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Abstract: This paper examines the internal rectangular loading problems for an elastic halfspace
where the shear modulus varies exponentially or linearly and the Poisson’s ratio keeps constant
or varies linearly with depth. The numerical method is developed through applying the
fundamental solution of layered elastic solids and integrating numerically it over the loading area.
The adaptive integration of the displacement and traction integrals over the loading area is
designed to calculate the nearly singular integral for the source point close to an element. The
discretization approach is applied to deal with an arbitrarily depth-heterogeneous elastic solid.
OpenMP directives are used to parallelize the internal loop, which controls element iterations so
that a high computing speed can be obtained. For an axisymmetric internal loading problem, the
displacements obtained with the present formulation are in very good agreement with existing
closed-form solutions. Finally, stresses and displacements in non-homogeneous halfspaces
induced by horizontally and vertically uniform rectangular loadings are presented. Results

illustrate the effect of non-homogeneous properties on the stress and displacement fields.
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1. Introduction

1.1 Background

Intact soils and rocks exhibit strong spatial variations in the material properties because of
their natural formation process (Zhao et al., 2016; Guo & Zhao, 2016). In some cases, materials
has their physical and mechanical properties variable along a given coordinate and keeping
constant along the other two coordinates perpendicular to the given coordinate. For example, the
geotechnical investigations to soils showed that the shear modulus of undrained soils varied
linearly with depth (Abbiss, 1979). It has been well recognized that non-homogeneity of
materials has a significant effect on the stresses and deformations in the material region under
loadings. The elastic responses of non-homogeneous solids subjected to loadings have been of
great interest to many researchers and engineers in applied mechanics and many branches of
engineering (Selvadurai, 2007).

The problems related to the mechanics of non-homogeneous geo-materials are much difficult
to be solved and can be simplified via the following assumptions. The first is to model the geo-
material as a homogeneous or piece-wisely homogeneous elastic solid in engineering analysis
(Chen, 1971; Pan, 1989; Yue, Yin & Zhang, 1999; Pan et al., 2007; Zhang, Liu & Lin, 2016;
Zhang et al. 2016). The second is to assume that the shear modulus of a non-homogeneous
medium varies continuously with depth. Some of the earliest researchers (Rostovtsev, 1964)
used a power law function for considering the variations of shear modulus with depth. As a
special case of the power law function, the linear variation of shear modulus with depth was
widely applied by Gibson (1967). The exponential variation of shear modulus with depth has
also been assumed for analysis of non-homogeneous geo-materials under different types of loads
by Selvadurai et al. (1986), Rajapakse et al. (1989), Stark et al. (1997), etc. For easy analysis, it
is usually assumed that the Poisson’s ratio of the nonhomogeneous solids keeps constant and
does not vary with depth.

The displacements and stresses resulting from a footing load are important parameters in the
design of foundations. This kind of loads uniformly distributed on the horizontal surface plays a
predominant role for engineering design, and the distributed rectangular loading can be
considered as a realistic loading situation. The numerical solutions of such loading can have
direct applications to many problems encountered in geo-mechanics and engineering. Marmo et
al. (2016) and Marmo & Rosati (2016) developed the analytical solutions of elastic fields within
an homogeneous isotropic halfspace subject to linearly varying horizontal loads distributed on

polygonal regions of its surface. Marmo et al. (2017) further presented analytical expressions of
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transversely isotropic halfspaces subject to linearly distributed vertical pressures applied over
arbitrary regions of the halfspace boundary. However, it is much difficult to obtain the solution
of the analytical solutions of the non-homogeneous halfspaces subjected to complex loadings. It
should be pointed out that Booker et al. (1985) developed a numerical procedure to determine the
surface displacements of a non-homogeneous soil subjected to various surface loads, such as
point and line loads or uniformly distributed tractions. Furthermore, Doherty et al. (2003)
developed the scaled boundary finite-element method for analysis of a non-homogeneous elastic
halfspace subjected to a variety of surface loadings. In the above analyses, a power-law function
is used to describe the variation of elastic modulus with depth. More recently, Katebi &
Selvadurai (2013) and Selvadurai & Katebi (2013) analyzed the axisymmetric problem of the
internal loading of incompressible halfspaces with an exponential variation with depth. Actually,
depth-dependent non-homogeneity is distributed in a much complex form and an effective

analyzing approach should model arbitrary variations with depth.
1.2 Aim and approach of this study

The objective of this paper is to present numerical solutions for a non-homogeneous half-
space subjected to internal loadings in both vertical and horizontal directions, as shown in Fig. 1.
The loadings are uniformly distributed on a rectangular area. The rectangular loading area is
horizontally parallel to the boundary surface. To the authors’ best knowledge, the numerical
solutions for this elastic problem are not available in the relevant literature. The geo-materials to
be studied can have their elastic properties exhibiting arbitrary variations in depth and keeping
constant in lateral directions.

