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Theory of wave-packet transport under narrow gaps and spatial textures:
Nonadiabaticity and semiclassicality
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We generalize the celebrated semiclassical wave-packet approach from the adiabatic to the nonadiabatic
regime. A unified description covering both of these regimes is particularly desired for systems with spatially
varying band structures where band gaps of various sizes are simultaneously present, e.g., in moiré patterns. For
a single wave packet, alternative to the previous derivation by Lagrangian variational approach, we show that the
same semiclassical equations of motion can be obtained by introducing a spatial-texture-induced force operator
similar to the Ehrenfest theorem. For semiclassically computing the current, the ensemble of wave packets based
on adiabatic dynamics is shown to well correspond to a phase-space fluid for which the fluid’s mass and velocity
are two distinguishable properties. This distinction is not inherited to the ensemble of wave packets with the
nonadiabatic dynamics. We extend the adiabatic kinetic theory to the nonadiabatic regime by taking into account
decoherence, whose joint action with electric field favors certain forms of interband coherence. The steady-state
density matrix as a function of the phase-space variables is then phenomenologically obtained for calculating
the current. The result, applicable with a finite electric field, expectedly reproduces the known adiabatic limit by
taking the electric field to be infinitesimal, and therefore attains a unified description from the adiabatic to the
nonadiabatic situations.
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I. INTRODUCTION

The so-called semiclassical wave-packet approach has
been successfully applied to study the motion of electrons
in crystals [1,2]. Most notably, in the semiclassical equa-
tions of motion (SC-EOM) for the wave packet, anoma-
lous velocities in terms of the Berry curvatures play a key
role in understanding the steady transport properties for a
number of phenomena, including the anomalous Hall ef-
fect [3–7], spin Hall effect [8,9], and the valley Hall effect
[10,11], as well as chiral anomaly in Weyl metals [12]. The
nonsympletic structure of the SC-EOM [13,14] also raises
interest in its real-time dynamics in the context of Dirac
semimetals [15] and diffusive processes [16,17]. The poten-
tial utility of the semiclassical wave-packet approach merits
further attention.

In general, given the strength of the applied electric field,
the bands of an electronic material can be grouped into
manifolds, see Fig. 1. Those bands whose spacings are small
in comparison to the energy scale associated with the external
field are grouped into the same manifold. By definition, inter-
manifold energy spacing is much larger than the applied field.
When one focuses on the motion of a wave packet within a
particular manifold, the effects of other manifolds are mani-
fested by the Berry curvatures in the SC-EOM. [2] We call
the manifold of focus the active manifold and the bands within
that manifold active bands. The already known semiclassical
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wave packet approaches mainly deal with two situations in
the active manifold. The first is that the active manifold
has only one band with Abelian Berry curvatures [18–20].
The second is that it consists of several degenerate bands
with non-Abelian Berry curvatures [21,22]. For both cases,
given the large gaps between different manifolds, the effect
of an electric field whose strength is small in comparison to
these gaps can be well captured by the first-order adiabatic
approximation, which accounts the electric field to the first
order. However, in addition to these two situations, there is a
third situation where the active manifold contains several non-
degenerate bands. For this third case, although the effect of the
electric field on an intermanifold transition can be accounted
by the same approximation; its effect on the intramanifold
transitions, due to the relatively small energy separations,
should be taken into account to all orders and is expected
to induce nonadiabatic dynamics. Henceforth, throughout this
paper, we term this third case as nonadiabatic with the two
former cases adiabatic. The purpose of the present paper is to
generalize the semiclassical wave-packet approach developed
in a series of studies [18–21] and reviewed in Ref. [2] for the
adiabatic situation to the nonadiabatic one. This is motivated
by the following realistic considerations.

(i) Berry curvature is inversely proportional to the square
of the gap and therefore features a hot spot at the small gaps
typically arising from band anticrossings. Examples include
gapped graphene [23,24] and the recently discovered 2D
MnBi2Te4 (with gap sizes of tens of meV) [25–28]. Electron
transport under finite electric field raises the need of address-
ing the nonadiabaticity.
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FIG. 1. The bands are grouped into manifolds, each indicated
by a red box. Intermanifold energy spacing is much larger than
the applied electric field. The two left columns are the scenarios
where each manifold either has a single band only or consists
of fully degenerate bands. The corresponding currents are given,
respectively, by Eqs. (47) and (53), which directly make use of
center-of-mass SC-EOM, Eq. (42) [and its single-band reduction,
Eqs. (43)]. In the rightmost column, the manifold enclosing the
Fermi energy (dashed line) consists of several nondegenerate bands
with small energy spacing/gap. Nonadiabatic generalization takes
into account decoherence, whose joint action with driving electric
field favors a certain form of interband coherence, which affects
center-of-mass variables as given by Eqs. (58) and results in a current
given by Eq. (60). See Sec. III for detailed discussions.

(ii) The wave-packet approach can directly address spa-
tially varying band structures, in addition to momentum tex-
tures, exemplified by its application to systems with deforma-
tion potentials [20] and magnetic textures [29,30]. Spatially
varying band structures are also relevant in long-period moiré
superlattices (with periods much larger than the lattice con-
stant) of high current interest. Experimentally, the location
dependence of gap sizes has already been observed [31,32].
However, theoretical understanding of the electronic struc-
tures is mainly limited to moiré minibands [33–35], which
treats the long-period moiré pattern from the perspective
of global band structure and henceforth does not address
explicitly the spatial textures. The wave-packet approach is,
on one hand, complementary to the miniband picture and,
on the other hand, beneficial when the moiré pattern is
nonperiodic, as found in most experimental realities. The
nonadiabatic effects are sometimes inevitable due to moiré
spatial textures. Gapped graphene on hexagonal boron nitrides
[23,24] is such an example, where an infinitesimal local
gap exists due to sign reversal of the gap as a function
of location.

Generalization of the semiclassical wave-packet approach
developed in the adiabatic regime to the nonadiabatic regime
is not straightforward. This can be seen from the two primary
steps in constructing a semiclassical wave-packet theory for
studying electron transport [1,2]. In the first step, one ob-
tains the SC-EOM for the center of mass of a single wave
packet. For the second step, one considers an electron gas
as an ensemble of wave packets and computes the current J

by [1,2,18,19,22]

J = −e
∫

dk f (k)ẋ, (1)

where ẋ is the velocity of the wave packet obtained from the
SC-EOM in the first step and f (k) = f0(k) + δ f (k) is the
carrier distribution function in which f0(k) is the equilibrium
part and δ f is the deviation from equilibrium. For the adia-
batic cases, where the active manifold has only one band or
degenerate bands, f0(k) can be unambiguously assigned by
the Fermi distribution function evaluated with that particular
band energy. However, in the nonadiabatic situation, the elec-
tron has interband coherence among a number of bands with
distinct energies and various occupations within the active
manifold. Even just evaluating the equilibrium part of the
distribution function raises ambiguity. For studies involving
the magnetization currents, [36,37]. Equation (1) is referred
to as the local current to distinguish it from the magnetization
current, which we do not discuss here.

Figure 1 tabulates available formulas as our reference for
making generalizations in the first two columns. The third
column summarizes the generalized results from this paper.
In Sec. II A, we derive the SC-EOM of a wave packet using
a different approach, without repeating the derivation by
the variational approach for a wave-packet-based Lagragian
[2,18–21]. How the SC-EOM emerges from a more fun-
damental quantum consideration has long been interesting,
within both the conventions of solid-state physics [19–22,38–
45] and mathematical physics, [46–50]. Here we start from
the full-band space and introduce a force operator similar
to the spirit of the Ehrenfest theorem. We will show that with
the aid of the Newtonian law for the time-changing rate of
momentum, SC-EOM straightforwardly arises. In Sec. II B,
we discuss how the Berry curvatures appear in the SC-EOM
[19–21] when one groups the full bands into manifolds and
focuses on a particular one. We will see that when the
active manifold contains several bands, non-Abelian Berry
curvatures are obtained without requiring exact degeneracy
within this manifold, i.e., for the situations illustrated in the
second and the third columns of Fig. 1. By definition, the
non-Abelian Berry curvature reduces to an Abelian one by
reducing the number of bands in the active manifold to one.
In Sec. III, we turn to an ensemble of wave packets for
semiclassically computing the current for an electron gas. The
gas of electrons is inspected using the the kinetic theory [1]
and we extend it to include nonadiabatic effects by taking
into account decoherence, whose joint action with the electric
field favors a certain form of interband coherence. We then
show the reproduction of known results by reducing the active
manifold to contain either one band or only degenerate bands.
A summary is in Sec. IV.

