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We point out the experimental relevance and the detection scheme of symmetry-enriched U(1) quantum
spin liquids (QSLs) outside the perturbative spin-ice regime. Recent experiments on Ce-based pyrochlore QSL
materials suggest that the candidate QSL may not be proximate to the well-known spin-ice regime, and thus
differs fundamentally from other pyrochlore QSL materials. We consider the possibility of the π -flux U(1) QSL
favored by frustrated transverse exchange interactions rather than the usual quantum spin ice. It was previously
suggested that both dipolar U(1) QSL and octupolar U(1) QSL can be realized for the generic spin model for
the dipole-octupole doublets of the Ce3+ local moments on the pyrochlore magnets Ce2Sn2O7 and Ce2Zr2O7.
We explain and predict the experimental signatures, especially the magnetic field response of the octupolar
π -flux U(1) QSL. Fundamentally, this remarkable state is a mixture of symmetry enrichments from point-group
symmetry and from translational symmetry. We discuss the relevant experiments for pyrochlore U(1) QSLs and
further provide some insights to the pyrochlore Heisenberg model.
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I. INTRODUCTION

Symmetry is the key that underlies the traditional Landau’s
paradigm of many-body phases and phase transitions. It is al-
most so in the classification and understanding of topological
and exotic phases of quantum matter [1]. In the past decade
or so, tremendous progress has been made theoretically to
classify various symmetry-enriched topological phases, where
symmetry creates many more topological phases [2–8]. These
symmetry-enriched topological phases are described by the
same topological quantum field theory, but they are distinct
by the realization of symmetries, for example, on the fraction-
alized excitations. These beautiful theories so far do not have
strong experimental connections. It is thus of great interest to
find an experimental relevance and establish the connection.

In the past decade or so, various quantum spin liquid (QSL)
candidate materials have been proposed, and the rare-earth
pyrochlore magnets comprise an important and large family
of materials [9–29] in these proposals. In these materials, the
rare-earth ions carry spin-orbital-entangled effective spin-1/2
local moments that interact with highly anisotropic superex-
change interactions [10,30–33]. Due to the proximity to the
classical spin-ice regime where the classical Ising interaction
dominates, many pyrochlore materials develop a spin-ice type
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of Pauling entropy plateau at low but finite temperatures
[9,34–40]. Introducing quantum fluctuations and/or perturba-
tions to the extensively degenerate spin-ice manifold could
then convert the system into a QSL state, and this state is
often quoted as quantum spin-ice U(1) QSL or pyrochlore-ice
U(1) QSL [9,10,37,41–44]. Is the proximity to the spin-ice
regime necessary to produce a U(1) QSL? In our opinion, this
condition was merely a theoretical convenience to access the
interesting and exotic state in early theoretical works [41,44].
It is now established that the pyrochlore U(1) QSL is much
more robust in the so-called frustrated regime, where the
spinon experiences an emergent background π flux [45–48].
Since this π -flux U(1) QSL is expected to extend much
beyond the perturbative spin-ice regime [45], it is natural to
expect that the proximity to the spin-ice regime is not quite
necessary to obtain the pyrochlore U(1) QSL. We refer to
the U(1) QSL in this regime as non-spin-ice pyrochlore U(1)
QSL or simply as pyrochlore U(1) QSL, instead of pyrochlore
spin-ice U(1) QSL.

In the actual experiments on the Ce-based pyrochlore QSL
materials (in particular, Ce2Zr2O7) [49], the spin-ice type
of Pauling entropy plateau does not exist down to very low
temperatures while the magnetic entropy is almost completely
exhausted. This is a clear indication that the system is not
in the spin-ice regime. Another interesting aspect is that the
Ce3+ local moment in both Ce2Sn2O7 [50–52] and Ce2Zr2O7

is a dipole-octupole doublet [33,53,54]. It is thus natural for
us to consider the possibility of pyrochlore U(1) QSL beyond
the spin-ice regime with the dipole-octupole doublets. It was
previously suggested that the anisotropic interaction between
the dipole-octupole doublets on the pyrochlore lattice could
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stabilize two symmetry-enriched U(1) QSLs, i.e., dipolar U(1)
QSL and octupolar U(1) QSL [33,53]. The major distinction
between these two U(1) QSLs arises from the transformation
of the emergent electric field under the point-group symmetry
operation, i.e., the emergent electric field in the dipolar U(1)
QSL transforms as the magnetic dipole moment, while the
emergent electric field in the octupolar U(1) QSL transforms
as the magnetic octupole moment. On top of this point-group
symmetry enrichment, there is an additional translational
symmetry enrichment where the spinon could experience a
background π flux or 0 flux in the distinct enrichments. It was
shown [45] that the π -flux state [labeled U(1)π QSL] extends
much beyond the perturbative ice regime. Therefore, it is
reasonable to associate the non-spin-ice pyrochlore QSL with
the U(1)π QSL. The 0-flux state [labeled U(1)0 QSL] has
been studied extensively in the previous literature [33,44,45].
For the dipole-octupole doublets, the octupolar U(1)0 QSL
has been studied by us in a previous work [53], and, in the
current work, we will mostly focus on the octupolar U(1)π
QSL and explore its physical properties.

