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SUMMARY
Predicting where transcription factors bind in the genome from their in vitro DNA-binding affinity is
confounded by the large number of possible interactions with nearby transcription factors. To characterize
the in vivo binding logic for the Wnt effector Tcf7l2, we developed a high-throughput screening platform in
which thousands of synthesized DNA phrases are inserted into a specific genomic locus, followed by mea-
surement of Tcf7l2 binding by DamID. Using this platform at two genomic loci inmouse embryonic stem cells,
we show that while the binding of Tcf7l2 closely follows the in vitromotif-binding strength and is influenced by
local chromatin accessibility, it is also strongly affected by the surrounding 99 bp of sequence. Through
controlled sequence perturbation, we show that Oct4 and Klf4 motifs promote Tcf7l2 binding, particularly
in the adjacent�50 bp and oscillatingwith a 10.8-bp phasing relative to these cofactormotifs, whichmatches
the turn of a DNA helix.
INTRODUCTION

Transcription factors recognize and bind to short DNA se-

quences, motifs, which can be measured directly through

in vitro binding assays or discovered as enriched at sites bound

across the genome. Such motifs, however, are insufficient to

accurately predict where in the genome a transcription factor

is bound, as most transcription factors bind to fewer than 10%

of their strong motifs in any given cell type (ENCODE-DREAM

Consortium 2017). Moreover, transcription factors exhibit cell-

type-specific binding patterns, despite no change in the DNA-

bindingmotif or genomic sequence. It is known that transcription

factors influence each other’s binding, either through direct in-

teractions, competition for binding sites, or indirectly by altering

DNA organization and accessibility. In different cell types it is

then the set of transcription factors expressed that shapes their

individual binding profiles. These interactions should be re-

flected in a ‘‘grammar’’: a logic in how the organization of individ-

ual transcription factor-binding motifs shapes the higher order

interactions.

The non-random distribution of sequences in the genome,

however, makes it difficult to draw further inferences from fea-

tures enriched at transcription factor-binding sites. Two tran-

scription factors could bind together because they control a
Cell Systems 11, 315–327, Septem
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similar set of genes, rather than because they stabilize each

other’s binding. On the other hand, particularly strong arrange-

ments of transcription factors could cause ectopic activation

and be selected against, resulting in native enhancers being

comprised weaker than possible arrangements of motifs as

they provide a sharper response to external signals (Farley

et al., 2016). As such the most informative arrangements of mo-

tifs for detecting interaction effects are likely under-represented

in the genome. Furthermore, it is not clear howmuch of the bind-

ing of a transcription factor at a specific location is due to the

sequence immediately surrounding it. Each site is a unique

position in the genome and could be influenced by the chromatin

organization in the region, looping and interactions with distal re-

gions, and impact of transcription in the area. For example, chro-

matin immunoprecipitation sequencing (ChIP-seq) experiments

performed on livers of mouse F1 crosses have detected the im-

pacts of genomic variants up to 10 kb away from binding sites

(Wong et al., 2017)). Additionally, detecting binding sites is usu-

ally done through chromatin immunoprecipitation, which uses

the same cross linking step as for detecting 3D interactions

between distal genomic segments (looping). Without careful

titration of this reaction one cannot be sure that it is only direct

transcription factor with DNA interactions, and not some larger

complex, that one extracts (Teytelman et al., 2013). This
ber 23, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 315
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Figure 1. High-Throughput Locus-Specific DamID for Assaying Transcription Factor Binding to Variations in a Specific Genomic Locus

(A) The phrase library (12,000 or 2,000 oligos) is integrated using CRISPR-Cas9 and homologous recombination into a specific locus.

(B) Binding of Dam-Tcf7l2 to a phrase results in methylation of a GATC adjacent to the site of integration.

(C) Following genomic DNA extraction, two pools of completely methylated or unmethylated phrases are created by digestion withmethylation specific restriction

enzymes followed by PCR amplification with one locus-specific primer and one library-specific primer (black arrows).

(D) The amplified phrases are then deep sequenced and mapped back to the initial library. The relative enrichment of a phrase in the two pools indicates the level

of Tcf7l2 binding. The sum of reads in both digests (abundance) and the fraction that is methylated (DpnII/Abundance) are used in later plots.
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unavoidable combination of complex genomic features con-

founding measurement, removal of distal positional information,

and biased sequence distributionmeans that one is limited in the

ability to determine transcription factor-binding logic from

computational analysis of genomic binding patterns.

The transcription factor Tcf7l2 provides a case study in inade-

quate prediction of cell-type-specific binding patterns. Tcf7l2 is

part of the Tcf/Lef transcription factor family (Tcf7, Tcf7l1, Tcf7l2,

and Lef1) (Arce et al., 2006), which all bind DNA through a

conserved high mobility group (HMG) domain that prefers the

sequence SCTTTGWWS. This recognition occurs through the

DNA minor groove (Wetering et al., 1991; Wetering and Clevers,

1992), opening it up and creating a bend of 90–127 degrees

(Love et al., 1995; Giese et al., 1995). Tcfs act primarily as effec-

tors of the Wnt signaling pathway, binding the transcriptional

activator b-catenin, which upon Wnt signaling ceases to be

constitutively degraded (Nelson and Nusse, 2004).

As part of a conserved developmental pathway, Tcfs regulate

various functions throughout different cell types in response to

Wnt signaling. In mouse embryonic stem cells (mESCs) Tcfs

appear necessary to reduce expression of other transcription fac-

tors that maintain pluripotency (notably Nanog) in order to allow

differentiation (Pereira et al., 2006). In the intestine, Tcf7l2 helps

maintain a constant proliferation of adult stem cells that support

tissue renewal; a lack of dominant-negative isoforms of Tcf7l2

and mutations in APC—part of the complex that enables GSK-

3b to cause degradation of b-catenin—is linked to colorectal can-

cers (Korinek et al., 1997). Tcf7l2-knockout mice show problems

with endoderm development and maintenance of intestinal stem

cell populations (Korinek et al., 1998). In liver and pancreatic tis-

sues, Tcf7l2 underpins glucose homeostasis (Norton et al.,

2014), with intronicmutations that reduce expression of Tcf7l2 be-

ing associatedwith type 2 diabetes (Grant et al., 2006).Onemech-

anism by which Tcf7l2 achieves cell-type-specific effects is by

binding at different genomic locations, hence, regulating a

different set of target genes. Across 6 human cell lines (5 endo-

dermal and 1 epithelial) Tcf7l2 bound a largely disparate set of

sites, with only 1,800 out of 116,000 total Tcf7l2-binding sites

shared between the 6 (Frietze et al., 2012). Supporting the idea

of a grammar, different cofactor motifs tend to be enriched at

cell-type-specific binding sites. Similarly, in Frietze et al. (2012),
316 Cell Systems 11, 315–327, September 23, 2020
the Foxa2 and Hnf4a motifs are enriched in a hepatocyte cell

line (Hnf4a appears to function with Tcfs in hepatocytes; Norton

et al., 2014), while in an adenocarcinoma cell line it appears that

the Gata3 motif helps bind Tcf7l2 when its own motif is absent.

To assess Tcf7l2-binding logic while avoiding the complexity

of inferring from sites bound across the genome, we have devel-

oped an approach to measure Tcf7l2 binding to thousands of

phrases of 99-bp variable DNA sequence transplanted into fixed,

defined genomic loci using a quantitative DamID assay (Vogel

et al., 2007; Szczesnik et al., 2019). This strategy allows us to

detect differences in binding induced by minimal, designed

sequence alterations while controlling for effects of the sur-

rounding DNA sequence, thus, enabling us to determine causal

relationships between DNA sequence and Tcf7l2 binding. Impor-

tantly, our assay is performed in a native cellular chromatin

context, allowing us to account for effects of chromatin organiza-

tion and interactions with other proteins that are missing in

in vitro binding assays.

Using our approach, we find that while in vivo Tcf7l2 binding is

dependenton thepresenceandmatchof its in vitromotif at individ-

ual binding sites, Tcf7l2 binding also varies dramatically based on

the sequence surrounding it, and cell-type-specific Tcf7l2 binding

atgenomic locicanbepartially recapitulatedby the local surround-

ingsequence.Particularly, thepresenceofOct4andKlf4motifs fa-

vors Tcf7l2 binding in mouse embryonic stem cells (mESCs), and

this effect is strongest when occurring within an adjacent �20 to

50-bp region and oscillates approximately every 10.8-bp shift in

distance between the Tcf motif and cofactors. This effect is stron-

gest surrounding when the Oct4 motif occurs as a part of the joint

Sox2-Oct4motif (Chen et al., 2008) and particularly helps promote

binding in inaccessible chromatin, which is otherwise refractory to

Tcf7l2 binding. This high-throughput DamID assay provides a

powerful platform to determine local DNA-sequence grammars

that causally influence transcription factor binding.

RESULTS

DamID for Locus Integrated Phrase Library
We developed an assay for measuring Tcf7l2 binding to thou-

sands of pre-determined DNA ‘‘phrases’’ at a specific genomic

locus (Figure 1). A library of synthetic oligos containing a 99-bp
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variable region (phrase) flanked by short constant sequences

used as primers is integrated into specific genomic locations in

mESCs by CRISPR-Cas9-based homology-directed repair. We

find site-specific integration of one of the variable phrases in

20%–40% of alleles through quantitative PCR, confirming previ-

ous work (Hashimoto et al., 2016; Rajagopal et al., 2016).