The numerical method to be utilized is based on the fundamental solutions for a multilayered
elastic solids of infinite extent subjected to concentrated body force vectors developed by Yue
(1995). Using this fundamental solution, Xiao, Yue, & Zhao (2012) developed the numerical
methods for analyzing elastic fields in heterogeneous rocks due to reservoir water impoundment.
This paper further develops this numerical method to obtain highly accurate solutions of a non-
homogeneous solid subjected to different types of distributed loads. The proposed method
utilizes the integral method on the loading area and discretizes the loading area by four- or eight-
noded elements. The integral on every element is executed using effective numerical methods.
The proposed numerical method is characterized by a parallel nature. A straight approach is to
use OpenMP directives to parallelize the loop for element iterations. It is known that the elastic
fields vary sharply as the field point has a very small distance to a loading area. In this paper, an

improved numerical method will be developed to obtain a highly accurate solution. Specially, the

3/50



variations of the Poisson’s ratio with depth are considered. Results show the influence of the
non-homogeneity on the displacements and stresses of a non-homogeneous elastic halfspace

under uniform internal loading over a rectangular area.
2. The numerical method of analyzing a non-homogeneous halfspace

2.1 Fundamental solutions of multi-layered solids subject to concentrated point loads

The fundamental solution is the analytical solution for the elastostatic field in a layered
solid of infinite extent due to the action of concentrated point loads. The dissimilar homogeneous
layers adhere an elastic solid of upper semi-infinite extent and another elastic solid of lower
semi-infinite extent. The interface between any two connected dissimilar layers is fully bonded.
It was given by Yue (1995) and also called as Yue’s solution (Maloney et al., 2008; Buxboim et
al., 2010; Merkel et al., 2007).

The results illustrated that numerical evaluation of the solution can be achieved with
controlled accuracy. The solution is characterized by an elastic solid with any layers and high
efficiency. The convergence of the solution has been verified and the solution satisfies all the
required conditions including the basic equations and the interfacial conditions as well as the
loading conditions. Yue and his co-workers (e.g. Xiao & Yue, 2014; Xiao et al., 2018, 2019)
incorporated this fundamental solution into the classical BEMs for the analysis of the fracture
mechanics in layered solids and found the solutions for many specific problems of interests in
science and technology. The fundamental solution of infinite multilayered media is also suitable
for the layered media of semi-infinite extent. In an infinite layered solid, the elastic modulus of

the upper semi-infinite solid is given an extremely small value, such as Eo=1x10"'°™MPa and the

Poisson’s ratio of the solid vo=0.3. In this way, the fundamental solution of a layered solid of

semi-infinite extent is obtained.
2.2 The basic equations and numerical methods

The numerical method by Xiao, Yue & Zhao (2012) is further developed for evaluating the
elastic fields of a non-homogeneous solid induced by a distributed load. In using the proposed
numerical method for the analysis of a non-homogeneous halfspace exhibiting arbitrary
variations in depth, the halfspace is discretized into a large number of homogeneous layers, as
shown in Yue et al. (1999). It can be found that the development of the basic equations analyzing
the elastic layered problem is relatively straightforward. These analyzing equations are presented

for completeness.
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As shown in Fig. 1, a non-homogeneous halfspace is subjected to internal loads in the x, y
and/or z directions. The displacements and stresses at any points of the non-homogeneous solid

are expressed as
u,(0)= [ 1, (Q.P)1, (P)dS (1)
Gi/‘(Q):_[So-;k (0.P)t,(P)ds (2)
where u, (Q, P) and a;k (Q, P) are the fundamental solutions of the layered solid presented by
Yue (1995); u;, (O, P) are the i-th component of the displacement at the field point O produced
by the k-th component of a unit force applied at the source point P; O';k (Q, P) are the stresses at
the field point Q produced by the k-th component of a unit force applied at the source point P;

tk(P) is the traction at the source point P; the integral domain S is the loading area. It should be

noted that the subscript £ is a dummy index.

The loading area S is discretized into ne elements. The variable-node element similar to the
one of boundary element methods (Xiao & Yue, 2014) is employed to discretize the loading area.
In global and local coordinate systems, there are the following transform relationships of

coordinate and traction values

4108 4108
X = ZN 51352 ) ZNa flaéz (3)
a=1
where N, (fl , 52) is the shape function of the element and is presented in Appendix A.

Considering Egs. (1) and (2) with (3), we have the following discretized forms

ne 4 to

ZZ (P, [ (QP(EE))N, (6:6) (608, dede, )
ne 4t08
=2 2 (P) (P)f, [ 3 (Q.P(6.&)) N, (6.8) T (&) die, )

where J is the Jacobian determinant.