II. SEMICLASSICAL WAVE-PACKET DYNAMICS

In this section, we first concentrate on the dynamics of
a single wave packet in a system of multiple bands with
spatially varying band structures. In the series of works on
the adiabatic wave-packet theory [18–21], one can identify
a main theoretical framework and over this main framework
two “corrections” can be considered, namely, the gradient
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correction[20] and the correction to the density of states in
the phase space [13]. To concentrate on the nonadiabatic issue
arising from narrow gaps under finite electric field, we ignore
both of these two corrections here. Therefore, the present
theory is only restricted to the cases of very smooth spatial
variations such that the gradient correction is expected to be
insignificant. We also exclusively consider transport driven
only by an external electric field and we assume that there is
no external magnetic field. As we will show later in Sec. III,
the known density of states correction involves a particular
feature of the adiabatic wave-packet dynamics which is no
longer available in the nonadiabatic regime.

A. Full-band dynamics of an electron wave packet
in spatial and momentum textures

Spatially varying band structures can be obtained by desig-
nating to each local region a Hamiltonian with corresponding
periodic potential. This so-called local Hamiltonian can be
understood as the Hamiltonian experienced by an electron
localized as a wave packet in the corresponding region, with
the capacity to encode the information of spatial textures
[20–22]. The real-space coordinate xc of the wave packet’s
center parameterizes and characterizes such a local Hamilto-
nian, denoted as Hc(xc, t ), where the extra time dependence t
comes from a time-dependent vector potential.

The local Hamiltonian possesses Bloch states as its eigen-
states denoted by |ψn,q(xc, t )〉 with eigenenergies εn,q(xc, t )
where n is the band index, q is the momentum quantum
number, and (xc, t ) reminds us of the parameterization of
the local Hamiltonian. This guarantees that the corresponding
Schrödinger equation,

Hc(xc, t )|�(t )〉 = ih̄|�̇(t )〉, (2)

has a solution of the form

|�(t )〉 =
∑

n

ηn(t )|ψn,qc
(xc, t )〉. (3)

In principle, the wave function in a slowly perturbed crystal is
a continuous superposition of Bloch states that has a certain
extension in momentum space and consequently also has a
width in real space, thus pictured as a wave packet. The
size of the wave packet is large compared to the lattice
constant of the local crystalline structure and small compared
to the length scale over which the local crystalline structure
smoothly varies and its extension in momentum space is
sharply centered at some momentum qc. We then approximate
the wave function by Eq. (3) and understand it as a wave
packet parameterized by the real-space center xc and the
momentum-space center h̄qc, namely, |�(t )〉 = |�(qc, xc, t )〉.
Note here that in Eq. (3), the band index n is summed over
all bands of Hc(xc, t ) for the proper inclusion of nonadiabatic
effects.

As the wave packet can move throughout the space, its
position xc and momentum h̄qc can change over time. The
changing rate ẋc is naturally the velocity and h̄q̇c is interpreted
as the force associated with the rate of change of the crystal
momentum. Using the Heisenberg EOM, the velocity operator
is found to be

V̂ (xc, t ) = − i

h̄
[X̂ , Hc(xc, t )], (4)

The expectation value of the velocity operator should be the
wave packet’s spatial velocity,

ẋc = 〈�(t )|V̂ (xc, t )|�(t )〉, (5)

on a self-consistent ground.
In the Ehrenfest theorem, the so-called force operator is

defined by the minus of the potential gradient. Similarly, here
we define a force operator by

F̂(xc, t ) = −∂Hc(xc, t )

∂xc
. (6)

The expectation value of the Ehrenfest’s force operator gives
the time derivative of the expectation value of the bare mo-
mentum operator. In parallel to this, we replace the bare
momentum by the crystal momentum h̄qc in our case, and its
time derivative is then assumed to be the expectation value of
the corresponding force operator, namely,

h̄q̇c = 〈�(t )|F̂(xc, t )|�(t )〉. (7)

Substituting Eq. (3) into Eqs. (5) and (7), we are led to

ẋc = 〈χ (t )|∂H
c(xc, qc, t )

∂ h̄qc
|χ (t )〉, (8)

h̄q̇c = −〈χ (t )|∂H
c(xc, qc, t )

∂xc
|χ (t )〉, (9)

where Hc(xc, qc, t ) = e−iqc·X̂ Hc(xc, t )eiqc·X̂ . Here |χ (t )〉 =∑
n ηn(t )|un,qc

(xc, t )〉 with |un,qc
(xc, t )〉 = e−iqc·X̂ |ψn,qc

(xc, t )〉
and is subject to

Hc(xc, qc, t )|χ (t )〉 = ih̄|χ̇ (t )〉. (10)

The set of SC-EOM, Eqs. (8) and (9), for the wave
packet’s center-of-mass (xc, h̄qc) are coupled to the quantum
Schrödinger equation, Eq. (10), which describes superposition
among bands by the state vector, |χ〉, quantified by the band
amplitudes ηn’s. The physical state of the wave packet is thus
completely specified by its center-of-mass (xc, h̄kc) plus |χ〉,
here called the band state. We will show how Eqs. (8) and
(9) can be recast into the more familiar gauge-covariant form
Eqs. (14) and (15) in Sec. II A 1.

The wave packet’s velocity, Eq. (8), can be decomposed in
the band basis as

ẋc = vb + vh, (11a)

where

vb ≡
∑

n

η∗
n〈un| ∂H

c

∂ h̄qc
|un〉ηn =

∑
n

|ηn|2 ∂εn

∂ h̄qc
(11b)

is the normal velocity associated with the dispersion of each
band and

vh ≡
∑

n

∑
m �=n

η∗
n〈un| ∂H

c

∂ h̄qc
|um〉ηm (11c)

is the anomalous velocity which is eventually expressed
in terms of Berry curvatures when we group bands into
manifolds (see later discussion). Here we have abbreviated
|un〉 for |un,qc

(xc, t )〉 and εn for εn,qc
(xc, t ), respectively.

Assuming initially that the electron only occupies one par-
ticular band n0, namely, ηn(t0) = δn,n0 , the system described
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by Eq. (2) [and, consequently, by Eqs. (8)–(10)] under no
external field will remain in just occupying that band n0, ren-
dering ηn(t ) = 0 whenever n �= n0. In such a trivial situation,
the anomalous velocity vh would be zero. The anomalous
motion, in contrast to the normal one, is thus a result of
interband transitions induced by the external field. In addition,
for transitions between a pair of degenerate bands (n, m) with
n �= m and εn = εm ≡ εd , we have in general

〈un| ∂H
c

∂ h̄qc
|um〉 = εd ∂

∂qc
〈un|um〉 = εd ∂δn,m

∂qc
= 0. (12)

Only transitions between nondegenerate bands in Eq. (11c)
contribute to the anomalous velocity.

1. Gauge invariance of expectation values of observables
and gauge covariance form of EOM

In principle, the motion of a wave packet in multiple bands
can be studied using Eqs. (8)–(10). To verify their validity, we
will connect them with the more familiar form of SC-EOM
[19–21] in which the Berry curvatures explicitly appear. First,
we define the Berry connections,

[Rλα
]n,m =

〈
un

∣∣∣∣i∂um

∂λα

〉
, (13)

in the phase space λ = (xc, h̄qc), where λα stands for the
αth component of λ. Using the decomposition Eqs. (11)
with the observation,

∑
n

∑
m �=n η∗

n〈un| ∂Hc

∂ h̄qc
|um〉ηm =

−i
∑

n

∑
m �=n η∗

n[Rh̄qc
,Hc]n,mηm, and applying similar

decomposition to Eq. (9), then Eqs. (8)–(10) are rewritten
into

ẋc = 〈[
Dh̄qc

,Hc
]〉
, (14)

h̄q̇c = −〈[
Dxc ,Hc

]〉
, (15)

and

ih̄
D

Dt
η(t ) = Hc(t )η(t ), (16)

respectively, where[
Dλα

]
n,m = δn,m

∂

∂λα

− i
[
Rλα

]
n,m, (17)[

D

Dt

]
n,m

= δn,m
d

dt
− i

∑
α

[
Rλα

]
n,mλ̇α, (18)

Here 〈O〉 = ∑
n,m η∗

nOn,mηm for any matrix quantity O and η

the column vector with entries ηn’s. The expression Eq. (14)
bares the interpretation of gauge covariant group velocity [21]
due to the appearance of the so-called covariant derivative,
Eq. (17). From the above derivations, we see that this gauge
covariant group velocity Eq. (14) is exactly the expectation
value of the quantum velocity operator under the dynamics of
the wave packet’s local Hamiltonian, Eq. (8). The equality be-
tween Eqs. (14) and (8) and the equality between Eqs. (15) and
(9) simply manifest the gauge invariance of the expectation
values of physical observables described by gauge-covariant
EOM.

