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Abstract

This paper presents an efficient and accurate boundary element method (BEM) for the elastic

analysis of axisymmetric problems in vertically non-homogeneous solids without or with cavity.

This BEM uses the fundamental solution of the elastic field in a multilayered elastic solid

induced by the body force uniformly concentrated at a circular ring. This solution is also called

Yue’s solution. The effective integration methods are used for dealing with the integrals in the

discretized boundary integral equations. The discretization of the boundary surface uses one-

dimensional boundary elements. It also adopts the infinite boundary element to take into

account the influence of a far-field region on the boundary surface. Numerical verifications of

displacements and stresses for three benchmark problems are conducted, which gives the

excellent agreement with previously published results. Case studies are presented to

numerically illustrate the influences of both vertically non-homogeneous elastic material

properties and spherical cavity on the elastic fields induced by uniform tractions on the

boundary surface. These numerical results show that this new BEM is a fast and simple

numerical algorithm for accurately computing the axisymmetric elastic fields in vertically non-

homogeneous solids with or without cavity induced by normal tractions.
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1. Introduction

1.1 Boundary element methods for homogeneous axisymmetric problems

This paper aims to present a new BEM for axisymmetric problems in vertically non-

homogeneous elastic solids without or with a cavity (Fig. 1). Axisymmetric problems are often

encountered in engineering and science since some structures and their loadings can be treated

as axisymmetric. In particular, their dimensionality is reduced from three dimensions to two

dimensions and includes only the radial and axial directions. The discretization of the boundary

conditions for axisymmetric problems only needs one-dimensional (1-D) boundary elements,

which makes their computations much simplified and straight forward.

Hence, the boundary element method (BEM) for axisymmetric problems appeared in the

1970s. Kermanidis [1] and Mayr [2] developed the earliest BEM for axisymmetric elasticity

problems with the one-dimensional (1-D) constant or linear variation elements. They used the

fundamental solution of a homogeneous isotropic elastic solid of infinite space subjected to

circular ring loads. Then, Cruse et al. [3] extended the BEM for the analysis of the axisymmetric

problem with thermal and rotational loading. Bakr and Fenner [4] presented the methods for

treating the strongly singular integrals in the boundary integral equations for axisymmetric

problems. Becker [5] described the boundary element techniques for axisymmetric problems in

detail. Lacerda and Wrobel [6] and Mukherjee [7] presented axisymmetric hypersingular

boundary integral formulations for elasticity problems and regularized the strongly singular and

hypersingular equations. Ishida and Osaka [8] developed the formulation of the axisymmetric

boundary integral equation for the transversely isotropic elastic solid. Amoura et al. [9]

presented the dual boundary element method for the analysis of the cracks in axisymmetric

structures. Lacerda and Wrobel [10] further developed the dual boundary element formulation

for the evaluation of stress intensity factors and propagation of axisymmetric cracks.

Furthermore, the BEM is very effective in analyzing the problems in solids with fullspace

or halfspace extent. For problems in halfspace solids, the boundary element formulation using

the fundamental solution in the fullspace requires the discretization of the infinite free surface.

In this case, infinite boundary elements can be introduced to consider the influence of the far

field [11, 12]. Bu [13] developed the infinite boundary technique to analyze axisymmetric
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halfspace problems. In these BEMs, the integration of the singular kernels over an infinite

boundary element needs to be treated. An alternative way to deal with this problem is to

implement the fundamental solution of a halfspace that satisfies in advance the traction free

boundary condition on the free surface, which circumvents its numerical discretization on the

traction free boundary surface. For example, Oliveira et al. [14] used the axisymmetric

fundamental solution for an elastic halfspace to develop the BEM for the analysis of the elastic

fields of homogeneous halfspaces with or without a shaped cavity.

1.2 Non-homogeneous solids and BEM issues

1.2.1 Non-homogeneous solids

The non-homogeneity of materials is a common phenomenon that can be observed in many

natural and engineered materials. A homogeneous material is only an idealized case of

heterogeneous materials in general. One special type of non-homogeneous materials is

characterized by the variations of its physical and mechanical properties with the depth

direction (i.e., the vertical z-axis). For example, the geotechnical investigations showed that the

shear modulus of soils can vary linearly with depth [15, 16]. Using analytical methods, many

investigations [17-26] have been done for the elastic responses of the vertically non-

homogeneous halfspaces subjected to tractions or other types of loading conditions.

Another special type of non-homogeneous materials is characterized by layered structures.

Sedimentary rock is a typical layered solid consisting of different rock layers [27]. Studies of

specific interest to elastomechanics of layered halfspaces date back to the early studies by Chen

[28], Yue and Wang [29], Pan [30], Alkasawneh et al. [31] and Pan et al. [32]. Recently, Xiao

et al. [33] developed an analytical method of a layered halfspace subjected to interior loadings

and assessed the additional elastic fields in the heterogeneous rocks beneath a reservoir due to

its water weight loading.

On the other hand, cavities can exist in geometerials and may cause the shear or tensile

failures under the action of loadings. For example, Yue [34] put forward a highly dense methane

gas mass hypothesis in the crustal faults or cavities for the cause of tectonic earthquakes. Hence,

the effect of cavity in non-homogeneous solids has to be considered for further analysis and
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development.

1.2.2 BEMs for non-homogeneous solids

Further developments of BEM for axisymmetric problems in non-homogeneous solids,

however, are limited because of the lack of the relevant fundamental solutions [35]. This

situation can be observed in Pan [36] who recently provided a comprehensive literature review

on the fundamental solutions or Green’s functions in geophysics.

Particularly, Xiao et al. [37-39] developed new BEMs for the analysis of the 3D elastic

fields of layered halfspaces and the stress intensity factor of the cracks in layered and graded

solids. They incorporated the point-load fundamental solutions of layered solids into the BEM

formulations. The point load fundamental solution is the elastic field in multi-layered solids

subjected to the body force vector concentrated at a point. It was given by Yue [40-42] and also

called as Yue’s solution [43-45].

On the other hand, authors cannot find any papers using BEM for the analysis of

axisymmetric elastic problems in vertically non-homogeneous solids published in the open

literature in English and Chinese. Hence, this paper is to address this issue and to enrich the

BEM.

1.3 Aim and approach of this study

The new BEM presented in the ensuing is for the analysis of axisymmetric problems in

vertically non-homogeneous elastic solids without or with a cavity (Fig. 1). It adopts the

fundamental solution of multilayered solids subjected to uniform ring body force vector

concentrate along a circular ring.  The fundamental solution is also derived by Yue [40-42].

This fundamental solution is used to eliminate the discretization task at the internal interfaces

of non-homogeneous materials [46, 47].

Special attentions are also given to a fast numerical algorithm for computing the elastic

fields induced by normal traction on vertically non-homogeneous halfspaces without or with a

cavity. The algorithm is a single-region BEM. The infinite boundary element technique is used

to take into account the influence of a far-field region on the boundary surface because of its
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straightforward implementation. Various singular integrals involved in the discretized boundary

integral equations are considered in detail.

The new BEM is applied to specifically solving the elastic responses of layered and

vertically non-homogeneous halfspaces without or with a cavity under normal circular loads on

the horizontal boundary surface. Numerical results show the influence of vertically non-

homogeneous properties including elastic modulus and Poisson’s ratio on the elastic

displacement and stress fields induced by the normal tractions.

2. Boundary element formulation of axisymmetric elastostatic problems

2.1 Boundary integral equation for homogeneous materials

Axisymmetric geometries are formed by rotating the two-dimensional plane with the

boundary S, shown in Fig. 2, through 360° about the z-axis (called the axis of rotational

symmetry). Under an axisymmetric load, all displacements and stresses are independent of the

hoop angle in the polar cylindrical coordinate system. For the axisymmetric homogeneous solid

without body forces the boundary integral equation (BIE) is of the form [5]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )*2 =2 *
ij j ij j Q ij j QS S

c P u P π t P,Q u Q r dS Q π u P,Q t Q r dS Q+ ò ò

( , ,i j r z= )   (1)

where P and Q are, respectively, the source and field points; jt   and ju   are, respectively,

tractions and displacements; *
ijt  and *

iju  are, respectively, the kernel functions of the tractions

and displacements of the fundamental solution of a homogeneous fullspace subjected to circular

ring loads; Qr  is the horizontal distance of the field point Q to the z-axis. The free term ( )ijc P

in Eq. (1) depends only upon the asymmetric behavior of the singular terms of the fundamental

solution and the local geometry of the boundary at the source point P.