It is very important to obtain the accurate and efficient integration of the displacement and
traction integral over the loading area. In Egs. (4) and (5), three types of integrals exist and are
calculated as follows:

(1) When the source point Q is not located at and is not close to the integral element, the
integrals of Egs. (4) and (5) are executed in the local coordinates and are calculated using the

regular Gaussian quadrature.
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(2) If the field point Q is located at the integral element, the integrand of Eq. (4) is of
singularity O(r_l) and the integrand of Eq. (5) is of singularity O(r_2 ) , where r is the distance
between the points P and Q. The weakly singular integral of Eq. (4) is computed by applying an
integration scheme based on a linear coordinate transformation (Beer et al., 2008; Gao & Davies,

2002) and the strongly singular integral of Eq. (5) is computed by using an indirect method.
(3) When the field point Q is not located on the loading area and the distance » between

the points P and Q has a small value, the kernel functions u, and O';k in Egs. (4) and (5) have
sharp variations. This type of integral is referred to as nearly singular integral, which will be
discussed in the next section.

3 The subdivision scheme for nearly singular integral

3.1 Subdivision of an element

It has been found that the accuracy of calculating nearly singular integral is much related to
the ratio of the length of an element to the distance from a field point to the element. As in Beer
et al. (2008), an element may be further divided into sub-regions to solve nearly singular integral.
In the ensuing, numerical integration techniques are developed to deal with nearly singular
integral.

As shown in Fig. 2, the element is divided into several sub-regions. The number of sub-

regions M, in the direction ¢ and M g.,,z in the direction &, is determined by
M, =INT[(r/L)mm /(r/Lgl)} (6)

M, =INT[(r/L), /(r/L.)] (7)
where the symbol /NT denotes rounding off the results, » is the distance from the field source to
the element, L, and L. are, respectively, the lengths of the element along the directions ¢ and
¢, (r / L)min is the minimum value of /L for obtaining the integration error 10~ when the four

Gaussian points is collocated. Erberwien et al. (2005) found that (r/ L) = 0.79263, 1.67767

min

for O(r’l) and O(r’2 ), respectively.

The integration expressions on each element in Eqs. (4) and (5) can be further written as

.El J:l1f(él’52)dfldéz ZZ] i { i if(gl’gz)_wlwz} (8)

sp=1 s,=1 =1
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The relationships between the local coordinates (4’1 ,52) and (c_,?l ,c_,?z) are

D pe\e o polio o), &
5125(51 +‘§1 )+Mi§1’ ‘):2_5(52 +§2)+A§

©)

&

where (cff,fg ) and (g‘f,cfze ) define the starting and ending sides of the sub-region shown in Fig. 2.
The Jacobian determinant J is given by
7 0606 1

2% (10)
0¢, 05, MM,

3.2 The lengths of an element and the minimum distance rmin

The lengths of an element along the directions ¢ and ¢, can be calculated using the

following

| 3 (4108 :
L =], Z(ZaN“x?] 25 (1)

Jj=1 a=1 aéjl ¢2=0
1 3 (4108 aN 2
L52 :.[—1 Z(z aé:a x;ZJ déz (llb)
J=1 \_ a=1 2 &=0

The lengths L, and L, expressed in Eq. (11) can be calculated using the Gaussian

quadrature method. The iteration method developed by Gao & Davies (2002) can be used to
calculate the minimum distance rmi» from a field source to an element. The local coordinate
origin of the element is chosen as a starting point for an iterating process. Taylor’s theorem is

used to obtain the » distance for the next step.
3.3 Numerical verification of the subdivision scheme

A numerical example is presented to verify the efficiency and accuracy of the proposed
subdivision scheme. As shown in Fig. 3, the loading square-shaped area with a side length of a
on the boundary surface of a homogeneous halfspace is considered. Assume that the elastic

modulus Eo and the Poisson’s ratio v=0.3. The uniform compressive traction f-=1 is acted on the

loading area, which is discretized using a 4-noded element. Using Egs. (4) and (5), u, (O, 0,2)

and o (0, O,Z) can be expressed as

w(002)=X [ [ ((002).P(EE)N,(6.6) /(G 6)dde ()
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0.(0,0,z)= ZJ: _[_110; (0(0,0,2). P(&.8,)) N, (¢.6,) (6.8, ) dédé, (13)

In the following, the numerical results will be compared with the closed-form solution

presented by Xiao & Yue (2013).

Fig. 4a illustrates the variation of the relative errors of u_(0,0,z) E, / f.a with the number of
sub-regions of an element at different z value. Using Eq. (6), M =M. =M, =79 for the
integration error 103 at z/&=0.01. It can be found that the relative error of
u_(0,0,z/a=0.01)E, / f.a decreases rapidly with M increasing and is equal to 0.02349271 for
M=19. Correspondingly, at z/a=0.01 the numerical result u_ (O, O,Z) E,/ f.a=1.01617 whereas

the accurate result u_(0, O,Z)EO / f.a=1.01593. It is obvious that the numerical result is much

close to the accurate value. At z/a=0.1, the relative error of u_ (O,O,Z)E0 / f.a decreases rapidly
with M increasing and is equal to 0.00016408 for M=7 whereas M=7 using Eq. (6) for the
integration error 1073, At z/a=0.5, the relative error of u_ (O,O,Z)E0 / f.a is equal to 0.00072358
for M=1 whereas M=1 using Eq. (6) for the integration error 10-.

