according to the depth. 

6.1.1 Results of the horizontal and vertical loads fx, fz for different λ 

Consider now the influence of different λ for the horizontal and vertical loads at h=a. For 

simplicity, only the results along the vertical axis passing the corner (b, a, d) of the rectangular 

loading area are presented. Figs. 10 and 11 respectively give the values of the three 

displacements and six stresses induced by the vertical load fx concentrated on the rectangular 
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area. Figs. 12 and 13 respectively give the values of the three displacements and six stresses 

induced by the vertical load fz concentrated on the rectangular area. From these figures, we can 

have the following observations: 

(1) The displacements and stresses in the non-homogeneous solid induced by fx and fz are 

different for different λ values (λ=0,0.5,1,1.5,2,2.5,3). The three displacements (ux, uy, uz) are 

continuous across the loading plane. 

(2) The absolute values of xu  and yu  induced by fx decrease with λ increasing. The 

maximum values of xu  and yu appear at the loading plane. For λ=0,0.5,1,1.5,2,2.5,3, the 

maximum values of   0, , /x xu b a z G f a  are, respectively, 0.41731, 0.26689, 0.16901, 0.10617, 

0.06627, 0.04114 and 0.02543. Usually, zu  induced by fx is negative above the loading plane and 

is positive below the loading plane. 

(3) The absolute values of xu  and yu  induced by fz decrease with λ increasing. The 

maximum values of zu appear at the loading plane. For λ=0,0.5,1,1.5,2,2.5,3, the maximum 

values of   0, , /z zu b a z G f a  are, respectively, 0.43045, 0.26556, 0.16339, 0.10027, 0.0614, 

0.03753 and 0.0229. With the distance to the loading plane increasing, the zu  values decrease. 

(4) The vertical load fx causes an obvious jump discontinuity of xzσ  and yzσ  for all the non-

homogeneous solid with different λ and peak values of xxσ , xy , yy  and zzσ   appear at the 

loading plane. With λ increasing, the absolute values of xxσ  and xy  induced by fx increase for 

z>a  and decrease for z<a. With λ increasing, the absolute values of xzσ  and yzσ  
induced by fx 

decrease for z>a  and increase for z<a. 

(5) the stresses ( yy  and zzσ ) induced by fz has a variation similar to xxσ  with λ and z. For 

z>a and z<a, xy  induced by fz has a variation similar to xxσ  for z<a. xzσ  and yzσ  have the 

same variations with depth. With λ increasing, xzσ  and yz  decrease for z<a and increase for 

z>a. 

(6) The vertical load fz causes a jump discontinuity of xxσ , xy , yy   and zzσ  for all the 

non-homogeneous solids with different λ. Besides, xzσ  and yzσ  tend to relative small values 

with the distance to the loading plane decreasing. With λ increasing, the absolute values of xxσ  

induced by fz increase for z>a. However, with λ increasing, xxσ  increase in the shallow zone of 
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z<a  and decrease in the deep zone of z<a. yy   and zzσ  induced by fz has a variation similar to 

xxσ  with λ and z. For z>a and z<a, xy  induced by fz has a variation similar to xxσ  for z<a. xzσ  

and yzσ  have the same variations with depth. With λ increasing, xzσ  and yzσ  decrease for z<a 

and increase for z>a. 

6.1.2  Results of the vertical load fz  for h=a and z=0.75a 

Consider now the loading depth h=a and present the results at z=0.75a. Let us take the 

calculating area: -3 / 3x a  , -2 / 2y a    and z=0.75a. Figs. 14 and 15 respectively present 

the contours of displacements and stresses on the calculating area by the vertical load fz. Because 

of symmetry, the values of displacements and stresses are given only for 0 / 3x a   and 

-2 / 2y a  . From these figures, we can have the following observations: 

(1) The displacement xu  is antisymmetric with respect to the y axis on a horizontal plane 

and  xu  is zero along the y axis. The displacements ( yu , zu ) are symmetric with respect to the y 

axis on a horizontal plane. On the calculating area, the maximum absolute value of 

  0, ,0.75 /x zu x y a G f a  is 0.01285. The maximum and minimum values of 

  0, , 0.75 /y zu x y a G f a  are, respectively, 0.0167 and -0.0167. And the maximum and minimum 

values of   0, ,0.75 /z zu x y a G f a  are, respectively, 0.46529 and 0.11812. 