The octupolar U(1)π QSL is the quantum phase that most
clearly reflects the interplay between the multipolar nature of
the local moments and emergent exotic properties of the U(1)
QSL. The strong frustrated interaction between the octupolar
components is the precondition for realizing the octupolar
U(1)π QSL. In terms of the emergent degrees of freedom
for the octupolar U(1)π QSL, the octupole component is
the emergent electric field whose correlation contains both
the gapless U(1) gauge photon and the gapped “magnetic
monopoles.” These magnetic octupole components, however,
do not couple with the external magnetic field and the neutron
spin at the linear order. Thus, they are hidden from the
conventional measurements. What is visible is the spinon
sector. The external magnetic field couples linearly with the
dipole component that does not commute with the octupole
component or the emergent electric field. Thus it is observed
that [53] the external magnetic field couples with the spinon-
antispinon pair and modifies the spinon dispersion. For the
octupolar U(1)π QSL, the spinon continuum has a spectral
periodicity enhancement due to the background π flux. We
specifically study the experimental signatures of the octupolar
U(1)π QSL for the frustrated non-spin-ice regime and explore
the spinon continuum and the magnetic excitations under the
magnetic fields.

The remaining parts of the paper are organized as follows.
In Sec. II, we introduce the model for the dipole-octupole
doublets on the pyrochlore lattice and emphasize the unique
coupling to magnetic fields. In Sec. III, we explain the con-
nection between the microscopic degrees of freedom and the
emergent degrees of freedom in the octupolar U(1)π QSL.
In Sec. IV, we explore the impact of the external magnetic
field on the spinon continuum in the octupolar U(1)π QSL. In
Sec. V, we analyze the spin-wave spectrum in the regime with
strong magnetic fields. Finally, in Sec. VI, we discuss some
experimental relevance and the related theoretical questions.

II. EFFECTIVE SPIN MODEL

We start with the generic effective spin model for the
dipole-octupole doublets on the pyrochlore lattice. The model

was derived in Ref. [33] and is known as the XYZ model
[33,53,54],

H =
∑
〈i j〉

JzS
z
i Sz

j + JxSx
i Sx

j + JySy
i Sy

j

+ Jxz
(
Sx

i Sz
j + Sz

i Sx
j

) − h
∑

i

(n̂ · ẑi )S
z
i , (1)

where microscopically Sx and Sy are magnetic octupole mo-
ments, while Sz is a magnetic dipole moment. From the
symmetry analysis, Sx and Sz transform identically under the
point-group symmetry. Thus, Sx is sometimes referred to as
the magnetic dipole moment [33]. We have also introduced
the Zeeman coupling that only acts on the magnetic dipole
moment Sz, and n̂ is the field direction and ẑi defines the local z
direction of each sublattice (see Appendix A for the definition
of these conventions). Only the nearest-neighbor interaction
is considered here, which is expected to be reasonable for the
localized 4 f electrons. The XYZ form is obtained by applying
a rotation around the y direction by an angle θ to eliminate the
Jxz term; the resulting Hamiltonian reads

HXY Z =
∑
〈i j〉

J̃zS̃
z
i S̃z

j + J̃xS̃x
i S̃x

j + J̃yS̃y
i S̃y

j

− h
∑

i

(n̂ · ẑi )
(

cos θ S̃z
i + sin θ S̃x

i

)
, (2)

where S̃x,z
i are related to Sx,z

i by the θ rotation, and S̃y ≡ Sy.
In the phase diagram of HXY Z without the magnetic field, the
system supports three disconnected U(1) QSLs [33,53]. When
J̃z (J̃y) is antiferromagnetic and dominant while the remaining
two couplings are not large enough to drive a magnetic order,
the ground state is a dipolar (octupolar) U(1) QSL. In the
case when J̃x is antiferromagnetic and large, the relevant U(1)
QSL is regarded as a dipolar U(1) QSL and shares the same
universal and qualitatively similar physics with the dipolar
U(1) QSL because S̃x and S̃z transform identically under
the point-group symmetry. The dipolar U(1) QSL and the
octupolar U(1) QSL are symmetry-enriched U(1) QSLs and
are enriched by the point-group symmetry.

III. OCTUPOLAR U(1)π QSL

Since the experiments suggest that Ce2Zr2O7 is not in the
spin-ice regime [49], we would like to understand this from
the physical properties of both dipolar and octupolar U(1)
QSLs in the non-spin-ice regime. From the previous argument
and early results [45], the non-spin-ice regime for an XXZ
model would be in the frustrated regime with a frustrated
transverse exchange interaction and support the U(1) QSL
with π flux for spinons.