Fig. 4b illustrates the variation of the relative errors of o (O, O,Z)/ /. with the number of
sub-regions of an element at different z values. At z/a=0.03 and 0.05, the relative errors of

o (O, 0,2)/ /. decrease rapidly with M increasing and are, respectively, 0.13662 and 0.00347
for M=19. Correspondingly, at z/a=0.03 the numerical result o (0, 0,z)/ f.=0.99847 whereas

the accurate result o (0,0,z)/ /.=0.99983. It is obvious that the numerical result is much close
to the accurate value. At z/a=0.03 and 0.05, M=55 and 33 respectively using Eq. (7) for the
integration error 103. At z/a=0.1 and 0.5, M=16 and 3 respectively using Eq. (7) for the
integration error 10~ and the relative error of o_ (0,0,z)/ f. is equal to 0.59026 and 0.27x10°1°
at M=16 and 3.

Table 1 presents the minimum number of M for the relative errors less than 1%. These data
are much useful for discretizing the loading area. By comparing the numerical result with the

closed-form solution, the accuracy of the proposed numerical quadrature can be evaluated and

verified. Using the proposed method, the accurate numerical results can be obtained.

4. Parallelization of the proposed numerical method
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Based on the expressions presented above, a computer program in Fortran has been written.
In order to obtain the highly accurate numerical solution of an arbitrarily depth-heterogeneous
elastic solid, the solid needs to be discretized into solids with a large number of layers in depth.
Meanwhile, the loading area needs to be discretized into a fine mesh. All these induce a large
scale of computations. In order to obtain the high efficiency and accuracy of computations,
parallel computing can be implemented in the proposed numerical method.

OpenMP is a parallel programming model for shared memory and distributed shared memory
multiprocessors (Chandra et al., 2001; Cunha et al., 2004). It allows parallelizing an application
step-by-step, without concerns about how data and workload are distributed across multiple
processors. Herein, we develop the parallelized computation for the proposed numerical method
using OpenMP.

The proposed numerical method is characterized by a parallel nature. Since the computation
of the coefficients of tractions in Egs. (4) and (5) for each element is independent of the other,
the loop iterations for elements can be safely performed concurrently. Here, a straight approach
is to use OpenMP directives to parallelize the internal loop, which controls element iterations.
These directives take the form of source code comments identified by the SOMP prefix and are
simply ignored by a non-OpenMP compiler. Thus, the same source code can be used to compile
a serial or parallel version of the application.

The application of OpenMP directives is demonstrated in the following reduced version of
the code, listed in Table 2. In calculating the stresses on the loading surface and the fundamental

solution, the similar parallelized computations are also applied.
5. Numerical results and verifications

5.1 General

In order to describe the variation of the shear modulus of elasticity in soils, Selvadurai &
Katebi (2013) performed linear and exponential fittings for the data provided by Burland,
Longworth, & Davis (1977), who investigated the depth variation of the geotechnical properties
of Oxford clay. Katebi & Selvadurai (2013) further suggested that the variations of the shear
modulus of the depth z were described by the following expressions

G(z)=G,e" (14)
G(Z)ZG0 (1+mz) (15)

where Go , A and m are constant coefficients. It is further assumed that the Poisson’s ratio keeps

constant with depth.
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In the following analysis, the segmental variations of the elastic shear modulus with depth

are restricted in the following

G(z)=Ge”,z<d and G(z)=G,e",z>d (16)
G(z)=G,(14mz),z<d and G(z)=G,(1+md),z>d (17)

It means that the elastic shear modulus of the solid varies with depth for z<d and keeps

constant for z>d.
5.2 Example 1: non-homogeneous halfspace subjected to uniform circular load

The first example given below is to validate numerically the solutions of the non-
homogeneous halfspace subjected to the internal loads. The classical result of Katebi &
Selvadurai (2013) is used for comparison purpose. By using the integral transform technique,
Katebi & Selvadurai (2013) presented an exact analysis of stresses and displacements in a non-
homogeneous elastic halfspace subjected to internal uniform circular loads along the z direction
(radius r=a). For a non-homogeneous solid with an exponential variation of the shear modulus
described in Eq. (16), there are the following conditions: Poisson’s ratio v=0.5, the loading depth
h=a and the thickness of the nonhomogeneous layer d=a.

For z<d, the non-homogeneous solid is closely approximated by » bonded layers of elastic

homogeneous media. Each layer has the thickness equal to d/a and the shear modulus is equal to
G(z) at the bottom depth of this layer, i.e., for the i-th layer, z=id/n (i=1,2,3,...,n). A

homogeneous halfspace is bonded to the non-homogeneous solid with the thickness d. Fig. 5
illustrates an approximation of the continuous depth variation of the shear modulus by a large
number of piece-wisely homogenous layers, where /=2 and n=100. It can be found that a close
approximation of the shear modulus variation can be obtained using a large number of n.