Binding of Tcf7l2 to each integrated phrase is measured by

DamID (Vogel et al., 2007). We use a mESC line that enables

Cre-LoxP-mediated single genomic integration of a doxycy-

cline-inducible transgene at a fixed site (Iacovino et al., 2011).

Prior to phrase library integration, we use Cre/LoxP to integrate

a fusion protein of Tcf7l2 and the N126A mutant of Dam, which

we have recently shown to allow accurate measurement of

Tcf7l2 binding genome wide with reduced off-target methylation

as compared with the wild-type Dam enzyme (Szczesnik et al.,

2019). As a control, we use a cell line with identical single-copy

integration of unfused Dam N126A, which removes variability

stemming from random integration and copy numbers. Due to

its smaller size, Dam N126A expresses and diffuses more effi-

ciently, resulting in more total methylation than the Dam-Tcf7l2

fusion. A Dam methylation site (GATC) is located directly adja-

cent to the site of phrase library integration, Dam will methylate

phrases in proportion to Tcf7l2-binding strength within the

phrase. After this 24-h induction period, genomic DNA from

>2 3 107 phrase library-integrated cells is separately digested

with restriction enzymes specifically recognizing unmethylated

GATC (DpnII) or methylated GATC (DpnI). Undigested phrases

are then PCR amplified with primers designed to specifically

amplify genomically integrated phrases to avoid contamination

with unintegrated phrases. These two pools of methylated and

unmethylated phrases are then sequenced by Illumina next-gen-

eration sequencing (NGS), and the relative abundance of a

particular phrase between the two pools is used to estimate

the level of Dam methylation, and hence of Tcf7l2 binding, to

the integrated phrase. Following DpnII digestion of uninduced

cells there was no methylation at the adjacent GATC detected

by qPCR, while after 24 h of expression wild-type Dam (which

methylates almost the entire genome) over 90%wasmethylated,

indicating that digestion and PCR amplification at this GATC can

detect a large range of methylation.

We initially designed and screened a library of 12,000 phrases

using this Tcf7l2 DamID approach, split between phrases

comprising native genomic sequences and designed se-

quences. Half of this library was comprised of 99-bp genomic

phrases sampled from ChIP-seq peaks that show variable Tcf

binding. Cohorts of phrases were sampled from ChIP-seq peaks

bound in either Tcf7l1 ChIP-seq in mESCs or Tcf7l2 ChIP-seq in

intestinal endoderm (IE) cells, or in both (1,200 phrases each; see

STAR Methods and Figure S1). If present, any Tcf motif was

included in the sampled 99-bp phrase, and we specifically

included ChIP-seq peaks lacking any clear Tcf motif (half of

each group). The final cohort of genomic phrases contained un-

bound Tcf motifs (>10 kb from any Tcf ChIP-seq peak) in regions

of open chromatin near marks of active enhancers (H3K27ac

ChIP-seq peaks) (2,400 phrases). The other half of the library

(6,000 phrases) was generated de novo from different arrange-

ments of binding motifs for a set of transcription factors we

deemed likely to influence the binding of Tcf7l2, based on pub-

lished protein-protein interactions or motif enrichment adjacent
to Tcf binding sites (see STAR Methods for details) (Frietze

et al., 2012; Norton et al., 2014; Cole et al., 2008). This library

was first integrated in 2 biological replicates into the inert

Rosa26 locus, which resides in natively accessible chromatin

(Zambrowicz et al., 1997) (see Figure S9 for DNase-seq signal

at this locus). DamID on each of the replicates was done with

both Dam-Tcf7l2 and unfused Dam, which has been shown to

vary with chromatin accessibility (Kladde and Simpson, 1992)

and thus provides a control for differences in Dam methylation

rates between phrases independent of Tcf7l2 binding.

Statistical Processing of Read Counts
In order to draw valid comparisons between phrases we need to

account for differences in the integration efficiency and

sequencing coverage across the phrase library and different

conditions. In particular, we noticed that the read counts for a

large number of phrases exhibited significant dropout in either

the DpnI or DpnII digested samples (seen in the histogram for

DpnII counts in Figure 2B), which would confound analysis

based on the fraction of methylated counts for each phrase.

These dropouts suggest a bottleneck in unique methylation

events prior to PCR amplification and sequencing. To estimate

the (unobserved) number of methylated or unmethylated alleles

for each phrase from the observed sequencing read count, we

developed a statistical modeling pipeline.

Briefly,methylated and unmethylated allele counts aremodeled

as a negative-binomial distribution to capture our assumption that

a large variable phrase library should contain a smooth, unimodal

distribution over the frequency of methylation. Observed

sequencing reads are modeled as a Poisson distribution stem-

ming from a linear amplification of these allele counts, which rec-

reates the observed dropouts (0 genomic counts) and staggering

at the lower end of the observed read counts (1, 2. genomic

counts) (see STARMethods for details). The relation between un-

observed allele counts (‘‘normalized’’) to the observed sequencing

counts (‘‘raw’’) captured by the model is shown in Figure 2A.

To calculate allele counts for each experimental replicate, the

negative binoimial distribution parameters and amplification rate

are tuned to best match the distributions in the observed data

(see Supplemental Information for parameter values). The amplifi-

cation rate is then used to estimate the initial number of allele

counts for each phrase in methylated and unmethylated samples

(Figure 2B). Following normalization the observed difference be-

tween replicates (Figure 2C) follows the expected binomial sam-

pling distribution (Figure 2D), indicating that the majority of differ-

ence between replicates stems from sampling variability, and not

from a technical or biological source of variability.

Having normalized the data to obtain allele counts, we

observed that replicates show a high degree of heteroscedastic-

ity: high abundance phrases have low variability between repli-

cates, low abundance phrases have high variability (Figure 2C).

While it is expected that phrases with fewer unique alleles will

havemore variablemeasurement, wemust account for this issue

to performed balanced statistical analysis of library data. Thus, in

order to use information from the entire phrase library we need to

quantify the uncertainty in our estimate of the Dam methylation

fraction for each phrase.

For this task we use a beta-binomial empirical Bayes model,

which models the distribution of methylation across the whole
Cell Systems 11, 315–327, September 23, 2020 317
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Figure 2. Statistical Modeling Reveals that the Expected Sampling Variability Explains the Majority of Differences between Replicates

(A) Example counts from the negative-binomial model to show the expected distribution of read counts (‘‘raw’’ in blue) from over-sequencing fewer genomic

counts (‘‘normalized’’ in red). Vertical lines show the position of peaks corresponding to 1, 2, and 3 original genomic phrase counts (referred to as normalized).

(B) Estimated amplification rates (dashed line) for the phrase library in the accessible chromatin locus following Dam-Tcf7l2 expression are used to calculate the

underlying genomic counts (‘‘normalized’’) from the observed sequencing counts (‘‘raw’’).

(C) Normalization reveals that high abundance phrases have high concordance between replicates, which decreases as the abundance decreases.

(D) Variability between replicates closely follows the expected binomial sampling distribution. Due to this, counts are pooled across replicates for further analysis.

(E) A beta-binomial empirical Bayes distribution is fit to each sample, which reduces the effect of heteroscedasticity by biasing low coverage samples toward the

mean fraction methylated. MAP, maximum a posteriori estimate of beta distribution; MLE, maximum likelihood estimate or binomial distribution.
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library with a beta distribution, which captures the unimodal

spread between 0 and 1. This beta distribution is then used as

the prior for the binomial methylation of each phrase, generating

a posterior beta distribution that gives the credible interval for the

frequency of each phrase’s methylation. In practice this adds a

few pseudocounts (1 to 14, see Supplemental Information for

values) to every sample, biasing low coverage phrases toward

the overall population mean but not affecting the high coverage

phrases (compare the maximum a posterior MAP estimate from

the beta distribution, to the maximum likelihood estimate MLE of

the initial binomial distribution in Figure 2E). Overall, this compu-

tational pipeline allows us to estimate Tcf7l2 binding to each of a

12,000-phrase library integrated into a fixed genomic context

while accurately quantifying the uncertainty in the frequency of

each phrase’s methylation for subsequent statistical analysis.

Phrase Library with Genomically Sampled and
Synthetically Generated Phrases
We next proceeded to assess features governing Tcf7l2 binding,

by comparing the amount of methylation seen with Dam-Tcf7l2

(Figure 3A) with that of unfused Dam (Figure 3B). To measure

the effects of a set of features of each phrase (motif presence,

Tcf binding, and histone methylation status of the genomic loci

from which a phrase was derived) on its methylation frequency,

we used logistic regression with lasso penalty and cross-valida-

tion (Friedman et al., 2010). Effect size is used to refer to how

much the fraction of methylated shifts along a logistic function

when a feature is present in a phrase; at 0.5 fraction methylated

this is a linear effect and becomes asymptotic toward 0 and 1.