The XYZ model with zero magnetic field can be rewritten
with two different but equivalent forms,

Hz =
∑
〈i j〉

J̃zσ
z
i σ z

j − Jz
±(σ+

i σ−
j + σ−

i σ+
j )

+ Jz
±±(σ+

i σ+
j + σ−

i σ−
j ), (3)

Hy =
∑
〈i j〉

J̃yτ
y
i τ

y
j − Jy

±(τ+
i τ−

j + τ−
i τ+

j )

+ Jy
±±(τ+

i τ+
j + τ−

i τ−
j ), (4)

013334-2



PYROCHLORE U(1) SPIN LIQUID OF MIXED-SYMMETRY … PHYSICAL REVIEW RESEARCH 2, 013334 (2020)

where we have

σ z
i ≡ S̃z

i , σ±
i ≡ S̃x

i ± iS̃y
i , (5)

τ y ≡ S̃y
i , τ±

i ≡ S̃z
i ± iS̃x

i , (6)

and the couplings (Jz
±, Jz

±±) and (Jy
±, Jy

±±) can be read off
from the expansion of the above two Hamiltonians into the
original form. For convenience, we focus on the regime where
the ground state of Hz (Hy) is the dipolar (octupolar) U(1)
QSL, i.e., when J̃z (J̃y) is antiferromagnetic and dominant.
It is known that as long as Jz

± > 0 (Jy
± > 0), the model for

either sign of Jz
±± (Jy

±±) does not have a fermion sign problem
for quantum Monte Carlo simulation [33]. In this unfrustrated
regime, numerics shows that the system has the classical spin-
ice phenomena such as the Pauling entropy plateau at low and
finite temperatures even when the system is located in the QSL
phase at zero temperature [55]. It means that the frustrated
regime Jz

± < 0 (Jy
± < 0) should carry the QSL physics for the

Ce-based pyrochlore magnets. Since the frustrated regime for
the U(1) QSL generates an emergent π flux for the spinons,
it is then natural to understand the physical properties of the
dipolar and octupolar U(1)π QSLs. It is interesting to note
that the π flux for the spinons is a signature of the symmetry
enrichments in the lattice translation of the spinon sector.
This is a translational symmetry enrichment on top of the
point-group symmetry enrichments. Due to the π flux, we
expect the spinon continuum to develop an enhanced spectral
periodicity in the reciprocal space with a folded Brillouin
zone [46,56]. Although certain generic properties may be
established from the model level, there is still a gap in a
quantitative connection to the actual physical observables of
the dipole-octupole doublets.

To make connection with the experiments, it is important to
notice that only Sz in Eq. (1) is magnetic [33,53,54], and only
the Sz-Sz correlation is measurable in a neutron-scattering
experiment. From Eq. (2), Sz

i = cos θσ z
i + sin θσ x

i . Thus, the
inelastic neutron-scattering experiment would measure both
σ z-σ z and σ x-σ x correlators. For the dipolar U(1)π QSL of
Hz with a large and antiferromagnetic J̃z [dipolar U(1)π QSL
with a large and antiferromagnetic J̃x], the spinon continuum
is contained in the σ x-σ x (σ z-σ z) correlator, and the “magnetic

monopole” continuum and the gauge photon are contained in
the σ z-σ z (σ x-σ x) correlator. The inclusion of the magnetic
monopole continuum was understood quite recently [57].
Due to the background π flux for the spinons in the dipolar
U(1)π QSL, the spinon continuum develops an enhanced
spectral periodicity with a folded Brillouin zone [45,46,57].
For the magnetic monopoles, the continuum should always
have an enhanced spectral periodicity with a folded Brillouin
zone due to the effective spin-1/2 nature of the local moment
[46,57,58]. As for the octupolar U(1)π QSL, because τ y is
not directly measurable, the Sz-Sz correlator only detects the
gapped spinon continuum, and the continuum has an enhanced
spectral periodicity [46,53,57].

IV. EVOLUTION OF SPINON CONTINUUM UNDER
MAGNETIC FIELDS FOR OCTUPOLAR U(1)π QSL

To access the ground state and illustrate the emergent U(1)
gauge structure and the physical properties of the XYZ spin
model, we implement the mapping introduced in Refs. [44,45]
of the spin model to an Abelian-Higgs model with the com-
pact U(1) gauge field and the bosonic spinon matter. Focusing
on the octupolar U(1) QSL regime [when J̃y is positive and
dominant in Eq. (4)], we express the spin operators as

τ
y
r,r+eμ

= sy
r,r+eμ

, τ+
r,r+eμ

= �†
rs+

r,r+eμ
�r+eμ

, (7)

where r belongs to the I diamond sublattice (our convention is
summarized in Appendix A). Here, sy

r,r′ is the emergent elec-
tric field in the octupolar U(1) QSL phase, s±

r,r′ is the gauge

string operator ending at sites r and r′, and �r (�†
r ) is the

spinon annihilation (creation) operator at the diamond lattice
site r. The physical Hilbert space is obtained by imposing the
following constraints:

Qr = ηr

∑
μ

sy
r,r+ηreμ

, �†
r�r = 1, (8)

where ηr = ±1 for r in sublattices I and II, respectively, and
Qr is the operator measuring the local gauge charge through
the “Gauss law,” and is canonically conjugate to �r,

[�r, Qr] = �r, [�†
r , Qr] = �†

r . (9)

Under this mapping, the Hamiltonian becomes

Hy = J̃y

2

∑
r

Q2
r − Jy

±
∑

r

∑
μ �=ν

(
�

†
r+ηreμ

�r+ηreν
s−ηr

r,r+ηreμ
s+ηr

r,r+ηreν

)

+ Jy
±±
2

∑
r

∑
μ �=ν

(
�†

r�
†
r�r+ηreμ

�r+ηreν
s+ηr

r,r+ηreμ
s+ηr

r,r+ηreν
+ H.c.

)

− h

4

∑
r

∑
μ

(
n̂ · ẑr+ηreμ/2

)[
cos θ

(
�†

r�r+ηreμ
s+ηr

r,r+ηreμ
+ H.c.

) − i sin θ
(
�†

r�r+ηreμ
s+ηr

r,r+ηreμ
− H.c.

)]
. (10)

Within the U(1)π QSL regime, we choose a gauge to take care
of the background π flux [45,46], such that the spinons hop
on the diamond lattice with modulated signs of hoppings (see
Appendix A). In the absence of the field, the spinon contin-
uum, which is measurable via an inelastic neutron-scattering

measurement in the octupolar U(1)π QSL, shows a spectral
periodicity enhancement with a folded Brillouin zone. As we
calculate explicitly and show in the left panels of Fig. 1, both
the upper and lower excitation edges of the two-spinon con-
tinuum develop the spectral periodicity enhancement. Another

013334-3



XU-PING YAO, YAO-DONG LI, AND GANG CHEN PHYSICAL REVIEW RESEARCH 2, 013334 (2020)

FIG. 1. The upper and lower excitation edges of the two-spinon continuum in the octupolar U(1)π QSL, for the magnetic fields along
the [110] direction. We fix Jy

± = −0.33Jy, Jy
±± = 0, θ = 0, and take (a),(d) h = 0, (b),(e) h = 0.2Jy, and (c),(f) h = 1.0Jy. The energy unit

is set to Jy. Here, the 	 points represent the Brillouin zone centers and differ by the reciprocal lattice vectors with 	0	1 = 2π (−1, 1, 1) and
	0	2 = 2π (1,−1, 1).

advantage of the octupolar U(1) QSL is to allow the external
magnetic field to tune the spinon dispersion directly even in
the presence of the background π flux.

The external magnetic field, which couples to Sz or equiva-
lently couples to the spinon matters, modifies the spinon band
structures. This modification can then be directly measured
by the inelastic neutron-scattering probe. This provides an
interesting example to manipulate or control the emergent
fractionalized spinon degrees of freedom with external means
that is the external magnetic field here. More importantly, such
a manipulability could be recorded and tested experimentally.
We apply the fields along three high-symmetry directions,
i.e., [001], [110], and [111] crystallographic directions. In the
central panels and the right panels of Fig. 1, we plot the upper
and lower excitation edges of the spinon continuum under two
different magnetic fields along the [110] direction. Because
the weak magnetic field does not revise the background π

flux, the spinon continuum in these plots continues to de-
velop an enhanced spectral periodicity with a folded Brillouin
zone. This important topological property remains the distinct
feature to be examined even in the presence of the magnetic
field. The detailed calculation scheme and the results for the
fields along the [001] and [111] directions are displayed in
Appendices B and C. Despite the application of the magnetic
fields, the enhanced spectral periodicity preserves, and the
magnetic field also generates nonuniversal features such as the
rich wiggles in the spectra.

The above calculation is based on the assertion that the 3D
U(1) QSL is stable against the perturbation from the weak
magnetic fields. What happens if the field becomes strong? To
address this question, we notice that there is a (hidden) com-
petition between the transverse spin exchange interaction and

the magnetic field. Our observation is as follows. The strong
magnetic field would simply favor a uniform polarized state
that preserves the lattice translations, while the simple spinon
condensation of the U(1)π QSL would favor a state that
breaks the lattice translational symmetry [46]. This frustration
could enhance the stability of U(1)π QSL against the external
magnetic field. The stability of U(1)π QSL against exchange
interactions and other competing orders has been previously
established in Ref. [45,48], respectively. This might also be
the reason for the better stability of the antiferromagnetic
Kitaev QSL in the magnetic field over the ferromagnetic
one [59]. Perturbatively, the magnetic field favors a zero-
flux state. One may wonder if the field can drive a phase
transition between two symmetry-enriched U(1) QSLs, i.e.,
from U(1)π to U(1)0 QSLs, and then from U(1)0 QSL to the
spinon condensed state, or a direct first-order transition from
U(1)π QSL to the polarized state, or the field first drives a
spinon condensation by breaking the lattice translation and
then restores the lattice transition by entering a polarized
phase via a first-order transition. This may be examined
numerically or experimentally.