The boundary integral equation (1) is effective for the axisymmetric elastic problems in a

homogeneous solid and can be extended to examine the axisymmetric elastic problems in

vertically non-homogeneous materials. The extension needs the corresponding fundamental

solution in vertically non-homogeneous solids.
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2.2 Fundamental solutions of a multilayered solid subjected to circular ring loads

Yue [40-42] presented the fundamental solution of a multilayered elastic solid subjected to

the body force vector uniformly concentrated along a horizontal circular ring. The total number

of the dissimilar layers is an arbitrary integer n. The dissimilar homogeneous layers adhere an

elastic solid of upper halfspace and another elastic solid of lower halfspace. The interface

between any two connected dissimilar layers is fully bonded. By referring to Fig. 3, the j-th

layer occupies a finite layer region 1jH z H- £ £  of thickness jh , and has the shear modulus

jm  and the Poisson’s ratio jn , where j=1,2,3,…,n. The 0-th layer occupies the upper halfspace

region 0£<¥- z , and has the shear modulus 0m  and the Poisson’s ratio 0n . The (n+1)-th

layer occupies the lower halfspace region nH z£ < ¥  and has the shear modulus 1nm +  and

the Poisson’s ratio 1nn + . Without loss of generality, it is assumed that the ring loads ( )r zf , f

are concentrated along r=rQ at z d=  in the k-th layer. Numerical verifications illustrate that

when applying this fundamental solution to the new BEM for finite domain or semi-infinite

domain, the shear modules 0m  and the Poisson’s ratio 0n  of the 0-th layer can be treated to

be the same as those elastic parameters of the first layer (j=1) [48]. Furthermore, by assuming

0 0m = , the fundamental solution is that of a (n+1) layered elastic solid of halfspace extent

subject to the circular ring body force vector.

Some basic formulations of the fundamental solution are provided in Appendix A. The

numerical results can be achieved with any pre-given accuracy. The convergence of the solution

has been verified and the solution satisfies all the required conditions including the basic

equations and the interfacial conditions as well as the loading conditions. It is verified that the

singularities of the displacements and stresses of the fundamental solution are, respectively, of

the forms ln(1/r) and 1/r for the ring type of concentrated forces (r is a distance between the

source and field points), are exactly the same as those of the fundamental solutions in either a

homogeneous solid or a bi-material solid of fullspace region.
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2.3 Boundary integral equation for non-homogeneous materials

Using the fundamental solution of a multilayered elastic solid [40-42], the boundary

integral equation (1) for axisymmetric problems can be re-expressed as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2Y Y
ij j ij j Q ij j QS S

c P u P π t P,Q u Q r dS Q π u P,Q t Q r dS Q+ =ò ò

( , ,i j r z= )   (2)

where Y
ijt  and Y

iju  are, respectively, the kernel functions of the tractions and displacements of

the fundamental solution of a layered fullspace subjected to circular ring loads; S is the

boundary of the problem domain.

As shown in Fig. 4, an axisymmetric and layered halfspace formed by rotating the two-

dimensional plane through 360° about the z-axis. Here, the boundary surface S of the two-

dimensional plane is divided into two parts SF and SI. For the axisymmetric problems in layered

halfspace without a cavity, the boundary SF only represents the horizontal boundary surface of

a halfspace. However, for the axisymmetric problems in layered halfspace with a cavity, the

boundary SF includes the horizontal boundary surface of a halfspace and the boundary of cavity.

They represent a core region around the traction area and a far-field region beyond the traction

area, respectively. In using the fundamental solution of a layered fullspace, ( ) 0 5ij ijc P . δ=  for

the point P located on a smooth boundary at a boundary surface.

2.4 Displacements and stresses in the domain

After obtaining the displacements and tractions on the boundary, the displacements at any

internal point p can be determined by using the displacement integral equations as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 , 2 ,
F I F I

Y Y
i ij j Q ij j QS S S S

u p π t p Q u Q r dS Q π u p Q t Q r dS Q
+ +

+ =ò ò

( , ,i j r z= )   (3)

 In the cylindrical coordinates ( , ,r zq ), the stresses of an axisymmetric solution domain

can be expressed as [49]

2
1 2

r r r z
rr

u u u u
r r r z

é ù¶ ¶ ¶æ ö= + + +ç ÷ê ú¶ - ¶ ¶è øë û

ns m
n

                       (4a)
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2
1 2

z r r z
zz

u u u u
z r r z

é ù¶ ¶ ¶æ ö= + + +ç ÷ê ú¶ - ¶ ¶è øë û

ns m
n

                       (4b)

+r z
rz

u u
z r

s m ¶ ¶æ ö= ç ÷¶ ¶è ø
                                       (4c)

2
1 2

r r r zu u u u
r r r z

é ù¶ ¶æ ö= + + +ç ÷ê ú- ¶ ¶è øë û
qq

ns m
n

                        (4d)

 Using Eq. (3), the differentials of the displacements with the coordinates (r, z) in Eq. (4)

can be expressed as

( ) ( ) ( ) ( ) ( ) ( ) ( )2 = 2
F I F I

Y Y
i k ij k j Q ij k j QS S S S

u p t p Q u Q r dS Q u p Q t Q r dS Qp p
+ +

+ ò ò, , ,, ,

( , , ,i j k r z= )   (5)

where Y
ij ,kt   and Y

ij ,ku   are the new kernel functions obtained from the displacements and

stresses of the fundamental solution in a layered solid of fullspace and their values can be

obtained using the difference formula shown in Appendix B.

3. Boundary element techniques for new BEM

3.1 The 1D finite boundary element

As shown in Fig. 4, the boundary surface can be divided into two regions SF and SI.

Following the procedure of Xiao et al. [37], two types of boundary elements, ie, finite

isoparametric and infinite boundary elements in one dimension (1D), are used to discretize the

boundaries SF and SI, respectively. Accordingly, the two boundary element techniques are

developed.

 The conventional three-node finite isoparametric elements, shown in Fig. 5a, are employed

to discretize the finite core region SF. The shape functions of this type of elements are [5]

( ) ( )1
1 1
2

N x x x= - - , ( ) ( )( )2 1 1+N x x x= - , ( ) ( )3
1 1
2

+N x x x=         (6)

 The geometry of an isoparametric element can be defined by the coordinates of its three

nodes as follows:
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( ) ( )
3

1
r N ra

a
a

x x
=

=å , ( ) ( )
3

1
z N za

a
a

x x
=

= å                  (7)

 Similarly, because the elements are isoparametric, the same shape functions are used for

the solution variables as follows:

( ) ( )
3

1
i iu N ua

a
a

x x
=

= å , ( ) ( )
3

1
i it N ta

a
a

x x
=

= å   ( ,i r z= )           (8)

3.2 The 1D infinite boundary element

 A one-dimensional infinite element, shown in Fig. 5b, is employed to discretize the far-

field region SI of the boundary surface of the layered elastic halfspace. The shape functions of

this type of elements shown by Moser et al. [47] are presented as follows:

( )1
2

1
N xx

x
¥ = -

-
, ( )2

1+
1

N xx
x

¥ =
-

                     (9)

The geometry of an infinite element can be defined by the coordinates of its two nodes as

follows:

( ) ( )
2

1
r N ra

a
a

x x¥

=

=å , ( ) ( )
2

1
z N za

a
a

x x¥

=

=å                  (10)

 The interpolation functions of displacements and tractions within the infinite element are

also presented as follows:

( ) ( )1
1 1
2

uN x x¥ = - , ( ) ( )2
1

1 1
4

tN x x¥ = -                    (11)

where ( )1
uN x¥  and ( )1

tN x¥   are, respectively, the interpolation functions of displacements

and tractions.