As shown in Fig. 6, the circular loading area is discretized into 180 eight-noded elements
and 573 nodes. We compare the present results with those given by Katebi & Selvadurai (2013).
The four cases 1=0.5,1,2,3 are analyzed using the layered approximations. Table 3 shows the
vertical displacement at the point (x,y,2)=(0,0,0). It can be found that the layered approximation
(n=100) results in excellent results for the vertical displacement at the point. For 1=0.5,1,2,3, the
absolute error between the results of the two methods are equal to 0.000901, 0.000277,
0.0006391 and 0.000733, respectively. It should be noted that the absolute error between the
vertical displacements of a homogeneous halfspace for the point (x,y,2)=(0,0,0) for these two

methods is 0.00043.
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The example above is further analyzed to demonstrate the efficiency of the proposed
procedure by comparing with results from the commercial finite element software ABAQUS. To
make sure the high accuracy of results from the software, the fine FEM mesh with 12336
elements and 13549 nodes are employed. For 4=0.5,1,2,3, the vertical displacement at the point
(x,,2)=(0,0,0) are, respectively, 0.219219, 0.132187, 0.048264 and 0.017920 and the
corresponding absolute errors are 0.002377, 0.002530, 0.000745 and 0.000204 respectively. In
our numerical simulation, only 180 elements and 573 nodes are used and the results with high
accuracy can be obtained. Hence, the proposed procedure has a high efficiency in analyzing the
behavior of vertically heterogeneous solids under the action of internal loads.

Results also show that the accurate results can be obtained using the numerical method
together with the layered discretization technique. In the ensuing, we will use the proposed
numerical method for the analysis of the non-homogeneous solid subjected to internal
rectangular loading. It should be pointed out that all numerical results are presented in non-

dimensional forms.
5.3 Example 2: non-homogeneous halfspace subjected to uniform rectangular load

The second example is designed to illustrate the numerical solutions of a point much close to
the loading area. As shown in Fig. 1, the rectangular loading area is chosen to analyze the
behavior of a non-homogeneous elastic solid, which has an exponential variation of the shear
modulus described in Eq. (16). Assume that b=1.5a, d=a and h=a. The loading area is subjected
to the vertical load f-.

In order to obtain highly accurate numerical results, we choose four discretization meshes
using eight-noded elements. Fig. 7 shows the Mesh 1 with 150 elements and 501 nodes. For
simplicity, only the results along the vertical axis passing the corner (x, y, z) = (b, a, z) of the
rectangular loading area are presented. Assume that the Poisson’s ratio of the non-homogeneous
solid A=0.3. Fig. 8 illustrates the variation of horizontal and vertical displacements induced by f2
for four meshes, which are similar to ones shown in Fig. 7. The displacements are non-smoothly
continuous across the loading surface. It can be found that all the four meshes can obtain good
results for three displacement components, which are in very good agreement with the variation
property mentioned above.

According to the property of the fundamental solution, the stresses vary sharply when the

points are very close to the loading plane. Fig. 9 presents the variation of o_ induced by f: for

the points close to the loading plane for four meshes. The three points with a distance of 0.007a,

0.005a and 0.003a above or below the loading surface have almost the same results for Meshes 3
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and 4. However, the point with a distance of 0.001a above or below the loading surface has
different values for Meshes 3 and 4.
Xiao & Yue (2013) found that the loading f: causes a jump discontinuity of the vertical stress

o, across the loading surface and the jump at the corner of the rectangular loading area is equal

to 0.25f.. For two points with a distance of 0.003a from the loading surface, the jumps at the
corner are, respectively, 0.252497f. and 0.248901f: for Meshes 3 and 4 and have the absolute
errors of 0.002497f: and 0.001099 f.. Thus, we choose Mesh 4 to perform the following analysis
and present the results of points with a distance greater than or equal to 0.003a from the loading

surface.
5.4 Example 3: Efficiency of the parallelization method

The third example is designed to compare the CPU times based on the serial and parallel
algorithms. Listed in Table 4 are the CPU times for calculating the stresses and displacements at
one point for Meshes 1, 2 and 3, which are used in analyzing Example 2. For each mesh, the
heterogeneous layer is discretized into 50 and 100 discrete layers. As can be observed, the
parallel algorithm is much faster than the serial algorithm, in particular when the number of the
points to be analyzed is very large. More specifically, for the given mesh and the same number
of discrete layers, the parallel algorithm is about 14 times faster than the serial algorithm, and for
a given mesh, the case of 50 homogeneous discrete layers is about 3 times faster than the case of

100 discrete layers case using the two algorithms.
6. Numerical results and analyses of new applications

6.1 The elastic fields for an exponential variation of the shear modulus

It is assumed that the non-homogeneous solid has an exponential variation of the shear
modulus in Eq. (16) and the Poisson’s ratio of the non-homogeneous solid v=0.3. The dimension
of the rectangular loading area /=1.5a. The non-homogeneous solid with a thickness of d is
discretized into 100 layers of homogeneous media with different values of the shear modulus

according to the depth.
6.1.1 Results of the horizontal and vertical loads fx, f- for different 1