V. MAGNETIC EXCITATIONS IN THE
STRONG-FIELD REGIME

As the external magnetic field is further increased, the
system will eventually enter a polarized state. For the fully or
nearly polarized state, the spins (or the local z components)
are aligned along the preferred direction according to the
external magnetic field. Since the transverse spin components
that create the coherent spin excitations are the octupolar
moments, the neutron spin does not couple linearly with the
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FIG. 2. Linear spin-wave spectra under external magnetic fields
along the (a),(c) [111] and (b),(d) [001] direction. The corresponding
classical ground states are “1-in 3-out” and “2-in 2-out,” respectively.
(a),(b) In the octupolar U(1) QSL regime, we set Jy as the energy unit
and fix Jy

± = −0.075Jy and Jy
±± = 0.025Jy. (c),(d) In the dipolar U(1)

QSL regime, the energy unit is set to be Jz = 1.0 with Jz
± = −0.075Jz

and Jy
±± = −0.025Jz. The strength of the external field is fixed to

h = 4.0Jy (h = 4.0Jz) in the octupolar (dipolar) regime to ensure the
correct spin configuration. We set θ = 0.

transverse spin component and thus the inelastic neutron-
scattering signal would be suppressed. However, there can still
be residual intensity for the nearly polarized state due to the
crossing coupling Jxz(Sx

i Sz
j + Sz

i Sx
j ). This can be understood

as follows. Although the magnetic field polarizes the Sz

components directly, the finite Sz would further induce a finite
Sx through the crossing coupling. As a result, the Sz operator
could create coherent magnetic excitations by flipping Sx

components.
The distinction between the dipolar U(1) QSL and the oc-

tupolar U(1) QSL not only appears in the qualitative behaviors
under the weak magnetic fields or by the neutron-scattering
measurements, but also shows up in the magnetic excitations
when the QSL state is replaced by the polarized states in
the strong magnetic fields. The former has been explained in
the previous sections. The latter can be simply understood as
follows. We directly compare the dipolar U(1) QSL with a
dominant J̃z with the octupolar U(1) QSL with a dominant
J̃y. Regardless of which U(1) QSL the system is located in,
it is always the transverse spin component that flips the Sz

components and generates the spin-wave excitation in the
polarized state. As the transverse couplings for two distinct
U(1) QSLs are very different compared to the dominant
interactions, it is meaningful to explore quantitatively the
spin-wave dispersion under different magnetic fields in dif-
ferent symmetry-enriched U(1) QSLs with distinct parameter
regimes, and this information would, in principle, be able to

FIG. 3. Linear spin-wave spectra under external magnetic fields
along the (a),(c) [111] and (b),(d) [001] directions. We take
Jx = Jz = Jxz = 0 and the magnetic field strength h = 8.0|Jy| to
ensure the “1-in 3-out” and “2-in 2-out” classical spin ground states,
respectively. In (a),(b), we set Jy = 1 as the energy unit, and in (c),(d),
we set Jy = −1.

distinguish which U(1) QSL the polarized state may originate
from.

To illustrate the above thoughts, we proceed to calcu-
late the spin-wave dispersions for the parameter choices of
the dipolar U(1) QSL and the octupolar U(1) QSL, respec-
tively. In practice, one obtains the spin-wave spectra from
the neutron-scattering measurement by applying magnetic
fields to polarize the spin and then extract the couplings.
Since the experiments are not available yet, we choose the
representative parameters for the dipolar U(1) QSL and the
octupolar U(1) QSL, and perform our spin-wave analysis.
To carry out the actual calculation, we invoke the well-
known Holstein-Primakoff spin-wave theory to expand the
spin operator. We first consider the application of the magnetic
field along the [111] direction. In the strong-field limit, the
spin configuration would simply be a “3-in 1-out” state.
For our parameter choices that are given in Figs. 2 and 3,
it is legitimate to express the spin operators of the zeroth
sublattice as

S+
i = bi, S−

i = b†i , (11)

Sz
i = 1/2 − b†i bi, (12)

and for the remaining three sublattices, we have

S+
i = b†i , S−

i = bi, (13)

Sz
i = −1/2 + b†i bi. (14)

013334-5



XU-PING YAO, YAO-DONG LI, AND GANG CHEN PHYSICAL REVIEW RESEARCH 2, 013334 (2020)

After substituting Si in Eq. (1) with the bosonic cre-
ation (annihilation) operators b†i (bi) and then performing the
Fourier transformation

bi = 1√
L

∑
k∈BZ

bs(k)eik·rl , (15)

where rl is the position vector of the unit cell containing
magnetic ion i and s refers to the corresponding sublattice
index, the XYZ model Hamiltonian under the magnetic field
can be recast in terms of boson bilinears as

Hsw =
∑
k∈BZ

b†(k)h(k)b(k) + HZeeman(k). (16)