 The variations of iu  and it  within the infinite element can be described as follows:

( ) ( ) 1
1
u

i iu N ux x¥= , ( ) ( ) 1
1
t

i it N tx x¥=                      (12)

3.3 Discretized governing boundary integral equations

The above two 1D boundary elements are used for discretization of the boundary surface
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SF and SI. The governing boundary integral equation (2) can be re-written as the following

discretized expressions

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

2 2

                   2 2

e
F I

e
F I

FBE
Y Y

ij j ij j Q ij j QS S
e

FBE
Y Y
ij j Q ij j QS S

e

c P u P π t P ,Q u Q r dS Q π t P ,Q u Q r dS Q

π u P,Q t Q r dS Q π u P,Q t Q r dS Q

=

=

+ +

= +

å ò ò

å ò ò
    (13)

where FBE is the numbers of finite isoparametric boundary elements and only one infinite

boundary element is used to discretize the boundary surface SI.

 Using Eqs. (7), (8), (10) and (11), Eq. (13) can be further re-written as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3
1

1
1 =1

3
1

1
1 1

2 2

                   2 2

e
F I

e
F I

FBE
α Y Y u

ij j j ij α Q j ij QS S
e α

FBE
α Y Y t

j ij α Q j ij QS S
e α

c P u P π u Q t P,Q N r dS Q πu Q t P,Q N r dS Q

π t Q u P,Q N r dS Q πt Q u P,Q N r dS Q

¥

=

¥

= =

+ +

= +

å å ò ò

å å ò ò

(14)

where the superscripts a  and 1 of the field point Q are, respectively, the nodes a  and 1 of

finite isoparametric and infinite elements.

3.4 Evaluation of boundary stresses

The boundary stresses can be calculated directly using Eqs. (4) and (5). Because the kernel

functions Y
ij,kt  and Y

ij ,ku  in Eq. (5) are much complex, it requires a substantially higher

computation time. The most popular technique for overcoming this difficulty is the traction

recovery method. Xiao et al. [38] further developed this method to evaluate the boundary

stresses of an inclined transversely isotropic bi-material. This method uses the tractions and

displacements obtained by solving the discretized BIE (14), stress boundary conditions and the

stress-strain relations. Herein, we extend this method for evaluating the stresses on the boundary

surface of axisymmetric problems in layered halfspace.

4. Numerical integration

4.1 General
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To set up a system of boundary integral equations, the integrals in Eq. (14) must be

evaluated for each element and each local node of the element. For a finite isoparametric

element, the following integrals eα
ijH  and eα

ijG  need to be considered

( ) ( ) ( )
1

11e
F

eα Y Y
ij ij α Q ij α QS

H u P,Q N r dS Q u P,Q N r J dξ
-

= =ò ò                 (15a)

( ) ( ) ( )
1

1-1
=

e
F

eα Y Y
ij ij α Q ij α QS

G t P,Q N r dS Q t P,Q N r J dξ= ò ò                  (15b)

where the indexes e and α identify the element and node respectively, Na  is the shape function

for a given node α in the element and 1J  is the Jacobian of transformation from the global

coordinate system Orz to the local coordinate system Ox .

For only an infinite element, the following integrals ijH¥  and ijG¥  at the local node 1

needs to be evaluated

( ) ( ) ( )
1

1 1 11I

Y t Y t
ij ij Q ij QS

H u P,Q N r dS Q u P,Q N r J dξ¥ ¥ ¥

-
= =ò ò                 (16a)

( ) ( ) ( )
1

1 1 11
=

I

Y u Y u
ij ij Q ij QS

G t P,Q N r dS Q t P,Q N r J dξ¥ ¥ ¥

-
= ò ò                  (16b)

Owing to singularity of the fundamental solution, an adequate numerical scheme must be

adopted to these integrals. When P and Q are in different elements or P and Q are in the same

element but P Q¹  , all integrals are regular and are evaluated by a classical Gaussian

numerical quadrature. However, if P and Q are in the same element and P=Q, the integrals in

Eqs. (15) and (16) are weakly or strongly singular. In the following, the techniques to treat these

singular integrals are introduced.

4.2 Weakly singular integrals

In order to calculate the weakly singular integrals for the displacement kernel in Eqs. (15a)

and (16a), the coordinate transformation is first performed from [ ]-1,1Îx  to [ ]0,1Îh . A simple

linear transformation can be used to transform the integral variable from x to h as follows:
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(1) If P is the first node of the element, =-1+2x h .

(2) If P is the second node of the element, the element is divided into two sub-elements:

=-x h  for -1 0x< <  and =x h  for 0 -1x< < .

(3) If P is the third node of the element, =1-2x h .

 Now it is clear from Eqs. (15a) and (16a) that as P coincides with Q, the singularity of the

integrand is of the form ( )ln 1 / h   as h→¥. In order to use the logarithmic Gaussian

quadrature scheme, the following transformation of the integration in Eqs. (15a) and (16a)

needs to be performed

( ) ( ) ( )
( ) ( ) ( ) ( )1 1 1

0 0 0
1

ln 1/
ln 1/ =

ln 1/

lG

gl gl
gl

f
f d d h d h w

=

= = åò ò ò
h h

h h h h h h h
h

      (17)

The right-hand side of the above equation is exactly as required by the logarithmic Gaussian

quadrature [5]. The 6-point numerical quadrature is used in the integral with respect to h in Eq.

(17).

 For Eqs. (15a) and (16a), the integrands in Eq. (17) are, respectively, given by

( ) ( ) ( ) ( ) ( ) ( )1 2 /ln 1Y
ij α Qh η u P,Q η N η r η J η J / η= é ùë û                  (18a)

( ) ( ) ( ) ( ) ( ) ( )1 1 2 /ln 1Y t
ij Qh η u P,Q η N η r η J η J / η¥= é ùë û                 (18b)

where 2J  is the Jacobian of transformation from the coordinate system Ox  to the coordinate

system Oh .

4.3 Strongly singular integrals

In classical axisymmetric BEM formulations using the fundamental solution of

homogeneous solids, the strongly singular integrals related to the z direction can be indirectly

evaluated using the rigid body motion method and the ones related to the r direction can be

indirectly evaluated using prescribed tractions in the r and z directions and calculating the

corresponding displacements [5]. Since the infinite boundary element is used in this BEM, the

strongly singular integrals related to the z direction cannot be evaluated indirectly using the
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rigid body motion method. Thus, an effective numerical method needs to be provided for

calculating the strongly singular integral. In the following, a Kutt’s numerical quadrature,

suggested by Xiao et al. [37-39], is adopted to calculate the strongly singular integrals for the

finite and infinite elements.

In order to calculate the strongly singular integrals for the traction kernel in Eqs. (15b) and

(16b), the coordinate transformation presented in Section 4.2 is performed from [ ]-1,1Îx  to

[ ]0,1Îh . Thus, these strongly singular integrals can be re-written as follows:

( ) ( ) ( )1 1 1

0 0 0
1

1=
K

k
k

F L kF d d d L w
K

h h h
h h h h

h h =

-æ ö= = ç ÷
è ø

åò ò ò               (19)

where kw  is the weight given by Kutt [50]. The Kutt’s 10-point equispace quadrature is used

in the finite-part integral with respect to h in Eq. (19).

For Eqs. (15b) and (16b), the integrands in Eq. (19) are given by

( ) ( ) ( ) ( ) ( )1 2
Y
ij α QL η t P,Q η N η r η J η J η= é ùë û                        (20a)

( ) ( ) ( ) ( ) ( )1 1 2
Y u
ij QL η t P,Q η N η r η J η J η¥= é ùë û                      (20b)

4.4 Nearly singular integrals

In Eqs. (1), (2) and (3), when P lies close to but not in the element of Q, the kernels of

displacements and tractions vary strongly as the distance from P to Q becomes small. It has

been found that the accuracy of calculating this type of integrals is closely related to the ratio

of the element length to the distance from a source point to the element. In this case, an element

may be further divided into sub-regions to solve this type of integrals. Furthermore, the

improved adaptive integration presented by Xiao et al. [38] is proposed to accurately and

efficiently treat this type of integrals.