For the 6,000 phrases derived from native genomic sites, cell-

type-specific binding of Tcf7l2 tends to be retained when these

phrases are transplanted to an open chromatin site in mESCs,

with phrases derived from mESC ChIP-seq peaks bound more

strongly than those derived from intestinal endoderm ChIP-seq

peaks or those without ChIP-seq binding in either cell type

(0.23 versus 0.046 effect sizes, unbound phrases are at 0; Fig-

ure 3C). Presence of a Tcf motif is a strong predictor of Tcf7l2

binding in our assay, as phrases originating from Tcf ChIP-seq
318 Cell Systems 11, 315–327, September 23, 2020
peaks but lacking a Tcf motif tend to show weak or absent

Tcf7l2 binding, as compared with Tcf motif containing sites

within the same ChIP-seq binding profile (ESC 0.36, IE 0.27,

both 0.27 effect sizes). While phrases with ChIP-seq binding

only in intestinal endoderm in general tend not to acquire binding

when transplanted into the Rosa26 locus, those with a Tcf motif

are more likely to exhibit Tcf7l2 binding than those without one

(0.046 versus 0.27 effect sizes). The positive effects of Tcf motif

presence among phrases derived from intestinal endoderm

ChIP-seq peaks are largely attenuated when the phrase origi-

nates from a site that contains enhancer marks in mESCs (IE

with Tcf motif and enhancer marks = 0.046 + 0.27 � 0.24 =

0.076 effect size). This may indicate that the regulation of

Tcf7l2 binding between mESCs and intestinal endoderm is in

some case through broader changes in the chromatin organiza-

tion and in others by local sequence features that are permissive

in only one cell type. Overall, our analysis of 99-bp phrases trans-

planted to the Rosa26 locus from native genomic regions finds

that Tcf7l2 binding is strongest when the native regions contain

Tcfmotifs and derive from regions with nativemESC Tcf7l2 bind-

ing. We conclude that features present within the sequence

immediately surrounding a Tcf motif are strongly responsible

for regulating the cell-type-specific binding of Tcf7l2 in vivo.

For the 6,000 phrases containing differentmotif arrangements,

we calculated the effect of the presence of each motif on Tcf7l2

binding. We found that the presence of the Tcf motif had the

strongest effect on Tcf7l2 binding (0.49 effect size), and other pu-

tative cofactors had weaker but still positive effects on Tcf7l2

binding (�0.1 to 0.2 effect size; Figure 3D). To distinguish effects

on Tcf7l2 binding driven by protein-protein interaction as

compared with those driven indirectly by induction of chromatin

accessibility adjacent to the Tcf motif, we integrated this 12,000-

phrase library into a genomic locus with minimal native chro-

matin accessibility in mESCs (upstream of the T-cell-specific

CD8 gene: uCD8; see Figure S8 for DNase-seq signal at this lo-

cus). Consistent with chromatin accessibility affecting both Dam

methylation and Tcf7l2 binding, the overall methylation was

reduced in this inaccessible locus (library beta-binomial mean:



A

D E

B C

Figure 3. 99 bp of Local Sequence Regulates Binding of Tcf7l2 to Its Motif across Different Genomic Sites

(A and B) (A) Dam-Tcf7l2 and (B) Dam methylation of phrases in the accessible locus Rosa26, split by the presence of a Tcf7l2 motif.

(C) Logistic regression effect size of genomic features on phrases transplanted to the accessible locus Rosa26. Note the base effect is additive: a phrase that

was bound in intestinal endoderm, which a Tcf motif, and an mESC enhancer marks has methylation as the sum the red, green, and blue bars for intestinal

endoderm.

(D) Logistic regression effect size for the presence of cofactor motifs after integration of the phrase library in the accessible locus.

(E) Logistic regression effect size for the presence of cofactor motifs, either individually or as pairwise interaction with the presence of the Tcf motif, after

integration of the phrase library in the inaccessible locus uCD8. This specific sample was measured with wild-type Dam, instead of the N126A variant used

elsewhere. Non-significant features are shrunk to zero (e.g., cMyc, Ets,.).
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Dam-Tcf7l2 from 0.17 accessible to 0.06 inaccessible locus, un-

fusedDam from 0.68 to 0.15). Due to the low signal detectedwith

Dam-N126A for this library in this locus, we used the wild-type

version of the Dam enzyme which gives stronger signal, howev-

er, at the cost of being strongly confounded by changes in chro-

matin accessibility. We found that, in this natively inaccessible

locus, Tcf7l2 binding required the pairwise interaction of its motif

with that of specific cofactors, particularly Oct4, Klf4, or Sox2

(0.25, 0.22, and 0.30 effect size; Figure 3E). These stronger pair-

wise effects between the Tcf and cofactor motifs suggest that

this effect is driven more by cooperative interactions rather

than independent changes in chromatin. Thus, in this controlled

assay, Tcf7l2 binding is impacted by adjacent motifs, and these

motifs becomemore important when phrases are integrated into

a locus without surrounding chromatin accessibility.

Tiled Tcf Motif Phrase Library
A deeper analysis of interactions between Tcf7l2 and its cofac-

tors would require single phrase-resolution data of this library,
which we were unable to obtain due to insufficient data

coverage. Out of the 12,000 phrases, we observed integration

of only 3,000–4,000, and only a few hundred (9%) had sufficient

coverage for accurate estimates of their true methylation fre-

quency (Figure 4A), limiting analysis to population trends and

preventing the detection of sparser levels of binding in the inac-

cessible locus. This limited integration is largely due to the

incomplete efficiency of CRISPR-Cas9-based homology-

directed repair and limitations on total cell number.

To investigate the adjacent motifs and spatial determinants

governing Tcf7l2 binding at higher resolution, we designed a

2,000-phrase library that systematically varied the position of

the Tcf motif across a set of 59 backbone phrases. By reducing

the number of unique phrases from 12,000 to 2,000, we posited

that wewould increase coverage of each phrase and thus enable

phrase-resolution analysis. Backbone phrases were chosen

from both the native genomic and synthetically generated

phrases in the initial library so as to span a range of Dam-

Tcf7l2 methylation rates across both accessible and
Cell Systems 11, 315–327, September 23, 2020 319
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Figure 4. Individual Phrase-Level Resolution of Dam-Tcf7l2 Binding Shows Influence of Motif Score and Cofactor Motif Presence

(A) Comparison of 95% posterior credible interval of fraction methylated for the 12,000 and 2,000 phrase libraries with Dam-Tcf7l2 in the accessible locus.

(B) Spread of Tcf7l2 binding (Dam-Tcf7l2 relative to unfused Dam) as the Tcf motif is tiled across each backbone phrase. Scrambling the Tcf motif (blue dot)

substantially decreases binding relative to original Tcf motif (red dot) (*p < 0.05). Gray dots are outliers from the box plot.

(C) The two 50 and 30 nucleotides flanking the Tcf motif consistently explain some of a variability in binding and are consistent with lower informative bases in the

estimated motif for Tcf7l2 from protein binding microarrays.

(D) Logistic regression effect of scrambling each motif across the whole library. For raw values see Figure S2.

(E) Example of footprint for the tiled Tcf motif disrupting the Oct4 (e522) or Klf4 motif (s3035) to the same level as scrambling the motif. Shaded region/error bars

show 95% posterior credible interval.
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inaccessible chromatin loci (see STAR Methods for details). For

each backbone phrase, phrases were designed with a scram-

bled version of the initial Tcf motif, and a set of phrases was de-

signed in which the most informative, core part of the Tcf motif

(CTTTGAT) was tiled across each backbone phrase in 3-bp in-

crements, replacing the sequence that had been in that position.

We also included phrases for each backbone phrase in which we

scrambled motifs for Oct4, Klf4, and Sox2, which were identified

from the initial library as likely influencing Tcf7l2 binding (see

STAR Methods for scrambled sequences). We integrated this

2,000-phrase library into the Rosa26 (accessible chromatin)

and uCD8 (inaccessible chromatin) genomic loci in two biolog-

ical replicates in mESCs and performed DamID with Dam-

Tcf7l2 and unfused Dam as for the previous library. In this exper-

iment, a methylation site (GATC) was included on both sides of
320 Cell Systems 11, 315–327, September 23, 2020
the integrated phrase in order to reduce possible confounding

from the variable distance between Dam-Tcf7l2 and the GATC

methylation site.

Integrating this smaller phrase library vastly reduced the un-

certainty in estimated methylation rate for individual phrases

(Figure 4A), providing much higher-resolution data (9% to 65%

increase in the number of phrases with a 95% credible interval

of the spread in methylation less than 0.1; >99% phrases were

recovered). This was due to sampling many more unique

genomic instances of each phrase, and since the variability be-

tween replicates remained consistent with the beta-binomial

model (at a 0.05 cutoff, 0.935 of the methylation rates of the sec-

ond replicate fell within the posterior distribution of the first repli-

cate) the concordance between replicates increased proportion-

ally (Figure S7B). Thus, we were able to perform individual
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phrase-level analysis of Tcf7l2 binding for the majority of the

2,000 phrases.

We first looked at Tcf7l2 binding in the accessible locus.

