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Abstract—With the increasing prevalence of autism spectrum
disorder (ASD), it is important to identify ASD patients for
effective treatment and intervention, especially in early childhood.
Neuroimaging techniques have been used to characterize complex
biomarkers based on the functional connectivity anomalies in
ASD. However, the diagnosis of ASD still adopts the symptom-
based criteria via clinical observation. The existing computational
models tend to achieve unreliable diagnostic classification on
large-scale aggregated datasets. In this work, we propose a novel
graph-based classification model using deep belief network (DBN)
and the Autism Brain Imaging Data Exchange (ABIDE) database,
which is a world-wide multi-site functional and structural brain
imaging data aggregation. The remarkable connectivity features
are selected through a graph extension of K-nearest neighbors,
and then refined by a restricted path-based depth first search
algorithm. Thanks to the feature reduction, lower computational
complexity could contribute to the shortening of training time.
Automatic hyperparameter tuning technique is introduced to
optimize the hyperparameters of DBN by exploring the potential
parameter space. The simulation experiments demonstrate the
superior performance of our model, which is 6.4% higher than
the best result reported on ABIDE database. We also propose to
use data augmentation and over-sampling technique to further
identify possible subtypes within ASD. The interpretability of our
model enables the identification of the most remarkable autistic
neural correlation patterns from data-driven outcomes.

Index Terms—Autism spectrum disorder (ASD), functional
magnetic resonance imaging (fMRI), computational diagnostic
model (CDM), deep belief network (DBN), functional connectivity
(FC)

I. INTRODUCTION

AUTISM spectrum disorder (ASD) is a range of com-
mon childhood neurodevelopmental disorders including

autism, Asperger’s syndrome, and other related conditions.
ASD individuals typically present with variable deficits of
clinical syndromes in restrictive interests, social communica-
tion, and repetitive behaviors. The rising incidence of ASD
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has attracted public concern. The serious impairments of ASD
can last throughout one’s life and represent a major burden of
health and finance globally. The lifetime costs of treating an
ASD patient in the United States has exceeded one million
dollars [1]. Early treatments and intervention can alleviate
the symptoms and improve the life quality of the patients.
Although the neurogenetics and neurobiology of ASD have
been widely investigated, the pathology of ASD still remains
uncertain. Due to the etiological heterogeneity of ASD, no
neuropathological or unified structural traits have been con-
clusively characterized [2]. The symptom-based diagnostic
criteria are still fundamental for the clinical diagnosis of ASD.
ASD patients are typically diagnosed by using the criteria
checklist of the Diagnostic and Statistical Manual (DSM).
Despite the ever-changing diagnostic metrics and categories
over the past decades, the diagnosis of ASD, at its core, still
suffers from significant limitations in observational strategies.
The recent studies have revealed that disparities between
individuals with autism and those without autism have reduced
over time, which could be attributed to the continuous changes
in the definition of autism [3]. In other words, the traditional
clinical diagnosis could more likely lead to misdiagnosis due
to the subjectivity and complexities involved in the diagnosis
process. Additionally, the global shortfall in well-qualified
professionals of ASD could delay the early diagnosis and
treatment by aggravating related symptoms.

The non-invasive neuroimaging techniques provide data
for capturing neural patterns of brain structure and function.
As a kind of neuroimaging techniques, functional magnetic
resonance imaging (fMRI) [4] is extensively employed to
investigate functional variations and structural alterations in
the autistic brain activity. The rationale of fMRI is to measure
the blood-oxygen-level dependent (BOLD) contrast related to
the energy use by brain cells. Resting state fMRI (rs-fMRI),
serving as one of the fMRI paradigm, provides the data of
subjects’ baseline BOLD variance. Numerous studies have
proven the feasibility of using rs-fMRI to uncover pairwise
interactions between regions of interest (ROIs) in psychiatric
illnesses such as Alzheimer disease [5], attention deficit hy-
peractivity disorder (ADHD) [6], autism [7], and others [8].
Rs-fMRI signals have shown great potential in identifying
neuropathology diagnostic biomarkers [9]. Leveraging the data
integrated from multiple datasets could be a silver-bullet
solution for clinical applications through sharing and consoli-
dating independent data samples across different studies. This
can greatly contribute to the diagnosis, determination of risk
prognosis, and monitoring of treatment response of ASD [10].
However, controversies still surround preprocessing pipelines
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including bandpass filtering and global signal regression.
Without a unified set of standard, data aggregation solution
could be debatable with regards to the reproducibility and
generalizability of data sources. Uncontrolled variations can
inevitably exist in inter-site data ranging from MRI acquisition
protocols (e.g. MRI vendors, flip angle, scan time and basic
pulse sequence parameters), to recruitment strategies (e.g. age
tendency and IQ-range), and to participant instructions (e.g.
eye open/closed conditions) [11]. This impedes the effort
to leverage aggregated MRI data in research. The advances
in computing power and methodology [12] have enabled
the development of useful computational model to solve the
aforementioned issues.

In this paper, we propose a novel graph-based classification
model using deep belief network (DBN) [13]. To train our
model, we leverage the data of the Autism Brain Imaging Data
Exchange (ABIDE) database, which is a world-wide multi-site
functional and structural brain imaging data aggregation [14].
First, the ASD remarkable functional connectivities (FCs) are
selected by the graph-based feature selection (GBFS) method
based on the both external and internal measures. Then, a
restricted path-based depth first search (RP-DFS) algorithm
is implemented to further explore the topological information
implied in graph. Finally, a three-layer DBN with automatic
hyperparameter tuning is proposed for the identification of
ASD patients. The result of mean accuracy of 0.764± 0.022
based on 10-fold cross validation (CV) shows that our model
outperforms the state-of-the-art methods. The receiver operat-
ing characteristic (ROC) curve and the area under ROC curve
(AUC) are used to evaluate the classification performance for
the best-case and worst-case scenarios. Leave-one-site-out test
well demonstrates the applicability and generalization of the
proposed model to a new different site. The proposed model is
also demonstrated to have moderate improvement in predictive
capability for identifying ASD subtypes. No significant dif-
ferences are observed between accuracy and the confounding
factors, e.g. age, gender, and full-scale intelligence quotient
(FIQ) scores. In addition, the interpretability of our model
enables us a statistical analysis for uncovering the correlation
patterns in autistic brains. Subsequently, some rules that we
found are presented in this work. The main contributions of
this paper can be summarized as follows:

1) The GBFS method is proposed to effectively select
remarkable connections in ASD brain based on both
external and internal measures. Moreover, we further
design a DBN classifier with automatic hyperparameter
tuning, which is more accurate and efficient as compared
with other state-of-the-art algorithms.

2) We first try to identify possible subtypes within ASD
on imbalanced rs-fMRI datasets. To tackle this issue,
data augmentation and oversampling technique are in-
troduced based on the proposed model. Experiment
results suggest our work obtain moderate improvement
in predictive capability for identifying ASD subtypes.

