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Abstract. We investigate the topological supersolid states of dipolar Fermi gases

trapped in a spin-dependent 2D optical lattice. Our results show that topological

supersolid states can be achieved via the combination of topological superfluid states

with the stripe order. Different from the general held belief that supersolid state in

fermionic system can only survive with simultaneous coexistence of the repulsive and

attractive dipolar interaction. we demonstrate that it can be maintained when the

dipolar interaction is attractive in both x and y direction. By adjusting the ratio

of hopping amplitude between different directions and dipolar interaction strength

U , the system will undergo a phase transition among px+ ipy superfluid state, py-

wave superfluid state, and the topological supersolid state. The supersolid state in

the attractive environment is proved to be stable by the positive sign of the inverse

compressibility. We also design an experimental protocol to realize the staggered next-

next-nearest-neighbor hopping via the laser assisted tunneling technique, which is the

key to simulate the spin-dependent potential.

Keywords : Topological supersolid state, anistropic dipolar interaction, stripe order

1. Introduction

Supersolid (SS) states can be defined as a combination of superfluid states with off-

diagonal long range order and solid states with diagonal orders, the concept of which was

first emerged in the context of solid 4He [1–7]. As a novel state of matter, the supersolid
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state exhibits unconventional properties and its realization method has long been an

intriguing task for theoretical and experimental physicists [8–50]. Recent works by

Li [51] and Léonard [52] realize periodical density modulation (stripes) in Bose-Einstein

condensates (BEC), which shed light on how to produce supersolid states in a bosonic

system. For fermionic systems, the most promising candidates are dipolar Fermi gases

due to the anisotropic features [53, 54]. By tilting the orientation of dipoles, dipolar

interaction can be decoupled to a repulsive part and an attractive part in separated

directions, which is the key to form the stripe order [55] and the superfluid order. The

two orders compete with each other, and the supersolid state is predicted to arise at

moderate interaction strength. However, the corresponding supersolid state is trivial in

topology, and the parameter space to maintain supersolid is also quite limited.

In this work, we investigate the topological supersolid state of dipolar Fermi gases

in a 2D optical lattice with staggered next-next-nearest-neighbor hopping, which is

equivalent to a spin-dependent potential. We exhibit that our hopping formalism can

cooperate with dipolar coupling between different optical lattice sites to generate a new

type of stripe order which no longer relies on the repulsive part of dipolar interaction.

When the dipolar interaction is decoupled to attractive parts in both x and y directions

and the two parts are balanced in strength, the px + ipy topological superfluid state

arises, which can be combined with the stripe order, yielding the topological supersolid

states. The topological features are characterized by Chern numbers as well as the

existence of the edge states . Furthermore, we prove that the topological supersolid

state is stable via the positive sign of the inverse compressibility. The simplicity of our

lattice model makes it reliable and feasible in realization via the laser assisted tunneling

technique.

2. Model and results

We consider 161Dy atoms confined in a 2D optical lattice, with the lattice potential

given by Vopt(r) = V2D[sin
2(πx/a) + sin2(πy/a)]. V2D is the trap strength, and a = 450

nm is the lattice constant [56]. The next-next-nearest-neighbor hopping can be induced

by the laser assisted tunneling technique [57, 58] with the phase π and 0 staggeredly

loaded along the x direction, which naturally leads to two effective types of atoms (A,

B). Along the y direction, hopping is uniform, and A, B types of atoms share the same

lattice structure (see figure 1(b)). Thus, the lattice potential is equivalent to a spin-

dependent one with A (B) sites regarded as pseudospin index respectively. We assume
161Dy atoms are prepared in its lowest hyperfine nuclear spin states and spin degrees

of freedom are frozen out. The system can be described by a spinless Fermi-Hubbard

model,

H′ =
∑
i

(−txc†ici+2êxe
iπix − tyc

†
ici+êy − µc†ici + h.c.)