Consistent with our findings in the initial library, scrambling the

Tcf motif led to significantly decreased Tcf7l2 binding in most

backbone phrases (46/59 at p < 0.05; Figure 4B). When

comparing Tcf7l2 binding in phrases from the same backbone

phrase, we found substantial variation as the Tcf motif is tiled

across each backbone phrase (standard deviation range

0.029–0.16; mean of 0.084; Figure 4B). This intra-backbone vari-

ation is significantly larger than the standard deviation in the es-

timate of each phrase’s methylation rate for 98.5% of phrases,

indicating that tiling the Tcf motif across a phrase leads to robust

changes in Tcf7l2 binding. In fact, on an average, Tcf7l2 binding

in the phrase with the most unfavorable Tcf motif position within

a backbone phrase was equivalently low to the phrase with

scrambled Tcf motif �0/59 had significantly higher methylation,

while 4/59 backbone phrases had significantly lower methylation

(p < 0.05, with adjustment for multiple hypothesis testing)—indi-

cating that the sequence context is a strong determinant of bind-

ing (Figure 4B). The few backbone phrases that did not have a

significant drop in methylation upon scrambling the Tcf motif

also had a lower variability in Tcf7l2 binding as the Tcf motif

was tiled (mean standard deviation of 0.06 versus 0.09; t test

p = 0.01), suggesting that other sequence features are required

to promote Tcf7l2 binding. We conclude that the location of a

core Tcf motif relative to surrounding local sequence plays an

important role in determining Tcf7l2 binding strength. We thus

turned to investigating patterns in these Tcf motif tiling experi-

ments to determine the key local sequence features underlying

Tcf7l2-binding logic.

We find that onemajor cause of the variability in Tcf7l2 binding

as the motif is tiled across each backbone phrase is the change

in nucleotides flanking the core Tcf motif. While we tiled the 7

nucleotide core Tcfmotif, the position weightmatrix that best ex-

plains Tcf7l2 in protein binding experiments (Badis et al., 2009)

contains contributions from two nucleotides on either side of

the core motif. By calculating the average Tcf7l2 binding across

all possible base identities in the flanking positions, we find that

Tcf7l2 binding strength in our assay correlates with the optimal

nucleotide identities of the full Tcf7l2 position weight matrix—a

30 guanine followed by thymine, and a slight 50 cytosine or

thymine preference (Figure 4C). We note that 30 cytosines are

not present in our phrases as they were replaced with G to avoid

the creation of an extra GATC methylation site. A logistic model

of the contribution of flanking nucleotide position to Tcf7l2 bind-

ing found that including the effects of di- or tri- nucleotides

reduces the model log-likelihood, indicating that independent

contributions of single nucleotides are sufficient to explain vari-

ation in binding strength from flanking nucleotides. This finding

rules out effects of new motifs being reproducibly formed from

tiling the Tcf motif, as they would result in a model that prefers

base-pair dependencies and would likely differ from the in vitro

binding preference. The changing affinity for the full Tcf motif

as it is tiled along a backbone phrase, however, does not explain

any differences in average binding affinity between different

backbone phrases. This is because the nucleotides that happen

to flank the Tcf motif at each tiled position are more-or-less

random and are not correlated within a backbone phrase nor be-
tween them (this would not be the case if the backbone phrases

were strongly enriched in a specific nucleotide or dinucleotide).

Much of the remaining variation in positional Tcf7l2 binding ap-

pears dependent on the presence of neighboring motifs, as

backbone phrases with the highest binding rate contained either

a Klf4 or Oct4 motif (Figure 4B), and shuffling these motifs also

tended to reduce binding (Figure 4D). Plotting the Tcf7l2 binding

strength as the Tcf motif is tiled along a backbone phrase, we

identify striking patterns of reduced Tcf7l2 binding resembling

‘‘footprints’’ coinciding with phrases in which the Tcf motif dis-

rupts an underlying Oct4 or Klf4 motif, with a similar decrease

in Tcf7l2 binding as scrambling these motifs (Figure 4E). Since

the Tcf motif is tiled by 3 bp, any motif longer than 3 bp should

be detected. Nonetheless, we observed no robust loss of

Tcf7l2 binding for across adjacent tiles occurring for any other

known motifs. We cannot rule out that other motifs would

show this effect if we had tiled the Tcf motif across a larger

cohort of backbone phrases. Even within the set of backbone

phrases containing Oct4 or Klf4 motifs, we observed substantial

backbone phrase-specific variation in the magnitude of Tcf7l2

binding and the loss of such binding upon disruption or scram-

bling of these cofactor motifs (Figure S2). The strongest effects

were localized around backbone phrases containing an Oct4

motif as part of a joint Sox2-Oct4 motif, which hints that much

of this variability stems from differences in binding affinities of

these cofactors between backbone phrases. However, because

of the low numbers of instances of either Oct4 or Klf4 motifs in

the 59 backbone phrases and the fact that we did not vary the

strengths of these motifs in a controlled way, we cannot make

strong conclusions about the role of cofactor motif strength.

Gaussian Process Model for Spatial Effects on Tcf
Binding
Having identified significant roles of the extended Tcf motif and

the presence of adjacent Oct4 and Klf4 motifs in modulating

Tcf7l2 binding, we examined whether there are spatial con-

straints on the positioning of the Tcf motif relative to the cofactor

motifs. In order to measure such spatial effects, we use a

Gaussian process model, a non-linear regression technique, to

model how the position of the Tcf motif within the backbone

phrase affects the binding of Tcf7l2. Importantly, within the

Gaussian process framework we can define classes of non-

linear functions that vary smoothly with the position of the Tcf

motif within the backbone phrase, allowing the model to gener-

alize across several Tcf motif positions. This is preferable to

treating each spatial position as independent, which results in

an overly flexible model lacking in statistical power, or pooling

across several adjacent positions, which would blur the underly-

ing spatial effect. As a result, Gaussian process modeling should

allow us to more easily identify reproducible cofactor interac-

tions that lack fixed spacing, such as those that slowly change

in strength over a region or occur at repeating positions.

Gaussian process models also allow us to account for the con-

founding effects of Tcf motif strength and locus-specific effects

to generalize spatial trends across multiple phrases.

We use two classes of non-linear functions to capture different

ways in which the changing Tcf motif position could affect Tcf7l2

binding. The first class of functions are designed to identify

contiguous stretches of higher or lower Tcf7l2 binding, for
Cell Systems 11, 315–327, September 23, 2020 321
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example due to a cofactor motif promoting binding nearby.

These functions are modeled by a radial basis kernel, which

fits smoothly varying functions and is parametrized by a length

scale that controls how quickly the function varies. The second

class of functions are similar in nature but oscillate periodically,

for example due to effects caused by the regular turning of the

DNA helix. These functions are also encoded by a periodically

repeating radial basis kernel and thus are parametrized by

both a length scale and periodicity. To separate out possible

spatial effects in the locus, for example due to the position of a

nearby nucleosome, each of these functions is present in 3

forms: as backbone phrase-invariant across all backbone

phrases, as backbone phrase-invariant across backbone

phrases sharing the same Tcf motif orientation, and as spatial ef-

fects unique to each backbone phrase. Finally, in order to reliably

detect these spatial interactions, we also need to account for the

confounding effects within the data. As such the effects of nucle-

otides flanking the Tcf motif, the average binding to each back-

bone phrase, and the uncertainty in estimating each phrase’s

methylation are included as linear effects in the model.

Fitting this Gaussian process model to the observed Tcf7l2

DamID data is done in empirical Bayesian fashion: the internal

parameters are integrated out and hence averaging over the

various spatial functions consistent with the data, while the

model hyperparameters—the length scale, periodicity, and

linear weights—are tuned to optimize the model likelihood.

Following this we find that the model that best fits the observed

Tcf7l2 DamID data in both accessible and inaccessible chro-

matin loci contains inputs from multiple distinct components

(Figure 5A). The most salient individual component influencing

intra-backbone variation in Tcf7l2 binding is Tcf motif score as

determined by the identity of the four nucleotides adjacent to

the Tcf7l2 core motif, which was tiled, which explains 35% and

40% of Dam-Tcf7l2 methylation variability in accessible and

inaccessible loci, respectively. The various spatial effects of

Tcf motif position explain a further 45%of the variation in binding

across both loci. Within these, the backbone phrase-invariant

spatial effects—those caused by general features of the two

genomic loci used for integration—explain 20% and 25% of var-

iable methylation in accessible and inaccessible loci. Backbone-

phrase-specific spatial effects—those dependent on cofactors

or other sequence features—explain a further 25% and 20% of

variable methylation in accessible and inaccessible loci.

Thus, a Gaussian process regression model with aminimal set

of features is capable of explaining the majority of variation

(80%–85%) in Tcf7l2 binding across the 2,000 phrases, suggest-

ing that these features of Tcf motif strength and smoothly and

periodically varying spatial constraints with cofactors explain

much of Tcf7l2 binding strength. The residual variability of 20%

and 15% in the accessible and inaccessible loci indicates that

either there is little information left to extract from this dataset

or that further inference would require improving the coverage

of each phrase in order to extract out more subtle features.

These could, for example, be due to the effect of a rigid spacing

requirement, formation of some unique sequence overlapping

the Tcf motif, or confounders of the Dam methylation rate.

Since we are optimizing the hyperparameters of the Gaussian

process model likelihood, it is important to ensure that themodel

is not so explicit as to overfit the data. However, we do not find
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no evidence of overfitting: the length and periodicity is estimated

as almost the same between different loci, the component

weights are similar between the two different loci, features with

no explanatory power in the unfused Dam samples are automat-

ically discarded, and the presence of residual variability indi-

cates that the model is not fitting directly up to the limit imposed

by sampling variability (Figure 5A). As such we think the model is

accurately capturing general trends in the underlying dataset.