Here, b(k) is a set of bosonic operator basis b(k) =
[b0(k), . . . , b3(k), b†0(−k) . . . , b†3(−k)]T and h(k) is a 8 × 8
Hermitian matrix that can be written in the block form as

h(k) =
(

A(k) B(k)
B†(k) Ā(−k)

)
+ Ecl, (17)

where Ecl is the classical ground-state energy. The matrix
elements A(k) and B(k) are defined as

A(k) =

⎛
⎜⎜⎜⎜⎝

3
2 Jz

Jx−Jy

8

[
e− i

2 (ky+kz ) + 1
] Jx−Jy

8

[
e− i

2 (kx+kz ) + 1
] Jx−Jy

8

[
e− i

2 (kx+ky ) + 1
]

Jx−Jy

8

[
e

i
2 (ky+kz ) + 1

] − 1
2 Jz

Jx+Jy

8

[
e

i
2 (ky−kx ) + 1

] Jx+Jy

8

[
e

i
2 (kz−kx ) + 1

]
Jx−Jy

8

[
e

i
2 (kx+kz ) + 1

] Jx+Jy

8

[
e

i
2 (kx−ky ) + 1

] − 1
2 Jz

Jx+Jy

8

[
e

i
2 (kz−ky ) + 1

]
Jx−Jy

8

[
e

i
2 (kx+ky ) + 1

] Jx−Jy

8

[
e

i
2 (kx−kz ) + 1

] Jx−Jy

8

[
e

i
2 (ky−kz ) + 1

] − 1
2 Jz

⎞
⎟⎟⎟⎟⎠ (18)

and

B(k) =

⎛
⎜⎜⎜⎜⎝

0 Jx+Jy

8

[
e− i

2 (ky+kz ) + 1
] Jx+Jy

8

[
e− i

2 (kx+kz ) + 1
] Jx+Jy

8

[
e− i

2 (kx+ky ) + 1
]

Jx+Jy

8

[
e

i
2 (ky+kz ) + 1

]
0 Jx−Jy

8

[
e

i
2 (ky−kx ) + 1

] Jx−Jy

8

[
e

i
2 (kz−kx ) + 1

]
Jx+Jy

8

[
e

i
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] Jx−Jy

8

[
e

i
2 (kx−ky ) + 1

]
0 Jx−Jy

8

[
e

i
2 (kz−ky ) + 1

]
Jx+Jy

8

[
e

i
2 (kx+ky ) + 1

] Jx+Jy

8

[
e

i
2 (kx−kz ) + 1

] Jx+Jy

8

[
e

i
2 (ky−kz ) + 1

]
0

⎞
⎟⎟⎟⎟⎠. (19)

Ā(k) is the complex conjugate of A(k).
The Zeeman coupling in this approximation becomes

HZeeman(k) = −h
∑
k∈BZ

3∑
s=0

n̂ · ẑs

× [b†s (k)bs(k) + bs(−k)b†s (−k)]. (20)

In our illustrative calculations, we keep θ = 0 as the pre-
vious sections for simplicity. Without losing generality, we
set Jy = 1.0 and Jz = 1.0 as the energy unit for the octupolar
and dipolar U(1) QSLs, respectively. Other parameters are
set to be Jy

± = −0.075Jy, Jy
±± = 0.025Jy and Jz

± = −0.05Jz,
Jz
±± = −0.025Jz in order to guarantee the predominance of J̃y

or J̃z in each case. In both cases, the strength of the magnetic
field is fixed to h = 4.0Jy (or h = 4.0Jz), which is strong
enough to ensure the magnetic ground state is a “1-in 3-out”
spin configuration. Diagonalizing the quadratic Hamiltonian
Hsw, one can obtain the linear spin-wave spectrum as depicted
in Figs. 2(a) and 2(c). In both the octupolar [Fig. 2(a)] and
dipolar [Fig. 2(c)] regimes, the degenerate bands with the
highest energies originate from the deviation of the spin
whose local z component is parallel to the field direction.
In the dipolar U(1) QSL, this band is nearly flat and there
is a huge gap between other bands, while the energy gap is
moderate in the octupolar one.

With the same parameters but an external magnetic field
along the [001] direction, a “2-in 2-out” spin configuration is
favored. In this ground state, the spin operators of the zeroth
and third sublattice can be expressed as

S+
i = bi, S−

i = b†i , (21)

Sz
i = 1/2 − b†i bi, (22)

and for the remaining two sublattices, we have

S+
i = b†i , S−

i = bi, (23)

Sz
i = −1/2 + b†i bi. (24)

As shown in Fig. 2, the bandwidth of the linear spin-wave
spectrum [Figs. 2(b) and 2(d)] is significantly smaller than
the previous case. This is because none of the four local ẑ
directions in one magnetic unit cell is parallel to the external
field. There is a reduced energy cost of spin flipping. In the
dipolar regime, as shown in Fig. 2(d), the bandwidth is much
smaller by comparison.

