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MRI Texture Features Differentiate Clinicopathological Characteristics of 

Cervical Carcinoma 

 

Abstract         

Objectives 

To evaluate MRI texture analysis in differentiating clinicopathological characteristics 

of cervical carcinoma (CC).  

 

Methods 

Patients with newly diagnosed CC who underwent pre-treatment MRI were 

retrospectively reviewed. Texture analysis was performed using commercial software 

(TexRAD). Largest single-slice ROIs were manually drawn around the tumours on 

T2-weighted (T2W) images, ADC maps and contrast-enhanced T1-weighted (T1c) 

images. First-order texture features were calculated and compared among histological 

subtypes, tumour grades, FIGO stages and nodal status by Mann-Whitney U test. 

Feature selection was achieved by elastic net. Selected features from different 

sequences were used to build the multivariable support vector machine (SVM) models 

and the performances were assessed by ROC curves and AUC. 

 

Results 

Ninety-five patients with FIGO stage IB~IVB were evaluated. A number of texture 

features from multiple sequences were significantly different among all the 

clinicopathological subgroups (p < 0.05). Texture features from different sequences 

were selected to build the SVM models. The AUCs of SVM models for discriminating 

histological subtypes, tumour grades, FIGO stages and nodal status were 0.841, 0.850, 

0.898 and 0.879, respectively. 

 

Conclusions 

Texture features derived from multiple sequences were helpful in differentiating the 

clinicopathological signatures of CC. The SVM models with selected features from 

different sequences offered excellent diagnostic discrimination of the tumour 

characteristics in CC. 
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Key points 

• First-order texture features are able to differentiate clinicopathological 

signatures of cervical carcinoma. 

• Combined texture features from different sequences can offer excellent 

diagnostic discrimination of the tumour characteristics in cervical carcinoma. 
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Abbreviations 

ACA    adenocarcinoma  

ADC    apparent diffusion coefficient 

AUC    area under the curve 

CC       cervical carcinoma 

DWI    diffusion-weighted imaging 

MPP    mean of positive pixels 

MRI    magnetic resonance imaging 

ROI     region of interest  

SCC    squamous cell carcinoma  

SD       standard deviation 

SSF     spatial scale filters 

SVM   support vector machine 

T1c      contrast-enhanced T1-weighted 

T2W    T2-weighted 

VOI     volume of interest  

 

1. Introduction 

Magnetic resonance imaging (MRI) is used in the local staging of cervical carcinoma 

(CC). T2-weighted (T2W) imaging provides important information on the tumour 

morphology and detailed assessment of the local disease extent in the pelvis. 

Diffusion-weighted imaging (DWI) provides information of cellular architecture, 

allowing both qualitative and quantitative analyses of tumour cellularity in cancers 
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[1]. Apparent diffusion coefficient (ADC) generated from conventional DWI can 

reflect tissue physiological features and tumour microstructure. Contrast-enhanced 

T1-weighted (T1c) imaging is able to evaluate the tumours’ vascularity and 

enhancement. In CC, ADC could aid in histological subtyping and tumour grading [2-

6]. It has also been previously shown that T1c imaging yielded better definition of 

tumour to assist localization and improved contrast-to-noise ratio compared to T2-

weighted (T2W) images, especially in small tumour [7].   

 

Tumour heterogeneity is a crucial determinant in predicting tumour aggressiveness 

and can be reflected on oncological images. Texture analysis allows the evaluation of 

grey-level intensity and the positions of pixels on images by using mathematical 

approaches. A range of texture features are generated for the measurement of intra-

tumour complexity and heterogeneity [8, 9]. Texture analysis is emerging as an 

important and promising imaging tool for quantifying tumour heterogeneity, which 

could not be readily appreciated by radiologists’ naked eyes.  

 

Visual assessment of the appearance of CC on MRI could be similar, in spite of the 

diverse histological subtypes and clinical behaviours [8]. Several studies have 

reported the value of MRI texture analysis in CC, mostly on cancer prognosis, while 

few literature explored the abilities of texture features in the clinicopathological 

characterization of CC [9-14]. The purpose of this study was to evaluate the value of 

texture analysis derived from T2W images, ADC maps and T1c images in the 

characterization of CC, specifically in differentiating histological subtypes, tumour 

grades, FIGO stages and nodal status. 