3) Based on the real-world data of ABIDE, we conduct
a series of comprehensive experiments to validate the
superior performance of our model against the state-

of-the-art methods. The interpretability of our model
enables us to prioritize the seminal correlation patterns
in autistic brains, some of which have been manually
validated by published literatures.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III describes the proposed
framework including GBFS, RP-DFS and DBN model with
automatic hyperparameter tuning. The experimental results
and analysis are discussed in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORK

More recently, there has been an increasing interest to inves-
tigate brain FC as neurological biomarkers in numerous studies
for the classification of mental sates (e.g. the presentation of
emotions [15], learning [16], and semantic categories [17]),
and mental disorders (e.g. ASD, schizophrenia, and major
depressive disorder (MDD) [18]). Based on the discovery of
neurological biomarkers, extensive efforts have been made to
developing the computer-aided diagnostics models [19], [20],
[21]. In the following, we briefly review some extensively used
feature selection strategies and classification models based on
brain disorder studies.

A. Feature Selection Strategies

To select discriminative and effective features on fMRI
data is particularly important to well-performing classifiers
for identification of mental disorder [22]. Especially for FCs,
usually tens of thousands of features are defined whereas only
a small percentage of them carry valuable information towards
the goal. Nielsen et al. [23] extracted 7265 features from 26.4
million connections by computing the pairwise correlation
coefficient between each generated ROI. Feature selection
strategies can be mainly categorized into three classes: filter
methods, wrapper methods, and embedded methods [24].

Filter methods are widely applied for feature selection
thanks to their effectiveness in computational expense and
their robustness to overfitting. The basic principle is to assign
proxy measures (e.g. statistical test [24], Fisher score [25],
and correlation coefficient [26]) to features using the general
characteristics of datasets, so as to harvest optimal feature
subsets with top scores. The group-level statistical test is the
most popular type of filter methods such as t-test, ranksum-
test, and Welch’s t-test. The primary issue with this strategy is
that remarkable features are selected by their p-values, which
sometimes disable to reflect those with the largest discrimi-
nation power. That is, features with small p-values (i.e., high
confidence) might result in a poor classification performance
[27]. Correlation-based feature selection is another type of
filter methods to rank features based on the assumption that
optimal feature subsets contain highly correlated information
with regard to the classification so as to distinguish between
instances [26]. Abraham et al. use a regularized covariance
estimator to estimate the connectivity coefficients between ROI
time series based on three different measure methods [11].
This strategy can achieve satisfactory performance thanks to
the low-order polynomial run time, applicability to binary or
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continuous data, as well as noise-tolerance and robustness to
FC feature interactions.

Wrapper methods select decreasing numbers of features
with different possible combinations depending on the per-
formance of classifiers. Recursive feature elimination (RFE)
[28] and genetic algorithm (GA) [29] are two extensively used
wrapper methods to produce seminal feature combinations.
RFE optimizes classifiers by recursively considering smaller
and smaller possible feature combinations. To explore an opti-
mal subset of features, the work in [30] determines the number
of feature variables for classification by the highest accuracy as
recursively increasing the thresholds at seven different effect
sizes. GA initializes binary encoded populations (representing
a feature included or not) and then generates high-quality
feature combinations by bio-inspired operators i.e., mutation,
crossover and selection. The third class, embedded methods
are quite similar to wrapper methods since they also integrate
feature selection into the learning of specific classifiers for
decision processes. The major difference to wrapper methods
is that an intrinsic model building metric is leveraged during
learning. The least absolute shrinkage and selection operator
(LASSO) method is the most popular embedded method to
add a penalty against complexity for reducing the degree
of variance or overfitting of a linear model [31]. In recent
neuroimaging studies [32], [33], multi-task feature selection
as an emerging approach aims to integrate data sharing highly
consistent feature patterns between modality by ideally ignor-
ing the data-dependent noise. Based on sparse learning, Wang
et al. [34] used the group `2,1-norm regularizer to impose the
sparsity between all features and non-sparsity between tasks
for obtaining important features. In theory, wrapper methods
and embedded methods tend to yield better feature subsets
specific for a particular classifier than filter methods do.
However, the quantity of possible feature combinations expo-
nentially grows as the number of features increases. Wrapper
methods and embedded methods are more computationally
expensive than filter methods due to the repeated learning
steps and cross-validation. Furthermore, features selected by
them could not well characterize the reproducible autistic
connectivity patterns due to their dependent relationships with
specific classifiers. Since the purpose of this study is to
explore reproducible biomarkers with discriminative power for
effective classification, a heuristic graph-based filter feature
selection method is proposed based on both external and
internal measures on rs-fMRI data.

B. Classification models

In previous literature [20], [23], traditional machine learning
(ML) classifiers with hand-engineered features are commonly
utilized to uncover the autistic function patterns. The on-
going development of ML toolkits (e.g. scikit-learn [35])
provide easy-to-implement ML methods and allow researchers
to compare the feasibility and effectiveness of diverse ML
methods, such as random forest (RF) and SVM [36]. Plitt
et al. explored 9 ML classification algorithms based on the
statistical significance of accuracy, positive predictive value
(PPV), and negative predictive value (NPV) [19]. However,

most ML classifiers rely on the “shallow” or linear models.
They are incapable of capturing the topological information
within brain networks as well as the relationships between
connectivity features and clinical traits, especially on large-
scale datasets [37].

In recent years, deep learning (DL) techniques [38], [39]
have emerged as a promising approach with an outstanding
performance comparable to or even in some cases superior
to human experts. A growing number of studies [40], [39],
[30] attempt to employ DL algorithms for the classification
of brain disorders and address the issues of generalizabili-
ty and subjectivity brought by ML classifiers. Heinsfeld et
al. [38] concluded that DL algorithms should minimize the
human intervention to automatically extract relevant features
using unsupervised learning methods. They use two stacked
denoising autoencoders to transfer 19,900 features into deep
neural network (DNN) [41] achieving the average accuracy
of 70%, which is the best result reported to date using the
whole ABIDE database. The well-performing DL classifiers
benefit from their hierarchical structure with different levels
of complexity, and non-linear transformations with different
levels of abstraction provided by hidden layers [24], [42]. This
allows us to characterize the reproducible autistic connectivity
patterns or “fingerprints” served as biomarkers, to effectively
discriminate ASD patients from the control. Nevertheless,
determining appropriate models’ configuration setting is quite
challenging by the many hyperparameter choices one must
make, e.g., learning rates and batch sizes. Automatic hy-
perparameter tuning technique is of crucial importance for
utilizing DL algorithms in practice. In this work, we propose a
three-layer DBN model with automatic hyperparameter tuning
technique for classification and further improve the accuracy
through tackling this issue.

III. MODEL DESIGN

The flowchart of the proposed model is shown in Fig. 1.
First of all, by the preprocessing pipeline, the mean time series
of ROIs are extracted from the raw rs-fMRI data and then
converted into two-dimensional feature matrices T , where Tik
represents the ith ROI’s mean time series of kth timestamp.
GBFS is used to select remarkable autistic functional connec-
tions for graph construction based on both external and internal
measures. Then we exploit topological information to enrich
the graph representation by using RP-DFS method. Finally, a
three-layer DBN model is built and its configuration setting is
optimized by automatic hyperparameter tuning.