Consider now the influence of different 4 for the horizontal and vertical loads at ~=a. For
simplicity, only the results along the vertical axis passing the corner (b, a, d) of the rectangular
loading area are presented. Figs. 10 and 11 respectively give the values of the three

displacements and six stresses induced by the vertical load f+ concentrated on the rectangular
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area. Figs. 12 and 13 respectively give the values of the three displacements and six stresses
induced by the vertical load f- concentrated on the rectangular area. From these figures, we can
have the following observations:

(1) The displacements and stresses in the non-homogeneous solid induced by f: and £ are
different for different A values (1=0,0.5,1,1.5,2,2.5,3). The three displacements (ux, uy, uz) are
continuous across the loading plane.

(2) The absolute values of u, and u, induced by fr decrease with 4 increasing. The
maximum values of u, and u, appear at the loading plane. For 4=0,0.5,1,1.5,2,2.5,3, the

maximum values of u_ (b,a,Z)GO / f.a are, respectively, 0.41731, 0.26689, 0.16901, 0.10617,

0.06627, 0.04114 and 0.02543. Usually, u_ induced by fx is negative above the loading plane and
is positive below the loading plane.

(3) The absolute values of u, and u, induced by f: decrease with 4 increasing. The
maximum values of u_appear at the loading plane. For 4=0,0.5,1,1.5,2,2.5,3, the maximum
values of u, (b,a,Z)GO/fza are, respectively, 0.43045, 0.26556, 0.16339, 0.10027, 0.0614,
0.03753 and 0.0229. With the distance to the loading plane increasing, the u_ values decrease.

(4) The vertical load fr causes an obvious jump discontinuity of o,

zZ

and o, for all the non-

homogeneous solid with different 4 and peak values of 0., o, o and 0, appear at the

xx > Zaxy2 Zyy

loading plane. With 4 increasing, the absolute values of ¢, and o, induced by f increase for

z>a and decrease for z<a. With 4 increasing, the absolute values of o, and 0, induced by f

decrease for z>a and increase for z<a.

(5) the stresses (o, and 0,,) induced by f: has a variation similar to o,, with 4 and z. For
z>a and z<a, o, induced by f: has a variation similar to o, for z<a. o,, and ¢ . have the

same variations with depth. With 1 increasing, 0,, and o, decrease for z<a and increase for

Xz
z>a.

(6) The vertical load f: causes a jump discontinuity of ¢, o, o, and o_ for all the

xx 2 Yxyo Yy
non-homogeneous solids with different 4. Besides, o,, and o _ tend to relative small values

with the distance to the loading plane decreasing. With A increasing, the absolute values of o

induced by f: increase for z>a. However, with /4 increasing, o increase in the shallow zone of

XX
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z<a and decrease in the deep zone of z<a. o, and 0, induced by f: has a variation similar to
o, with 2 and z. For z>a and z<a, o, induced by f: has a variation similar to o, forz<a. o,

and 0, have the same variations with depth. With 4 increasing, o . and 0, decrease for z<a

Xz

and increase for z>a.
6.1.2 Results of the vertical load f- for h=a and z=0.75a

Consider now the loading depth A=a and present the results at z=0.75a. Let us take the

calculating area: -3<x/a <3, -2<y/a<2 and z=0.75a. Figs. 14 and 15 respectively present

the contours of displacements and stresses on the calculating area by the vertical load f:. Because
of symmetry, the values of displacements and stresses are given only for 0<x/a <3 and

-2<y/a<2. From these figures, we can have the following observations:

(1) The displacement u_is antisymmetric with respect to the y axis on a horizontal plane
and u, is zero along the y axis. The displacements (u,, ) are symmetric with respect to the y
axis on a horizontal plane. On the calculating area, the maximum absolute value of
u,(x,5,0.75a)G,/ f.a is 0.01285. The maximum and minimum values of
u, (x, ¥, 0.75a) G,/ f.a are, respectively, 0.0167 and -0.0167. And the maximum and minimum
values of u, (x, y,0.75a) G,/ f.a are, respectively, 0.46529 and 0.11812.

(2) The three normal stresses (o, ,0  ,0, ) are symmetric with respect to the y axis. The

xx > yy > Tz

minimum values of o _ (x,y,0.75a)/fz and o, (x,y,0.75a)/fz are -0.08707 and -0.09176,
respectively and the maximum values of these components are -0.00766 and -0.01634,
respectively. Because the calculating area is located above the loading area, i.e., z=0.75a, 0_ is a

tensile stress in a part of the area. The maximum and minimum values of o, (x, y,0.75a) /f.

are 0.18215 and -0.08957, respectively.

(3) Among the shear stresses ( o,.and o), o, and o, are antisymmetric with

xy 0

respect to the y axis, and o, is symmetric with respect to the y axis. The maximum absolute
values of 7, (x, y,0.75a)/fz and o (x, y,0.75a)/fz are 0.04506 and 0.20127, respectively.