5. Numerical results and verifications

Based on the above analytical and numerical equations, a new BEM program in Fortran is

made to calculate the axisymmetric elastostatic fields of displacements and stresses in vertically
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non-homogeneous halfspaces due to tractions. This BEM program can calculate all the field

variables at any point in the elastic halfspaces induced by axisymmetric tractions. In this section,

several axisymmetric problems in layered and/or vertically non-homogeneous halfspaces are

examined and presented to show (1) the high efficiency and accuracy can be achieved by the

new BEM formulation and (2) the material heterogeneity can have profound effects on the

elastic fields.

5.1 The first verification case

The first verification case is the classical axisymmetric problem of a homogeneous elastic

halfspace subjected to a uniform normal traction 0p  over a circular area of radius a on its

boundary surface. The analytical expression for the vertical displacement at the distance r from

the center of the circular area on the boundary surface is given as follows [13]:

( ) ( ) 2
22

20
0

, 0 2 1
1 sinzu r r d

p a a

pm n
q q

p
-

= -ò                     (21)

where m   is the shear modulus and n   is the Poisson’s ratio of the homogeneous elastic

halfspace.

As shown in Fig. 6, the new BEM uses eight finite isoparametric elements and one infinite

boundary element to describe the loaded boundary surface of the elastic halfspace. It also uses

only the eight finite isopatametric elements to calculate the vertical displacement. Three sets of

numerical results for the vertical displacements are plotted in Fig. 7.

The analytical results obtained from Eq. (21) and the BEM scheme with eight finite

isoparametric and one infinite boundary element are almost identical. The maximum difference

between these two sets of numerical results is 1.025%. The numerical results from the third

BEM scheme with only the eight finite isoparametric elements (without the infinite boundary

element) are less than the above two results, which shows the importance of the infinite

boundary element technique.

5.2 The second verification case
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The second verification case is the axisymmetric problem of a layered solid with two

dissimilar layers and a halfspace subjected to an elliptical traction over a circular area of radius

a [28]. The shear moduli for the three layered solids are given as 2 1/ 0.5m m =  and 3 1/ 1m m = .

The Poisson ratios are 1 2 3 0.3n n n= = = . The upper two layer thicknesses are 1 / 0.4h a =  and

2 / 0.4h a =  . The quantities a and 1m   (shear modulus) are taken to be unit length and unit

pressure respectively. The elliptical traction is defined as

( ) ( )2
0 1 /p r p r a= -                               (22)

 Herein, the boundary mesh of eight finite isoparametric elements and one infinite boundary

element in Fig. 6 is further used. Table 1 compares the two set values of the normal stress

0/zz ps  and the shear stress 0/rr ps at upper and lower surfaces of the second layer interface

(i.e., 5/ 0.8 10z a -= ± ). One set is given by Chen [28] and the other by the present BEM scheme.

The maximum relative difference is 1.88%. Furthermore, the jumps of the 0/zz ps across the

material interface at z/a = 0.8 is 0.00004 (or 0.017% of the actual value). Such small relative

errors and stress jumps indicate that the new BEM can be of high accuracy in calculating the

stresses at internal points.

5.3 The third verification case

The third verification case is the axisymmetric problems of layered halfspace with two

layers and a homogeneous halfspace subjected to a traction p over a circular region of radius a,

shown in Fig. 8. The two layers and the halfspace are assigned the names: layer 1, layer 2 and

layer 3. Pan and his co-workers [30-32] developed the software MultiSmart3D for pavement

analysis. Following Pan et al. [32], the elastic moduli and Poisson’s ratios and the layer

thicknesses are given as follows: E1=5GPa, E2=30GPa, E3=150GPa, 1 0.3n =  , 2 0.25n =  ,

3 0.2n = , 1 0.5kmh = , 2 5kmh = .

The results presented by Pan et al. [32] are used for the verification. The radius of the



16/59

loading circular region a=1km and the uniform normal load p0=1kPa.The fundamental solution

satisfies the fully bonded (or continuous) interfacial condition between two adjacent dissimilar

material layers. Therefore, in using the proposed BEM, only the external boundary surface

needs to be discretized and the material interfaces do not need to be discretized. Here, the twenty

finite isoparametric elements and one infinite element are used to discretize the boundary

surface, as shown in Fig. 9. Fig. 10 illustrates the radial and vertical displacements ( ru  and

zu ) on the boundary surface. The radial and vertical displacements in Fig. 10 have completely

the same tendency as the one in Fig. 3 of Pan et al. [32]. The present BEM program gives the

vertical displacement of 0.012177 cm at the center of the loaded circular area (r=0) and the

radial displacement of -0.0017105 cm at the boundary of the loaded circular area (r=1km). The

displacements at these two points are 0.01221 cm and -0.001681 cm, respectively [32]. The

maximum relative difference between the present numerical results and the exact results is

1.75%.

Pan et al. [32] presented only the surface deformation of a layered elastic halfspace due to

a uniform normal traction over a circular area. Herein, we use the proposed BEM method to

further calculate the displacements and stresses within the layered halfspaces subjected to

uniform tractions over circular areas in the following Sections 5.4.

5.4 The further results of the third verification case

5.4.1 A layered halfspace subject to uniform traction on the boundary surface

 In order to obtain the highly accurate solutions of displacements and stresses at the points

close to the horizontal boundary surface, the adaptive numerical integration method is adopted.

Furthermore, more elements are used to discretize the boundary near the internal points. As

shown in Fig. 11, the axisymmetric boundary surface of a halfspace is discretized by sixty finite

elements and one infinite element. Five different discretizations presented in Fig.11 are applied

when the radial coordinates of internal points are equal to 0,  0.5,  1,  1.5,  2 km , respectively.

For easy reference, the organizations of all numerical examples in Sections 5.4, 5.5 and 6 are

summarized in Table 2.
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The first new results are the elastic fields of a non-homogeneous halfspace with two

dissimilar layers and a homogeneous halfspace subjected to a uniform normal traction 0p

over a circular area. All five different boundary discretizations shown in Fig. 11 are applied for

internal points whose radial coordinates 0,  0.5,  1,  1.5,  2 kmr = , respectively. In addition, Fig.

11c is also used for the internal points whose radial coordinates 0.95,  1.05 kmr = .

Figs. 12a and 12b shows the depth variations of the horizontal and vertical displacements

( ru  and zu ) along four and five radial locations of the two-layered halfspace, respectively.

The two displacements ( ru   and zu  ) are non-smoothly continuous across the material

interfaces at z=0.5 and 5.5 km. As would be expected, all the displacements decrease with r and

z increasing and vary obviously in the first layer.

Figs. 13a, 13b, 13c, and 13d shows the depth variations of the four stress components ( rrs ,

qqs , zzs , rzs ) along five radial locations of the two-layered halfspace, respectively. Notice

that the shear stress components ( rqs  and zqs ) in axisymmetric problems are equal to zero.

The plane stresses ( rrs  and qqs ) are discontinuous across the material interfaces at z = 0.5

and 5.5 km whereas the vertical stresses ( zzs  and rzs ) are non-smoothly continuous across

the material interfaces z = 0.5 and 5.5 km. The stress jumps of rrs   at z = 0.5 km are,

respectively, 0.05347, 0.089823, 0.00961, 0.05636 and 0.00585 kPa for r=0, 0.5, 1, 1.5 and 2

km. The jumps of qqs  at z = 0.5 km are, respectively, 0.053505, 0.071621, 0.02368, 0.03813

and 0.02630 kPa for r = 0, 0.5, 1, 1.5 and 2 km. At z = 5.5 km, the stress jumps of rrs  ( qqs )

for r = 0, 0.5, 1, 1.5 and 2 km are 0.017168, 0.016458, 0.014483, 0.011608 and 0.0083260 kPa

(0.017168, 0.016761, 0.015603, 0.013868 and 0.011800 kPa), respectively. As z tends to zero,

the stress of zzs  approaches 1 kPa for r = 0 and 0.5 km and approaches 0.5 kPa for r = 1 km,

which can indicate that the proposed adaptive integration is of high accuracy, and the numerical

methods of calculating the stresses on the boundary surface and within the halfspace are

effective and correct.
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On the horizontal surface z = 0, the shear stress rzs  is equal to zero. rzs  approaches zero

as z tends to zero. Fig. 13d presents the variations of rzs  at r = 0.95 and 1.05 km along the z-

direction. It can be found that rzs  varies violently in the neighborhood of r = 1 km and z = 0.