+
1

2

∑
i̸=j

Vijc
†
ic

†
jcjci

(1)



Topological supersolidity of dipolar Fermi gases in a spin-dependent optical lattice 3

Figure 1: (a) Dipolar Fermi gases in a 2D optical lattice with staggered next-next-

nearest-neighbor hopping and its interaction projection. The dipoles form an angle ϕ

with respect to x axis, and θ is the angle between the seperation of dipole moments, r,

and x axis. E is the external field. In the yellow area, the dipolar interaction decouples

to an attractive part in x direction and a repulsive part in y direction. In the blue area,

the dipolar interaction decouples to attractive parts in both x and y directions. In the

white area, the dipolar interaction decouples to an attractive part in y direction and a

repulsive part in x direction. (b) The schematic diagram of the staggered next-next-

nearest-neighbor hopping in the x− y plane.

where c†i (ci) creates (annihilates) a fermion at site Ri. tx, ty is the amplitude of hopping

in x and y direction, and is denoted by tx ≡ gt, ty ≡ t, and the explicit form of g can

be seen in section Experiment realization and effective Hamiltonian derivation. t is also

utilized as the unitary of energy in this work. Dipoles are aligned in parallel by external

electric field E into a direction which is inside the plane, and keeps an angle ϕ with

respect to x axis. The interaction between dipoles moments d separated by r is given

by

Udd = − 1

|r|3
(3 (d · r̂) (d · r̂)− d · d) = d2

|r|3
(1− 3 cos(ϕ− θ)2) (2)

A schematic picture of the system is shown in figure 1(a). Experimentally, our

Hamiltonian provides three tunable parameters: (i) The hopping ratio g can be

controlled by adjusting the Rabi frequency in the laser-assisted tunneling technique.

(ii) The dimensionless coupling strength is given by:

U ≡ |d|2/(ta3) (3)

|d| is the amplitude of dipole moment. The amplitude of U chracterize the strength

of dipolar coupling. Vi,j in equation (1) is decided by Udd, which can be changed by

manipulating the strength of lattice trap. (iii) The orientation of dipole moments ϕ,

which can be tilted by external electric E. The controllable parameter set {g, U, ϕ}
can give rise to a phase diagram with rich physics. Our results are obtained by

the Bogoliubov-de Gennes (BdG) approach, with the order parameter determined by

solving local minimum of free energy self-consistently. Within Hartree-Fock-Bogoliubov
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Figure 2: (a) Vq/U varies as a function of dipole orientation ϕ ∈ [0.3π, 0.5π]. (b,c) The

pairing gap ∆x,∆y, and stripe gap δ change as a function of hopping ratio g for different

orientations of dipoles ϕ and interaction strength U . (b) Pairing gap ∆y and stripe gap

δ at ϕ = 0.3π, U = 5. (c) Pairing gap ∆x + i∆y and stripe gap δ at ϕ = 0.26π, U = 30.

formalism, the interaction term can be decoupled to

VHF = ∆ijc
†
ic

†
j +∆∗

ijcjci + Vij(⟨ni⟩c†jcj + ⟨nj⟩c†ici) + E0 (4)

where E0 =
1
2
(
∑

i̸=j −
∆2

ij

Vij
− Vij⟨ni⟩⟨nj⟩). Since the dipole-dipole coupling is strongest

between nearest neighbors, and decays as a function of distance between lattice sites to

the order 1
|r|3 , we consider the the pairing to be between nearest neighbors [26, 59–61].