(2) The three normal stresses ( xxσ , yy , zzσ ) are symmetric with respect to the y axis. The 

minimum values of  , ,0.75 /xx zσ x y a f  and  , ,0.75 /yy zσ x y a f  are -0.08707 and -0.09176, 

respectively and the maximum values of these components are -0.00766 and -0.01634, 

respectively. Because the calculating area is located above the loading area, i.e., z=0.75a, zzσ  is a 

tensile stress in a part of the area. The maximum and minimum values of   , ,0.75 /zz zσ x y a f  

are 0.18215 and -0.08957, respectively. 

(3) Among the shear stresses ( xy , yz
 
and xz ), xy  and xz  are antisymmetric with 

respect to the y axis, and  yz  is symmetric with respect to the y axis. The maximum absolute 

values of  , ,0.75 /xy zσ x y a f  and  , ,0.75 /xz zσ x y a f  are 0.04506 and 0.20127, respectively.  

The minimum value of  , ,0.75 /yz zσ x y a f  is -0.22792. 

6.1.3 Results of the vertical load fz for different h 
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Consider now the case of different loading depths for λ=0.1. For simplicity, only the results 

along the vertical axis passing the corner (b, a, h) of the rectangular loading area are presented. 

Figs. 16 and 17 respectively illustrate the variations of the three displacements and six stresses 

induced by the vertical load fz with the loading depth h. From these figures, we can have the 

following observations: 

(1) The displacements xu  and yu  decrease with the depth h increasing. The maximum 

values of   0x zu b,a,z G / f a  are, respectively, 0.1054, 0.06654, 0.04677, 0.03569 and 0.02917 

for d=0, 0.25, 0.5, 0.75, 1. And the maximum values of   0, , /y zu b a z G f a  are respectively 

0.09024, 0.05335, 0.03647, 0.03569 and 0.022294 for d=0, 0.25, 0.5, 0.75, 1. With the depth h 

increasing, the maximum values of xu  and yu  appear at deeper positions. The zu  values increase 

for z h  whilst the zu  values decrease for z<h except for h=0. The maximum values of 

  0, , /z zu b a z G f a  are, respectively, 0.43368, 0.42513, 0.41493, 0.40333 and 0.3909 for d=0, 

0.25, 0.5, 0.75, 1. 

(2) For different loading depths, the jumps of xxσ , xy , yy  and zzσ  always appear across 

the loading plane and the maximum absolute values of xzσ  and yzσ   always appear at the loading 

plane. The jumps of  , , /xx zσ b a z f ,  , , /xy zσ b a z f ,  , , /yy zσ b a z f  and  , , /zz zσ b a z f  at the 

corner of the rectangular loading area are equal to about 0.107, 0.114, 0.106 and 0.25 

respectively for different loading depths. And the values of these stresses at the points close to 

the boundary surface z=0 are -0.1808, -1900, -0.2036 and -0.25, respectively.   

(3) With the distance from the point to the loading plane increasing, the absolute values of 

xxσ , yy
 
and zzσ  decrease below the loading plane and increase above the loading plane. 

However, with the distance from the point to the loading plane increasing, the absolute values of 

xy  decrease below and above the loading plane. The maximum absolute values of xzσ  and yz  

appear at the loading plane and increase with loading depth h increasing. 

6.2 Comparison for two different distributions of the shear modulus 

Eqs. (16) and (17) present two different distributions of shear modulus for a non-

homogenous halfspace. In order to compare their results, we analyze the displacements induced 

by fz for λ=0.1 and m=2λ. Assume that the Poisson’s ratio of the non-homogeneous solid ν=0.3. 

The vertical load fz is located at z=0. For the two non-homogeneous halfspaces, the shear moduli 
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have the same value at about d=12.564a. The shear modulus of a non-homogeneous halfspace 

varies with depth for  z<d and keeps constant for z d . 

To provide a better estimate of the relative influence of elastic non-homogeneity on the 

displacements of the solid, the ratio of displacements in a non-homogeneous solid to that in a 

homogeneous solid has been evaluated and is presented in Fig. 18 for both linear and exponential 

variations. As would be expected, the displacements are much lower for the exponential 

variation than for the linear variation of the shear modulus. 