5.4.2 A layered halfspace with a spherical cavity and subject to uniform traction on boundary

surface

 In this section, the layered elastic halfspace with a spherical cavity, shown in Fig. 14, is

analyzed. The halfspace is subjected to a uniform vertical load p0 on a circular area with a radius

of a=1 km. The spherical cavity has a radius R=1 km and is located within the layer 2. Fig. 15

shows the discretization mesh on the boundary surface (z = 0 and r ³ 0) and the boundary of

the spherical cavity (r ³ 0). The mesh of the horizontal boundary is the same as the one shown

in Fig. 9. The local spherical coordinate system (O’R φ), shown in Fig. 15, needs to be

established to describe the radial and hoop displacements on the boundary of the spherical

cavity.

 Fig. 16a and Fig. 16b respectively give the variations of the horizontal and vertical

displacements on the boundary surface z = 0 for the different distances of the spherical cavity

to the boundary surface (ds/a = 2, 2.5, 3, 3.5 and 4). As the distance ds of the center of the

spherical cavity to the horizontal boundary decreases, both the horizontal displacement ur and

the vertical displacement uz increase. For ds/a = 4, the two displacements with the cavity are

close to those without the cavity. At r/a = 1, ur has its peak values of -0.021763, -0.019617, -

0.018232, -0.017653, -0.017386 and -0.017105 mm for ds/a = 2, 2.5, 3, 3.5, 4 and ¥,

respectively. At r/a = 0, uz has its peak values of 0.14190, 0.12917, 0.12522, 0.12361, 0.12284

and 0.12173 mm for ds/a = 2, 2.5, 3, 3.5, 4 and ¥, respectively. These values quantitatively

show the effect of the cavity to the ground displacements. Note, the case ds/a = ¥ equals to the

case without cavity.

Fig. 17a and Fig. 17b respectively illustrate the radial displacements uR and the hoop

displacement uφ on the boundary of the spherical cavity. At a given ds value, the uR has its

maximum inward value at the hoop angle φ = 0°. Then as φ increases the inward value of uR

decreases to zero at φ0=74.70°, 75.45°, 76.03°, 76.56°, 77.21° for ds/a = 2, 2.5, 3, 3.5 and 4,
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respectively. After these angles, the uR changes to displace outward and its outward value

increases as φ increases to 180°. Secondly, the inward and outward values of uR at any value of

φ (0° £ φ <φ0 and φ0 < φ £ 180°) decrease, but its zero value keeps at φ =φ0, as the distance ds

increases from 2a to 4a. At φ = 0°, uR has its inward peak values of -0.071497, -0.043210, -

0.029790, -0.021749 and -0.016406 mm for ds/a = 2, 2.5, 3, 3.5 and 4, respectively. At φ = 180°,

uR has its outward peak values of 0.0052921, 0.0040745, 0.0030650, 0.0023056 and 0.0019059

mm for ds/a = 2, 2.5, 3, 3.5 and 4, respectively. These peak values show the importance of the

distance of the cavity to the traction at the ground.

Thirdly, at a given ds value, the hoop displacement uφ is along the clock-wise direction and

its value increases from zero to a peak value and then decreases to zero as φ increases from 0°

to 180°. At the peak value, φ is about 39.38° for ds/a = 2 and 2.5, 45° for 3, 3.5 and 4. Fourthly,

as ds increases, uφ decreases for any value of φ (0° < φ < 180°). At φ = 39.38° or 45°, uφ has its

peak values of 0.034293, 0.022810, 0.016612, 0.012563 and 0.0096641 mm for ds/a = 2, 2.5,

3, 3.5 and 4, respectively.

6. Numerical results and analyses of new applications

6.1 The vertically non-homogeneous solids and their n-layer approximation

The new examples given below are to analyze the elastic fields of four types of vertically

non-homogeneous solids subjected to uniform (or elliptical) normal tractions over circular areas.

As shown in Fig. 18, the elastic modulus ( )E z  and the Poisson’s ratio ( )zn  of the non-

homogeneous solid vary with depth z. According to Selvadurai and Katebi [25] and Katebi and

Selvadurai [26], this paper assumes ( )E z  and ( )zn  as follows:

( ) 1
0

zE z E el= , z H<  and ( ) 1
0

HE z E el= , z H³                 (23a)

( ) 2
0

zz eln n= , z H< and ( ) 2
0

Hz eln n= , z H³                  (23b)

where 1l  and 2l  are, respectively, the heterogeneous parameters of the elastic modulus and

the Poisson’s ratio. Eq. (23a) and Eq. (23b) show that the elastic modulus and the Poisson’s

ratio vary with depth when z H<  and keeps constant when z H³  . It is noted that
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( )1 0.5zn- < £  for the selection of 2l . Furthermore, it is assumed that H = a in the following

calculations.

As shown in Fig. 19, for 0 z H£ £ , the vertically non-homogeneous solid can be closely

approximated with n fully bonded dissimilar layers. Each layer has the thickness of H/n. For

the i-th layer, ( ) ( )iE z E z=  and ( ) ( )iz zn n=  , niHz /=  and 1,2,3, ,i n= L  . A close

approximation of the arbitrary depth variation of elastic modulus and Poisson’s ratio can be

obtained as the layer number n is large.

 Fig. 20 presents the variations of the vertical displacement ( ) 0 0, 0 /zu r E p a   with the

radial distance r/a for dissimilar layer number n = 5, 10, 20, 30, 40 and 50, respectively. The

traction boundary is discretized with the eight finite elements and one infinite element as given

in Fig. 6. The n can affect the vertical displacement. For n = 5, 10, 20, 30, 40 and 50, the

maximum values of ( ) 0 0, 0 /zu r E p a  at r/a = 0 in Fig. 20a (or Fig. 20b) are 0.94509, 0.91776,

0.90785, 0.90704, 0.89877 and 0.89692 (or 1.9303, 1.9269, 1.9248, 1.9248, 1.9242 and 1.9275),

respectively. Similar to the results presented by Xiao et al. [39], when n = 50, stable

displacement values can be obtained. So, n = 50 is used to calculate the elastic field of the

vertically non-homogeneous halfspace in the ensuing.

6.2 Vertically non-homogeneous halfspaces subjected to uniform traction

6.2.1 First case of different 1l values and 2 0l =

The first case is to investigate the variations of displacements and stresses for different 1l

values of the non-homogeneous solid. The boundary discretization mesh given in Fig. 11a is

used. 1l   is given six different values of 0.0, 0.1, 0.25, 0.5, 1.0, and 1.5, respectively. The

Poisson’s ratio ( ) 0.3zn = .

Figs. 21a and 21b show the vertical displacements ( ) 0 00, /zu z E p a  and ( ) 0 0, 0 /zu r E p a

as functions of z/a and r/a, respectively. Both ( ) 0 00, /zu z E p a   and ( ) 0 0, 0 /zu r E p a
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decrease as 1l  increases.

Figs 22a and 22b illustrate the radial normal stress ( ) 00, /rr z ps  and the vertical normal

stress ( ) 00, /zz z ps  as functions of z/a along the z-axis at r = 0, respectively. They show that

the 1l   can strongly affect ( ) 00, /rr z ps   and slightly affect ( ) 00, /zz z ps  . At z=0.35a,

( ) 00, /rr z ps  keep the same value of -0.40 in tension for the 6 different values of 1l . When

z<0.3a, the value of ( ) 00, /rr z ps   in tension decreases as 1l   increases. When z>0.3a, the

value of ( ) 00, /rr z ps   in tension increases as 1l   increases. However, the value of

( ) 00, /zz z ps  is always in compression and decreases as 1l  increases.

In general, ( ) 0 00, /zu z E p a , ( ) 00, /rr z ps , and ( ) 00, /zz z ps  are smoothly continuous

with z/a except at the material interface z/a =1, where they are non-smoothly continuous. The

( ) 00, /rr z ps   becomes non-smoothly continuous at the interface because the material

properties are the same across the interface.