We describe the superfluid order parameter as ∆ij = Vij⟨cicj⟩δj,i+êλ with λ = x, y. To

manifest the stripe order, we assume ⟨ni⟩ = 1
2
+ eiQ·RiC, |C| ≤ 1

2
. Q indicates the

periodicity of density pattern. For the in plane electric dipoles, Q is assumed to be

[π, 0] [62, 63]. The free energy can be given by: Ω = TS, and the action S is of the

form S=
∫
dτ
∑

i c
†
i (τ)

∂
∂τ
ci(τ)+H (τ). By Fourier transformation and summing over the

Matsubara frequency, we obtain the thermodynamic potential:

Ω = Ẽ0 − T
∑
n,k

ln[1 + exp(−En(k)/T )] +
∑
k

κ̃ (5)

where κ̃ = −ty cos(kya) and En(k) is the eigenvalue of HBdG(k). Ẽ0 = −1
2
(
∑

λ
∆2

λ

Vλ
+

δ2

VQ
), λ = x, y, and Vλ takes the form:

Vx(y) = Vijδj=i+êx(y) (6)

As we consider zero temperature limit, above thermodynamical potential reduces to:

Ω(T=0) = Ẽ0 +
∑
n,k

En(k)θ(−En(k)) +
∑
k

κ̃ (7)

where θ(−En(k)) is the Heaviside step function. On the basis of Ψ =

(ck, ck+Q, c
†
−k, c

†
−k−Q), we have HBdG(k) can be described as:

HBdG(k) =

(
Ak Dk

D†
k −Ak

)
(8)
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in which

Ak = −1

2
ty cos(kya)I +

1

4
[δ − 2tx cos(2kxa)]σx (9)

Dk =
i

2
(∆x sin (kxa)σz + i∆y sin (kya)I) (10)

where I is the identity matrix. δ = VQC with VQ =
∫
dr Vij(r)e

iQ·r, which characterizes

the amplitude of the stripe order parameter. The self consistent gap equation can be

deduced via ∂Ω
∂∆

= 0,∂Ω
∂δ

= 0. Need to mention that since one dipole interacts with many

others, given the lattice scale large enough, the effective dimension of the system can be

so high that the fluctuation impacts are suppressed. Hence, we consider 500×500 lattice

sites in calculating the Hartree term to ensure the validity of the mean field method.

The orientation of dipoles ϕ, hopping ratio g and interaction strength U determine

much of the physics of the system. When ϕ > 0.3π, the dipolar interaction can be

projected to an attractive part in y direction, which results in a superfluid order ∆y, and

a repulsive part in x direction, which yields a stripe order δ. The two order parameters

compete with each other and the system will undergo phase transitions with the change

of interacting strength U . For example, at ϕ= 0.35π, superfluid order ∆y is observed

with small interaction strength U . As U is enhanced, stripe order δ gradually appears,

and will dominate at large interaction strength, which contributes to a Mott insulator.

With the moderate value of interaction strength, the coexistence of the stripe order δ

and the superfluid order ∆y defines a supersolid state. Besides, we also present that in

figure 2(a) as ϕ → π/2, |Vq| becomes quite large. As a consequnence of which, stripe

order get reinforced and can be obtained within small interaction strength U . Above

supersolid states with repulsive dipolar coupling is similar to the previous work [26] .

Since we are only interested in supersolid states in the attractive interaction region,

we restrict the dipoles to be arranged in the region 0.3π > ϕ > 0.2π (blue area in figure

1(a)). When ϕ is about 0.3π, the attractive interaction strength in x direction is much

weaker than that in y direction, Vx/Vy=0.0379, as a consequence of which pairing order

y direction is manifested. By numerically locating the minimum of the free energy, we

obtain the magnitude of pseudogap as a function of hopping ratio g at U = 5 (see figure

2(b)). It can be seen that the pairing gap ∆y is insensitive to the hopping ratio g and

the stripe gap δ emerges for g > 0.92, indicating a supersolid state. To investigate the

origination of the stripe order with respect to g, we consider the expression of Ak in

equation (9), where term 1
4
[δ−2tx cos(2kxa)]σx is equivalent to an effective k-dependent

Zeeman field h. The dipolar interaction provides the coupling between different sites of

the sub-lattice (or pseudospins) A, B, which is equivalent to a coupling between spins.