 

2. Materials and methods 

2.1 Patients 

This retrospective study was approved by the local Institutional Review Board and in 

accordance with the Helsinki Declaration. Informed consent was waived. Inclusion 

criteria included (a) histological confirmed CC, (b) without prior history of surgery, 

chemoradiation or other malignancy, (c) T2W imaging, DWI and T1c imaging were 

all performed. Exclusion criteria were those with (a) contraindications to exogenous 

MRI contrast agent, (b) maximum tumour volume smaller than 1.5cm3, (c) incomplete 
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clinicopathological data, (d) rare histological subtypes. For the threshold of minimum 

tumour volume, it was chosen to allow accurate tumour delineation and reduce partial 

volume effect. 

 

Cervical biopsies were reviewed by experienced pathologist specialized in 

gynaecological malignancy and discussed at multi-disciplinary team (MDT) meetings. 

The assessed pathological markers included histological subtypes and tumour grades 

according to the WHO Classification of Tumours of Female Reproductive Organs 

[15]. Histological subtypes were separated into two subgroups: squamous cell 

carcinoma (SCC) and adenocarcinoma (ACA). The other rarer subtypes were 

excluded. Tumour grades were dichotomised into well-moderately differentiated 

(G1~2) and poorly differentiated (G3). 

 

All cases were restaged using the revised 2018/9 FIGO staging for CC by a board-

certified radiologist (>10 years’ experience in pelvic MRI) [16]. FIGO stages were 

dichotomised between low FIGO stages (I~II) and high FIGO stages (III~IV). Nodal 

status was based on MRI interpretation of T2W images, positive or involved lymph 

node was defined as enlarged lymph node with short axis larger than 10 mm, with 

lobulated or spiculated margin, or the presence of necrosis [17, 18].  

 

2.2 Imaging acquisition 

MRI examinations were performed on a 3.0T platform (Achieva 3T TX, Philips 

Healthcare) with a 16-channel phased array torso coil. All the patients fasted for 6 

hours and received 20 mg intravenous hyoscine butylbromide (Buscopan, Boehringer 

Ingelheim) before MRI examinations to reduce the peristaltic artefacts. All recruited 

patients had T2W, DWI and T1c sequences acquired before surgery or 

chemoradiation. MRI sequences were standardized for all patients and the clinical 

protocol was designed in accordance to the guidelines of the European Society of 

Urogenital Radiology (Table 1) [19].  

 

2.3 Texture features extraction 

T2W images, ADC maps and T1c images were used for MRI texture features 

extraction. T2W and T1c images were normalised using p-normalisation. ADC maps 
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were generated using vendor software provided on the ViewForum workstation 

(Philips Healthcare) with 2 b-values (0 and 1000 s/mm2). Texture analysis was 

performed with commercial software TexRAD (Feedback Medical Ltd).  

 

First, a radiologist (board-certified with 3 years’ experience in pelvic MRI) delineated 

the region-of-interest (ROI) on the largest single-slice of CC on T2W image, ADC 

map and T1c image for each patient. A free-hand polygonal ROI was drawn around 

the tumour by strictly delineating its border from adjacent normal tissue (Figure 1). 

T2W images were taken as reference when drawing ROIs on ADC maps and T1c 

images. The ROIs from the same patient on different sequences were kept consistent 

on the same anatomical slice. Subsequently, the ROIs were verified by a senior board-

certified radiologist (>10 years’ experience in pelvic MRI). Both radiologists were 

blinded to the clinicopathological results. 