The minimum value of o (x, y,0.75a) / f. is -0.22792.

6.1.3 Results of the vertical load f- for different h
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Consider now the case of different loading depths for A=0.1. For simplicity, only the results
along the vertical axis passing the corner (b, a, /) of the rectangular loading area are presented.
Figs. 16 and 17 respectively illustrate the variations of the three displacements and six stresses
induced by the vertical load f2 with the loading depth 4. From these figures, we can have the

following observations:

(1) The displacements u_and u, decrease with the depth / increasing. The maximum
values of u, (b,a,z) G,/ f.a are, respectively, 0.1054, 0.06654, 0.04677, 0.03569 and 0.02917

for d=0, 0.25, 0.5, 0.75, 1. And the maximum values of u,(b,a,z)G,/ f.a are respectively

0.09024, 0.05335, 0.03647, 0.03569 and 0.022294 for d=0, 0.25, 0.5, 0.75, 1. With the depth &

increasing, the maximum values of u#, and u, appear at deeper positions. The . values increase
for z>h whilst the u, values decrease for z<h except for #=0. The maximum values of

u, (b,a,z) G,/ f.a are, respectively, 0.43368, 0.42513, 0.41493, 0.40333 and 0.3909 for d=0,

0.25,0.5,0.75, 1.

(2) For different loading depths, the jumps of 0., 0,,, 0, and o, always appear across

xx 2

the loading plane and the maximum absolute values of 0., and o, always appear at the loading

plane. The jumps of o, (b,a,z)/fz, o, (b,a,z)/ .0, (b,a,z)/fz and o (b,a,z)/fz at the

corner of the rectangular loading area are equal to about 0.107, 0.114, 0.106 and 0.25
respectively for different loading depths. And the values of these stresses at the points close to
the boundary surface z=0 are -0.1808, -1900, -0.2036 and -0.25, respectively.

(3) With the distance from the point to the loading plane increasing, the absolute values of

o., o, and o_ decrease below the loading plane and increase above the loading plane.

xx 2y
However, with the distance from the point to the loading plane increasing, the absolute values of

o,, decrease below and above the loading plane. The maximum absolute values of o, and o,

Xz

appear at the loading plane and increase with loading depth / increasing.
6.2 Comparison for two different distributions of the shear modulus

Egs. (16) and (17) present two different distributions of shear modulus for a non-
homogenous halfspace. In order to compare their results, we analyze the displacements induced
by fz for 2=0.1 and m=24. Assume that the Poisson’s ratio of the non-homogeneous solid v=0.3.

The vertical load f: is located at z=0. For the two non-homogeneous halfspaces, the shear moduli
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have the same value at about d=12.564a. The shear modulus of a non-homogeneous halfspace
varies with depth for z<d and keeps constant for z>d .

To provide a better estimate of the relative influence of elastic non-homogeneity on the
displacements of the solid, the ratio of displacements in a non-homogeneous solid to that in a
homogeneous solid has been evaluated and is presented in Fig. 18 for both linear and exponential
variations. As would be expected, the displacements are much lower for the exponential

variation than for the linear variation of the shear modulus.
6.3 The influence of the Poisson’s ratio of a non-homogeneous solid

In the above-mentioned analyses, it is assumed that the Poisson’s ratio of the
nonhomogeneous solid keeps constant along depth. Actually, the Poisson’s ratio of the
nonhomogeneous solid varies with depth. In order to provide an example application of the
variation of Poisson’s ratio with depth, a simple linear fit has been completed for the data by Pan
(1985), who investigated the depth variation of the geotechnical properties of sand soil, clay
loam, clay and soft soil. Pan (1985) showed that the Poisson’s ratio increases with the depth z,
although the variation is not necessarily linear. The ratios of increase in the Poisson’s ratio were
different for different types of soils. The variations of the elastic modulus and the Poisson’s ratio

for sand soil are presented as follows:
E(Z)zEO (l+mlz) (18)
v(z)zvO (1+m22) (19)
where Eo=53.09MPa, m1=0.5065 and vo=0.3469, m>=0.0123, and the SI unit of z is meters
(m). The thickness of the sand soil is d=12m. For z > d , the clastic properties keeps constants,
that is, E(z>d)=E,(1+md) and v(z>d)=v,(1+m,d) . The numerical results for this
variation are presented in this section.