6.2.2 Second case of different v0 values at λ1=1.0 and λ2 = 0

The second case is to investigate the variations of displacements and stresses for different

Poisson's ratios of non-homogeneous halfspaces with elastic modulus varying with depth. The

mesh in Fig. 11a is used again. The Poisson’s ratio ( ) 0 0zn n= = , 0.1, 0.2, 0.3, 0.4 and 0.5,

respectively and the modulus ( ) 0
zE z E e=  for the case of 1 1l = .

Fig. 23 shows ( ) 0 00, /zu z E p a  as functions of z/a for six different values of Poisson’s

ratios. ( ) 0 00, /zu z E p a   decreases as Poisson’s ratio increases at any given z/a and as z/a

increases at any Poisson’s ratio value.

Fig. 24a and Fig. 24b illustrate the radial normal stress ( ) 00, /rr z ps   and the vertical

normal stress ( ) 00, /zz z ps  as functions of z/a along the z-axis at r = 0 for the six Poisson’s

ratio values, respectively. It is evident that the Poisson’s ratio value can strongly affect
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( ) 00, /rr z ps   and slightly affect ( ) 00, /zz z ps  . The value of ( ) 00, /rr z ps   in tension

increases as the Poisson’s ratio value increases from 0 to 0.5 at any fixed depth z/a, and

decreases as z/a increases at a fixed Poisson’s ratio value. The value of ( ) 00, /zz z ps   in

compression increases as the Poisson’s ratio value increases from 0 to 0.5 at any fixed depth

z/a, and decreases as z/a increases at a fixed Poisson’s ratio value.

6.2.3 Third case of different 2l  values and 1 0l =

The third case is to investigate the variations of displacements and stresses for different 2l

of non-homogeneous solid with Poisson's ratio varying with depth. The mesh in Fig. 11b is

used. The heterogeneous parameter of the Poisson’s ratio 2l  is assumed to equal to 0, 0.5, 1

and 1.5. 0 0.1n =  and ( ) 0E z E=  for 1 0l = .

Fig. 25a and Fig.25b show the horizontal radial displacement ( ) 0 00.5 , /ru a z E p a  and the

vertical displacement ( ) 0 00.5 , /zu a z E p a   as the functions of z/a at the four values of 2l  ,

respectively. They show evidently that the 2l  values can strongly affect ( ) 0 00.5 , /ru a z E p a

and slightly affect ( ) 0 00.5 , /zu a z E p a  . In Fig. 25a, at a fixed 2l   value, the value of

( ) 0 00.5 , /ru a z E p a  has (1) its maximum negative value for z/a at 0, (2) then increases to zero

as z/a increases from 0 to about 0.5, (3) then increases positively to its maximum positive value

as z/a increases about 0.5 to 1 (the interface), and (4) then decreases positively to zero value as

z/a increases 1 to infinite. At a fixed z/a value, the value of ( ) 0 00.5 , /ru a z E p a  increases as

2l  increases from 0 to 1.5. In Fig. 25b, ( ) 0 00.5 , /zu a z E p a  decreases rapidly as z/a increases

and increases very slightly as 2l  increases from 0 to 1.5.

Fig. 26a, Fig. 26b and Fig. 26c illustrate the radial normal stress ( ) 00.5 , /rr a z ps  , the

vertical normal stress ( ) 00.5 , /zz a z ps  , and the radial shear stress ( ) 00.5 , /rz a z ps   as
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functions of z/a along the z-axis at r = 0.5a for the four 2l  values, respectively. Similar to the

above observations, the 2l   values can affect strongly ( ) 00.5 , /rr a z ps  , slightly

( ) 00.5 , /rz a z ps   and very slightly ( ) 00.5 , /zz a z ps  . In Fig. 26a, ( ) 00.5 , /rr a z ps   changes

significantly as z/a between 0.5 and 3. In Fig. 26c, ( ) 00.5 , /rz a z ps  varies noticeably as z/a

between 0.5 and 1.3.

In general, ( ) 0 00.5 , /ru a z E p a , ( ) 0 00.5 , /zu a z E p a , ( ) 00.5 , /rr a z ps , ( ) 00.5 , /zz a z ps ,

and ( ) 00.5 , /rz a z ps  are smoothly continuous with z/a except at the material interface z/a=1,

where they are non-smoothly continuous. The ( ) 00.5 , /rr a z ps   becomes non-smoothly

continuous at the interface because the material properties are the same across the interface.

6.3 Effect of a spherical cavity in a vertically non-homogeneous halfspace

The new BEM is further applied to the analysis of a non-homogeneous elastic halfspace a

spherical cavity, as shown in Fig. 27 in this sub-section. The halfspace is subjected to a uniform

vertical load p0 on a circular area with a radius of a. The elastic modulus varies with depth

( 1 1l = ) and the Poisson’s ratio keeps constant with depth ( 0 0.3n =  and 2 0l = ). The spherical

cavity with a radius of a is completely within the lower homogeneous solid. The discretization

mesh in Fig. 15 is further used here. Similar to those given in sub-sub-section 5.4.2, the results

of this case are given and analyzed below.

 Fig. 28a and Fig. 28b respectively give the variations of the horizontal radial displacement

( ) 0 0, 0 /ru r E p a  and the vertical displacement ( ) 0 0, 0 /zu r E p a on the horizontal boundary z

= 0 as functions of r/a, where ds/a = 2, 2.5, 3, 3.5, 4 and ¥. As ds/a decreases, both

( ) 0 0, 0 /ru r E p a  and ( ) 0 0, 0 /zu r E p a  increase. For ds/a = 4, they are close to those without

the cavity. At r/a = 1, ( ) 0 0, 0 /ru r E p a  has its peak values of -0.18111, -0.14842, -0.13599, -

0.13076, -0.12838 and -0.12560 for ds/a = 2, 2.5, 3, 3.5, 4 and ¥, respectively. At r/a=0,

( ) 0 0, 0 /zu r E p a   has its peak values of 1.08760, 0.96789, 0.93568, 0.91503, 0.90964 and
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0.89950 for ds/a = 2, 2.5, 3, 3.5, 4 and ¥, respectively. These values quantitatively show the

effect of the cavity to the ground displacements. Note, the case ds/a = ¥ equals to the case

without cavity.

Fig. 29a and Fig. 29b illustrate the radial displacements ( ) 0 0, /Ru a E p aj  and the hoop

displacement ( ) 0 0, /u a E p aj j  on the internal boundary of the spherical cavity. At a given ds

value, the ( ) 0 0, /Ru a E p aj has its maximum inward value at φ = 0°. Then as φ increases the

inward value of ( ) 0 0, /Ru a E p aj  decreases to zero at φ0 =78.64°, 79.88°, 81.21°, 82.02° and

82.87° for ds/a = 2, 2.5, 3, 3.5 and 4, respectively. After these angles, the ( ) 0 0, /Ru a E p aj

changes to displace outward and its outward value increases as φ increases to 180°. Secondly,

the inward and outward values of ( ) 0 0, /Ru a E p aj  at any value of φ (0° £ φ < φ0 and φ0 < φ

£ 180°) decrease, but its zero value keeps at φ = φ0, as the distance ds increases from 2a to 4a.

At φ = 0°, ( ) 0 0, /Ru a E p aj  has its inward peak values of -0.79605, -0.52227, -0.38444, -

0.30130 and -0.24595 for ds/a = 2, 2.5, 3, 3.5 and 4, respectively. At φ = 180°, ( ) 0 0, /Ru a E p aj

has its outward peak values of 0.12757, 0.11596, 0.10594, 0.09731 and 0.08992 for ds/a = 2,

2.5, 3, 3.5 and 4, respectively. These peak values show the importance of the distance of the

cavity to the traction at the ground.