In order to further study the difference between the
dipolar and octupolar U(1) QSLs from the perspective of

FIG. 4. The diamond lattice formed by the tetrahedral centers of
the pyrochlore lattice. The choice of spinon hopping is labeled in the
plot.
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TABLE I. Local coordinate frames for the four sublattices on the
pyrochlore lattice. The local x̂ and ŷ directions are not really used
in this work because the transverse spin components of the local
moments are octupolar moments and are defined in the internal spin
space.

μ 0 1 2 3

x̂μ
1√
2
[1̄10] 1√

2
[1̄1̄0] 1√

2
[110] 1√

2
[11̄0]

ŷμ
1√
6
[1̄1̄2] 1√

6
[1̄12̄] 1√

6
[11̄2̄] 1√

6
[112]

ẑμ
1√
3
[111] 1√

3
[11̄1̄] 1√

3
[1̄11̄] 1√

3
[1̄1̄1]

the spin-wave excitations, we take the special case with
Jx = Jz = Jxz = 0 and calculate the spin-wave spectrum of a
Jy-related Hamiltonian,

H =
∑
〈i j〉

JySy
i Sy

j − h
∑

i

(n̂ · ẑi )S
z
i . (25)

Here, we set the energy unit to be |Jy| = 1, but the sign of
Jy can be changed. To ensure the same classical spin ground
states as we have discussed above, the strength of the external
magnetic field is fixed to be h = 8|Jy|. We show the spin-wave
results in Fig. 3, where Jy = 1 [Figs. 3(a) and 3(b)] and
Jy = −1 [Figs. 3(c) and 3(d)]. Our results could potentially
provide guidance for the future inelastic neutron-scattering
measurements in strong magnetic fields.

VI. DISCUSSION

The Ce-based pyrochlore QSL materials (Ce2Sn2O7 and
Ce2Zr2O7) represent a family of QSL materials whose models
are provided theoretically [33,53]. The major task would be to

establish connections between the theoretical results or under-
standing and the experiments. The main result in this paper is
based on the U(1) QSLs with dipole-octupole doublets, and
the experimental predictions are the spectroscopic properties.
It has been shown that the spinon spectrum could have an
enhanced spectral periodicity with a folded Brillouin zone and
the proximate orders could break the lattice translational sym-
metry by doubling the unit cell. Another set of experiments
would be thermal Hall transports. As we will explain in a
separate paper [60] that focuses on the thermal Hall effect, we
predict that there should be a nontrivial topological thermal
Hall effect for magnetic monopoles due to the dual Berry
phase effect in the dipolar U(1) QSL [or any other spin-ice-
based U(1) QSL materials], while there is no such topological
thermal Hall effect for the magnetic monopole excitations in
the octupolar U(1) QSL. The possibility of Z2 QSL is not
considered here. Although the region of possible Z2 QSL
is tiny on the unfrustrated (sign-problem-free) side [55], the
presence of Z2 QSL on the frustrated side is not so clear.
Thus, Z2 QSL may still be possible and the spectrum would
be fully gapped. This may be examined carefully with the
detailed specific-heat measurements.

For the XYZ model on the pyrochlore lattice, it is easy to
see that the model reduces to the Heisenberg model when all
three couplings are equal. The ground state of the pyrochlore
lattice Heisenberg model is one of the hardest problems in
quantum magnetism. From the property of the XYZ model,
one could at least conclude that the ground state for the
Heisenberg model cannot be the π -flux U(1) QSL for the XXZ
model in the frustrated regime. This is because the three spin
components have different physical meanings in the emergent
spinon-gauge description, while the three spin components
are symmetrically related by the SU(2) spin rotation at the
Heisenberg point.

FIG. 5. The (a)–(c) upper and (d)–(f) lower excitation edges of the two-spinon continuum in the octupolar U(1)π QSL, for fields along the
[001] direction. We fix Jy

± = −0.33Jy, Jy
±± = 0, θ = 0, and take (a),(d) h = 0.0Jy, (b),(e) h = 0.2Jy, and (c),(f) h = 1.0Jy.
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FIG. 6. The (a)–(c) upper and (d)–(f) lower excitation edges of the two-spinon continuum in the octupolar U(1)π QSL, for fields along the
[111] direction. We fix Jy

± = −0.33Jy, Jy
±± = 0, θ = 0, and take (a),(d) h = 0.0Jy, (b),(e) h = 0.2Jy, and (c),(f) h = 1.0Jy.