As a response to the magnetic field h, pseudospin wave will be formed and it corresponds

to the stripe order. It is need to mention that when the dipolar interaction is absent,

the system is in fact constructed by the two isolated sublattices A and B without inter-

sublattice coupling. For the sake of spin balance, the two sublattices A and B, although

the existence of a stagered relative π phase, up and down pseudospin will form a spacial

uniform pattern. Thus the stripe order is formed spontaneously.
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Figure 3: (a) Average density modulation of the topological supersolid states in x

direction with g = 0.3, ϕ = 0.26π, U = 30. (b) Edge states of topological supersolid

states with g = 0.3, ϕ = 0.26π, U = 30. Open boundary conditions are used in y

direction.

As the orientation of dipoles ϕ reduces to 0.26π, we have |Vx/Vy| = 0.6829,

|VQ/Vy|=0.1989. The superfluid order ∆x appears, and is accompanied with π
2
phase

relative to that in y direction. The superfluid order ∆x, ∆y and stripe order δ compete

with each other as a function of hopping ratio g and interaction strength U (see figure

2(c)). Numerical results show that the stripe order δ can still be detected at large

interaction strength and the simultaneous coexistence of the topological superfluid

order ∆x + i∆y and the stripe order δ characterises a topological supersolid (TSS)

state. Furthermore, it can be seen that with the increasing of the hopping ratio g,

superfluid order parameter ∆x gradually shrinks due to the reduction of U/g along the

x direction and vanishes at g = 0.96. Likewise, the stripe order parameter reaches

a peak at g = 0.7, and will decay for g > 0.7. To manifest the stripe order in

topological supersolid states, we calculate average density at ith site in the x direction

with g = 0.3, ϕ = 0.26π, U = 30 (see figure 3(a)). A periodical density modulation

⟨ni+1⟩ − ⟨ni⟩=C(eiQ·Ri+1 − eiQ·Ri) = 0.1302 is observed in x direction.

We map out the phase diagram as a function of interaction strength U and hopping

ratio g at zero temperature as shown in figure 4. For ϕ = 0.3π (see figure 4(a)), at

modest interaction strength (U < 3.1), stripe order is absent for all cases of g, and the

system is a py wave superfluid state. With the increasing of U , stripe order gradually

emerges, and the system becomes a supersolid state. Phase diagram for ϕ = 0.26π is

shown in figure 4(b). Topological superfluid states and topological supersolid states exist

at large coupling strength, and can transfer to each other with the tuning of hopping

ratio g. To investigate the topological classification of topological supersolid states, we

denote the particle-hole reversal (Ξ) operator as: Ξ = σxK, where K is the complex

conjugate operator. Thus, we have ΞHBdG(k)Ξ
−1 = −HBdG(−k). Since Ξ2 = 1 and

the time-reversal symmetry is broken due to the π/2 relative phase in the superfluid

order parameter, we clarify the topological supersolid state as D class, which can be

characterized by the Z index [64–67], Chern number. In details, the Chern number can



Topological supersolidity of dipolar Fermi gases in a spin-dependent optical lattice 7

Figure 4: The phase diagram as a function of hopping ratio g and interaction strength

U . (a) The supersolid state (SS) and the p-wave superfluid state (py) survive in the

attractive interaction region for ϕ=0.3π. (b) The px + ipy-wave topological superfluid

state and the topological supersolid state (TSS) emerge at large interaction strength for

ϕ = 0.26π.

be given by:

C =
1

2π

∫
BZ

dkxdky[∂kxAy − ∂kyAx] (11)

where the Berry connection Ai(k) = i
∑

n∈filled⟨un,k|∂ki|un,k⟩, |un,k⟩ is the eigenstate of

nth filled bands of HBdG(k). Numerically, we utilize the efficient method as shown in

Ref [68]. It is exhibited that the Chern number changes with varying hopping ratio g

with ϕ = 0.26π, U = 30. Numerical results exhibit that C = 1 for g < 0.96, which is in

consistence with our results in figure 2(c), where g < 0.06 depicts a topological superfluid

state, and 0.06 < g < 0.96 depicts a topological supersolid states. For 0.96 < g < 1,

C = 0, which means the py-wave superfluid state topological trivial. Indeed, since

the topological supersolid states are formed with attractive dipolar interaction, where

px+ ipy wave topological superfluid order take the dominant place, we can adiabatically

tilt stripe order to 0 without closing the gaps, which means topological supersolid states

are topological equivalent with px + ipy topological superfluid phase. In figure 3(b), we

present the edge state for topological supersolid states with ϕ = 0.26π, U = 30, g = 0.3.