A. Graph-Based Feature Selection

In this section, the graph-based feature selection (GBFS) is
proposed to select remarkable autistic functional connections
based on the preprocessed datasets. Incorporating appropriate
FC features is necessary for the classification of brain dis-
orders. If we calculate all FCs between voxels, the number
of features adds up to tens of thousands. The irrelevant
features with redundant information would be detrimental
to the classification performance. In this work, the Pearson
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Fig. 1. The flowchart of the proposed model.

correlation coefficient (PCC) is used to measure the levels of
co-activation between each ROI’ time series as follows:

FC(i, j) =

∑N
k=1(Tik − Ti)(Tjk − Tj)√∑N

k=1(Tik − Ti)2
∑N

k=1(Tjk − Tj)2
(1)

where N represents the total number of timestamp and varies
from different institutes. FC(i, j) means the FC correlation
between any two ROIs ranging from 1 (highly correlated) to -1
(highly anti-correlated). In this way, the generated connectivity
vector for each subject contains 19,900 features/connections
(200 ROIs, 200×(200−1)

2 = 19, 900). The remarkable autistic
connections of ROIs are selected based on both external and
internal measures.

First, the external measure is a data-driven approach for
globally identifying the unique neural patterns associated with
ASD. As mental disorders can be considered as disturbances
or disruptions of the normal operation of brain activity, the
remarkable connections need to satisfy two following criteria:
1) Remarkable connections must be distinctive enough in
terms of autistic average level. All ASD datasets are merged
to calculate the mean value for each connection, denoted
as mean(FCASD), and the global mean value, denoted as
meanASD, as well as the global standard deviation (STD)
as STDASD from all connections. Then those connections
with mean(FCASD(i, j)) higher or lower than meanASD for
α-times STDASD are considered to satisfy this condition.
A default filter factor α is used to control the number of
selected connections. 2) Remarkable connections must be
simultaneously discriminative between ASD group and typical
control (TC) group. In other words, combined with the first
criteria, the selected connections should be remarkable in ASD
group while unremarkable in TC group. Accordingly, these
two criteria can be mathematically subject to{
‖mean(FCASD(i, j))−meanASD‖ > α ∗ STDASD

‖mean(FCTC(i, j))−meanTC‖ ≤ α ∗ STDTC .
(2)

α is empirically set to 1 in our work via 10-fold CV. Each
connection is examined to determine whether it should be
selected as a remarkable connection based on these two
criteria. As such, only 81 qualified connections are selected
to perform the internal measure in the next step. It is worth
to note that when we repeat the same procedures for TC
group based on the opposite version of Eq. (2), the remarkable

Unremarkable Connections higher than baseline

Unremarkable Connections lower than baseline

Fig. 2. 81 and 380 remarkable connections are highlighted in ASD group
and TC group, respectively. (STDASD = 0.2407 and STDTC = 0.2437)

connections of TC group that are remarkable in TC group
while unremarkable in ASD group achieves up to 380 (as
shown in Fig. 2). The brain networks for both ASD and
TC groups are visualized in Fig. 3 using BrainNet Viewer
[43]. Most notably, 115 and 37 remarkable connections in TC
group are associated with the frontal and posterior cortical
areas, respectively. Whereas in ASD group, only 18 and 4
remarkable connections are associated with the frontal and
posterior cortical areas, respectively. This finding is consistent
with the theory of frontal-posterior underconnectivity in autism
[44], which attributes the disorder to lower synchronization
caused by lower communication bandwidths between frontal
and posterior areas in the autistic brain. Therefore, the external
measure can explore the reproducible neurological biomarkers
with discriminative power in deciphering remarkable autistic
neural correlation patterns from data-driven outcomes.

Second, a graph extension of K-nearest neighbors as an
internal measure is applied for graph construction on commu-
nities of potential ROIs between those remarkable connections
selected by the external measure. As shown in Fig.4, this
approach takes advantage of spatial distribution information by
detecting the normalized neighborhood of K-nearest ROIs as
the “receptive fields” for connected communities. For a target
remarkable connection, their neighbor ROIs do not belong
to this remarkable connection. Take the diamond-shape node
(denoted as Noded) and the triangle-shape node (denoted as
Nodet) in Fig.4 as examples, a graph is initialized with edges
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ASD

TC

Axial CoronalSagittal

Fig. 3. The visualization of brain networks for ASD and TC groups from
views of sagittal, axial and coronal planes.

1. Initialize the graph with
remarkable connections

2. Extend any two potential ROIs of each
remarkable connections to K-nearest

neighbor ROIs for neighborhood 
community construction

3. Append the connections between ROIs in
two target communities to the graph

4. Graph construction for each remarkable connection

Fig. 4. Illustration of the internal measure pipeline by a graph extension of
K-nearest neighbors

connecting Nodet and Noded. We assume that the autistic
neuronal activity could function as the collaborative activation
pattern in potential associated areas, rather than the single
region-to-region connectivity interaction. The subgraph exten-
sion is conducted by extending both Nodet and Noded to their
K-nearest neighbor ROIs forming communities (subgraphs)
based on Euclidean distance. The FCs of ROIs between the
subgraphs of Nodet and Noded are appended to the graph
with their weights that are estimated by PCC. After using
GBFS for each remarkable connection, the number of selected
FC features should be 81× (K+1)2 = 3, 969, where K is em-
pirically set to 6 in this work. After filtering out 681 repeated
connections, we only consider 16.52% ( 3,288

19,900 ×100%) of the
original features associated with the autistic brain activity. The
pseudo-code is shown in Algorithm 1.

B. Restricted Path-Based Depth First Search Algorithm

Network topology in graph is helpful to unravel the im-
plied information, which effectively enriches the connectivity
matrices. We extend our previous work [45] and redesign a
restricted path-based depth first search algorithm named RP-
DFS for refining FC feature matrices to traverse all potential
paths between both target ROIs of each remarkable connection.
A path (denoted as P ) is defined as a set of connections

Algorithm 1 The pseudo-code of GBFS
Input: The # of nearest neighbors K, a feature matrix T.
Output: Graph G(V,E).

1: Initialize remarkable connection set S = {}
2: Split all datasets into ASD group and TC group
3: Calculate mean(FCASD), meanASD, and STDASD in

ASD group as well as mean(FCTC), meanTC , and
STDTC in TC group

4: for i = ROI1, ..., ROI200 do
5: for j = i+ 1, ..., ROI200 do //19,900 in total
6: if FC(i, j) satisfies formula (2) then
7: S ← S ∪ edge(i, j) //add remarkable links
8: end
9: end

10: end //End of the external measure
11: Initialize Graph G: G(V,E) = ∅
12: for each edge(i, j) ∈ S do
13: Pick K-nearest neighbor ROIs for i, j as Ui, Uj

14: for each ROI p ∈ Ui do
15: for each ROI q ∈ Uj do
16: if edge(p, q) /∈ G then
17: edge(p, q).weight← FC(p, q)
18: G.V ← G.V ∪ {p, q} //add nodes
19: G.E ← G.E ∪ edge(p, q) //add edges
20: end
21: end
22: end
23: end //End of the internal measure

between two target ROIs within restricted lengths (steps).
Given two target ROIs as Ri and Rj , this algorithm is mainly
based on two assumptions: 1) If Ri and Rj are connected
with another ROI Rk, denoted as Ri ↔ Rk and Rj ↔ Rk,
but disconnected with each other, Ri and Rj are considered
to have a semi-remarkable connection in graph with a weight
that should be relatively reduced as the path elongates. 2) The
more restricted paths are found to connect two target ROIs, the
more likely they have a strong correlation. The accumulative
contributions are integrated from all potential paths between
Ri and Rj as a final score. The score can be formulated as

score(Ri, Rj) =

Nij∑
t=1

(
∏

W (Pt))
Fdecay(Pt) (3)