Thirdly, at a given ds value, the hoop displacement ( ) 0 0, /u a E p aj j  is along the clock-

wise direction and its value increases from zero to a peak value and then decreases to zero as φ

increases from 0° to 180°. At the peak value, φ is 39.38° for ds/a = 2, 45° for ds/a = 2.5, 50.62°

for ds/a=3, 56.25° for ds/a = 3.5 and 4. Fourthly, as ds increases, ( ) 0 0, /u a E p aj j decreases for

any value of φ (0° < φ < 180°). At φ = 39.38°, 45°, 50.62°, 56.25° and 56.25°, ( ) 0 0, /u a E p aj j

has its peak values of 0.39409, 0.28629, 0.22535, 0.18601 and 0.15876 for ds/a = 2, 2.5, 3, 3.5

and 4, respectively.

7. Conclusions
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In this paper, a new BEM has been developed for accurately and efficiently analyzing the

axisymmetric elasticity problems in vertically non-homogeneous solids without or with a cavity

subject to uniform tractions on boundary surfaces. The elastic properties of vertically non-

homogeneous solids exhibit arbitrary variations in depth and keep constant in lateral directions.

The new BEM is applicable to those special cases that both the structures and the loadings are

symmetrical at the vertical axis z. For some axisymmetric geometries under non-axisymmetric

loads, contact problems and fracture mechanics, special treatments are necessary. The key

findings of the new BEM analysis are listed in Table 3. Further BEM analysis of axisymmetric

problems of finite extent such as elliptical solid and hollow cylinder will be presented in future

publications.
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Appendix A. The basic formulations of the fundamental solution of a layered

solid subjected to circular ring loads

The fundamental solutions ( ),Y
ijt P Q   and ( ),Y

iju P Q   for a multilayered elastic solid,

shown in Eq. (2), may be expressed as

( ) ( ) ( )
1

=
i

Y
ij jk kf

t P Q P Q n Qs
=

, ,     ( , , ,i j k r z= )               (A.1)

( ) ( )
1

=
i

Y
ij j f

u P Q u P Q
=

, ,           ( , ,i j r z= )              (A.2)

where if   is a circular ring load acted at the source point ( )P r z,   along the i direction,

( )
1i

jk f
P Qs

=
,  and ( )

1i
j f

u P Q
=

,  are, respectively, the stresses and displacements at the field
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source ( ),Q r z   induced by the circular ring load if   and ( )kn Q   is the outward normal

component of the field point Q.

Yue [40-42] utilized classical integral transforms and a backward transfer matrix method

to develop the closed-form fundamental solution of the stresses ( ),jk P Qs  and displacements

( ),ju P Q  in Eqs. (A.1) and (A.2). For completeness, the essential formulations are presented

in the ensuing. Note that the fundamental solution of a layered solid subjected to the

concentrated load fq  along the hoop direction is also presented in Yue [40-42].

The corresponding fundamental singular solutions of the layered solid due to the body force

vector uniformly concentrated on the circular ring, ie, ( )Tfc r zf f fq= , can be expressed

as follows:

( ) ( ) ( )T
0 0 0

1
2

u , , G , , fr z u cr r z u u u r r zq p
= =                     (A.3)

( ) ( ) ( )T
0 0 0

1
2

T , , G , , fz rz z zz z cr r z r r zqs s s
p

= =                    (A.4)

( ) ( ) ( )T
0 0 0

1
2

Γ , , G , , fp rr r p cr r z r r zq qqe e e
p

= =                    (A.5)

where 0r   is the radius of the ring loads, ( ),r z   is the coordinate of a field point, and the

Green’s functions in matrix form are defined as follows:

( ) ( ) ( ) ( )
+

0 0 0 0 00

1=
2

*G , , Π Φ , Πu c cr r z r z r dr r r r
p

¥

ò                   (A.6)

( ) ( ) ( ) ( )
+

0 0 0 0 00

1=
2

*G , , Π Ψ , Πz c cr r z r z r dr r r r
p

¥

ò                   (A.7)

( ) ( ) ( ) ( )
+

0 0 0 0 00

1=
2

*G , , Π Φ , Πp cp cr r z r z r dr r r r
p

¥

ò                    (A.8)

where

)(
)(00

0)(0
00)(

)( *
0

0

1

1
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rJ
rJ
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r

r ΠΠ =
ú
ú
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û
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ê
ê

ë

é

-

-
=                (A.9)
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The ( )0J rr  , ( )1J rr   and ( )2J rr   are the Bessel functions of orders 0, 1 and 2,

respectively. The basic solution matrices ( ), zrΦ   and ( ), zrΨ   are related only to the

material properties of the n-layered solids and can be further expressed as
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                     (A.12)

A rigorous mathematical verification has been conducted for the convergence and

properties of the solutions expressed in the forms of inverse integral transforms. The ten

fundamental functions in Eqs. (A.12) and (A.13) are continuous functions of the integral

variables ( )0r r£ < ¥  and the depth ( )0z z£ < ¥  except that 11Y , 22Y  and 33Y  have

a unit step decrease at z=d and that they have no functions of exponential growth. The unit step

decrease of 11Y , 22Y  and 33Y  at z=d is due to the presence of the point loads at z=d. In

addition, as the integral variable ρ approaches to infinity, the ten fundamental functions quickly

vanish to zero by following z de r- -  for d³- dz , where d  is a positive small number.

For z d d- < , a special treatment is needed to isolate the singular terms in the improper

integrals of (A.6) to (A.8) [40-42].

A proceeding limit technique, based on an adaptively iterative Simpson’s quadrature, is

adopted in the evaluation of the inverse Hankel transform integrals in Eqs. (A.6) - (A.8). Using

the procedure, the semi-infinite interval of the inverse Hankel transform integrals can be

accommodated and the improper integrals can be efficiently evaluated with high and controlled

accuracy.

It is noted that the solutions of the plane stresses ( rrs , rqs , qqs ) and the vertical strains
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( rze , zqe , zze ) due to the ring loads rf , fq  and zf  can be easily obtained from the solutions

of the vertical stresses ( rzs  , zqs  , zzs  ) and the plane strains ( rre  , rqe  , qqe  ) by using the

constitutive equations. More details of the expressions and mathematical properties of the

fundamental solution can be found in Yue [40-42].

Appendix B. The kernel functions Y
ij ,ku  and Y

ij ,kt

The new kernels Y
ij ,ku  and Y

ij ,kt  in Eq. (2) can be approximated using difference formula

as follows:

( ) ( )1 , ,
2

Y
ij Y Y

ij ij

u
u r D z u r D z

r D
¶

é ù» + - -ë û¶
                   (B.1)

( ) ( )1 , ,
2

Y
ij Y Y

ij ij

u
u r z D u r z D

z D
¶

é ù» + - -ë û¶
                     (B.2)

where r and z are the coordinates of the source point p in the global coordinate system and D is

the distance between the two source points. The derivatives Y
ij ,kt  of the tractions can also be

calculated using the above methods.

When the source point p is located at 0r= , the following difference formula can be used

( ) ( )1 , 0,
Y
ij Y Y

ij ij

u
u D z u z

r D
¶

é ù» -ë û¶
                          (B.3)

( ) ( )1 0, 0, -
2

Y
ij Y Y

ij ij

u
u z D u z D

z D
¶

é ù» + -ë û¶
                        (B.4)

The choice of the interval D is a crucial decision and an extensive numerical investigation

is executed in Tonon et al. [51]. The best D value is 610 R-  where R is the distance between

the source and field points.
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(a)                                    (b)

Fig. 1. Typical axisymmetric problems in vertically non-homogeneous solids subject

to traction: (a) without and (b) with a cavity

Qr

S

Fig. 2. Definition of the integral domain for BEM analysis of axisymmetric problems in a

homogeneous solid
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rf
02r

zf

Fig. 3. A multilayered elastic solid of infinite extent subject to a body force vector uniformly

concentrated along a circular ring horizontally placed at depth d

FS IS FS IS

FS

(a)                                   (b)

Fig. 4. BEM analysis of axisymmetric problems in a layered solid subject to traction: (a)

without cavity and (b) with a cavity



35/59

x

=-1x =0x =1x

(a) A finite boundary element with three node points at 1, 2, and 3

x

=-1x =0x =1x

(b) An infinite boundary element with two node points at 1 and 2

Fig. 5. The two types of line (1-D) boundary elements for BEM analysis of axisymmetric

problems: (a) finite region and (b) semi-infinite region

0p

Fig. 6. Discretization mesh of the axisymmetric boundary surface of a halfspace into eight

finite boundary elements and one infinite boundary element
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Fig. 7. Comparison of three results for the vertical displacement at the boundary surface of a

homogeneous elastic halfspace subject to uniform normal traction over a circular area

1 1 10 5 km, 5 GPa, 0 3. .h E n= = =

2 2 25 km, 30 GPa, 0 25.h E n= = =

3 3150 GPa, 0 2E n= = .