6.3 The influence of the Poisson’s ratio of a non-homogeneous solid 

In the above-mentioned analyses, it is assumed that the Poisson’s ratio of the 

nonhomogeneous solid keeps constant along depth. Actually, the Poisson’s ratio of the 

nonhomogeneous solid varies with depth. In order to provide an example application of the 

variation of Poisson’s ratio with depth, a simple linear fit has been completed for the data by Pan 

(1985), who investigated the depth variation of the geotechnical properties of sand soil, clay 

loam, clay and soft soil. Pan (1985) showed that the Poisson’s ratio increases with the depth z, 

although the variation is not necessarily linear. The ratios of increase in the Poisson’s ratio were 

different for different types of soils. The variations of the elastic modulus and the Poisson’s ratio 

for sand soil are presented as follows: 

   0 11E z E m z                                                                   (18) 

   0 21ν z ν m z                                                                    (19) 

where E0=53.09MPa, m1=0.5065 and ν0=0.3469, m2=0.0123, and the SI unit of z is meters 

(m). The thickness of the sand soil is d=12m. For z d , the elastic properties keeps constants, 

that is,    0 11E z d E m d    and    0 21ν z d ν m d   . The numerical results for this 

variation are presented in this section. 

It is assumed that the rectangular loading area is located at h=a. Let us consider b=1.5a and 

d=a. Here, only the results along the vertical axis passing the corner (b,a,z) of the rectangular 

loading area are presented. Figs. 19 and 20 respectively give the values of the three 

displacements and six stresses induced by the vertical load fz concentrated on the rectangular area 

for two cases: ν=ν0 (case a) and  0 21ν ν m z   (case b). From these figures, we can have the 

following observations: 

(1) With the comparison of the displacements of cases a and b, the variations of the 

Poisson’s ratio with depth exert an obvious influence on all the three displacements in 
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nonhomogeneous media. The values of the three displacements for case a become smaller than 

that for case b at a given depth. 

(2) The variations of the Poisson’s ratio with depth exert a different influence on different 

stress components. At a given depth, the xx  for case a is larger than that for case b and has 

different variations for two cases with depth for z a . For z>a, the yy  of case b is larger than 

that of case a whilst for z<a, the yy  of case b is smaller than that of case a. For z>a and z<a, 

the zz  of case b become smaller than that of case a. 

(3) The shear stresses xz  and yz  have a similar variation between cases a and b. In the 

neighborhood of the loading plane, the concentration of the stresses xz  and yz  for case b 

becomes less obvious than that for case a. The variation of the shear stress xy  is different from 

that of xz  and yz . For z>a and z<a, the xy  of case b is smaller than that of case a. 

7. Conclusions 

This paper presents an effective numerical method for the analysis of the displacement and 

stresses corresponding to internal distributed loads of a non-homogeneous isotropic elastic 

halfspace. Numerical verification shows that the proposed numerical method can obtain accurate 

results, especially for the point close to the loading area. The displacements and stresses induced 

by the horizontal and vertical loadings are presented in details. The non-homogeneous halfspace 

analyzed can have their shear modulus exhibiting exponential and linear variations in depth and 

keeping constant in lateral directions. Furthermore, the variation of the Poisson’s ratio along a 

vertical direction is also considered. The internal rectangular loading of an elastic halfspace can 

serve as a useful model for analyzing the internal loading of geologic media. The numerical 

method can be also used to analyze a non-homogeneous halfspace where the elastic properties 

exhibit arbitrary variations with depth. 
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Appendix A 

The eight shape functions of the element can be written as 
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 ( =1, 2 ) denotes the local 

coordinates in the   direction at node  . The shape functions of a variable-node element are 

obtained by letting the functions of the disappearing midside nodes be zero. 
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Fig.1 Uniform rectangular loads at the interior of a non-homogeneous elastic halfspace 
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Fig. 2 Subdivision of a two-dimensional element 
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Fig. 3 Square-shaped loading area with a side length of a and one 4-node element 
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Fig.4 Variation of relative errors of the displacement and stress with the M value of sub-regions 

along the ξ1 and ξ2 directions 
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Fig. 5 Approximation of the continuous variation of the shear modulus by a system of 100 piece-

wisely homogeneous layers 
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Fig. 6 Discretization mesh of the circular loading area (radius a) with 180 elements and 573 

nodes 

 

 

 