Thus, we have our topological nontrivial supersolid states proved in both geometric and

quantitative aspect.

The stability of the supersolid state in the attractive interaction region can be

justified by the sign of inverse compressibility [69–71]

κ−1 = n2∂µ

∂n
= −n2∂

2Ω(T=0)

∂n2
|n=n0 , n0 =

1

2
. (12)

where Ω(T=0) is the thermodynamic potential as shown in equation (7), and thus κ can

be obtained numerically. The positive sign of inverse compressibility suggests that the

system will not collapse [69], which is frequently used in Hubbard model to describe

the stability and emergence of Mott insulator phase [70] . As adaptations, we extend

it to our long range Hubbard model with dipolar coupling. Numerical results for the
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Figure 5: The compressibility κ varies as a function of the hopping ratio g with different

interaction strength U and dipole orientation ϕ. (a) ϕ = 0.3π. (b) ϕ = 0.26π.

Figure 6: (a) Experimental setup for staggered next-next-nearest-neighbor tunneling via

Raman laser assisted tunneling technique. (k1, ω1), (k2, ω2) are two far detuned Raman

lasers, ∆ is the energy offset induced by gradient magnetic field M. (b) The phase

accumulated in the Raman laser assisted tunneling process. φ is the angle between two

laser beams, γ is the angle between δk and x axis.

compressibility as a function of hopping ratio g with various interaction strength U for

ϕ=0.3π , ϕ=0.26π are shown in figure 5(a), (b). It can be seen that the compressibility

is always positive, which implies that the supersolid state and the topological supersolid

state will not collapse. Besides, from figure 5(a), it can be seen that the compressibility

increases with the augment of g at first, and will encounter a reduction as g → 1, which

indicates the stripe order begins to show up. For ϕ=0.3π, the stripe order dominates

at large interaction strength U = 15, indicating a Mott insulator state with density

pattern, which is non compressible with κ = 0.

Experiment realization and effective Hamiltonian derivation

In order to generate strong enough dipolar interaction strength, we consider the

hyperfine state |F,mF ⟩ = |21/2,−21/2⟩ of 161Dy dipolar atoms. The atoms are confined

in a 2D optical lattice with lattice constant a=450 nm [56], where the bare tunneling
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is inhibited by the energy offset ∆ [72] and the staggered next-next-nearest tunneling is

introduced via the laser-assisted tunneling technique [57,58] (see figure 6(a)). In details,

Two far-detuned Raman beams (k1, ω1), (k2, ω2) are utilized with the difference of laser

frequency prefixed to be δω = ω1 − ω2=2∆, a time dependent oscillating potential can

be formed V (r, t) = V0(cos (δk · r) − ωt), δk = k1 − k2, V0 is the trap strength. The

dipoles trapped in 2D optical lattice with Raman coupling can be described as:

H =
∫
d2rψ̂†(r)[− h̄

2∆2

2m
+ Vopt(x, y) + 2∆x+ V0 cos(δk · r − ωt)]ψ̂(r)

+
1

2

∫ ∫
d2r1d

2r2ψ̂
†(r1)ψ̂

†(r2)Udd(r1 − r2)ψ̂(r1)ψ̂(r2)

(13)

where Udd depicts the dipolar coupling in real space, and ω is the oscillating frequency.