Fdecay(P ) = β × (len(P )− 1) (4)

where Nij is the maximum restricted length of P between
Ri and Rj . β is the decay factor ranging from 1.5 to 3
according to the previous research [46]. W (Pt) represents
the weight of tth connection in path P . Fdecay(P ) is the
exponential decay function assigning less confidence to longer
paths. This algorithm is easy to implement as a recursive
computation. The principle of acyclicity ensures that no ROIs
are repeatedly visited in each restricted path. Considering the
computational complexity, the maximum length of paths is
set to 2 (i.e. Nij = 2) in this work. Besides those 3, 288
remarkable connections like Ri ↔ Rk, there are 7, 712 semi-
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remarkable connections like Ri ↔ Rk ↔ Rj explored by
this algorithm. As such, total 125,639 potential paths are
involved in the remarkable and semi-remarkable connections
in the graph for each dataset. The final scores of the involved
connections (3, 288 + 7, 712 = 11, 000) are converted into a
two-dimensional matrix of size 110 × 100 for classification.
The algorithm is shown in Algorithm 2.

Algorithm 2 The pseudo-code of RP-DFS
Input: Graph G(V,E), Max len
Output: A scoring matrix T’.

1: Initialize a scoring matrix T’ and a path set PS
2: for len=1,...,Max len do
3: for each Nodei ∈ G.V do
4: for each Nodej ∈ G.V do
5: PSij ← getAllPaths(Nodei,Nodej ,G(V,E),len)
6: for each path ∈ PSij do
7: T’←T’+Score(Nodei,Nodej) via Eq.3 & 4
8: end
9: end

10: end
11: end
12: //define function
13: getAllPaths(Origin Node, Target Node, G(V,E), len):
14: return allPaths(Target Node, list(Origon Node),

set(Origin Node), G(V,E), list(), len)
15: //define function
16: allPaths(Target Node, currentPath, used Nodes,

G(V,E), answerPath, len):
17: Last Node←the last node of currentPath
18: if Last Node=Target Node then
19: answerPath←answerPath ∪ currentPath
20: else
21: for each Neighbor Node ∈ G.V (Last Node) do
22: if Neighbor Node /∈ used Nodes and

currentPath.len()<len then
23: currentPath←currentPath∪Neighbor Node
24: used Nodes←used Nodes∪Neighbor Node
25: allPaths(Target Node, currentPath,

used Nodes, G(V,E), answerPath, len) //recursion
26: used Nodes←used Nodes\Neighbor Node
27: currentPath.pop()
28: end
29: end
30: return answerPath

C. DBN model with Automatic Hyperparameter Tuning

Based on the refined feature matrices, DL models are ca-
pable of automatically learning the optimal representation for
the identification of ASD. In this section, we use a three-layer
DBN model with automatic hyperparameter tuning technique
for classification (see Fig. 5). As one of the most effective DL
models [13], DBN is composed of three restricted Boltzmann
machine (RBM) [47] layers of hidden units with communica-
tions between concatenated layers but not between units for
each layer. Basically, the training of DBN performs in two

stages: unsupervised pretraining and supervised fine-tuning
[48]. First in the unsupervised pretraining, the layers of DBN
iteratively learn to probabilistically reconstruct the visible units
without labels. The activation functions of visible layers and
of hidden layers in RBMs are set to the affine function and
sigmoid functions, respectively. Then the supervised learning
of DBNs fine-tunes the resulting network with labels using the
root mean square propagation (RMSProp) [49] and momentum
technique as backpropagation methods, where the activation
function is the rectified linear unit (ReLU) [50]. The outputs
are derived from the softmax function yielding the probability
of being one class (i.e. ASD or TC). Hence, there are only
two units in the output layer based on one-hot encoding. To
calculate the difference between estimated and true values,
both unsupervised and supervised learning employ the same
loss function, i.e., the cross entropy. Dropout regularization is
used for reducing overfitting.

The well-known issue of using DL in classification is the
strenuous and time-consuming hyperparameter tuning, which
varies from different problems. Feature reduction leads to the
hierarchical structure with lower levels of computational com-
plexity that shortens the training time based on the GPU ac-
celeration. Automatic hyperparameter tuning technique is first
introduced for computational diagnosis of mental disorders
using Bayesian optimization (BO) with Gaussian processes
(GPs) [51]. Thanks to its useful surrogate model and good
practices, we take advantages of speed to increase the number
of iterations for further improving the classification accuracy.
The BO-based optimizer is used to guide the potential search
direction towards seminal hyperparameter sets in problem
space. Three continuous and four discrete hyperparameter
values shown in Fig. 5 are optimized. Based on [52], we
consider mathematically the problem of seeking a global
maximizer of an unknown objective function f as:

x∗ = argmaxx∈X⊆Rdf(x) (5)

where X is the certain design space of interest in global opti-
mization. Since f is unknown, the sequential design strategy
of BO treats f as a random function at first and places a
prior over it. After gathering the tested data from function
evaluations, the posterior distribution over f is approximated
by the updated prior. In turn, the observation of posterior
distribution is used for the construction of an acquisition
function that determines the next query point (combination).

IV. EXPERIMENTS

For evaluation of the efficiency and effectiveness of our
model, all fMRI datasets from ABIDE are used to calculate
the evaluation matrices (e.g., accuracy, sensitivity, specificity,
ROC curve and AUC) via 10-fold CV. Seven state-of-the-
art models are compared with the proposed model for the
performance comparison. Then differential evolution (DE)
[53], [54] and particle swarm optimization (PSO) [55], [56]
are applied as the global optimizers to compare with BO for
the performance evaluation of hyperparameter tuning. We con-
duct a leave-one-site-out test to validate the applicability and
generalization of the proposed model to the data from a new
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 Parameter ranges: 
1. Batch size: [8, 32]
2. Learning rate: [10-3,10-4]
3. Momentum rate: [0.1, 0.99]
4. Dropout rate: [0.1, 0.5]
5. Unit # of hidden layer 1: [800, 2000]
6. Unit # of hidden layer 2: [300, 700]
7. Unit # of hidden layer 3: [20, 200]

Optimizer
(BO, DE or PSO)

Define scopes

Step 1: Unsupervised pretraining

Step 2: Supervised fine-tuning

Step 3: Validating model performance

Three-layer deep belief network

 Activation function of visible layers in step 1: Affine
 Activation function of hidden layers in step 1: Sigmoid
 Hidden activation function in steps 2 and 3: ReLU
 Output activation function in steps 2 and 3: Softmax
 Loss function: Cross entropy
 Optimization algorithm: RMSProp and momentum
 Epochs: 50

Next query combination, e.g.:
(14) 

(0.0005)
(0.87)

(0.3)
(1730)

(600)
(150)

Average accuracy 
(as objective function 𝑓)

Fig. 5. A three-layer DBN classifier with automatic hyperparameter tuning of optimizer based on BO, DE or PSO

different site. The proposed model is leveraged to first identify
three possible subtypes within ASD using data augmentation
and over-sampling technique. We further conduct an analysis
of the effects of confounding factors (e.g., age and gender) on
classification accuracy. Finally, the predicted autistic neural
patterns are manually validated based on the results reported
in previous literatures.