Fig. 7 Discretization mesh of the rectangular loading area with 150 elements and 501 nodes 
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Fig. 8 Comparison of horizontal displacements for different meshes (λ=0.5) 
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Fig. 9 Variation of vertical stress zz  at the points close to the loading plane for different meshes 

(λ=0.5) 
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Fig.10 Variation of the displacement at the point (b, a, z) because of fx located at h=a for 

different λ 
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Fig.11 Variation of the stresses at the point (b, a, z) because of fx located at h=a for different λ 
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Fig.12 Variation of the displacement at the point (b, a, z) because of fz located at h=a for 

different λ 
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Fig.13 Variation of the stresses at the point (b, a, z) because of fz located at h=a for different λ 
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Fig.14 The contours of the three displacements because of fz located at h=a for λ=0.5 and 

z=0.75a 
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Fig. 15 The contours of the six stress components because of fz located at h=a for λ=0.5 and 

z=0.75a 
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Fig. 16 Variation of three displacements at the point (b, a, z) because of fz for different h (λ=0.1) 
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Fig. 17 Variations of the six stresses at the point (b, a, z) because of fz for different h (λ=0.1) 
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Fig. 18 Ratio of three displacements at the point (b, a, z) because of fz in a non-homogeneous 

medium to a homogeneous medium 
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Fig. 19 Variations of the displacements at the point (b, a, z) because of fz for different ν 
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Fig. 20 Variations of the stresses at the point (b, a, z) because of fz for different ν 
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Table 1 The minimum M value for the relative error less than 1% 

z/a 0.03 0.05 0.1 0.2 0.3 0.4 0.5 

uz 5 3 1 1 0 0 0 

σzz 15 9 3 1 0 0 0 

 

 

Table 2 Subroutine CALSTRESDISPL-shared memory version 

subroutine CALSTRESDISPL 
… 
internal points: do i=1,NPIN 
xp(:)=xyzin(:,i) 
!$OMP PARALLEL DEFAULT(SHARED) 
!$OMP DO PRIVATE(j,xe,ie,k) 

elements: do j=1,NE 
do ie=1,8 

k=nep(ie,j);  xe(:,ie)=xyz(:,k) 
enddo 

!         compute the coefficients: cofu and cofs 
call iks(xp,xe,nep,cofu, cofs,…) 
do ie=1,8 

do k=1,3 
!               compute the stresses at internal point i 

strs(:,:,i)= strs(:,:,i)+cofs(:,:,k,ie,i)*te(k,ie,i) 
!               compute the displacement at internal point i 

displ(:,i)= displ(:,i)+cofu(:,k,ie,i)*te(k,ie,i) 
enddo 

enddo 
enddo elements 

!$OMP END DO 
!$OMP END PARALLEL 
enddo internal points 
… 

end subroutine CALSTRESDISPL 
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Table 3 Results of vertical displacement   00,0,0 /z zu G f a  for different λ by the present study and 

Katebi and Selvadurai (2013) 

No. of a layered 
elastic halfspace 

λ=0.5 λ=1 λ=2 λ=3 

10 0.216108 0.131272 0.0477420 0.0171478 

15 0.216245 0.131386 0.0477666 0.0171379 

20 0.216314 0.131449 0.0477834 0.0171360 

25 0.216357 0.131487 0.0477943 0.0171357 

30 0.216386 0.131511 0.0478019 0.0171358 

35 0.216408 0.131528 0.0478072 0.0171360 

40 0.216423 0.131539 0.0478115 0.0171362 

50 0.216444 0.131562 0.0478193 0.0171372 

60 0.216456 0.131577 0.0478235 0.0171377 

80 0.216478 0.131588 0.0478277 0.0171381 

100 0.216488 0.131583 0.0478289 0.0171380 

Katebi & 

Selvadurai 

0.215587 0.131306 0.048468 0.017871 

 

 

Table 4 Comparison of CPU times (s) between serial and parallel computations 

Mesh 
No. 

Number of 
discrete layers 

CPUS for serial 
computation 

CPUP for 
parallel 

computation 
CPUS/ CPUP 

1 
50 29 2 14.5 

100 86 6 14.3 

2 
50 129 8 16.1 

100 358 24 14.9 

3 
50 516 28 18.4 

100 1410 98 14.4 

Computer configuration：HP workstation SC001, Xeon CPU 1.7GHz, 16GB RAM. 

 