 

Six texture features were extracted from the first-order statistics with 6 spatial scale 

filters (SSF) using TexRAD, including mean (average grey-level intensity values), 

standard deviation (SD; degree of variation of pixel values), entropy (irregularity of 

grey-level distribution), mean of positive pixels (MPP; pixel with values greater than 

0), skewness (asymmetry of the histogram), and kurtosis (peakedness of the 

histogram) [20]. The SSF was the filtration step in reducing the effects of photon 

noise in the quantification of texture analysis. This step highlighted texture features at 

different anatomical spatial scales ranging from fine to coarse texture. The 6 sizes of 

SSF were 0 (without filtration), 2 mm (fine texture scale), 3~5 mm (medium texture 

scale) and 6 mm (coarse texture scale) (Figure 1). Thus, a total of 108 texture features 

from T2W images, ADC maps and T1c images were extracted from each patient and 

compared among histological subtypes, tumour grades, FIGO stages and nodal status.  

 

2.3 Statistical analysis 

All statistical analyses were performed on RStudio (v1.2.5033, RStudio, lnc.). Data 

was tested for normality and some texture features were not normally distributed, 

hence Mann-Whitey U tests were used to compare the texture features in different 

dichotomised clinicopathological groups (histological subtypes, tumour grades, FIGO 

stages and nodal status). A two-tailed p-value < 0.05 was considered statistically 
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significant.  

 

Prediction models based on support vector machine (SVM) models using texture 

features to predict the clinicopathological subgroups were also developed. Elastic net 

regularisation was first used to select texture features that were shown to be 

statistically significant between clinicopathological subgroups [21]. It has been shown 

that using Mann-Whitney U test as one of the criteria for feature selection produced 

robust models [22]. Goodness-of-fit metrics were then used to select the best 

parsimonious models. To build the SVM models, 80% of the cohort was designated as 

the training set and the remaining 20% of the cohort was designated as the validation 

set. A radial kernel was used, and the validation sets were used to tune the 

hyperparameters (cost and gamma). The receiver operating characteristic (ROC) 

curves and areas under the curve (AUC) were then calculated to measure the 

predictive performances of each model. AUC > 0.8 was considered as an excellent 

accuracy [23]. 

 

 

3. Results 

3.1 Clinical characteristics 

From March 2013 to February 2019, 95 patients were recruited in this study. The 

demographics and clinical characteristics of the patients are displayed in Table 2. 

 

3.2 Univariable analysis in the characterisation of CC 

3.2.1 Histological subtypes 

On T2W images, Mean2~6, MPP2~6 and Skewness2~3 were all significantly lower 

in SCC than ACA. On ADC maps, SD0, MPP2~6, Entropy0 and Skewness3~4 were 

lower in SCC than ACA, while Kurtosis0 was higher in SCC than ACA. As for T1c 

images, only Mean0 and MPP0 were higher in SCC (Table 3).  

 

3.2.2 Tumour grades 

No significant differences in texture features on T2W images were observed. On ADC 

maps, Mean2~4, Skewness0, Kurtosis0 and Kurtosis4 were significantly higher in 

well-moderately differentiated (G1~2) compared to poorly differentiated (G3) tumour 
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grades. On T1c images, Skewness4 was higher in G1~2 (Table 3). 

 

3.2.3 FIGO stages 

For T2W, SD2, MPP2~5 and Entropy2 significantly decreased from low FIGO stages 

(FIGO I~II) to high FIGO stages (FIGO III~IV), whereas Skewness0 and Kurtosis3 

were increased. However, for ADC, Mean2~6 and Entropy0~6 increased from FIGO 

I~II to FIGO III~IV. On T1c, Entropy5~6 and Skewness4~5 significantly increased 

from FIGO I~II to FIGO III~IV (Table 3). 

 

3.2.4 Nodal status 

For T2W, Skewness0 and Kurtosis3~4 were observed to be significantly higher in 

positive nodal status as compared with negative nodal status. For ADC, Mean3~6 and 

Entropy0~6 were significantly higher in positive nodal status as compared with 

negative nodal status. As with T1c, Entropy5~6 were higher in positive nodal status 

than those without lymph node involvement (Table 3).  

 

3.3 Multivariable analysis in the characterisation of CC 

Multivariable SVM models of discriminating these 4 dichotomized characteristics 

were built with selected texture features. The selected features and respective AUC, 

accuracy, sensitivity and specificity of these 4 SVM models are summarized in Table 

4. 