FIG. 7. The (a) upper and (b) lower excitation edges of the
two-spinon continuum in the octupolar 0-flux U(1) QSL state. We
fix Jy

± = 0.12Jy, Jy
±± = 0, and h = 0.0Jy. The energy unit is set

to be Jy.
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APPENDIX A: COORDINATE SYSTEM

The centers of the corner-sharing tetrahedra in the py-
rochlore lattice constitute a diamond structure with two sub-
lattices, which we denote I and II; see Fig. 4. We choose the
origins of the two sublattices as follows:

OI = (0, 0, 0), (A1)

OII = (
1
4 , 1

4 , 1
4

)
. (A2)

The basis vectors of the diamond lattices are taken to be

a1 = (
0, 1

2 , 1
2

)
, (A3)

a2 = (
1
2 , 0, 1

2

)
, (A4)

a3 = (
1
2 , 1

2 , 0
)
. (A5)

For each site of the I (II) sublattice, there are four vertices
of the II (I) sublattice that are nearest neighbors to it, with
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displacement vectors

ηr e0 = ηr

4
(+1,+1,+1), (A6)

ηr e1 = ηr

4
(+1,−1,−1), (A7)

ηr e2 = ηr

4
(−1,+1,−1), (A8)

ηr e3 = ηr

4
(−1,−1,+1), (A9)

where ηr = ±1 for r in sublattice I and II, respectively.
At the midpoint of each such bonds, there is a vertex of
the pyrochlore lattice. Correspondingly, we define the local
coordinate systems on the four sublattices of the pyrochlore
lattice, as summarized in Table I.

APPENDIX B: GAUGE PATTERN FOR OCTUPOLAR U(1)π QSL STATE AND BLOCH HAMILTONIAN

As pointed out in the literature [45,57], in the frustrated regime J± < 0 of the XYZ model [see Eqs. (3) and (4)], the ground
state has π flux within an elementary hexagon. Within the gauge mean-field theory, recall that the s± operators are gauge string
operators, s±

r,r′ = 1
2 e±iAr,r′ . We take the following gauge choice for the π -flux state:

Ar,r+eμ
= εμQ · r, (B1)

where ε = (0110), Q = 2π (100), and r belongs to the I sublattice, as illustrated in Fig. 4.
Because of the π flux and the choice of Q, the unit cell doubles in the x direction. Correspondingly, there are four sublattices

of the system, which we term I,± and II,±. Specifically, a site on the original I sublattice at r belongs to the I,+ (I,−) sublattice
if Q · (r − OI ) is an even (odd) multiple of π ; and this is similar for a site in the II sublattice.

We focus on Hy within the frustrated regime J± < 0 and θ = 0. Under this fixed gauge, the spinon action is [45]

S =
∫

dτ

⎡
⎣∑

r

1

2J̃y
∂τ�

∗
r∂τ�r + λ

∑
r

(|�r|2 − 1
) − J±

∑
r

∑
μ �=ν

(
�

†
r+ηreμ

�r+ηreν
s−ηr

r,r+ηreμ
s+ηr

r,r+ηreν

)⎤⎦
=

∑
k

∫
dω

2π
�

†
kGk,ω�k, (B2)

where

Gk,ω =
[(

ω2

2J̃y
+ λ

)
I4×4 +

(
HI,I(k) HI,II(k)
HII,I(k) HII,II(k)

)]
, �k =

⎛
⎜⎝

�I,+(k)
�I,−(k)
�II,+(k)
�II,−(k)

⎞
⎟⎠, (B3)

and

HI,I(k) = −J±

(
+ cos ky

2 cos kz

2 − sin kx
2 sin ky

2 − i cos kx
2 cos kz

2

− sin kx
2 sin ky

2 + i cos kx
2 cos kz

2 − cos ky

2 cos kz

2

)
, (B4)

HII,II(k) = −J±

(
− sin ky

2 sin kz

2 + cos kx
2 cos ky

2 − i cos kz

2 sin kx
2

+ cos kx
2 cos ky

2 + i cos kz

2 sin kx
2 + sin ky

2 sin kz

2

)
, (B5)

HI,II(k) = h

4

(+e+ik·e0 (n · e0) + e+ik·e1 (n · e1) +e+ik·e2 (n · e2) + e+ik·e3 (n · e3)
−e+ik·e2 (n · e2) + e+ik·e3 (n · e3) +e+ik·e0 (n · e0) − e+ik·e1 (n · e1)

)
, (B6)

HII,I(k) = h

4

(+e−ik·e0 (n · e0) + e−ik·e1 (n · e1) −e−ik·e2 (n · e2) + e−ik·e3 (n · e3)
+e−ik·e2 (n · e2) + e−ik·e3 (n · e3) +e−ik·e0 (n · e0) − e−ik·e1 (n · e1)

)
. (B7)

Here, λ is a Lagrange multiplier to ensure the (relaxed) spinon occupation number constraint,
∑

r(|�r|2 − 1) = 0. Now all �-�
correlation functions (including the dynamic spin structure factor) can be computed from this action.

APPENDIX C: FIELDS ALONG OTHER DIRECTIONS AND COMPARISON WITH OCTUPOLAR U(1)0 QSL

Here we include the results of the upper and lower excitations for external fields along the [001] (Fig. 5) and [111] (Fig. 6)
directions. Enhanced periodicity is also observed in these cases, regardless of the field direction.

As a comparison, we also present the excitation edge for the octupolar 0-flux U(1) QSL state, where the enhanced spectral
periodicity is not observed; see Fig. 7.
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