Unexpectedly, the overall position of the Tcf motif in the locus

has an effect on Tcf7l2 binding. The spatial effect of the Tcf motif

position across all backbone phrases (irrespective of orientation)

shows a similar pattern in both accessible and inaccessible loci:

the length scale optimizes to �8-bp, and extracting the esti-

mated function (Figure 5B) shows that Dam-Tcf7l2 methylation

is highest when the motif is located within the middle of a back-

bone phrase or toward either end with dips in intervening re-

gions. Since this effect is so similar for Dam-Tcf7l2 methylation

across both loci, we posit that a likely cause is steric constraints

on how well Dam-Tcf7l2 can methylate the GATC sites located

adjacent to the ends of each integrated phrase, rather than

changes in Tcf7l2 binding. Unfused Dam in the inaccessible lo-

cus also shows an effect of the overall Tcf motif position (Fig-

ure 5B); however, this mimics an overall downward trend of

Dam-Tcf7l2 and not the middle and end peaks, presumably

because unfused Dam is not binding to the Tcf7l2 motif. This

also rules out a differential accessibility between the Tcf motif

and the GATC—for example, if a nucleosome was laterally dis-

placed from the Tcf motif and covered the GATC—as this would

create a negative correlation in the backbone phrase-invariant

effects between Dam-Tcf7l2 and unfused Dam. Thus, we do

identify one feature that is best explained as an artifact of the

DamID method—Tcf7l2 is on an average more adept at methyl-

ating GATCs with particular distance constraints.

When backbone phrase-invariant effects are calculated only

across backbone phrases that share the same Tcf motif orienta-

tion, the model identifies a periodic function only in the acces-

sible locus (Figure 5B). The periodicity parameter optimizes to

every 10.8 bases, which is close to the estimate of a DNA helix

rotation (10.4–10.6) (Wang, 1979; Rhodes and Klug, 1980; Klug

and Lutter, 1981). Interestingly, the periodic component for the

two-Tcf motif orientations are completely out of phase. Since

Tcf7l2 binding introduces a large bend in the DNA (90–127 de-

grees) (Love et al., 1995; Giese et al., 1995), a possible explana-

tion is that DNA bending in the Rosa26 accessible locus is more

energetically favorable in one direction. This would favor Tcf7l2-

binding sites that are in-phase with one another with respect to

the rotation of a DNA helix, since these would all bend in the

same direction. Alternatively, it could indicate an interaction

with a transcription factor or nucleosome at a specific position

nearby the site of integration.

Lastly, we investigated the backbone phrase-specific spatial

effects. The optimal model includes input from both smoothly

varying and periodic backbone phrase-specific components

with similar hyperparameters as the global and orientation ef-

fects (�8 rbf length scale and 10.8 periodicity), in both the acces-

sible and inaccessible loci. The smoothly varying, periodic, and

constant backbone phrase-specific effects are extracted and

summed up for a set of representative backbone phrases

(Figure 5C).
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Figure 5. Tcf7l2 Binding Depends on Locus and Cofactor-Dependent Spatial Interactions

(A) Backbone phrase-specific variance in methylation rate explained by Gaussian process components across both accessible and inaccessible loci, and Dam-

Tcf7l2 and unfused Dam.

(B) Estimated effect of the backbone phrase-invariant smooth and orientation specific periodic effects.

(C) Observed methylation components extracted from the Gaussian process for a representative set of backbone phrases. Shown is the sum of the backbone-

phrase-specific components: constant, smooth, and periodic.

(D) Aggregate profiles of the backbone phrase-specific smooth and periodic components for Dam-Tcf7l2 or unfused Dam methylation, grouped by cofactors

present. Phrases are centered at midpoint of the respective cofactor motif and calculated to the midpoint of the Tcf motif for each of the possible orientations.

Sox2-Oct4 joint motifs are excluded as they would exaggerate the average signal compared with other Oct4 sites.
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The smooth component captures the footprints of reduced

binding as an underlying cofactor motif (Oct4 or Klf4) is disrupted

(compare backbone phrases e522 and s3035 in Figure 5C with

Figure 4E). Additionally, the smooth component captures re-

gions of higher Tcf7l2 binding near the Oct4 and Klf4 cofactor

motifs (2nd and 3rd row in Figure 5C), which tend to spread

over an �20- to 50-bp region adjacent to the cofactor motifs. It

is possible that another motif is being disrupted after these

stretches of higher binding; however, since we could not reliably

identify any other motifs at these locations we believe that it

represents the effect of Oct4 or Klf4 promoting adjacent Tcf7l2

binding within this optimal window of proximity.

The backbone phrase-specific periodicity captures a repro-

ducible oscillation in binding strength estimated to occur every
10.8 bp. We hypothesize that backbone phrase-specific period-

icity in Tcf7l2 binding arises from interaction between Tcf7l2 and

cofactors such as Oct4 that is strengthened when both factors

reside on the same side of the DNA helix. The estimated periodic

effects are similar for Dam-Tcf7l2 across both loci (0.35 correla-

tion, versus 0.075–0.14 to unfused Dam; Figure S3), indicating

that it is detecting oscillating patterns specifically promoting

adjacent Tcf7l2 binding within this window.

The backbone phrase-specific smooth and periodic effects

across different backbone phrases tend to align when aggre-

gated across different backbone phrases based on the relative

position between the Tcf and the Oct4 or Klf4 cofactor motif (Fig-

ure 5D). There is a large variability in the strength of these back-

bone phrase-specific effects across different backbone
Cell Systems 11, 315–327, September 23, 2020 323
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phrases—the three backbone phrases that contain a joint Sox2-

Oct4 motif possess the strongest such effects (first row of Fig-

ure 5C). Since there are only 3 such backbone phrases, they

are excluded from the aggregate profiles in Figure 5D to avoid

exaggerating them, but the estimated positional effects overlap

for the shared part of the orientation and gap spacing (Figure S5)

These three Sox2-Oct4 motif containing backbone phrases

show strong dips when the Sox2-Oct4 motif is disrupted, longer

than average stretches of improved Tcf7l2 binding nearby, and

strong backbone phrase-specific periodic effects, with maximal

Tcf7l2 binding when Tcf7l2 is separated fromOct4 by 27–29, 37–

39, 48–50, and 61 bp (relative to the midpoint of the Tcf7l2 and

Oct4 motifs and similar across all four orientations of motifs).

Since we were unable to accurately model the strength of the

cofactor binding from their sequence motifs, this periodic effect

had to be estimated for each backbone phrase specifically. As

such, information is pooled across all positions of the tiled Tcf

motif, resulting in the periodic effect being estimated to also

pass through the cofactor motif. Thus, aligning backbone

phrases by the distance between the Tcf7l2 motif and Oct4/

Klf4 cofactor motif reveals that the smooth and oscillating effects

are consistent and are accentuated in the three Sox2-Oct4 motif

containing backbone phrases where cofactor binding strength is

likely to be strongest.

The variability in Dam-Tcf7l2 methylation is considerably

higher than that of unfused Dam seen when tiling the Tcf motif

(43 higher in the accessible locus, 23 higher in the inaccessible

locus, Figure 5A). Unfused Dam methylation has much higher

proportion of unexplained residuals (accessible 75%, inacces-

sible 50%), suggesting that it is being influenced by some feature

not utilized in the model—for example the specific sequence be-

ing overwritten by the tiled Tcf motif. The unfused Dam model

identifies minor contributions from backbone phrase-specific ef-

fects (accessible 25%, inaccessible 20%) and an effect of overall

position of the Tcf motif only in the inaccessible locus (15% of

variability). The inaccessible locus also has �10% of variance

explained by contribution of flanking nucleotides; however, in

this case it does not recapitulate the in vitro Tcf position weight

matrix and instead appears to resemble a putative weak Sox2-

Oct4 motif: 50 Cs and 30 A-T-G bias (Figure 4C). These results

suggest that the unfused Dam signal in inaccessible chromatin

is capturing subtle changes in chromatin accessibility arising

from the creation of weak alternative motifs while tiling the Tcf

motif—the Tcf, Sox2, and Oct4 motifs all share a core TTTG

stretch, making it difficult to definitively assign the most likely

binding factors to sites with weak position matrix weight

matches. The effect of cofactors influencing accessibility can

also be seen in the smooth backbone phrase-specific effect

with unfused Dam, which while weaker is correlated with Dam-

Tcf7l2 (accessible: 0.35, inaccessible: 0.18; Figure S3). In sum,

the Gaussian process regression model is less effective at deter-

mining the causes of variation in unfused Dammethylation, likely

because the input features have been tailored to predicting

Tcf7l2 binding variation. This finding reinforces that the model

is learning features specific to Tcf7l2 binding and not to con-

founders introduced by the DamID method.

In summary, in-depth analysis of this collection of 2,000

phrases that examine Tcf7l2-binding logic at 59-Tcf motif con-

taining backbone phrases reveals that Tcf7l2 binding is depen-
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dent on the binding of Oct4 and Klf4 motifs in a spatially depen-

dent manner. Strongest Tcf7l2 binding occurs when the motifs

are separated by 20–50 bp with �10.8-bp oscillatory strength

that matches the turn of a DNA helix. The strength of these effects

appears dependent on the strength of the cofactor motif: it is

strongest at joint Sox2-Oct4 sites, moderate at most other Oct4

and Klf4 sites, and weak at a few Oct4 and Klf4 motifs. Since

Tcf7l2 binding is strongly dependent on sequence context, it is

likely that similar effects exist that govern the binding strength

of Oct4 and Klf4. Further deconvolution all of these variables

will require a substantially larger set of backbone phrases that

systematically vary in Oct4/Klf4 motif strength as well as relative

Tcf7l2 position. The lack of other observedmotifs in any observed

footprints nor in the flanking nucleotides suggests that there are

unlikely to be many other motifs that substantively influence

mESC Tcf7l2 binding in the backbone phrases analyzed.