 

4. Discussion 

In our study, a number of texture features at multiple SSFs demonstrated significant 

differences among histological subtypes, tumour grades, FIGO stages and nodal 

status. By applying SVM models using selected texture features from different 

sequences, all the 4 models generated excellent performances in the diagnostic 

differentiation. 

 

The commercial software used in this study offers first-order statistics that describe 

global texture features according to the grey-level frequency distribution within the 

tumour. There are other texture analyses that include second-order and high-order 

statistics, which reflect local texture features and regional intensity variations [24]. To 
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date, several studies reported second-order features of MRI had potential ability in 

predicting clinical recurrence or outcome of CC, especially the excellent performance 

of entropy in ADC [9, 25, 26]. However, there is limited literature that focused on the 

value of texture analysis in determining different clinicopathological features of CC 

[10, 14]. In other pelvic and abdominal cancers, first-order texture analysis was able 

to differentiate tumour invasive features, subtypes or grades [27-30]. Additionally, the 

repeatability of MRI global first-order texture features was superior to that of local-

regional second-order and high-order statistics, suggesting that first-order texture 

analysis would offer robust use in clinical practice [31]. 

 

In the present study, we found that SCC had lower MPP than ACA on both T2W and 

ADC. Similarly, mean on T2W was also lower in SCC. Our findings were concordant 

with a recent study that showed the mean of T2W in SCC was lower than ACA. These 

findings were thought to be due to tightly packed cells and restricted extracellular 

space in SCC, which could contribute to more positive pixels when SSFs are applied. 

In contrast, ACA contains solid and fluid compositions that would result in more 

heterogeneous distribution of pixels, both positive and negative pixels [10]. It was 

shown that ADC-derived mean and MPP were positively correlated with ADC value, 

and this was in line with previous study that ADC of SCC was lower than ACA [29, 

32]. In endometrial carcinoma, high MPP in T1c images could independently predict 

high-risk histological subtype [28]. Besides, T2W_Skewness2~3 were also lower in 

SCC, which was in line with Ciolina et al., SCC presented lower mean and skewness 

derived from T2W imaging in comparison with ACA [10]. Whereas, Goyal et al. 

reported many texture features (mean, SD, entropy and skewness) were able to 

distinguish clear cell renal carcinoma from non-clear cell carcinoma, but MPP was not 

different between subtypes [30]. The discrepancy could be related to the different 

organs under investigation and therefore, results from texture analysis are likely 

organ- and disease-specific.  

 

ADC_Mean2~4 were lower in G3 compared to G1~2 tumours. This is in agreement 

with previous studies that showed lower ADC values in high-grade CC [2-5]. Fewer 

features were significant among tumour grades compared to other clinicopathologic 

factors, and none observed on T2W images. This is likely related to the lack of unified 
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histological criteria for CC grading, making it largely subjective and may not be an 

accurate histological marker to compare with T2W texture features [33]. It was also 

found that there is high inter-observer and intra-observer variability in tumour grading 

which contributes to the inconsistency of tumour grading in CC [34]. As the cohort 

recruited in our study was mostly locally advanced CC who underwent 

chemoradiation, surgical pathological assessment could not be performed and tumour 

grading was based on biopsy samples, which could make the grading process more 

challenging when working with little tissue specimens. 

 

Higher mean and entropy at multiple SSFs derived from ADC were found in high 

FIGO stages (FIGO III~IV), and those with nodal metastases. For mean, it could be 

explained by the lower ADC values observed in advanced tumours [32]. As for 

entropy, it corroborated with results from previous studies in CC and endometrial 

carcinoma [12, 28]. Furthermore, ADC-derived entropy at multiple SSFs had higher 

feature importance in the random forest model generated to detect deep myometrial 

invasion or lymphovascular space invasion in endometrial carcinoma [27]. 