When Udd ≪ ∆, we can take the following basis: |m,n⟩ = |m⟩⊗|n⟩ ≡ w(r−Rm,n), where

|m⟩ is the Wannier-Stark state centered at m, and |n⟩ is the Wannier state centered at

n. Thus, in a second quantization representation, the interaction term can be regarded

as Hint =
∑

i,j Vijc
†
ic

†
jcjci and

Vi,j=
∫
d2r1d

2r2w
∗(r−Ri)w

∗(r−Rj)Udd(r1−r2)w(r1−Rj)w(r2−Ri)(14)

Above results account for the interaction part in the effective model equation (1). For

the tunneling part, the Raman laser induced tunneling takes the form:

J = ⟨m,n|V0 cos (δk · r − ωt)|m+ 2, n⟩
= ⟨0, 0|V0 cos (δk · (r +Rm,n)− ωt)|2, 0⟩

(15)

Assume δk · r = kxx + kyy, θm,n = ωt − δk · Rm,n. Then J = V0 cos θm,n⟨0| cos (kxx)|2⟩.
Define ⟨0| cos (kxx)|2⟩ as J2, and in second quantization presentation, the tunneling

parts take the form:

H̃0=
∑
m,n

(2∆m+V0 cos θm,n)|m,n⟩⟨m,n|

+(V0 cos θm,nJ2|m+ 2, n⟩⟨m,n|+h.c.)+(ty|m,n+ 1⟩⟨m,n|+h.c.)
(16)

where ty =
∫
d2rw∗(r − (Rm,n + êy))[

−h̄2∆2

2m
+ Vopt(x, y)]w(r − Rm,n). By rotating

transformation U(t) =
∑

m,n e
−iγm,n|m,n⟩⟨m,n|, γm,n = mωt + V0

ω
sin θm,n ,we obtain

the transformed tunneling term in x direction.

H̃
′

0x = V0 cos θm,nJ2e
i(γm+2,n−γm,n)|m+ 2, n⟩⟨m,n|+ h.c. (17)

By rotating wave approximation, we shall obtain the time independent effective

tunneling in x direction:

H̃eff
0x = t

′

x|m+ 2, n⟩⟨m,n|+ h.c. (18)

where t
′
x = J2

2
V0e

2iδk·Rm,n(J3(Γ) − J1(Γ)), Ji(Γ) is the ith Bessel function, and

Γ = 2V0

ω
sin (−kxa), a is the lattice constant. We deal with y direction tunneling in

a similar way and the time independent effective hopping amplitude t
′
y = tyJ0(Γ

′
),Γ

′
=

2V0

ω
sin (kya

2
). Above results present how to induce the position dependent phase via laser

assisted tunneling. For our staggered next-next-nearest hopping, we shall take

2δk·R=mθx+nθy = π, θx=2π| sin(φ/2)| cos(γ), θy=2π| sin(φ/2)| sin(γ)(19)
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Here φ is the angle between two laser beams and γ is the angle between δk and x axis

(see figure 6(b)). To achieve our staggered next-next-nearest-neighbor hopping, we fix

φ = 2arcsin 1
4
, and γ = π. Above results accounts for the Hamiltonian equation (1)

in effective model. Meanwhile, according to the amplitude of effective hopping shown

above, we shall obtain the explicit form g = t
′
x

t′y
, which can be tilted by manipulating

the Rabi frequency and the supersolid state can be detected through time of flight

measurements [73–76].

3. Conclusion

In conclusion, we have investigated topological supersolid states of dipolar Fermi gases

in a 2D optical lattice with staggered next-next-nearest-neighbor hopping. Our results

bring up a new type of stripe order, and greatly enhanced the parameter space for

detecting supersolid state. Topological phase transitions among topological supersolid

states, topological superfluid states, p wave superfluid states with different coupling

strength as well as hopping ratio g are shown. We also utilize the inverse compressibility

to prove that the topological supersolid state will not collapse at large coupling strength

in the attractive environment. Meanwhile, the novel state, topological supersolid

state, may have significant potential for quantum computing. Experiment proposals

to simulate the topological supersolid state are also presented.
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