The more familiar form of Eq. (15) or Eq. (9) explicitly
contains a term proportional to the external electric field
E(xc, t ) = −∂A/∂t − ∂δφ/∂xc, where δφ is the externally

applied scalar potential that smoothly changes in space. This
is easily arrived at by the translational invariance that relates
the Bloch state for momentum h̄qc via the vector potential A to
h̄kc by h̄kc = h̄qc − (−e)A in which h̄kc is called mechanical
crystal momentum [20]. We further replace ∂/∂qc appearing
in ẋc by ∂/∂kc according to the chain rule, resulting in [51]

ẋc = 〈[
Dh̄kc ,Hc

]〉 = 〈χ | ∂Hc

∂ h̄kc
|χ〉 (19)

and

h̄k̇c = (−e)E − 〈[Dxc ,Hc]〉 = (−e)E + Fc, (20)

where

Fc = −〈χ |∂H
c

∂xc
|χ〉 (21)

and Hc in Eqs. (19) and (20) is

Hc(xc, kc) = e−ikc·X̂ Hc(xc, t )|A=0,δφ=0eikc·X̂ , (22)

and does not explicitly depend on t since the explicit t
dependence in Hc(xc, t ) solely comes from the electric-field-
generating vector potential. Note that the trivial case of spatial
variations in which all bands’ energies change by the same
amount in space has already been taken care of by δφ so E
can be dependent on xc.

In the ideal case of no spatial perturbation, as for what
occurs in a perfect periodic lattice without electromagnetic
field, the local Schrödinger equation becomes globally valid
and ∂Hc(xc, t )/∂xc = 0. The description by Eq. (2) becomes
a standard quantum mechanics problem for a particle moving
in a periodic potential. Nevertheless, the velocity observable
is still well-defined by the operator Eq. (4). The system that
starts with a momentum h̄qc as a delocalized Bloch state will
remain delocalized with the velocity given by the right-hand
sides of Eq. (8) and equally by Eq. (14) but without the
semiclassical notion as a localized wave packet.

B. Dynamics of a wave packet within the active manifold

Equations (14) and (15) already resemble the non-Abelian
SC-EOM used in Refs. [2,21]. For pedagogical reasons, below
we continue to discuss how the Berry curvatures emerge from
Eqs. (14) and (15) or equivalently from Eqs. (8) and (9).

We denote the active manifold by a and the rest by r. With
these labels of the bands, we can compactly rewrite Eqs. (14)
and (15) into

λ̇α = sgn(λα )

{〈[
Dλ̂α

,Hc
a

]〉
a + 〈[

Dλ̂α
,Hc

r

]〉
r

+
(∑

n∈a

∑
l∈r

η∗
n〈un|∂H

c

∂λ̂α

|ul〉ηl + c.c.

)}
, (23)

where λα is the αth component(in terms of spatial direction)
of xc or h̄qc, λ̂α stands for the conjugate, namely, x̂c = h̄qc
and h̄q̂c = xc, and the sign function values as sign(xc) = 1
and sign(h̄qc) = −1. We use the notation 〈O〉a/r for averages
only over the bands in the manifold a/r and Hc

a/r for the block
of Hc in the space of a/r.
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The reliability of the following approximations underlie
the meaning of grouping the bands into a and r [52,53]. (i) The
occupation of r bands is negligible, corresponding to ignore
the term 〈[Dλ̂α

,Hc
r ]〉

r
of Eq. (23). (ii) The coherence between

a and r, described by the second line of Eq. (23) shall be kept
up to the lowest order of the external field. So, leading-order
effects of r on a survive. Note that the effect of the external
field on transitions within the active manifold is kept to all
orders.

After these approximations, Eq. (23) is then turned into
Eq. (42) with the Berry curvature defined in Eq. (41) (see the
derivation in the following).

1. Emergence of Berry curvatures

To see how Berry curvatures arise in the second line of
Eq. (23), we have to investigate the coherent dynamics of η(t ),
under an electric field which is relatively small with respect
to intermanifold energy separation. Note that the coherence
between bands n and m is characterized by the relative phase,
arg(η∗

nηm/|η∗
nηm|). Naively solving Eq. (16) leads to gauge-

dependent relative phases [54]. This complication is avoided
by reinspecting Eq. (10) with |χ〉 = ∑

n η̄n|ūn〉, where

|ūn〉 = eiγn |un〉 (24a)

and

η̄n = e−iγnηn, (24b)

in which γn is the Berry phase defined by

γn =
∫ (xc,kc )

(x0,k0 )
{dx′ · [Rx′]n,n + dk′ · [Rk′ ]n,n}. (25)

Here (x0, k0) denotes the initial value of the wave packet’s
center of mass. This results in

H̄η̄ = ih̄ ˙̄η, (26)

where η̄ denotes the vector with entries η̄n’s and the matrix H̄
has elements

H̄n,m = δn,mεn + (1 − δn,m)Vn,m, (27)

with

Vn,m = −h̄{[R̄xc

]
n,m · ẋc + [

R̄kc

]
n,m · k̇c}, (28)

in which [R̄xc ]n,m = e−iγn [Rxc ]n,meiγm with a similar definition
applied to [R̄kc ]n,m. Here H̄ is effectively a Hamiltonian in the
moving frame of the carrier, whose motion in the phase space
due to the electric field and the spatial variation of the band
structures induces interband coherent hybridization, mediated
by the matrix elements with n �= m in Eq. (27) [55].

We denote the projection of η̄ on the a bands by η̄a and

those on r by η̄r , namely, η̄ = (
η̄a
η̄r

), and Eq. (26) becomes

(
H̄a Va,r

Vr,a H̄r

)(
η̄a
η̄r

)
= ih̄

(
˙̄ηa
˙̄ηr

)
, (29)

where H̄a (H̄r) is the a(r) block of the effective Hamil-
tonian H̄ in Eq. (27) and Va,r = −h̄K̄a,r with [K̄a,r]n,l ≡
{[R̄xc ]n,l · ẋc + [R̄kc ]n,l · k̇c} for n ∈ a and l ∈ r with Vr,a =

−h̄K̄r,a the Hermitian conjugate of Va,r . It is convenient to
work in the rotating frame by defining

η̃(t ) = U †
0 (t )η̄(t ), (30)

where

U0(t ) =
(

Ua(t ) 0
0 Ur (t )

)
, (31)

with Ua/r (t ) = T̂ exp {− i
h̄

∫ t
t0

dτH̄a/r (τ )} in which T̂ is the
time-ordering operator and t0 is the initial time. Since the
strength of the coupling Va,r is inversely proportional to
the large energy separation between a and r, it is treated as
a perturbation. Up to the leading order, we have

˙̃η(t ) ≈ iK̄mixη̃(t0), (32)

where

K̄mix =
(

0 U †
a K̄a,rUr

U †
r K̄r,aUa 0

)
. (33)

We assume initially there is no occupation on r bands, namely,
η̄r (t0) = 0. This initial condition together with the approxima-
tion Eq. (32) results in

ih̄ ˙̄ηa = H̄aη̄a, (34)

which describes the coherent dynamics of the band amplitudes
within the active manifold, also called the band pseudospin.
We are interested only in the interband transitions among the
bands in a and we neglect the interband transitions among the
bands in r, leading to

˙̃ηl∈r = i
∑
m∈a

e(i/h̄)
∫ t

t0
ds(εl (s)−εm (s))[K̄r,a]lmη̃m. (35)

Due to the large gap, the exponential factor oscillates very fast
while the adiabatic approximation gives that the intermanifold
coupling [K̄r,a]lm changes slowly. Following the adiabatic
approximations in Ref. [2], we can perform integration by
parts on Eq. (35), yielding

η̄l =
∑
m∈a

h̄[K̄r,a]lm

(εl − εm)
η̄m. (36)

Defining the dimensionless factors,

ε =
∣∣∣∣ h̄[K̄r,a]lm

(εl − εm)

∣∣∣∣, (37)

we see the average on the r bands, 〈[Dλ̂α
,Hc

r ]〉
r
, is two orders

of ε smaller than 〈[Dλ̂α
,Hc

a]〉
a

and the occupations on the r
bands are thus neglected. Substituting Eq. (36) into Eq. (23)
with the aid of Eqs. (24), the contribution from transitions
between a and r to the velocity ẋc reads(∑

n∈a

∑
l∈r

η∗
n〈un|∂H

c

∂λ̂α

|ul〉ηl + c.c.