DISCUSSION

The binding motif for Tcf7l2 has been well characterized in vitro;

however, it is a poor predictor of the in vivo binding of Tcf7l2 and

lacks the ability to explain differences in cell-type-specific

binding (Frietze et al., 2012). Here, we use a combination of

site-specific integration and in vivo transcription factor-binding

measurement to show that a large contribution to the specificity

of Tcf7l2 binding in mESCs is contained within the 99 bp of

sequence surrounding a genomic Tcf motif.

In particular, by systematically varying the position of a core

Tcf7l2 motif relative to cofactor motifs, we find that the presence

of Oct4 and Klf4 motifs in an adjacent window of�20–50 bp with

spacing that places thesemotifs on the same side of the DNA he-

lix as Tcf7l2 produces optimal mESC Tcf7l2 binding. We also

show by inserting the same cohort of phrases into an intrinsically

accessible and inaccessible genomic locus that Tcf7l2 binding is

strongly determined by the local chromatin accessibility, as

Tcf7l2 gains the ability to bind in mESCs at some sites usually

only bound by Tcf7l2 in intestinal endoderm when these sites

are transplanted to accessible chromatin. Thus, our results pro-

vide strong supporting evidence with an earlier classification of

Tcf7l2 as a ‘‘migrant’’ transcription factor that is dependent on

both local chromatin accessibility and on interactionswith cofac-

tors for binding (Sherwood et al., 2014).

A similar helical-dependent enhancing of co-binding as shown

here for Tcf7l2 with Oct4 and Klf4 has been observed previously

in the in vitro formation of a Lef1 (part of the Tcf family), Ets1, and

CREB complex, which found that Lef1 promoted interactions be-

tween the flanking motifs in a way dependent on the phase of

CREB in the DNA helix (Giese et al., 1995). Our work extends

this to show that DNA helix-influenced cofactor binding can

occur across several helical turns and that such subtle effects

of spatial positioning between transcription factor-bindingmotifs

play important roles in determining binding in a genomic context.

While the DNA-binding domains of transcription factors are

generally small and well folded, the remaining domains respon-

sible for interactions with other proteins are often disordered or

connected by flexible segments (Liu et al., 2006). This flexibility

should allow interacting domains of two adjacently bound tran-

scription factors to interact across a range of spacings. This pre-

dicted flexibility in interaction distance is consistent with results
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from small-scale enhancer reporter assays (Erceg et al., 2014),

which found that varying the relative spacing between the

pMAD and Tin motifs can affect expression of a reporter gene in-

tegrated in a developing fruit fly (Drosophila) embryo. In one tis-

sue, shifting from a 2- to 8-bp gap is enough to abrogate reporter

expression, whereas in a different tissue it only halves expres-

sion. Importantly, in both cases this change is gradual: gaps of

4 and 6 bp exhibit intermediate function. Similarly, Farley et al.

(2016) tested variants of an enhancer that is active during sea

squirt development (Ciona intestinalis) in an oligonucleotide re-

porter assay and found that small shifts in the distance between

Ets- and Zicl-binding sites within can change the strength of the

enhancer. Our work extends upon these studies by showing that

these spatially flexible cofactor effects span over a larger spatial

region at least up to 50 bp and can influence binding of transcrip-

tion factors.

Our finding that interactions between transcription factors can

occur over a range of distances but also change in strength in

oscillating fashion by shifting spacing by 3 bp has implications

for current approaches thatmodel and predict transcription factor

binding. Typically, computational models of motif interactions are

designed to allow for a constant effect irrespective of their relative

positions, or to occur at an invariant spacing. For example, posi-

tion weight matrices, linear regression, and support vector ma-

chines (i.e., Ghandi et al., 2014), all utilize sequence representa-

tions based on short subsequences or fixed gap lengths, that

do not readily generalize across different gap lengths. Pooling

across several different positions, for example, as is utilized in

convolutional neural networks for protein-DNA binding (Alipanahi

et al., 2015; Kelley et al., 2016), similarly blurs over the smooth and

oscillating spatial effects observed here. There are certainly cases

inwhich TFsmay require fixed spacing aswith Sox2-Oct4 binding

to a directly adjacent dual motif (Chen et al., 2008; Jolma et al.,

2015). It is likely, however, that cases like the Tcf7l2-Oct4 interac-

tionwe identify with oscillating and variable spacing are at least as

typical. The covariance functions used here could be useddirectly

as the kernel in a support vector machine to model such effects,

while convolutional neural networks could utilize pooling layers

across every Nth (e.g., every 10 or 11 bp) position rather than

locally. Interestingly, a similar periodic effect has been inferred

for Nanog relative to the Sox2 motif with a convolutional neural

network from genomic ChIP-nexus data in mESCs (Avsec

et al., 2019).

From a data standpoint, evaluating the effect of transcription

factor interactions across spacings requires many more data

points than treating the interactions as spacing-agnostic or

spacing-invariant. It is highly unlikely that we could have identi-

fied the Tcf7l2-Oct4 interaction patterns we found using

genome-wide transcription factor binding data. The genome

does not have enough examples of these two motifs at varying

spacings, and each genomic site has many other adjacent bind-

ing sites that would complicate modeling. Thus, our approach of

integrating a designed set of sequences into fixed genomic loca-

tions enables fine-grained dissection of transcription factor logic

in a way that is not possible from observational genomic data

types such as ChIP-seq, DNase-seq, or ATAC-seq. Even with

our approach using thousands of designed phrases, we are

limited in power for building up an accuratemodel of Tcf7l2 bind-

ing. In several cases the residual methylation signal often ap-
pears to line up with the periodic components over a few posi-

tions, indicating that a more complex cooperative interaction

exists within the data than is captured by a linear combination

of spatial effects on Tcf7l2 binding.

Similarly, we lack enough observations to account for chang-

ing strength of Oct4 and Klf4 motifs (unlike for Tcf7l2 where we

can accurately capture the strength of themotif through changes

in flanking nucleotides). Particularly, the effect of Oct4 on Tcf7l2

binding in different backbone phrases shows a range of magni-

tudes, which prevents combining observations from several

backbone phrases into accurate estimates of shape profile of

Tcf7l2 cofactor interactions. This paucity of backbone phrase

variation may explain why the Sox2motif significantly modulates

Tcf7l2 binding in the larger first screen but not in the second

screen with limited examples. Klf4 motifs also showed variable

strength in influencing Tcf7l2 binding across the second library.

Additionally, some Sp1-like motifs—similar to the Klf4 motif—

appeared like they might influence binding, but these effects

were neither strong enough to produce a reliable ‘‘footprint’’

for specific instances nor consistent enough to detect a

consensusmotif. Amore complete and predictive understanding

of Tcf7l2 binding logic will require tiling or varying the strength of

Oct4 or Klf4 motifs across Tcf motif containing backbone

phrases as well as directly measuring binding of both Oct4/

Klf4 and Tcf7l2 in the same set of backbone phrases.

Our experimental design is also confounded by using ectopic

expression of Tcf7l2 that is fused to an enzyme, so the altered

levels of Tcf7l2 expression or altered function of the fusion pro-

tein may not perfectly mimic native Tcf7l2 binding. Extrapolation

to native Tcf regulatory circuitry would also need to account for

the differential expression and large splicing heterogeneity of

other Tcf/Lef family numbers (Weise et al., 2010), which would

be expected to both accommodate for changes in function

and compete for binding to the same motifs. Compared with al-

ternatives, such as the lossy ChIP assay, the gain in resolution

offered by DamID makes this trade-off worthwhile when looking

at individual loci, which occur at most twice in each cell.

Overall, this study demonstrates the power of massively paral-

lel integration of DNA-sequence variants into a controlled locus

to address aspects of transcription factor-binding logic that

are difficult to address using observational genomic approaches

such as ChIP-seq or in vitro approaches such as protein binding

matrix arrays. In the future, this approach could be expanded to

address co-binding logic by profiling binding of multiple tran-

scription factors to the same collection of sequences, dynamic

transcription factor binding by profiling binding in different cell

types, or combined with gene expression readouts to link tran-

scription factor-binding patterns to gene regulatory activity.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Tcf7l2 DamID on 12,000 oligo library This paper data/1st-library-raw-values.txt at https://gitlab.com/tszczesnik/

tcf-grammar-analysis

Tcf7l2 DamID on 2,000 oligo library This paper data/2nd-library-raw-values.txt at https://gitlab.com/tszczesnik/

tcf-grammar-analysis

Experimental Models: Cell Lines

129P2/OlaHsd mouse embryonic stem cells (Iacovino et al. 2011) N/A

Oligonucleotides

12,000 170-bp oligo pool CustomArray data/1st-library-sequences.fa at https://gitlab.com/tszczesnik/

tcf-grammar-analysis

2,000 150-bp oligo pool Twist Biosciences data/2nd-library-sequences.fa at https://gitlab.com/tszczesnik/

tcf-grammar-analysis

Recombinant DNA

plasmid: DamN126A and Tcf7l2-DamN126A (Szczesnik et al.,2019) N/A

Software and Algorithms

fastq-multx (Aronesty 2011) N/A

PEAR (Zhang et al. 2014) N/A

Bwa (Li and Durbin 2009) N/A

Glmnet (Friedman et al., 2010) N/A

negative-binomial normalisation This paper statistical-analysis/negative-binomial-dropout.stan at https://gitlab.

com/tszczesnik/tcf-grammar-analysis

Gaussian process regression This paper gp-damid/ at https://gitlab.com/tszczesnik/tcf-grammar-analysis
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to the Lead Contact, Dr Rich Sherwood (rsherwood@rics.bwh.

harvard.edu).