1 kma =

0p

Fig. 8. Axisymmetric problem of a two-layered elastic halfspace whose boundary surface

subject to uniform normal traction over a circular area
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Fig. 9. Discretization mesh of the axisymmetric boundary surface of a halfspace into twenty

finite elements and one infinite element
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Fig. 10. BEM results of the radial and vertical displacements ( ru and zu ) on the boundary

surface of the two-layered halfspace due to the uniform normal traction over a circular area
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Fig. 11. Five different discretization meshes of the axisymmetric boundary surface of a

halfspace into sixty finite elements and one infinite element: (a) r = 0.0 km, (b) r = 0.5 km, (c)

r = 1.0 km, (d) r = 1.5 km, and (e) r = 2.0 km
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Fig. 12. Variations of displacements with the depth in the two-layered halfspace subject to a

uniform normal traction over a circular area: (a) the horizontal displacement ur at four radial

distance locations and (b) the vertical displacement at five radial distance locations
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Fig. 13. Variations of the four stress components with depth at five radial distances in the

two-layered halfspace subject to a uniform normal traction over a circular area: (a)
rrs , (b)

qqs , (c)
zzs , and (d)

rzs
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1 1 10 5 km, 5 GPa, 0 3. .h E n= = =

2 2 25 km, 30 GPa, 0 25.h E n= = =

3 3150 GPa, 0 2E n= = .

1 kma =

0p

1 kmR =

φ

Fig. 14. Axisymmetric problem of a two-layered elastic halfspace with a spherical cavity at

depth ds subject to uniform normal traction over a circular area
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Fig. 15. BEM discretization mesh of the horizontal external boundary and the internal cavity

boundary of the layered halfspace with a spherical cavity
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Fig. 16. Variations of the displacements with radial distance on the horizontal external

boundary of the two-layered halfspace without and with a spherical cavity subject to a

uniform normal traction over a circular area: (a) the horizontal radial displacement ur, (b) the

vertical displacement uz
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Fig. 17. Variations of the displacements with the hoop angle j on the internal boundary

surface of a spherical cavity in the two-layered halfspace whose external boundary surface

subject to a uniform normal traction over a circular area: (a) the radial displacements uR, (b)

the hoop displacement uφ
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Fig. 18. An axisymmetric problem of a vertically non-homogeneous solid with modulus and

Poisson’s ratio arbitrarily variable with depth subject to a uniform normal traction over a

circular area
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Fig. 19. Approximation of the continuous depth variation of the elastic modulus and Poisson’s

ratio by a layered system of 50 dissimilar homogeneous thin layers
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Fig. 20. Comparisons of the six vertical displacement results from six n values of the thin

layer number for the vertical non-homogeneous solid subject to a uniform normal traction: (a)

approximation of elastic modulus and (b) approximation of the Poisson’s ratio
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Fig. 22. Variations of the two normal stresses at the center with depth for six 1λ  values of a

vertically non-homogeneous solid subject to a uniform normal traction over a circular area:

(a) the radial normal stress 0/),0( pzrrs , (b) the vertical normal stress 0/),0( pzzzs
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Fig. 23. Depth variations of the vertical displacement results for six Poisson’s ratio values of

a vertically non-homogeneous solid subject to a uniform normal traction over a circular area
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Fig. 24. Depth variations of the two normal stress results for six Poisson’s ratio values of a

vertically non-homogeneous solid subject to a uniform normal traction over a circular area:

(a) the radial normal stress 0/),0( pzrrs , (b) the vertical normal stress 0/),0( pzzzs
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Fig. 25. Depth variations of the two displacements for four 2λ  values of a vertically non-

homogeneous solid subject to a uniform normal traction over a circular area: (a) the horizontal

radial displacement apzauE r 00 /),5.0( , (b) the vertical displacement apzauE z 00 /),5.0(
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Fig. 26. Depth variations of the three stresses for four 2λ  values of a vertically non-

homogeneous solid subject to a uniform normal traction over a circular area: (a) the radial
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Fig. 27. Axisymmetric problem of a vertically non-homogeneous halfspace with a spherical

cavity whose external boundary surface subject to uniform normal traction over a circular area
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Fig. 28. Variations of the two displacements with the radial distance on the external

horizontal boundary of a vertically non-homogeneous solid without and with a spherical

cavity subject to a uniform normal traction over a circular area: (a) the horizontal radial

displacement ur, (b) the vertical displacement uz
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Fig. 29. Variations of the displacements with the hoop angle j on the internal boundary
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boundary surface subject to a uniform normal traction over a circular area: (a) the radial

displacements uR, (b) the hoop displacement uφ
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Table. 1 Comparison of the radial and vertical normal stresses at the material interface and their relative errors

(r/a, z/a)
0/rrσ p 0/zzσ p

Present  Chen [28] Relative error Present  Chen [28] Relative error

(1.0,0.8-10-5) -0.11009 -0.10881786 1.17% -0.23852 -0.23769637 0.035%

(1.0,0.8+10-5) -0.11795 -0.11576585 1.88% -0.23856 -0.23769637 0.036%
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Table. 2 Organization of BEM examples in this paper

Sections BEM examples Purposes Calculation information

5.4

Layered halfspace Investigate the depth variations of displacements and stresses 1 5GPaE = , 2 30GPaE = ,

3 150GPaE = , 1 0 3ν .= ,
2 0 25ν .= , 3 0 2ν .= ,

1 0 5kmh .= , 2 5kmh =
Spherical cavity in a
layered halfspace

Investigate the variations of displacements on the boundaries

6.2
Vertically non-
homogeneous
halfspaces

Investigate the variations of displacements and stresses for different
λ1 of non-homogeneous halfspaces with elastic modulus varying with
depth

λ1= 0.1, 0.25, 0.5, 1, 1.5
λ2= 0, ν0=0.3

Investigate the variations of displacements and stresses for different
Poisson's ratios of non-homogeneous halfspaces with elastic modulus
varying with depth

λ1= 1
ν(z)=0, 0.1, 0.2, 0.3, 0.4, 0.5

Investigate the variations of displacements and stresses for different
λ2 of non-homogeneous halfspaces with Poisson's ratio varying with
depth

E(z)=E0,
ν0=0.1, λ2= 0.5, 1, 1.5

6.3

Spherical cavity in a
vertically non-
homogeneous
halfspace

Investigate the variations of displacements on the boundaries
λ1=1, ν(z)=0.3; ds/a = 2.0, 2.5,
3.0, 3.5, 4.0



59/59

Table. 3 Summary of key findings and conclusions

Aspects Key findings

Boundary element techniques

(1) In this BEM, Yue’s solution is used to eliminate the requirement of mesh discretization for the internal material

interface planes and only the horizontal boundary surface of a halfspace and the boundary of a cavity need to

be discretized.

(2) The core region around the traction area can be discretized using finite isoparametric elements and the far-

field region beyond the traction area can be discretized using one infinite boundary element.

(3) The infinite boundary element is used to effectively and efficiently take into account the influence of a far

region to a core region around the loading area.

Numerical results and

verifications

(4) The numerical verifications illustrate that this BEM can obtain the accurate results of axisymmetric problems

in vertically non-homogeneous solids.

(5) The two displacements (ur and uz) and the vertical stresses (σzz and σrz) are non-smoothly continuous across

the material interfaces whereas the plane stresses (σrr and σθθ) are discontinuous at the material interfaces.

(6) When the elastic modulus varies with depth, the elastic modulus has an evident effect on displacements.

(7) When the Poisson’s ratio varies with depth, the Poisson's ratio has a significant influence on the displacement

ur and the stress components ( σrr and σrz).

(8) The position of the spherical cavity significantly affects the displacements on the boundaries of the layered

and non-homogeneous halfspaces.