)

= −ih̄
∑

β

∑
n∈a

∑
l∈r

η∗
n

∑
m∈a

(εl − εn)

(εl − εm)

×
〈

∂un

∂λ̂α

∣∣∣∣ul

〉〈
ul

∣∣∣∣∂um

∂λβ

〉
λ̇βηm + c.c., (38)
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where λ̂α is the αth component of h̄kc. The same expression
applies to the contribution from the a-r transition to the
force h̄k̇c with λ̂α replaced by the αth component of xc.
The remoteness of bands in r from a assures the validity of
the approximation,

(εl − εn)

(εl − εm)
≈ 1, (39)

without requiring exact degeneracy among the bands in a.
Furthermore, we observe that

i

{〈
∂un

∂λ̂α

∣∣∣∣
[∑

l∈r

|ul〉〈ul |
]∣∣∣∣∂um

∂λβ

〉
− (λβ ↔ λ̂α )

}
= F λ̂αλβ

nm (40)

is the non-Abelian Berry curvature matrix that can be rewrit-
ten in a more familiar form,

F λ̂αλβ

nm =
{

∂
[
Rλβ

]
nm

∂λ̂α

− ∂
[
Rλ̂α

]
nm

∂λβ

− i[Rλ̂α
,Rλβ

]nm

}
, (41)

with the help of Eq. (13). Using the approximation Eq. (39)
in Eq. (38) for Eq. (23) with the identification of Eq. (40) with
Eq. (41), we finally see that Eqs. (8) and (9) or equivalently
Eqs. (14) and (15) [summarized as Eq. (23)] reduce to the
non-Abelian SC-EOM in Ref. [21], namely,

ẋα = 〈[
Dh̄kα

,Hc
a

]〉
a−

∑
β

(〈F kαxβ 〉aẋβ +〈F kαkβ 〉ak̇β ), (42a)

h̄k̇α = −eEα − 〈[
Dxα

,Hc
a

]〉
a

+ h̄
∑

β

(〈F xαxβ 〉aẋβ +〈F xαkβ 〉ak̇β ). (42b)

We have omitted the subscript c for the center-of-mass
variables, writing (xcα, kcα ) simply by (xα, kα ).

We thus have deduced the SC-EOM with explicit appear-
ance of Berry curvatures, Eq. (42), in a proper limit from the
full-band dynamics, namely, Eqs. (8) and (9), or compactly as
Eq. (23). The Abelian formulation [19,20] is obtained from
Eq. (42) by letting the manifold a contain only one band,
resulting in

ẋα = ∂εn

∂ h̄kα

−
∑

β

(
�

kαxβ

n ẋβ + �
kαkβ

n k̇β

)
, (43a)

h̄k̇α = −eEα − ∂εn

∂xα

+ h̄
∑

β

(
�

xαxβ

n ẋβ + �
xαkβ

n k̇β

)
, (43b)

where

�
λαλβ

n =
∂
[
Rλβ

]
nn

∂λα

−
∂
[
Rλα

]
nn

∂λβ

(44)

is the Abelian Berry curvature for the band indexed by n.
The second terms in Eqs. (42) and (43) in terms of the Berry
curvatures are of O(ε), where ε is defined by Eq. (37).

2. Nonadiabaticity within the active manifold

The SC-EOM, Eq. (42), for the wave-packet dynamics
within the active manifold already cover both the adiabatic
(single band or several degenerate bands) and the nonadiabatic
(several nondegenerate bands) cases, including effects from

the momentum as well as the spatial textures. Degeneracy
among active bands brings forth U (N ) symmetry, where N
is the number of bands within the active manifold and enables
formal connection to non-Abelian gauge structure [56]. The
second term of Eq. (42) as the non-Abelian curvature has
been a focus of previous discussions [2,21,22]. To relate wave-
packet dynamics to geometric effects arising from closed tra-
jectories over the phase space with U (N ) symmetry, keeping
degeneracy along the trajectories is thus presumed [56]. Note
that Eq. (42) makes no strict restrictions on energy spacing
among the active bands over the phase space as long as they
are far enough separated from r bands for Eq. (39) to be a
good approximation.

Here we want to address the first term of Eq. (42) that
contains nonadiabatic effects within the active manifold. In-
terestingly, from Eqs. (11) and (12), degeneracy makes zero
contributions to the anomalous velocity. Nonzero contribution
to vh only comes from intermanifold transitions, as the second
term of Eq. (42), and crucially intra-manifold transitions
among nondegenerate active bands, embedded in the first term
of Eq. (42). Recall from Sec. II B 1 that the emergence of the
second term of Eq. (42) as non-Abelian Berry curvatures is
from a perturbation correction to the first order of a small
parameter, ε, Eq. (37). Its contribution is thus on the order
O(ε). In contrast, the first term of Eq. (42) that incorporates
nonadiabatic effects is on the order of ε0. The consequence of
this difference between adiabatic and nonadiabatic dynamics
for multiple active bands on the current will be further ex-
plored in Sec. III C.

A number of physical realizations exists for manifesting
the importance of the nonadiabatic dynamics. This includes
materials with narrow band gaps whose sizes are compara-
ble to the electric field, for example, those featuring band
anticrossings such as gapped Dirac cones [9,25–28] and gap
sign reversal in moiré patterns [23,24]. Although the form of
Eq. (42) has already appeared in the literature, the implica-
tions of the nonadiabatic contents of such EOM for a single
wave packet have not been fully explored in terms of the
current for an ensemble of wave packets. Below, we continue
to discuss the steady-state transport within the semiclassical
picture. We assume the electric field no longer changes with
time in the steady-state limit.

III. SEMICLASSICAL TRANSPORT THEORIES

A semiclassical transport theory is featured by the ca-
pability of calculating the current within the phase-space
framework for an ensemble of electron wave packets forming
an electron gas. The single-wave-packet basis for the descrip-
tion of the ensemble is the SC-EOM. Each manifold has its
corresponding SC-EOM. Summing over contributions from
the relevant manifolds (e.g., the lowest conduction band and
the top valence band, in the case of a large gap semiconductor)
then gives the current for the ensemble.

A well-established semiclassical transport theory is the
standard kinetic theory [1], which relies on the availability of
single-band manifolds with the SC-EOM given by Eqs. (43).
The expression for the current is the familiar form, Eq. (47)
(see details in Sec. III A 2). This well-established transport
theory based on single-band manifolds is referred to here as
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single-band semiclassical transport theory (SSCT). For being
self-content, we first review in Sec. III A the known results
of SSCT and its correspondence to the pure classical picture
of a phase-space fluid (PSF). The original picture of PSF is
important in understanding the semiclassical current in SSCT.

When one relevant manifold consists of multiple bands,
the corresponding SC-EOM is given by Eq. (42), regardless
of it is degenerate or not. The transport theory for such
multiple-band manifold is referred to here as multiple-band
semiclassical transport theory (MSCT). In Sec. III B, we first
show that the nature of having multiple bands, regardless
of being degenerate or not, renders it difficult to directly
extend from SSCT to MSCT. Nevertheless, under restricted
conditions (see Sec. III B 3 for details), straightforward gener-
alization from SSCT to MSCT results in a familiar expression
of current, Eq. (53), in terms of non-Abelian Berry curvatures.
With these preparations, in Sec. III C, we devise a theory
for MSCT including nonadiabatic effects for evaluating the
current within the phase-space framework.

A. Semiclassical transport theory and the PSF

1. Fundamental elements of classical PSF

In the classical analysis of the particle transport, we rely
on the picture of a mass of fluid distributed in the phase
space, the so-called PSF. The PSF is characterized by two
ingredients. One ingredient is the mass distribution f (x, h̄k)
and the other is the fluid’s velocity distribution V (x, h̄k). The
former specifies the amount of the PSF’s mass occupying an
elemental area of the phase space centered around (x, h̄k). The
latter V (x, h̄k) = (ẋ, h̄k̇) has a position component ẋ and a
momentum component h̄k̇. The PSF’s velocity are specified
by the EOM for a single particle. The particle current density
J(x) at real-space position x is given by

Jcl.(x) =
∫

dk f (x, h̄k)v(x, h̄k), (45)

where v(x, h̄k) = ẋ is built from the single-particle dynamics.
There is an important property of the classical transport

theory that is to be inherited to a semiclassical construction
which enables the description of the current for an electron
gas. This property is that the fluid’s mass distribution f (x, h̄k)
and velocity distribution V (x, h̄k) are both completely deter-
mined by the phase-space coordinate (x, h̄k). The former is an
inherited part of the definition of a phase space. The latter is
ensured by the nature of the classical Hamiltonian dynamics.
This property is called the phase-space locality.