A. ABIDE Dataset and Data Processing

The Autism Brain Imaging Data Exchange I (ABIDE)
[14] database is a multi-site open-access consortium collected
from 17 different international brain imaging laboratories. In
this study, we include all valid rs-fMRI datasets from 505
ASD patients and 530 TCs along with their key phenotypical
information including age, subject gender, handedness and full
scale IQ. There is no consensus on the best way to preprocess
rs-fMRI data. To better strengthen the data-sharing effort,
the Preprocessed Connectomes Project (http://preprocessed-
connectomes-project.org/abide/) publicly release the prepro-
cessed version of ABIDE by five different teams using their
preferred preprocessing strategies [52]. We select the da-
ta preprocessed through the Configurable Pipeline for the
Analysis of Connectomes (C-PAC). This pipeline includes
the slice time correction, motion realignment, global mean
intensity normalization, nuisance variable regression, band-
pass filtering (0.01-0.1Hz) and functional image transforma-
tion. The nuisance variable regression is modeled with 24
motion parameters, 5 principal components of CompCor [57]
and low-frequency drifts of linear and quadratic trends, to
clean confounding variations from fMRI signal. The statistical

TABLE I
PERFORMANCE COMPARISON BETWEEN OUR MODEL AND OTHER

PREVIOUS STUDIES BASED ON THE ABIDE DATABASE.

Model Classifier Validation sample # Accuracy(STD)

Ours DBN 10-fold CV 1035 0.764 (0.022)
Heinsfeld et al. [38] DNN 10-fold CV 1035 0.700 (N.A.)

Dvornek et al. [39] LSTM 10-fold CV 1035 0.685 (0.055)

Plitt et al. [19] L-SVMs 10-fold CV 178 0.697 (0.027)

Chen et al. [20] RFE-SVM Train/Val 252 0.660 (N.A.)

Abraham et al. [27] `2-SVC 10-fold CV 871 0.669 (0.027)

Nielsen et al. [23] LOO linear LOOCV 964 0.600 (N.A.)

Ghiassian et al. [59] RBF-SVM Train/Val 1035 0.592 (N.A.)

derivatives are normalized to MNI152 template space (3 mm
isotropic) and spatially smoothed with a 6-mm Gaussian kernel
of full width at half maximum (FWHM). The mean time
series for each subject are extracted by seed voxel signals
in each non-overlapping ROIs. There are seven ROI atlases
providing different solutions to extract the mean time series
of functional data. Among these seven sets of ROIs, we only
use the Craddock 200 (CC200) functional parcellation atlas
for extraction in this work [58]. This data-driven parcellation
atlas leverages the two-stage spatially-functional procedure to
partition individual-level connectivity graphs into 200 regions
via normalized cut spectral clustering.

B. Ten-Fold Cross Validation and Leave-One-Site-Out Test

We implement 10-fold CV to investigate the performance
of the proposed model. For each fold, the whole ABIDE
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database is split into training/validation/testing sets with a
proportion of 8:1:1. The average elapsed time of training
with the whole ABIDE database is about 96 seconds using
one Intel(R) Core(TM) CPU i7-8700K @ 3.70GHz and one
NVIDIA GeForce RTX 2080 Ti GPU. Since the training
time is shortened by the feature reduction, sufficient numbers
of iterations are allowed to find a better network parameter
configuration for higher classification accuracy. For sufficient
exploration in each fold CV, here we limit the number of
optimization iterations to 300 function evaluations (10 genera-
tions for DE and PSO with population size of 30), where one
function evaluation invokes one full training and evaluation
of DBN model. As we only focus on the ABIDE database
in this work, the proposed DBN model is only compared
with the other previous studies, whose results are also based
on the ABIDE database. As shown in Table I, the four
previous studies that do not use the whole ABIDE database
tend to perform the ASD identification based on their specific
sophisticated sampling criteria, which limits generalizability
of such methods. Arbabshirani et al. [27] demonstrated that
the main bottleneck of this field is yet the limited sample size
and the high classification accuracy could degrade significantly
when the sample data include over 100 participants. Therefore,
the studies not using the whole ABIDE database could be more
likely to suffer from overfitting based on the sophisticated
sampling criteria. The main goal of our model is to achieve
reliable diagnostic classification on large-scale aggregated
datasets by extracting the reproducible autistic connectivity
patterns. It is more desirable to put more focus on studies
based on the whole ABIDE database. As we can see that,
two DL-based models [38], [39] outperform all compared
ML-based models [19], [20], [11], [23], [59] by using DNN
and long short-term memory (LSTM) network, respectively.
Besides 10-fold CV, leave-one-out cross validation (LOOCV)
and single training/validation set (Train/Val) are also utilized
for validation. Our DBN model achieves a mean classification
accuracy of 0.764 ± 0.022 (sensitivity: 0.778, specificity:
0.750) in terms of 10-fold CV, which has been the highest
accuracy achieved so far. In this work, the sensitivity tells us
what percentage of ASD subjects are correctly identified while
the specificity indicates the percentage of people without ASD
are correctly identified.

Since hyperparameter tuning in this case can be considered
as a single objective optimization problem, DE and PSO are
population-based metaheuristic algorithms, which can achieve
outstanding optimization performance when sufficient num-
bers of iterations are allowed. So DE and PSO are used to
compare with BO for performance evaluation. Fig. 6 shows
the performance of our model with three different optimizers
as the number of generations increases. Random search is also
used for the performance comparison as a baseline. For the
proper division of ABIDE data into training/validation/testing
sets, we perform two ways of stratified random sampling by
maintaining the balance of label distribution (shown in Fig.
6a) and each site frequency (shown in Fig. 6b), respectively.
The effect of the stratified random sampling based on each site
frequency is slightly worse than that of the stratified random
sampling based on label distribution. As shown in Fig. 6b, the

 Hidden activation function: ReLU
 Output activation function: Softmax
 Loss function: Cross entropy
 Epochs: 100

 Parameter ranges:
1. Batch size: [8, 32]
2. Learning rate: [10-3,10-4]
3. Dropout rate: [0.1, 0.5]

Fig. 7. The architecture and setting of CNN are designed by manual tunning.
Batch size, learning rate and dropout rate are optimized by the BO-based
optimizer.

BO-based optimizer achieves the highest accuracy of 0.762
while the other three optimizers show different levels of per-
formance degradation, which could be attributed to the sample
number imbalance between each site. Within two generations,
all compared optimizers tend to show slower convergence.
Consequently, we adopt the label distribution-based stratified
random sampling for data splitting in the following simulation
experiments. In Fig. 6a, within two generations, the BO-
based optimizer shows faster convergence while the other
two optimizers perform like a random search. Then the BO-
based optimizer gets stuck on local optima while the other
two optimizers manage to find a near-optimal global solution.
Finally, the DE-based optimizer obtains the highest accuracy
of 0.764, which is comparable to the PSO-based optimizer’s
accuracy 0.763. And the accuracy of BO-based optimizer is
0.756. Considering the expensive computational cost of DBN
training, BO tends to obtain better trade-off of accuracy and
efficiency.