Materials Availability
This study did not generate new materials.

Data and Code Availability
The data and code are available online at https://gitlab.com/tszczesnik/tcf-grammar-analysis.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were done in 129P2/OlaHsdmouse embryonic stem cells (mESC), which were cultured according to previously pub-

lished protocols (ENCODE Project Consortium, 2012). mESCs were maintained on gelatin-coated plates feeder-free in mESCmedia

composed of Knockout DMEM (Life Technologies) supplemented with 15% defined fetal bovine serum (FBS) (HyClone), 0.1mM

nonessential amino acids (NEAA) (Life Technologies), Glutamax (GM) (Life Technologies), 0.55mM 2 b-mercaptoethanol (Sigma),

1X E SGRO LIF (Millipore), 5 nM GSK-3 inhibitor XV and 500 nM UO126. Cells were regularly tested for mycoplasma. The non-ho-

mologous end joining pathway was disabled by knocking out two necessary genes (Prkdc and Lig4), along with constitutive activa-

tion of Rbbp8, which together increase the rate of homologous recombination (Arbab et al., 2015).

METHOD DETAILS

Phrase Library Design
The first phrase library (12,000 170bp) was ordered fromCustomArray. Two 20bp primer siteswere located at each end. One end also

included a short (11bp) barcode followed by another primer site (20bp) for separately amplifying it. 11bp is necessay to have enough
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unique barcodes for all 12,000 phrases such that they are separated by an edit (levenshtein) distance of at least 3, so that any single

error to be automatically corrected. Due to the presence of truncated library phrases, however, this barcode couldn’t uniquely identify

phrases and wasn’t used. The remaining 99-bp was used to test out possible Tcf7l2 binding sites.

A portion of phrases were generated from ChIP-seq peaks bound in either Tcf7l1 ChIP-seq in mESCs or Tcf7l2 ChIP-seq in intes-

tinal endoderm cells, or in both (1200 phrases each, split into two groups of 600 with or without a clear Tcf motif), along with 2400

phrases with a clear Tcf motif, occuring near marks of H3K27ac, but distal to (>10kb) to any Tcf ChIP-seq binding site. Due to the

similarity between Tcf7l1 and Tcf7l2, Tcf7l1 ChIP-seq is a reliable measure of Tcf7l2 binding; genome-wide DamID for Tcf7l2 in

mESCs correlates stronger with the Tcf7l1 mESC ChIP-seq than with Tcf7l2 intestinal endoderm ChIP-seq (Szczesnik et al., 2019).

Phrases made up of combinations of various binding motifs were generated as follows:

1. Sample 25 (out of 35 possible) combinations of the non-Tcf7l2 and non-pioneer motifs (Hnf4a, Gata3, Foxa1/o1, c-Myc, Oct4,

Sox3, Smad3).

2. Each of these generates a combination of with and without a Tcf motif.

3. Each of these generates a combination of no pioneer, Ets, Klf, or both motifs.

4. Sample 3 permutations out of each of these.

5. Sample 3 different gap lengths for each phrase.

6. Sample 3 randomly generated sequences for the gap

The second oligo pool (2,000 149bp) was ordered from Twist Biosciences. Two 25bp primer sites are located at each end, each

containing a GATC, flanking a 99-bp variable region. Backbone phrases were chosen from the first library based on the probability

that the posterior distribution of each phrase’s methylation rate was either lower than, contained, or higher than the average methyl-

ation rate of the library (p < 0.05). A set of�30 phrases per backbone phrase were generated by tiling the Tcf motif (ATCAAAG) every

3bp from the starting position. Motifs were scrambled to a specific sequence as follows:

d Tcf: ATCAAAG -> AACGTCG

d Oct: ATGCAAAT -> ATCGGCAT

d Klf: GCCACACCCA -> GCGAGACGCA

d Sox: CWTTGT -> CGTACT

d Gata: AGATA -> ACCCA
Phrase Library Integration
Oligopoolswere amplifiedwithprimers at bothends (40ulNEBnext, 0.2-ul library, Ta=65, 30 cycles) and the 170bpbandpurifiedona4%

agarose gel (Qiagen gel purification). Phrases were extended with homology arms (Table S1) (1000ul NEBnext, Ta = 65, 30 cycles) and

purified (Qiagenminelute) to prepare for electroporation. 20 ugCBhCas9-BlastR plasmid, 20 ugU6-gRNA-HygroRplasmid, and purified

phrases were vacuum centrifuged to a final volume of <20 ul, added to 120 ml EmbryoMax Electroporation Buffer (ES-003-D, Millipore),

and mixed with mESCs pelleted from a 15cm plate (�2e7 cells). This was transferred into a 0.4-cm electroporation cuvette and

electroporated using a BioRad electroporator (230 V, 0.500 mF, and maximum resistance). Cells were passaged three times following

integration.

DamID
Constructs were made by fusing Dam or Dam-N126A to the N-terminus of Tcf7l2 with a short flexible linker (Szczesnik et al., 2019).

Dam-Tcf7l2 fusion and Dam only constructs are expressed from a single-integration Dox-inducible transgene expression cassette

(Iacovino et al., 2011). This puts the Dam constructs under control of a tet-responsive promoter, along with integrating a neomycin

resistance gene that is selected for by culturing the cells in G418 (300mg/mL) for one week. mESCs were cultured in 15cm plates and

split at low ratios to ensure a high library diversity was maintained. Following expression of Dam fusion protein (8 hours for wild-type,

24 hours for N126A), genomic DNA is extracted and split into two pools that are digested by either DpnI, which cuts all methylated

phrases, or DpnII, which cuts all unmethylated phrases (16ug DNA in 100ul and 100U enzyme, for 16 hours at 37C). Integration of the

phrase library and presence of methylation was measured by qPCR on the DpnI and DpnII digest for the integrated site and control

genomic Tcf7l2 bound locations. Completion of the DpnII digests was tested by undetectable DNA in controls cells, and of DpnI by

heavy methylation with long wild-type unfused Dam expression (>90% methylated). Since the same conditions remove all traces of

methylated bacterial plasmids, we infer that the DpnI digest is also close to 100%.

Next Generation Sequencing
Phraseswere PCR amplified following DpnI / DpnII digestionwith primers outside the homology arms and spanning theGATC site (16

cycles). This makes integrated phrases at least 100 times more numerous than unintegrated phrases (measured by qPCR), so that

they dominate the signal. Two further short PCRs extend each phrase with adapters for illumina sequencing and a unique barcode for

each sample. The cycle number is determined for this PCR based on qPCR to obtain sufficient amplification for Tapestation-based

sample pooling and NGS. The resulting phrases are directly sequenced on a next-seq with midoutput 300bp kit (150bp read one,

150bp read two).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Alignment
Reads from different samples were demultiplxed with fastq-multx (Aronesty, 2011) based on short barcodes incorporated at the start

and end of each sequence. Prior to alignment, overlapping paired end reads were assembled into a single read using PEAR (default

parameters) (Zhang et al., 2014), in order to reduce the false positive rate stemming from truncated phrases. The assembled reads are

aligned to the ordered library of sequences using BWA (mem algorithm with default parameters) (Li and Durbin, 2009). Counts are

generated for each sequence by summing up all exact matches to it.

Deduplication
A negative-binomial dropout model is used to estimate the degree of PCR amplification and read depth present in the sequencing

data, and hence to infer the number of unique genomic phrases in the original pool of cells. In principle the genomic counts could be

estimated from the numbers of cells and integration efficiency, but in practise the uncertainties in eachmeasurement are high and do

not account for the variable abundance of each phrase.

The initial distribution of counts before amplification (x) for each digest is modelled as a negative binomial with shape and rate pa-

rameters a and b. This is a natural choice for positive count data, and can fit the positive tail in the data and the underlying unimodal

distribution (i.e. apart from the dropouts and staggering stemming from the amplification of low counts).