In summary, there are two fundamental elements in a clas-
sical transport theory. (i): The single-particle’s EOM satisfies
the phase-space locality. (ii) There exists a nonambiguous
distinction between the PSF’s mass and velocity distributions.
The velocity distribution is directly based on the scattering-
free single-particle dynamics while the scattering-induced ef-
fects are included only through the mass distribution f (x, h̄k).
Note that in the semiclassical treatment of the anomalous Hall
effect, the so-called side-jump velocity involves averaging
over scattering [57]. Here we do not discuss the side-jump
effects.

2. The correspondence between PSF and SSCT

Here we discuss how the above fundamental elements of
classical transport theory are preserved in the SSCT.

(i) The restriction of having only a single band in the active
manifold lets the SC-EOM, Eqs. (43), exhibit the phase-space
locality. However, the phase-space locality is not guaranteed
in Eq. (42) (see discussions in Sec. III B). Henceforth, a
sufficiently small external field that enables one to focus on
a single band at a time is vital to the phase-space locality.

(ii) Being able to focus at a time on a single-band manifold,
indexed by its band n, also furnishes the specification of the
PSF’s mass for that band by associating it with an equilibrium
Fermi-Dirac distribution f 0

n and a nonequilibrium deviation
δ fn, namely,

fn = f 0
n + δ fn, (46a)

in which

f 0
n = 1

e(εn−μ)/kBT + 1
, (46b)

with the chemical potential μ, the temperature T , and Boltz-
mann constant kB. Under the widely applied relaxation-time
approximation [18,19,58–60], the deviation from equilibrium
reads

δ fn = −τ

[
∂ f 0

n

∂x
· ẋn + ∂ f 0

n

∂k
· k̇n

]
, (46c)

where τ is the scattering time. Here (ẋn, h̄k̇n) is given by
Eqs. (43), corresponding to the PSF’s velocity which is de-
coupled from the scattering effects. The scattering effects are
incorporated only in δ fn. Therefore, the SSCT expressed by
Eqs. (43) and (46) satisfies the property that the PSF’s velocity
and mass are well-separated notions.

For the current, the classical formula Eq. (45) is turned
into a semiclassical one by replacing the term f v with the
summation of contributions from all single-band manifolds,
namely,

JAb(x) = −e
∑

n

∫
dk fnẋn, (47)

which is straightforwardly analog to Eq. (45). The superscript
Ab for the current reminds of appearance of Abelian Berry
curvatures in ẋn.

Since one focuses only on one band at a time, the band
index is often omitted as a convention pointed out in the
standard textbook [1]. The results Eqs. (46) and (47) are well
established in the literature [1,2,18,19] and we shall reproduce
them from the more general developments in Sec. III C.

B. Characters of MSCT

1. The general absence of the phase-space locality

For the case of multiple-band manifolds, regardless if
these bands are degenerate or not, the single wave-packet
SC-EOM for its center of mass is given by Eq. (42),
which requires the explicit knowledge of η̄a governed
by Eq. (34). The formal solution to Eq. (34) reads
η̄a(t ) = T̂ exp {−i

∫ t
t0

dτH̄a(x(τ ), k(τ ))}η̄a(t0). The time

integral
∫ t

t0
dτ says that η̄a(t ) depends not only on (x(t ), k(t ))
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but also on the passed trajectories of (x(τ ), k(τ )) for τ in the
time interval between some initial time t0 and t . Therefore,
the center-of-mass velocity ẋ according to Eq. (42), which
evaluates on η̄a(t ), in general also depends on these passed
trajectories of the center of mass and cannot be a pure function
of its present coordinate in the phase space. In other words,
the full coherent dynamics of band pseudospin by Eq. (34)
renders the loss of the phase-space locality for the center
of mass by Eq. (42). This defining feature of nonadiabatic
wave-packet dynamics has been demonstrated concretely
with a narrow-gap Dirac cone [55].

Note that by the wave-packet transport theory established
in the single-band adiabatic regime, the density of states in
the phase space has a Berry-curvature-dependent correction
which has been derived utilizing the availability of phase-
space locality [13]. This correction can play a role in ther-
mal transport and magnetization current within the adiabatic
regime [37]. Nevertheless, in the nonadiabatic regime, due to
the inevitable loss of phase-space locality, we do not discuss
such a correction here.

2. The mass and velocity are not two distinct properties

For an ensemble of wave packets, several wave packets can
have the same center of mass while occupying different band
states. The most general way of expressing such an occupation
configuration with the center of mass at (x, k) is via a density
operator ρ(x, k).

We introduce the creation (annihilation) operator a†
m (am)

that creates (annihilates) an electron on the bare band m
carrying the momentum h̄k with the wave-packet center x.
With ρ given, the total occupation number at that phase-space
point is N̄ = ∑

m tr(ρa†
mam). The sum of all wave packets’

velocity 〈ẋ〉 and the force h̄〈k̇〉 then reads

〈ẋ〉 = tr(ρV̂ M ), (48a)

and

h̄〈k̇〉 = (−e)N̄E + FR, (48b)

with

FR = tr(ρF̂M ), (48c)

in which

V̂ M =
∑
m,l

〈ūm|∂H
c

∂ h̄k
|ūl〉a†

mal , (49)

and

F̂M = −
∑
m,l

〈ūm|∂H
c

∂x
|ūl〉a†

mal (50)

are, respectively, the velocity and the force operators extended
to the second quantization form. Here the trace operator, tr(·),
is within the band space.

In the language of a PSF, the fluid then has a velocity which
has position components given by Eq. (48a) and momentum
components by Eq. (48b). The carrier current density then
reads

J (x) = −e
∫

dk〈ẋ〉. (51)

In SSCT [Eqs. (46) and (47)], the band occupation fn is analog
to the PSF’s mass. However, for MSCT with Eq. (51), the
carrier distribution with respect to the bands (PSF’s mass) has
already been taken into account in the definition of 〈ẋ〉 (PSF’s
velocity) given by Eqs. (48) through ρ. The clear distinction
between the two properties, mass and velocity, of a PSF, thus
exits only for SSCT but not for MSCT.

3. Subtlety in extending SSCT to MSCT

A multiple-band manifold with Na bands can be filled by
N wavepackets with N � Na. The jth wavepacket has the
velocity ẋ j . The sum of N wavepackets’ velocity is 〈ẋ〉 =∑N

j=1 ẋ j . For each wavepacket, one then needs to evolve
Eq. (42) to determine ẋ j which requires the knowledge of
the band pseudospin from Eq. (34). This complication is not
present for SSCT. Even if the velocity of each wavepacket
is obtained, the calculation of the current by Eq. (51) is
still hindered by the loss of phase-space locality discussed in
Sec. III B 1.

The situation can be much simplified under the following
restrictions. We first assume that all the Na active bands are
degenerate over the whole Brillouin zone (BZ) and fully
occupied N = Na. Under these conditions, Eq. (51) upon the
substitution of 〈ẋ〉 = ∑Na

j=1 ẋ j , where ẋ j is found by Eq. (42)
for the jth wave packet, then reads [61]

JnAb
α (x) = e

∫
dk

Na∑
j=1

∑
β

[
〈F kαxβ 〉a

〈
∂Hc

a

∂kβ

〉
a

− 〈F kαkβ 〉a

(
e

h̄
Eβ +

〈
∂Hc

a

∂xβ

〉
a

)]
j

. (52)

The superscript nAB has been added to the current for indicat-
ing the appearance of non-Abelian Berry curvatures. Equation
(52) can be further simplified by removing the spatial textures,
namely, F kαxβ = 0 and 〈∂Hc

a/∂xβ〉a = 0, leading to

JnAb
α = −e2

h̄

∑
β

∫
dkTr(F kαkβ )Eβ, (53)

which is a known expression for the Hall current in terms of
the trace of the Na × Na non-Abelian Berry curvature matrix
[22]. Here JnAb does not depend on x since spatial variations
have been removed. Equation (53) will be reproduced in
Sec. III C.