The evaluation of most previous studies is based on one
time CV schema. However the effect of random sample
divisions in CV should be considered. To reduce such bias,
ten times of 10-fold CV are conducted on our model with
BO-based optimizer (see Table II). Only one generation (i.e.
30 iterations) is allowed for each fold CV in order to evaluate
its feasibility and practicability within finite time. RF, SVM
and CNN (convolutional neural network [60], [61]) models
are used for performance comparison under the same feature
selection framework. The architecture and setting of CNN are
shown in Fig. 7. For fair test, the parameters of RF and SVM
are optimized from all potential parameter combinations via
GridSearchCV, a grid-search module from scikit-learn [35].
As the best model reported to date using the whole ABIDE
database, the Heinsfeld’s framework with different classifiers
is also used for comparison. The results derived from their
paper [38] are based on one time 10-fold CV. For a compre-
hensive assessment of our model, the results of three scenarios
are analyzed, i.e., the mean-case, best-case and worst-case
scenarios. As we can see in Table II, random sample divisions
do cause a certain impact on accuracy ranging from 3.3%
to 1.3% in our work with different classifiers. Under the
proposed feature selection framework, RF and SVM achieve
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(a) Stratified random sampling based on label distribution.
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(b) Stratified random sampling based on each site frequency.

Fig. 6. The optimal convergence achieved by our model with three different optimizers as the generation number of hyperparameter tuning increases.

TABLE II
PERFORMANCE COMPARISON BETWEEN OUR WORK AND HEINSFELD’S WORK BASED ON DIFFERENT CLASSIFIERS.

Ten times 10-fold CV in our work under the same feature selection framework
One time 10-fold CV in Heinsfeld’s work [38]

Ours Mean Best Worst

Classifier Sensitivity Specificity Accuracy (STD) Accuracy (STD) Accuracy (STD) Classifier Sensitivity Specificity Accuracy (STD)

RF 0.734 0.580 0.656 (0.046) 0.665 (0.031) 0.650 (0.024) RF 0.69 0.58 0.63 (N.A.)

SVM 0.691 0.646 0.670 (0.047) 0.682 (0.041) 0.649 (0.057) SVM 0.68 0.62 0.65 (N.A.)

DBN 0.762 0.731 0.745 (0.031) 0.751 (0.029) 0.738 (0.027)
DNN 0.74 0.63 0.70 (N.A.)

CNN 0.745 0.726 0.733 (0.046) 0.736 (0.041) 0.718 (0.052)

the mean accuracies of 0.656 and 0.670, respectively, which
are nearly 2% higher than those in Heinsfeld’s work. Note that
the Heinsfeld’s work employed the entire connectivity features
whereas the proposed model uses only 16.52% of them. This
result well demonstrates the effectiveness of our model. As
expected, the DL-based classifiers outperform the traditional
ML-based classifiers. DBN achieves the best performance with
the mean accuracy of 0.745±0.031. The translation invariance
property of CNN may be more suitable to resolve image clas-
sification problems, instead of such graph-structured feature
data. This result demonstrates the successful application of
DBN to complex brain imaging data, showing high potential
of neural networks for learning and detecting the underlying
relationships between the extracted features acquired from
neuroimaging data and the psychological representations.

The contributions of the three proposed methods are also
evaluated in Table III, i.e. GBFS, RP-DFS and the automatic
hyperparameter tuning of BO. Given the reliable performance
of the GBFS method, three representative methods are used
for performance comparison, i.e., the RF wrapper method
[62], the t-test filter method [63], and the chi-squared statistic
filter method [64]. As shown in Table. IV, the proposed
GBFS method achieves the reliable overall performance with
the highest mean accuracy and specificity. The other three
compared methods can obtain high sensitivities. Specifically,
the RF wrapper method obtains the highest sensitivity of

TABLE III
PERFORMANCE COMPARISON FOR USING GBFS, RP-DFS AND BO IN DBN

MODEL VIA 10 TIMES 10-FOLD CV.

Mean accuracy Sensitivity Specificity

DBN with GBFS 0.716 (0.035) 0.750 0.676

DBN with GBFS,RP-DFS 0.725 (0.037) 0.740 0.710

DBN with GBFS,RP-DFS,BO 0.745 (0.031) 0.762 0.731

TABLE IV
PERFORMANCE COMPARISON BETWEEN GBFS AND THE REPRESENTATIVE

FEATURE SELECTION METHODS VIA 10 TIMES 10-FOLD CV.

Method Class Mean accuracy Sensitivity Specificity

GBFS Filter 0.745 (0.031) 0.762 0.731
RF Wrapper 0.734 (0.042) 0.806 0.641

T-test Filter 0.693 (0.058) 0.764 0.598

Chi-squared Filter 0.687 (0.069) 0.768 0.606

0.806. However, they all fail to manage a trade-off between
sensitivity and specificity, which likely fluctuates their mean
accuracies with relatively high STDs. The comparison results
demonstrate the superiority of the proposed method for FC
feature selection.

Since the primary goal of this work is the intelligent
auxiliary diagnosis for individuals with ASD, the sensitivity
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TABLE V
PERFORMANCE COMPARISON FOR DEEPER LEARNING NETWORK IN DBN

VIA 10 TIMES 10-FOLD CV.

Layers 3 4 5

Average accuracy 0.745 (0.031) 0.737 (0.025) 0.727 (0.026)

# of nearest neighbor ROIs K

0.728
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Fig. 9. Parameter tuning of α and K via 10-fold CV. The lighter of the color
you observe, the higher mean accuracy of the area it represents.

is more preferable to the specificity. It means that the missed
diagnosis could bring more severe consequences than the mis-
diagnosis does. ROC and AUC are widely used to evaluate the
performance of binary classification problems by calculating
the true positive rate (sensitivity) and false positive rate (1-
specificity) as changing the thresholds. The ROC curve and
AUC value are used to observe the performance of our model
for the best-case and worst-case scenarios via 10-fold CV (see
Fig 8). As a result, DBN achieves the highest AUC values of
0.7535 and 0.7425 in the best-case and worst-case scenarios,
respectively. DBN and CNN can obtain a good true positive
rate while maintaining a relatively low false positive rate. Table
II also demonstrates that the sensitivities of DBN and CNN
are higher than their specificities. Moreover, to investigate the
potential of deeper learning network in DBN, we conduct a
contrast experiment by gradually increasing hidden layers of
the architecture from three to five. Based on the result of
Table. V, the three-layer architecture is thereby adopted in
DBN model. The filter factor α and the number of nearest
neighbor ROIs K are two key parameters for the proposed
GBFS method. The selection of α and K is determined based
on the experiment result of 10-fold CV, as shown in Fig. 9.
As we can see, the best performance is achieved with the
combination of α = 1 and K = 6. Therefore, the values of α
and K are empirically set to 1 and 6, respectively.

Since ABIDE is the repository aggregated across 17 inter-
national sites without prior coordination, the proposed model
should be reliable enough against the effects brought by differ-
ent experimental settings and participants. Leave-one-site-out
test is used to evaluate the applicability and generalization

TABLE VI
LEAVE-ONE-SITE-OUT TEST.