It is assumed that the rectangular loading area is located at ~#=a. Let us consider b=1.5a and
d=a. Here, only the results along the vertical axis passing the corner (b,a,z) of the rectangular
loading area are presented. Figs. 19 and 20 respectively give the values of the three
displacements and six stresses induced by the vertical load f: concentrated on the rectangular area
for two cases: v=vo (case a) and v=v,(1+myz) (case b). From these figures, we can have the
following observations:

(1) With the comparison of the displacements of cases a and b, the variations of the

Poisson’s ratio with depth exert an obvious influence on all the three displacements in
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nonhomogeneous media. The values of the three displacements for case a become smaller than
that for case b at a given depth.
(2) The variations of the Poisson’s ratio with depth exert a different influence on different

stress components. At a given depth, the o for case a is larger than that for case b and has
different variations for two cases with depth for z<a. For z>q, the o, of case b is larger than
that of case a whilst for z<a, the o, of case b is smaller than that of case a. For z>a and z<a,
the o_ of case b become smaller than that of case a.

(3) The shear stresses o, and o, have a similar variation between cases a and b. In the
neighborhood of the loading plane, the concentration of the stresses o, and o, for case b
becomes less obvious than that for case a. The variation of the shear stress o, is different from

that of o, and o .. For z>a and z<a, the o, of case b is smaller than that of case a.

7. Conclusions

This paper presents an effective numerical method for the analysis of the displacement and
stresses corresponding to internal distributed loads of a non-homogeneous isotropic elastic
halfspace. Numerical verification shows that the proposed numerical method can obtain accurate
results, especially for the point close to the loading area. The displacements and stresses induced
by the horizontal and vertical loadings are presented in details. The non-homogeneous halfspace
analyzed can have their shear modulus exhibiting exponential and linear variations in depth and
keeping constant in lateral directions. Furthermore, the variation of the Poisson’s ratio along a
vertical direction is also considered. The internal rectangular loading of an elastic halfspace can
serve as a useful model for analyzing the internal loading of geologic media. The numerical
method can be also used to analyze a non-homogeneous halfspace where the elastic properties

exhibit arbitrary variations with depth.
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Appendix A

The eight shape functions of the element can be written as

N, (6:8) =5 (1-8)(1+678) (a=5.7)

N, (6.6)=5(1-8)(14676) (a=68)

N (6d) =N, =S (N +N,)

No(&:6) = Vo =2 (Vs 4 Ny

No(&,6) = N; =S (N4 Ny)

N, (§19§2):N: _%(N7 +N,)

where N;(§1,§2):%(1+§1“§1)(1+§;‘§2) (@=1,234). & ( =12 ) denotes the local

coordinates in the £ direction at node «. The shape functions of a variable-node element are

obtained by letting the functions of the disappearing midside nodes be zero.
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Table 1 The minimum M value for the relative error less than 1%

z/a 0.03 0.05 0.1 0.2 0.3 0.4 0.5
Uz 5 3 1 | 0 0 0
0z 15 9 3 1 0 0 0

Table 2 Subroutine CALSTRESDISPL-shared memory version

subroutine CALSTRESDISPL

internal points: do i=1,NPIN
xp(:)=xyzin(:,1)
!$SOMP PARALLEL DEFAULT(SHARED)
I$SOMP DO PRIVATE(j,xe,ie,k)
elements: do j=1,NE
do ie=1,8
k=nep(ie,j); xe(:,ie)=xyz(:,k)
enddo
! compute the coefficients: cofu and cofs
call iks(xp,xe,nep,cofu, cofs,...)
do ie=1,8
do k=1,3
! compute the stresses at internal point i
strs(:,:,1)= strs(:,:,1)+cofs(:,: k,ie,i)*te(k,ie,1)
! compute the displacement at internal point i
displ(:,i)= displ(:,i)+cofu(:,k,ie,i)*te(k,ie,i)
enddo
enddo
enddo elements
!$OMP END DO
!$SOMP END PARALLEL
enddo internal points

end subroutine CALSTRESDISPL
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Table 3 Results of vertical displacement «_(0,0,0)G, / f.a for different 1 by the present study and

Katebi and Selvadurai (2013)

No. of a layered 1=05 1=1 1=2 1=3
elastic halfspace
10 0.216108 0.131272 0.0477420 0.0171478
15 0.216245 0.131386 0.0477666 0.0171379
20 0.216314 0.131449 0.0477834 0.0171360
25 0.216357 0.131487 0.0477943 0.0171357
30 0.216386 0.131511 0.0478019 0.0171358
35 0.216408 0.131528 0.0478072 0.0171360
40 0.216423 0.131539 0.0478115 0.0171362
50 0.216444 0.131562 0.0478193 0.0171372
60 0.216456 0.131577 0.0478235 0.0171377
80 0.216478 0.131588 0.0478277 0.0171381
100 0.216488 0.131583 0.0478289 0.0171380
Katebi & 0.215587 0.131306 0.048468 0.017871
Selvadurai

Table 4 Comparison of CPU times (s) between serial and parallel computations

P
Mesh Number of CPUS for serial Clzlrillicl)r CPUS/ CPUP
No. discrete layers computation p .
computation
. 50 29 2 14.5
100 86 6 14.3
5 50 129 8 16.1
100 358 24 14.9
3 50 516 28 18.4
100 1410 98 14.4

Computer configuration: HP workstation SC001, Xeon CPU 1.7GHz, 16GB RAM.
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