If a relevant multiple-band manifold is only partially filled
(as exemplified in the third column of Fig. 1), where nona-
diabatic dynamics matters, then straightforward extension of
SSCT to MSCT does not help to evaluate Eq. (51) in general.
Nevertheless, the formulation of Eqs. (48) and (51) indicates
that as long as one is able to obtain a proper density matrix ρ,
the explicit evaluation of the semiclassical current expression
using Eq. (51) is still feasible. In fact, finding the density
matrix suitable for an electron gas in transport scenarios is
the mission targeted by the quantum kinetic theory [62–65].
Instead of being fully quantum with involved microscopic
details, the present paper aims to provide a phenomenological
shortcut to a steady-state density matrix for semiclassically
computing the current.
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C. A nonadiabatic semiclassical transport theory

1. The decoherence and the hybridized bands

The steady state described by Eq. (46) as a statistical
mixture of populations on a number of bands adiabatically
treated in the framework of SSCT has implied the absence
of the interband coherence. This has important implication for
the steady state in general. In a companion work [55], we have
shown that a finite electric field can coherently couple the two
branches of a Dirac cone as a nonperturbation effect and the
fully coherent band-pseudospin dynamics does not result in a
steady-state current. Henceforth, for obtaining the steady-state
current in the nonadiabatic regime, the decoherence should be
manifested.

Here we briefly recall Ref. [55] for the results of such
decoherence. We start from the EOM for interband coherence,
Eq. (26), and add a noise term to H̄, the moving-frame
effective Hamiltonian given by Eq. (27). By applying the
standard Born-Markov decoherence theory for solving the
steady-state density matrix for the band state, we find that
the steady-state density matrix is diagonal in the eigenbasis
of H̄, referred to here as the hybridized bands since they
are hybridization of the original bands. The verification of
using the hybridized bands as the basis for decoherence will
be further discussed later. Here we first have to find these
hybridized bands explicitly under the influence of spatial
textures.

We denote the hybridized bands by |ui〉, namely,

H̄|ui〉 = Ei|ui〉, (54)

where i indexes a hybridized band with the corresponding
energy Ei. Equation (54) is for full bands and we will dis-
cuss later about focusing on one manifold. With the spatial
textures, the off-diagonal hybridization coupling H̄n,m = Vn,m

for n �= m given by Eq. (28) involves the unknown band
state because the determination of the center-of-mass (ẋ, k̇)
in Vn,m relies on it [see Eqs. (19)–(21)]. The eigenstates of
H̄ thus depend on the band occupations determined by the
decoherence, bringing in additional complications for self-
consistently finding the wave functions of the hybridized
bands. Indeed, the present description of the spatial textures
relies on the local view which is only available when the
spatial variation is very smooth. Therefore, we ignore the
contributions of spatial variations to interband transitions and
approximate Vn,m by

Vn,m ≈ −[R̄k ]n,m · (−eE ), (55)

concentrating on the nonadiabatic effect due to the electric
field only. Since the local Hamiltonian, Hc, depends on
x, then the x dependence is retained in its eigenstate |ūn〉
and [R̄k ]n,m = 〈ūn|i∂ ūm/∂k〉, the approximation Eq. (55) still
keeps the dependence on x of Vn,m.

2. Formulating the current for MSCT

For SSCT, Eq. (46), obtained by the standard kinetic
theory [1], is a statistical mixture among the original bands.
Analogously in MSCT, with the electric field hybridizing the
original bands and the noise eliminating coherence between
the hybridized bands, we have a statistical mixture among the

hybridized bands, namely,

tr(ρc†
i c j ) = δi, jgi, (56)

where c†
i creates an electron on the hybridized band i. The

explicit form of occupation number gi is found through a
route similar to the kinetic theory for SSCT (see Appendix
for details) and is given by

gi = g0
i + δgi, (57a)

with

g0
i = 1

e(Ei−μ)/kBT + 1
(57b)

and

δgi = −τ

[
∂g0

i

∂x
· ṽi + ∂g0

i

∂ h̄k
· (−eE + F̃ i )

]
, (57c)

in which

ṽi = 〈ui|∂H
c

∂ h̄k
|ui〉 (58a)

and

F̃ i = −〈ui|∂H
c

∂x
|ui〉. (58b)

Substituting Eq. (56) into Eqs. (48) with the aid of
Eqs. (58), one obtains

〈ẋ〉 =
∑

i

giṽi, (59)

which can be further substituted into Eq. (51) for the final
computation of the steady-state current as

J (x) = −e
∑

i

∫
dkgiṽi. (60)

Given a chemical potential μ and a temperature T , the semi-
classical formulas Eqs. (57)–(60) enable the calculation of the
currents for multiple bands without the ambiguity discussed
in Sec. III B.

Since Eq. (54) behind Eqs. (57)–(60) is for the full-band
description, we impose the separation of the full bands into
different manifolds introduced in Sec. II B. H̄a, the projection
of H̄ in Eq. (27) on the active manifold, has eigenstates |u0

i 〉
and eigenenergies E0

i , namely,

H̄a

∣∣u0
i

〉 = E0
i

∣∣u0
i

〉
. (61)

Note that |u0
i 〉 contains the electric field to all orders. Given the

remoteness of the r bands, the hybridized bands as the eigen-
states in Eq. (54) are then found by treating a-r couplings,
Vm,l with m ∈ a and l ∈ r in H̄ of Eq. (27), as perturbations
to the unperturbed eigenstates of |u0

i 〉. That means the state
vector in Eqs. (58) is given by |ui〉 = |u0

i 〉 + |δui〉, where the

perturbation correction reads |δui〉 = ∑
l∈r

∑
m∈a

−Vl,m η̄(i)
m

E0
i −εl

|ūl〉,
where η̄(i)

m = 〈ūm|u0
i 〉 is found from the diagonalization of

Eq. (61) with the approximation Eq. (55). Substituting this
|ui〉 into Eqs. (58), we obtain

ṽiα = ṽ0
iα + e

h̄

∑
β

〈F kαkβ 〉(i)
a Eβ (62a)
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and

F̃iα = F̃ 0
iα − e

∑
β

〈F xαkβ 〉(i)
a Eβ, (62b)

where

ṽ0
iα = 〈

u0
i

∣∣ ∂Hc
a

∂ h̄kα

∣∣u0
i

〉
, F̃ 0

iα = −〈
u0

i

∣∣∂Hc
a

∂xα

∣∣u0
i

〉
(62c)

for the αth component of ṽi and F̃ i, respectively. Here,

〈Fλαkβ 〉(i)
a =

∑
n,m∈a

(
η̄(i)

n

)∗Fλαkβ

n,m η̄(i)
m , (63)

with λα taken to be xα or kα .
We now discuss the relation between the MSCT ex-

pressed by Eqs. (57)–(60) and the known result Eq. (53)
(obtained without spatial textures, see Sec. III B 3). We
leave the discussions for spatial textures and comparison
with SSCT to Sec. III C 3. Within a multiple-band man-
ifold, the first term of Eq. (62a) can be decomposed
as ṽ0

i = ṽ0
b,i + ṽ0

h,i, where ṽ0
b,i = ∑

n∈a |η̄(i)
n |2∂εn/∂ (h̄k) and

ṽ0
h,i = ∑

n∈a

∑
m �=n∈a (η̄(i)

n )∗〈ūn|∂Hc
a/∂ (h̄k)|ūm〉η̄(i)

m . The result
of Eq. (53) in Sec. III B is obtained under the assumptions
that the active bands are degenerate over the entire BZ and
fully occupied. Under this degenerate condition, ṽ0

h,i = 0 by
Eq. (12) and ṽ0

i = ṽ0
b,i. The full occupancy condition, gi = 1

for all i ∈ a, then gives
∫

dkgiṽ
0
i = 0, leaving the second term

of Eq. (62a) to be the only nonvanishing contribution to J and
turns Eq. (60) to be Eq. (53).

Note that by Eqs. (58), the second term of Eq. (62a) comes
from a perturbation correction, as 〈u0

i |∂Hc
a/∂ (h̄k)|δui〉 + c.c.

If other manifolds are very remote from the active one such
that the correction is negligible, then this second term of
Eq. (62a) can just be ignored. In this case, the energy split-
ting among the original bands (and henceforth a nonzero
anomalous velocity ṽ0

h,i �= 0) becomes crucial to current. This
is important when the active bands are only degenerate at
isolated points but not the entire BZ. In an associated study
[55], we considered a model of two bands given by a gapped
Dirac cone of small gap size. The coupling to bands beyond
the Dirac cone has been completely ignored, keeping only the
intramanifold hybridization. We found that the current arising
from the anomalous velocity ṽ0

h,i manifests the underlying
nonadiabatic dynamics and conveys a nonperturbative nonlin-
ear valley Hall effect in the absence of the spatial textures.
The present establishment Eqs. (57)–(60) also includes the
possibility to take into account the spatial textures.

3. The spatial textures

Here we discuss subtle issues related to the presence of spa-
tial textures. We compare the spatial texture effects obtained
from Eqs. (57)–(60) with that obtained by Eqs. (46) and (47)
summarized in Sec. III A 2 for SSCT.