Site Vendor FD # of ASD # of TC Accuracy

KKI Philips 0.17 22 (8-13) 33 (8-13) 0.792

LEUVEN Philips 0.09 29 (12-32) 35 (12-32) 0.810

SBL Philips 0.16 15 (22-64) 15 (20-41) 0.667

TRINITY Philips 0.11 24 (12-26) 25 (12-26) 0.766

NYU Siemens 0.07 79 (7-39) 105 (7-32) 0.743

OHSU Siemens 0.10 13 (8-15) 15 (8-12) 0.731

OLIN Siemens 0.18 20 (11-24) 15 (10-23) 0.765

PITT Siemens 0.15 30 (9-35) 27 (9-33) 0.786

UCLA Siemens 0.19 62 (8-18) 47 (9-18) 0.786

MAX MUN Siemens 0.13 24 (7-58) 33 (7-48) 0.673

CMU Siemens 0.29 14 (19-39) 13 (20-40) 0.889

USM Siemens 0.14 58 (11-50) 43 (9-39) 0.859

CALTECH Siemens 0.07 19 (17-45) 19 (17-56) 0.811

YALE Siemens 0.11 28 (7-18) 28 (8-18) 0.839

SDSU GE 0.09 14 (12-17) 22 (9-17) 0.806

STANFORD GE 0.11 20 (8-13) 20 (8-12) 0.795

UM GE 0.14 68 (8-19) 77 (8-29) 0.771

Mean N.A. 0.14 31.7 33.6 0.782

of the proposed model to a new different site. As for leave-
one-site-out test, the datasets from one site are used to test the
classification accuracy while the remaining datasets from other
sites are split into training/validation sets in a proportion of
8:2. MRI vendors, mean framework displacement (FD) and
phenotypic information are selected as three representative
factors. Age ranges are correspondingly marked in brackets.
Mean FD is a measure of subject head motion to compare
the change between the current and previous volumes. The
lower value of the mean FD indicates the less subject head
motion. As we can see in Table VI, the proposed model
achieves the mean accuracy of 0.782. Four sites show sig-
nificantly lower accuracies than the mean: SBL, NYU, OHSU
and MAX MUN. Note that the accuracies of SBL, OHSU
and MAX MUN are also significantly lower the mean in
Heinsfeld’s work [38]. This means that these sites might hold
site-specific variability and heterogeneity being absent in other
sites. The result suggest that there is no significant effect of
MRI vendor, mean FD and phenotypic information on the clas-
sification performance. It could be concluded that the proposed
model holds a high reliability against the uncertainties from
new sites.

C. Identification of Possible Subtypes within ASD

As a range of mental disorders, ASD can be further diag-
nosed as autism, Asperger syndrome, pervasive developmental
disorder not otherwise specified (PDD-NOS) and etc, based
on domains of impairment in ASD (see Table VII) [2]. The
subtle changes of their clinical presentations are challenging to
be detected and distinguished via symptom-based diagnostic
criteria, and that obstructs more precise therapeutic decision-
making for individuals with ASD. To the best of our knowl-
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(a) The best-case scenario for the four classifiers in our work
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Fig. 8. The classification performance of best-case and worst-case scenarios for the four classifiers evaluated by ROC curve and AUC in 10-fold CV.

edge, no computational models have been proposed to identify
possible subtypes within ASD using fMRI data. In this study,
we try to leverage the proposed model to address this issue
as a multi-class classification problem. Table VII shows that
ABIDE database is imbalanced for consisting of 323 autism
samples, 87 Asperger samples and 35 PDD-NOS samples,
with a ratio of 9.2:2.5:1.

To balance the dataset before training, data augmentation
and oversampling are used (see Fig. 10). First, we randomly
crop the raw input time course to the same sequence length
for each sample of Asperger and PDD-NOS. Considering the
length of the shortest time-series, we make such a fourfold
augmentation to yield more sample data for training and
testing. However, PDD-NOS samples still make up a small
percentage of 17% of the augmented datasets, where the
amount of Asperger samples is comparable to autism sam-
ples’. It means that more PDD-NOS samples are required
for training the model. The synthetic minority over-sampling
technique (SMOTE) [65] is introduced to synthesize new
minority instances (i.e. PDD-NOS samples) between a pair
of one minority instance and one of its K nearest neighbors.
To be fair, SMOTE is not used for the test set, preventing
a high rate of false-positive results. Finally, the proposed
model is implemented on the augmented datasets likewise. To
better evaluate such imbalanced data, F1-measure is used as a
measure metrics for each ASD subtype as follows.

F1−measure = 2× precision× recall
(precision+ recall)

precision =
True positive

True positive+ False positive

recall =
True positive

True positive+ False negative

(6)

Macro-average accuracy is also used to globally evaluate the
performance by weighting toward the minority class, i.e.,

the PDD-NOS samples. As shown in Table VIII, all com-
pared classifiers obtain the reliable performance in samples
of autism and Asperger by the same feature selection of
GBFS. DBN classifier achieves the highest macro-average
accuracy of 0.838. All classifiers in different extent show
biased predictive capability that have a higher F1-measure over
the majority classes but poorer F1-measure over the minority
class. However, DBN classifier shows moderate improvement
in prediction performance on PDD-NOS samples. By taking
out the minority class i.e. PDD-NOS, we also use the proposed
model to identify autism and Asperger syndrome. In 10 times
10-fold CV, the proposed model achieves the satisfactory
mean accuracy of 0.896±0.030 with high sensitivity of 0.885
and high specificity of 0.907. It demonstrates that our model
can make a reliable identification for autism and Asperger
syndrome.

It also needs to note that there are some downsides to perfor-
m data augmentation and oversampling on datasets. Since we
make a fourfold augmentation to yield more sample data for
training and testing, the extracted FC features are derived from
shorter mean time series of rs-fMRI data, i.e., a quarter of the
original ones. The quality of extracted feature could be affect-
ed to a certain extent. Furthermore, the oversampling technique
can create the synthetic examples without considering the
majority class (i.e., autism, Asperger syndrome in this study).
It could lead to overfitting to the training data. To be sure,
every approach has its own downsides. Nevertheless, using
data augmentation and oversampling in our model is quite
effective to increase training samples and equilibrate class
weights by mitigating the issue of class imbalance. This work
is expected to provide valuable insights into the identification
of possible subtypes within ASD using fMRI data.

D. Effects of Confounding Factors on Classification Accuracy

Some neuroscientific work may specify recruitment strate-
gies and participant instructions for particular research pur-
poses. For example, in general, children with ASD should
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Fig. 10. Data augmentation and SMOTE are used for balancing the datasets.

TABLE VII
DOMAINS OF IMPAIRMENT IN ASD AND SAMPLE NUMBERS OF ASD

SUBTYPES IN ABIDE.

Autism Asperger PDD-NOS

social communication required required required

language required normal variable

repetitive behaviors required required variable

Sample # in ABIDE 323 87 35

TABLE VIII
COMPARISON RESULTS FOR IDENTIFICATION OF ASD SUBTYPES VIA 10

TIMES 10-FOLD CV.

Autism Asperger PDD-NOS Total

Classifier F1-measure Macro-average accuracy

DBN 0.940 0.902 0.603 0.838

CNN 0.922 0.915 0.547 0.828

RF 0.880 0.806 0.362 0.761

SVM 0.933 0.887 0.471 0.802

be diagnosed before 6 years old otherwise it would be too
late for effective treatments. When testing the sample sets
with a certain condition (e.g. age<6), a reliable model should
keep robustness and show no significant difference in accuracy
based on the remaining samples as training data. Therefore,
it is necessary to evaluate the effects of confounding factors
on classification accuracy. As shown in Fig. 11, basically,
there are no significant differences observed between accuracy
and the confounding factors including eye status, handedness,
FIQ scores, gender, and age. The imbalanced datasets have a
negative effect on prediction accuracy. It should be noted that
the accuracy of the low FIQ group (< 91) is 14.9% higher than
that of the high FIQ group (> 121) based on the balanced
sample data. This result suggests that intellectual disability
could be a good diagnostic feature for ASD subjects.
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10 - 20 (633)
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Fig. 11. The effects of eye status, handedness, FIQ, gender and age are
evaluated on prediction accuracy as confounding factors. The sample numbers
are given in brackets.