Observed read counts are modelled as coming from a Poisson distribution stemming from a linear amplification (rate g) of these

latent counts (Equation 1). A constant amplification rate across all phrases is assumed since they are of the same length and similar

GC content. This leaves any phrasesmissing in the original distribution as 0, while 1 shifts to a peak centered on g, 2 to 2g, and so on,

creating staggered peaks that eventually run into one another. b is constrained to be identical between the DpnI and DpnII digests,

which prevents the model from assuming different methylation rates between digests, and is consistent with the total amount of

methylation across the phrase library following a beta distribution.

pðyja;b;gÞ = nbinomðyja;bÞnbinomð0ja;bÞ
+
PN
x= 1

poisðyjgxÞnbinomðxja;bÞ (Equation 1)

In the first phrase library, we found that modelling the dropout reads as following the original unamplified background distribution

works well, in comparison to low rate Poisson, since it captures the shape of the low level contamination from unintegrated

background phrases better. In the second phrase library, due to the higher overall sequencing depth, we observed a clear back-

ground contaminating population that stems from unintegrated phrases persisting in the cells following electroporation and being

amplified by the 2nd and 3rd library preparation PCR cycles. In this case we use a mixture model (R package mixtools) to fit two

2D log-normal distributions (equal variance, starting position means (DpnI count, DpnII count): (1000, 10) and (1000, 1000)), and

zero-out the DpnII counts of the lower population prior to estimating the amplification rate (see Figure S6).

To avoid the expensive sum over all possible discrete counts (Equation 1), and since the important information comes from 0 and 1

counts, we approximate higher counts with a continuous distribution. We rewrite our original negative binomial as a Poisson-gamma

mixture with an explicit latent count rate bx, shift the amplification rate to it and simplify down (Equation 2).

pðyÞ =

ZN
0

poisðyjgbxÞgammaðbxja;bÞdbx

= nbinom
�
y
���a; b

g

� (Equation 2)

To avoid double counting the latent genomic counts between 0 and 1 we subtract away the portion of continous counts that would

have given rise to 0 and 1 observed counts; pðbxjx = 0;1Þ (Equation 3).

pðyjxÞ =pðyjbxÞpðbxjxÞ

=

ZN
0

pois

0@y

������gbx
1Agamma

0@bx
������a+ x; b+ 1

1Adbx

= nbinom

�
y

����a+ x;
b+ 1

g

�
(Equation 3)

Equation 4 shows the final likelihood which combines the discrete distribution 0 to k low counts with continous higher counts, with

the structure:
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1. Likelihood of unamplified distribution coming from zero counts.

2. Counts from amplified discrete distribution.

3. Counts from amplified continuous distribution.

4. Subtract component of the continuous distribution that is already modelled discretely.
pðyja;b;gÞ = nbinomðyja;bÞnbinomð0ja; bÞ

+
Pk
x= 1

pois

�
y

����gx�nbinom�x����a; b�

+ nbinom
�
y
���a; b

g

�

�Pk
x= 0

nbinom

�
y

����a+ x;
b+ 1

g

!
nbinom

 
x

�����a;b
!

(Equation 4)

a, b, and g are estimated using Hamiltonian Monte Carlo sampling implemented in the statistical programming language Stan.

Following normalisation the distribution appears to follow the expected independent and identically distributed binomial distribution

between replicates, and so further inference the per phrase DpnI and DpnII counts are summed up across replicates.

Beta-Binomial Model
A beta binomial distribution was fit to the normalised DpnI / DpnII count data using the dbetabinom (VGAM package) and mle2 func-

tions (bbmle package) in R. Starting parameters were a = b = 2 (mean of 0.5 with large spread). Conjugacy between the binomial

distribution (for read counts) and beta distribution (for methylation rates) results in a straightforward calculation for the posterior

beta distribution of methylation rates for each phrases (Equation 5). Beta-binomial models are used to the same effect in reducing

the fase positive rate of detecting methylated cytosines with few supporting reads in genome-wide bisulfite sequencing (Sun

et al., 2014).

pðrijai;biÞ=betaðai + ba;bi + bbÞ (Equation 5)

Generalised Linear Model
Effects ofmotifs or genomic context were calculated using a generalised linearmodel (R, glmnet package (Friedman et al., 2010)) with

binomial output based on the methylated (DpnII) and unmethylated (DpnI) counts (i.e. logistic regression with multiple measures per

point). Equation 6 shows the model log-likelihood: b are the linear weights, xi the features for the ith phrase, yi is an indicator for a

methylated count. See (Friedman et al., 2010) for details on estimating b to maximise the log-likelihood. Lasso regularisation is

used, with the penalty strength (l) set by minimising the mean-squared error upon 10-fold cross-validation. This shrinks non-signif-

icant features to 0, and puts significant differences to be detected past �0.02 effect size. By using the normalised DpnII and DpnI

counts the variance in the estimate of each phrase’s methylation is retained, preventing the logistic regression from overfitting

past it.

logpðyjx;bÞ = 1

N

XN
i = 1

�
yi
�
b0 + xTi b

	� log
�
1 + exp

�
b0 + xTi b

		
� l

�����
�����b
�����
����� (Equation 6)

Gaussian Process Regression
Gaussian process regression is used to model the fraction methylated across the phrase library (for an overview of their use in ma-

chine learning see (Rasmussen andWilliams, 2006)). For each (ith) phrase a logit-normal approximation that exactly matches the first

two moments (mi, si) to the posterior beta function (ai, bi) was used (Equation 7), where j and j1 are the digamma and trigamma

functions. This approximation does not hold at the boundary values of 0 or 1, however since such methylation fractions only occur

at low read counts, the beta-binomial model shifts posterior mean for each phrase away from the boundary and towards the mean

library methylation rate. The Kullback-Liebler divergence ranges across 2310�6 to 5310�2 for read counts on the order of up to 100

that have values shifted away from the boundaries (Atchison and Shen, 1980).

mi =jðaiÞ � jðbiÞ
si =j1ðaiÞ+j1ðbiÞ (Equation 7)
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TheGaussian process fits the posterior mean (mi) with a linearmixture of several functions (weightsw2
a for the ath function) based on

the phrase (xi). The posterior variance (si) is included with a fixed weight (w0 = 1), which prevents the Gaussian process from fitting

beyond the sampling resolution of the data.

The Gaussian process models several effects which are listed in Table S2, these comprise of the individual phrase variance (pos-

terior variance and residuals), constant linear effects (constant across all phrases, or constant across phrases from the same back-

bone phrase, and flanking nucleotide effects), and several non-linear position based functions designed to estimate how the position

of Tcf motif affects the binding of Tcf7l2 to it. These non-linear position based functions are either shared across all phrases, phrases

sharing the same Tcfmotif orientation, or only those phrases generated from the same backbone phrase (b = {0,1,2} is used to refer to

these cases respectively). The class of position based functions is determined by a covariance function based on the relative position

of the Tcf motif between two different phrases (pi and pj). Two such position based covariance functions are used:

d Smoothly varying functions (krb) modelled with a radial basis covariance function, parametrised by a length scale lb (Equa-

tion 8). For examples of functions specified by this covariance function see Figure S10A.
krb
�
pi;pj

	
= e

�ðpi�pjÞ2
2l2

b (Equation 8)

d Periodic functions (kpr) modelled with a periodic covariance function parametrised by inverse periodicity (tb) and length scale

(rb) (Equation 9) (Wilson and Adams, 2013). For examples of functions specified by this covariance function see Figure S10B.
kpr

�
pi;pj

�
= e�2ðpðpi�pjÞrbÞ2cos

�
2p
�
pi �pj

�
tb

�
(Equation 9)

Since covariance functions are closed under addition, a linear mixture of these positional effects along with the per phrase and

other linear effects produces a valid (positive definite) covariance function. This is shown in Equation 10 using the Kronecker delta

notation. i’ and j0 refer to the orientation of the Tcf motif, and i’’ and j’’ refer to the original backbone phrase (i.e. di0 j0 = 1 only if the

phrases share the same Tcf motif orientation, and di00 j00 = 1 only if the phrases share the same original backbone phrase). fic is the po-

sition of the 5’ flanking nucleotide of phrase i at position c {1, 2}; tic for the 3’ flanking nucleotide.

ktotalðxi; xjÞ = dijsisj + dijw
2
1 +w2

2 + di00j00w
2
3

+w2
4

X2
c= 1

�
dficfjc + dtictjc

	
+w2

5krb
�
pi;pjjl0Þ+w2

6kpr
�
pi;pj

��t0; r0	
+ di0 j0

�
w2

7krb
�
pi;pjjl1Þ+w2

8kpr
�
pi;pj

��t1; r1		
+ di00j00

�
w2

9krb
�
pi;pjjl2Þ+w2

10kpr
�
pi;pj

��t2; r2		
(Equation 10)

The fit of the model is evaluated by the likelihood fit to the data (Equation 11). The covariance matrix K is constructed by evaluating

the covariance function (ktotal) for all pairs of phrases.

logpðmjxÞ = � 1

2

�
mTK�1m + log

��K�� + nlog2p



(Equation 11)

Different functions comprising the Gaussian process fit are extracted using Equation 12, where bK is constructed only from the

portion of the covariance function to be extracted. Cross validated fits are similarly calculated as in Equation 12 based on a formula

for linear smoothers, with bK excluding the posterior variance and residual components (Cook and Weisberg, 1982).

bm = K bK�1
m

bm�i = mi �
�
I� K bK�1
�1

ii
ðmi � bm iÞ (Equation 12)

The weights (wa) and the hyperparameters (lb;tb;rb) were found by gradient based optimisation of the likelihood using L-BFGS.

The optimal periodicity ( 1tb) was found by grid search over all integer periodicities (up to 30bp) prior to gradient based optimisation. All

algorithms in this section in Haskell through bindings to linear algebra (Blas and Lapack) and optimisation (libLBFGS) libraries. Cho-

lesky decomposition is used for inverting the covariance matrix.
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