Note that SSCT is arrived at when the electric field is
infinitesimal. The bands are only weakly hybridized and the
off-diagonals of Eq. (27) are treated as perturbation in the
diagonalization of H̄. Therefore, the original band index n
remains a good quantum number for labeling a weakly hy-
bridized band in Eqs. (57)–(60). To the first order of the elec-
tric field, the band energies are En = εn, leading to g0

n = f 0
n

in Eq. (57b). We then write Eq. (57a) as gn = f 0
n + δgn to be

compared directly with Eq. (46a), fn = f 0
n + δ fn. Explicitly,

these nonequilibrium deviations read

δgn = −τ
∂ f 0

n

∂εn
{−Fb,n · ṽn + vb,n · (−eE + F̃n)}, (64)

δ fn = −τ
∂ f 0

n

∂εn
{−Fb,n · ẋn + vb,n · h̄k̇n}, (65)

where vb,n = ∂εn/∂ h̄k is the normal velocity of the band, and

Fb,n = −∂εn

∂x
(66)

is the force directly associated with the spatial variation of
the dispersion. Comparing Eq. (64) with Eq. (65), we see that
ṽn and −eE + F̃n play the roles comparable to ẋn and h̄k̇n,
respectively. We will see that at E = 0, δgn = 0 while δ fn �= 0
due to terms of second-order derivatives in x.

In what follows,
←→
� KX

n denotes a matrix whose elements

are defined by [
←→
� KX

n ]α,β = �
kαxβ

n [see Eq. (44)] with α, β

indexing the spatial directions so
←→
� KX

n acts on vectors in real

space. Similar definitions are applied to
←→
� XX ,

←→
� KK , and←→

� XK . Reducing the number of bands in the active manifold
for Eqs. (62) to one, we have

ṽn = vb,n + vh,n (67a)

and

F̃n = Fb,n + Fh,n, (67b)

where

vh,n = − e

h̄
←→
� KK

n E (67c)

is the familiar anomalous velocity due to textures of Bloch
bands in momentum space, and

Fh,n = −e
←→
� XK

n E (67d)

is termed the anomalous force with the Berry curvature
←→
� XK

n
involved, discriminating itself from the ”normal” force Fb,n,
Eq. (66). Note that when E = 0, Eqs. (67) reduce to ṽn = vb,n

and F̃n = Fb,n. Consequently, δgn = 0 in Eq. (64) and with∫
dk f 0

n vb,n = 0, Eq. (60) gives J = 0 at E = 0. Equations
(57)–(60) thus ensure zero current when no external field is
applied.

Next we turn to Eq. (65), which is extracted from Eq. (46),
and consider ẋn and h̄k̇n up to the same order of the small
parameter ε [cf. Eq. (37)]. The solution to Eqs. (43) for
(ẋn, h̄k̇n) reads

ẋn = ṽn + δṽn (68a)

and

h̄k̇n = −eE + F̃n + δF̃n, (68b)

where

δṽn = −←→
� KX

n vb,n − ←→
� KK

n Fb,n/h̄ (68c)

and

δF̃n = h̄
←→
� XX

n vb,n + ←→
� XK

n Fb,n. (68d)
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Substituting Eqs. (68) into Eq. (65), one obtains

δ fn = δgn + δ f ′
n, (69a)

where

δ f ′
n = −τ

∂ f 0
n

∂εn
(−Fb,n · δṽn + vb,n · δF̃n). (69b)

Without spatial textures, namely,
←→
� KX

n = ←→
� XX

n = 0 and
Fb,n = 0, then Eqs. (68) and (69) give δṽn = 0 and δF̃n = 0
with ẋn = ṽn, h̄k̇n = −eE + F̃n so δ f ′

n = 0, leading to δ fn =
δgn. Consequently, Eqs. (57) and (60) reduce to Eqs. (46)
and (47).

With spatial textures under the smooth spatial variation
approximation Eq. (55), ṽi is zeroth order and F̃ i is first order
in the derivative of x, respectively, by Eqs. (58). Therefore,
continuing the discussion for single-band manifolds, δgn in
Eq. (64) is first order in ∂/∂x. Comparing Eq. (69) with
Eq. (64), we find δ fn = δgn by discarding δ f ′

n which is second
order in the derivative of x. This corresponds to neglect-
ing δṽn and δF̃n in Eqs. (68a) and (68b), recovering ẋn =
ṽn and h̄k̇n = −eE + F̃n. We thus conclude that at E = 0,
Eq. (64) gives δgn = 0 and therefore also zero current [see
the discussions below Eqs. (67)]. Meanwhile, with E = 0,
the conventional SSCT described by Eq. (65) [rewritten as
Eq. (69)] gives δ fn = δ f ′

n �= 0, anticipating a nonzero current
due to a nonvanishing deviation from equilibrium δ f ′

n caused
by spatial inhomogeneity, second order in the derivative of x.

When E �= 0, the effect of spatial textures will be mani-
fested. Plugging Eqs. (67) in Eq. (64) gives

δgn = δgb
n + δgh

n, (70a)

where

δgb
n = −τ

∂ f 0
n

∂εn
vb,n · (−eE ) (70b)

comes from the normal contribution from the normal velocity
vb,n and the electric force (−eE ) and

δgh
n = −τ

∂ f 0
n

∂εn
{vb,n · Fh,n + Fb,n · vh,n}, (70c)

is the anomalous contribution involving the anomalous spatial
force Fh,n and the familiar anomalous velocity vh,n. Notably,
this anomalous contribution δgh

n is exclusively due to the
spatial textures, i.e., requiring Fh,n �= 0, Fb,n �= 0.

Note that the approximation Eq. (55) for smooth spatial
variations places no limitation on the magnitude of E. The
finite electric field is responsible for inducing nonadiabatic
dynamics for partially filled multiple-band manifolds. As
discussed for Eq. (61), |u0

i 〉 contains all orders of E. This leads
ṽi and F̃ i as well as δgi to also be all orders in E, reflecting
the nonadiabatic dynamics among active bands.

IV. SUMMARY

In Sec. II, concerning the SC-EOM of a single wave
packet, we have shown that the same set of EOM, Eqs. (14)
and (15), obtained by the Lagrangian variational approach
applied to a wave-packet ansatz, can be equally arrived by
quantum evolution of the carrier’s wave function by the local

Hamiltonian from which the wave packet’s center of mass
is obtained by quantum expectation values in the form of
Eqs. (19) and (20). This SC-EOM for a single wave packet
paves the way for discussing nonadiabatic transport for a gas
of electrons as an ensemble of wave packets.

In Sec. III, we expounded the difficulty of straightfor-
wardly extending SSCT to MSCT. When there is a multiple-
band manifold, the coherent superposition among the several
active bands makes the determination of the band state and
therefore the velocity expectation value complicated. Due to
the loss of phase-space locality of the wave packet’s velocity,
characteristic to multiple-band manifolds, this also results in
the incapacity of semiclassically evaluating the current. We
circumvent this obstacle by explicating the loss of interband
coherence within the kinetic theory. This leads to the estab-
lishment of Eqs. (57)–(60). By inspecting the spatial texture
effects, we find that the present MSCT is suitable for smooth
spatial variations and ensures that no current can appear unless
an external electric field is applied. On the contrary, the known
SSCT, Eqs. (46) and (47), has implied a finite current, even in
the absence of electric field, that is second order in the spatial
derivative.

We now comment on the range of applicability of the
MSCT described by Eqs. (57)–(60). First, although we in-
tended the regime where the electric field is finite other than
infinitesimal, the magnitude of the electric field should be
limited to not push away the electron gas too far from an equi-
librium. Otherwise, the kinetic construction with relaxation
time approximation simply fails. Second, we have assumed
that the scattering rate is independent of the band index. How
to go beyond the relaxation time approximation and construct
a kinetic theory for the single carrier’s dynamics governed
by Eqs. (19) and (20) is out of the scope of the present
attempt. Albeit these limitations, given the wide uses of the
semiclassical transport theory based on Eqs. (46) and (47),
the above extension to Eqs. (57)–(60) with finite electric field
should also find its place of applications in materials with
small gaps as discussed in the Introduction.
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APPENDIX: A KINETIC THEORY FOR MSCT

Here we closely follow the kinetic theory for SSCT [1] and
make proper modifications for MSCT to obtain Eq. (57). For
SSCT, the evolution of a wave packet according to Eqs. (43)
does not lead to interband coherence. The decoherence issue
does not appear in the kinetic theory leading to the known
SSCT. However, for multiple-band manifolds, a wave packet
can evolve to coherent superpositions among bands. There-
fore, to construct a proper kinetic theory in this case, one
needs to take into account the decoherence explicitly. For the
ease of reference, the kinetic theory for SSCT is reviewed in
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Appendix A 1. Extension of the kinetic theory from SSCT to
MSCT is discussed in Appendix A 2.