E. Model Interpretation: Neural Patterns in The Autistic Brain
Based on the connectivity matrices refined by RP-DFS,

the correlations between two ROIs are represented by the
accumulated scores from all potential paths. Given the as-
sumptions of such correlation patterns, those connections with
high accumulated scores could be highly connected (positively
correlated). Otherwise, the connections with low accumulated
scores tend to be underconnected (negatively correlated). To
derive the reproducible autistic neural patterns, the top-10
ranked remarkable connections are selected based on their
mean scores from the ASD group (see Fig. 12). Then their
ROIs are manually validated according to the results reported
in the previous literatures. Table IX demonstrates the manual
validation of those involved ROIs that have been confirmed
to have associations with ASD via Digital Object Identifiers
(DOIs). ROI numbers of CC200 atlas are given in brackets.
The result shows that 65% (13/20) and 60% (12/20) of the
involved ROIs are confirmed to have highly connected function
and underconnected function in the autistic brain, respectively.
Furthermore, these experimental data are consistent with the
findings from previous literatures. For examples, in adults with
ASD, a specific focal increase in cortical thickness is found
at the left fusiform gyrus (122) [66]. It could result in the
associated impairments in face processing for ASD subjects.
In this work, the left fusiform gyrus (122) is predicted to have a
strong positive correlation (1st in the prediction list) with the
right precentral gyrus (115) in the autistic brain. Moreover,
the area of reduced gray matter volumes in autistic children is
found in the left superior frontal gyrus (173) by the analysis of
voxel-based morphometry [67]. In this work, the left superior
frontal gyrus (173) is predicted to have a strong negative
correlation (4th in the prediction list) with the left precuneous
cortex (19) in the autistic brain. These predicted autistic neural
patterns are anticipated to serve as reproducible biomarkers
offering insights into the pathophysiological mechanism of
ASD.

V. CONCLUSION

We presented a novel graph-based computational model for
identification of ASD using rs-fMRI data. A GBFS method
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TABLE IX
MANUAL VALIDATION FOR THOSE INVOLVED ROIS IN PREDICTED AUTISTIC CONNECTIONS BASED ON PREVIOUS LITERATURES.

ROI DOI ROI DOI Score

Top-10 positively correlated predicted connections in the autistic brain

Left Fusiform Gyrus (122) 10.1001/archgenpsychiatry.2010.31 Right Precentral Gyrus (115) 10.1097/01.wnr.0000233087.15710.87 1.8842 (1)

Left Superior Temporal Gyrus (146) 10.1016/j.pscychresns.2005.12.009 Right Thalamus (18) 10.1016/j.brainres.2009.12.081 1.6430 (2)

Right Middle Temporal Gyrus (69) 10.1017/S1355617708081216 Right Middle Temporal Gyrus (107) 10.1017/S1355617708081216 1.4668 (3)

Left Middle Cingulate Cortex (76) unconfirmed Right Middle Temporal Gyrus (85) 10.1017/S1355617708081216 1.4565 (4)

Right Caudate Nucleus (135) 10.1186/s11689-015-9107-8 Right Precentral Gyrus (115) 10.1007/s10803-011-1221-1 1.3202 (5)

Right Middle Temporal Gyrus (14) 10.1017/S1355617708081216 Left Middle Occipital Gyrus (131) unconfirmed 1.3064 (6)

Left Middle Frontal Gyrus (125) unconfirmed Left Middle Frontal Gyrus (61) unconfirmed 1.3018 (7)

Left Postcentral Gyrus (88) 10.1016/j.biopsych.2015.10.020 Left Cerebellum (36) unconfirmed 1.2491 (8)

Right Inferior Frontal Gyrus (53) 10.1016/j.neuroimage.2004.12.022 Left Cerebellum (52) unconfirmed 1.2473 (9)

Left Middle Cingulate Cortex (76) unconfirmed Left Temporal Pole (78) 10.1016/j.biopsych.2012.12.013 1.2431 (10)

Top-10 negatively correlated predicted connections in the autistic brain

Left Precentral Gyrus (90) 10.1136/jnnp.2010.239111 Left Middle Occipital Gyrus (131) unconfirmed -0.2706 (1)

Right Frontal Orbital Cortex (71) unconfirmed Right Parahippocampal Gyrus (155) 10.1016/j.neuroimage.2009.04.069 -0.2696 (2)

Right Frontal Orbital Cortex (71) unconfirmed Right Caudate Nucleus (135) 10.1186/s11689-015-9107-8 -0.2480 (3)

Left Superior Frontal Gyrus (173) 10.1016/j.brainresbull.2010.12.002 Left Precuneous Cortex (19) unconfirmed -0.2479 (4)

Right Caudate Nucleus (135) 10.1186/s11689-015-9107-8 Left Precentral Gyrus (90) 10.1136/jnnp.2010.239111 -0.2447 (5)

Left Putamen (4) 10.1007/s12264-017-0118-1 Right Parahippocampal Gyrus (155) 10.1016/j.neuroimage.2009.04.069 -0.2436 (6)

Left Middle Temporal Gyrus (2) 10.1016/j.expneurol.2003.09.010 Right Subcallosal Cortex unconfirmed -0.2423 (7)

Right Frontal Pole (113) 10.1016/j.biopsych.2013.06.018 Left Frontal Pole (183) 10.1016/j.neuroimage.2004.02.029 -0.2421 (8)

Left Precuneous Cortex (19) unconfirmed Left Frontal Orbital Cortex (57) unconfirmed -0.2417 (9)

Left Middle Occipital Gyrus (131) unconfirmed Left Putamen (4) 10.1007/s12264-017-0118-1 -0.2385 (10)

Positive

Negative

Axial CoronalSagittal

Fig. 12. The most positively/negatively correlated predicted connections with
highest/lowest scores.

was proposed to highlight the remarkable connections via both
external and internal measure. To take advantage of topolog-
ical information implied in graph, RP-DFS was proposed to
further refine the remarkable connectivity matrices. Finally, a
three-layer DBN model with automatic hyperparameter tuning
technique was applied for classification. Compared with other
state-of-the-art methods, our model achieved the highest mean
accuracy of 0.764±0.022. The reliable performance was fully
demonstrated by the comprehensive experiments. This work
also provides an insight into the identification of possible sub-
types within ASD. By a statistical analysis, the interpretability
of our model enabled to uncover the correlation patterns in the
autistic brain. The current work is anticipated to serve as a can-

didate tool for identifying ASD subjects using rs-fMRI data.
We expect that the proposed model could offer insights into
computer-aided diagnosis of complex psychological disorders
using neural network models.

For future work, it would be interesting to develop a
multi-task learning classification framework to capture the
site-shared and site-specific feature patterns from multi-site
imaging data. The merits of multimodal data fusion [68]
can be utilized to improve the spatio-temporal resolution of
characterization of brain state by combining rs-fMRI and
structural MRI (sMRI) data.
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