1. The building blocks of the kinetic theory

The kinetic theory with the relaxation-time approximation
giving rise to Eq. (46) is based on the following assumptions.
(i) The scattering within the electron gas maintains it at
equilibrium. Given the set of bands indexed by n, a natural
choice of the equilibrium distribution function is given by
Eq. (46b). (ii) The scattering rate does not depend on the
form of the distribution function. (iii) The EOM governing the
dynamics of a single carrier free from scattering is given by
Eqs. (43) so an electron starting from one band cannot cause
nonzero occupations on other bands.

We denote by fn(λ, t ) the occupation on a band n at at a
phase-space point λ = (x, h̄k) at time t . The assumption (i)
corresponds to decompose fn as Eq. (46a) in which δ fn is to
be derived from assumptions (ii) and (iii). The differential,
d fn(λ, t ), is understood to be the number of electrons gained
into the state, (n,λ). Based on these assumptions, the deriva-
tion of Eq. (46c) is divided into the following basic blocks
(a)–(d).

(a) Combining assumptions (i) and (ii), one deduces that
the number of electrons lost from (n,λ) from an equilibrium
distribution in an infinitesimal time interval dt due to scatter-
ing should be compensated by the number of electrons gained
into the same state, namely,

d fn(λ, t ) = dt

τn(λ)
f 0
n (λ), (A1)

in which τn(λ) is the scattering time whose inverse gives the
scattering rate.

(b) The deterministic evolution of Eqs. (43) for a time
interval from time t ′ to t would bring the state (n,λ′ = λ(t ′))
to the state (n,λ = λ(t )). The electrons occupying the state
(n,λ) at time t are therefore contributed by the no-scattering
fraction of those that had occupied (n,λ′) at time t ′ < t .
Denoting by P(n,λ′ )(t, t ′) as the probability that such evolution
can actually be reached without scattering, the occupations at
time t are related to all prior times by

fn(λ, t ) =
∫ t ′=t

t ′=−∞
d fn(λ′, t ′)P(n,λ′ )(t, t ′). (A2)

(c) The general property of P(n,λ′ )(t, t ′) is that the no-
scattering probability for a time interval from t ′ to t is smaller
than that for a time interval from t ′ + dt ′ to t by a fac-
tor (1 − dt ′/τ (λ′)). More explicitly, this reads P(n,λ′ )(t, t ′) =
P(n,λ′ )(t, t ′ + dt ′)(1 − dt ′/τn(λ′)) and, consequently,

∂

∂t ′ P(n,λ′ )(t, t ′) = P(n,λ′ )(t, t ′)
τn(λ′)

. (A3)

Furthermore, this no-scattering probability also satisfies

P(n,λ′ )(t, t ) = 1, (A4a)

simply for that when t = t ′ there is no time for scattering to
occur between t ′ and t and

P(n,λ′ )(t,−∞) = 0 (A4b)

for scattering definitely occurs in a long-enough time interval.

(d) Combining Eqs. (A1) and (A3) into Eq. (A2) and
performing the resulting integral over dt ′ via the integration
by parts with the boundary condition Eq. (A4), we obtain an
intermediate expression

fn(λ, t ) = f 0
n (λ) −

∫ t ′=t

t ′=−∞
dt ′e−(t−t ′ )/τn(λ′ )

[
d

dt ′ f 0
n (λ(t ′))

]
.

(A5)

Assuming further that τn is very short so the factor
e−(t−t ′ )/τn(λ′ ) only contributes significantly when t ′ is near t ,
the integrand in Eq. (A5) is then approximated by τn(λ(t ′)) ≈
τn(λ) and [ d

dt ′ f 0
n (λ(t ′))] ≈ [ d

dt f 0
n (λ(t ))], and Eq. (A5) reduces

to fn(λ) = f 0
n (λ) − τ [ d

dt f 0
n (λ(t ))], writing simply τ = τn(λ),

a precursor of Eq. (46). By further expressing [ d
dt f 0

n (λ(t ))] =
∂ f 0

n /∂λ · λ̇n, Eq. (46) is recovered. Applying ∂/∂t to both
sides of Eq. (A5) with the short scattering-time approxi-
mation, one consistently obtains the stationarity of fn(λ, t ),
namely, ∂ fn(λ, t )/∂t = 0 so fn(λ, t ) = fn(λ). We are thus led
to the SSCT summarized in Sec. III A 2.

2. Constructing the kinetic theory in the nonadiabatic regime

For multiple-band manifolds, given a density matrix ρ(t ) at
time t , the probability of having a wave packet with band state
|χ〉 and the center of mass, λ = (x, h̄k), is given by gχ (λ, t ) =
tr(ρ(t )a†

χ (λ)aχ (λ)), where a†
χ (λ) creates an electron wave

packet of such a state.
Similar to the construction for SSCT in Appendix A1, here

we build a kinetic theory in the nonadiabatic regime from
the same assumptions (i) and (ii) as before, with the original
bands replaced by the hybridized bands [eigenstates described
in Eq. (54)]. Assumption (i) amounts to having Eq. (56)
with gi decomposed as Eq. (57a), but leaving the deviation
δgi unspecified, whose explicit form will be derived here.
More crucially, the underlying scattering-free single carrier’s
SC-EOM are now given by Eqs. (19) and (20), instead of
Eqs. (43). This allows nonperturbative interband transitions
that create interband coherence.

The loss of coherence among the hybridized bands is ac-
counted as the following. Using |ui〉’s as a complete basis set,
we have a†

χ = ∑
i 〈ui|χ〉c†

i and henceforth, gχ = tr(ρa†
χaχ ) =∑

i, j 〈ui|χ〉tr(ρc†
i c j )〈χ |u j〉. Combining this with Eq. (56),

which expresses no coherence among hybridized bands, we
are led to

gχ (λ, t ) =
∑

i

|〈ui|χ〉|2gi(λ, t ). (A6)

We will see that the kinetic theory for MSCT introduced here
is in one-to-one correspondence to that of SSCT. The building
blocks (a)–(d) in Appendix A1 become (a′)–(d′) below, with
the additional use of the decoherence consequence, Eq. (A6).

(a′) The equilibrium being unaltered by scattering can still
be formulated similar to Eq. (A1) by

dgi(λ, t ) = dt

τ(λ)
g0

i (λ), (A7)

where, for simplicity, we ignored the band dependence of the
scattering rate.
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(b′) The scattering-free evolution guided by Eqs. (19) and
(20) generally evolves an electron from a state specified by
(χ ′ = χ (t ′),λ′ = λ(t ′)) to a state (χ = χ (t ),λ = λ(t )). The
occupation of a state (χ ,λ) at time t is related to all prior
times by

gχ (λ, t ) =
∫ t ′=t

t ′=−∞
dgχ ′ (λ′, t ′)P(χ ′,λ′ )(t, t ′), (A8)

where P(χ ′,λ′ )(t, t ′) stands for the probability that a carrier
occupying the state (χ ′,λ′) at time t ′ would not be scattered
in the interval between t ′ and t .

(c′) The property that the scattering occurs with a proba-
bility proportional to the length of time interval considered is
very general. Therefore, by the similarity to Eq. (A3), we have

∂

∂t ′ P(χ ′,λ′ )(t, t ′) = P(χ ′,λ′ )(t, t ′)
τ(λ′)

, (A9)

and surely also

P(χ ′,λ′ )(t, t ) = 1 (A10a)

and

P(χ ′,λ′ )(t,−∞) = 0. (A10b)

(d′) Similar to the steps prescribed in (d), substituting
Eqs. (A7) and (A9) with the boundary conditions Eq. (A10)
into Eq. (A8), the integration by parts performed to the inte-
gral over dt ′ leads to an integral equation similar to Eq. (A5).
Now on the left-hand side of Eq. (A8), we let |χ〉 = |ui〉 so
gχ = gi. On the right-hand side of Eq. (A8), we replace gχ ′ in
the integrand by Eq. (A6). These lead to

i(λ, t ) = g0
i (λ)

−
∑

i′

∫ t ′=t

t ′=−∞
dt ′e−(t−t ′ )/τ(λ′ )|〈ui′ |χ ′〉|2

[
d

dt ′ g
0
i′ (λ(t ′))

]
.

(A11)

Applying the short scattering-time approximation similar to
that discussed after Eq. (A5) with the aid of 〈ui′ |ui〉 = δi′,i, we
are led to Eq. (57) in the main text.
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