T1c_Entropy5~6 were higher in FIGO III~IV and positive nodal status. It was 

hypothesised that features with fine textures scale (SSF = 2) might not reflect 

biologically important features because the textures at that spatial scale were more 

susceptible to variation in image acquisition parameters [29]. We proposed that 

entropy at a coarse scale (SSF = 6) on T1c would enhance the appreciation of the 

underlying heterogeneity in tumour vasculature and perfusion. Entropy represents the 

irregularity of grey-level distribution, therefore higher heterogeneity was associated 

with advanced stage CC [35]. Furthermore, entropy was also associated with tumour 

expression, metabolism, prognosis and treatment response [36]. Accordingly, it has 

become a promising quantitative imaging biomarker for the characterization of cancer 

phenotype. Lastly, T2W_MPP2~5 were lower in FIGO III~IV compared to FIGO 

I~II, which could be related to microscopic tumour hypoxia and necrosis that 

contributed to increase number of low signal pixels on T2W images [37].  

 

Skewness derived from multiple sequences was also a significant feature in different 

clinicopathological subgroups. T2W_Skewness2~3, ADC_Skewness3~4 were lower 

in SCC than ACA, which were consistent with previous findings in locally advanced 
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cervical cancer [10]. Higher T1c_Skewness4~5 were observed in FIGO III~IV 

compared to FIGO I~II. Skewness reflects the asymmetry of pixel distribution. 

Predominantly positive pixels would result in more positive skewness, and 

predominantly negative pixels result in negative skewness [20].  Advanced tumours 

have more heterogeneous enhancement with intratumoural spatial variation, including 

well enhanced viable tumour and non-enhancing necrotic core, which could result in a 

wider and more asymmetric distribution of pixels' intensities on T1c [8]. 

 

As the same features at different SSFs were highly correlated, elastic net was used for 

further feature selection. The combined selected texture features from different 

sequences in the SVM models demonstrated excellent discriminatory capability with 

balanced sensitivities and specificities, especially in dichotomising FIGO stages 

(AUC = 0.898). Multi-parametric MRI is used in radiomic studies of various tumours 

[38, 39]. The diagnostic performances of the models generated in this study signified 

the complementary roles of different sequences in the tumour characterisation of CC. 

In early-stage CC, SVM models using both T2W imaging and ADC could 

distinguished pelvic lymph node metastasis and parametrial invasion (AUC = 0.893 

and 0.946, respectively) [40, 41]. It also consolidated the notion of combining texture 

features from different sequences in identification of aggressive tumour 

characteristics. Among the selected features of our SVM models, FIGO stages and 

nodal status shared 2 common features, T2W_Skewness0 and ADC_Entropy3. This 

was likely due to the fact that 2018/2019 FIGO staging is affected by the nodal status. 

 

There are several limitations in our study. First, volumetric texture analysis was not 

available on TexRAD. Herein, all the texture analyses were based on the largest 

single-slice ROIs, which might not represent the global tumour heterogeneity. 

Nevertheless, other studies have shown that the use of single-slice analysis in texture 

analysis was clinically useful [27, 28, 42]. Second, the lymph node status was 

assessed by a radiologist using the size and morphology criteria and histological 

confirmation was not possible in majority of the patients in this cohort as these 

patients underwent definitive chemoradiation instead of surgery. This could limit the 

accuracy in distinguishing nodal status. Third, our limited sample size precluded the 

use of an independent test set for assessing predictive performance. Lastly, the 
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unbalanced distributed histological subtypes would suffer from selection bias; 

however, the ratio between SCC and ACA in this study was in keeping of the 

prevalence of histological subtypes distribution in CC.   

 

In conclusion, texture features derived from multiple sequences showed potential 

ability in differentiating clinicopathological signatures of CC. The multivariable SVM 

models with combined selected texture features from different sequences provided 

excellent diagnostic accuracies in discriminating characteristics in CC. 
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Table 1. MRI protocols 

 

Sequences T2W TSE T2W TSE 

SPAIR 

T2W TSE T2W TSE DWI CE 3D T1W 

THRIVE 

Plane Sagittal Coronal Axial Oblique Axial Axial 3D 

TR/TE (ms) 4000/80 3500/80 2800/100 2800/100 2000/54 3/1.4 

Turbo factor 30 21 12 14 NA NA 

FOV (mm) 240×240 230×230 402×300 220×220 406×300 370×203 

Matrix size 480×298 352×300 787×600 316×311 168×124 248×134 

Slice thickness (mm) 4 4 4 4 4 1.5 

Intersection gap (mm) 0 0 0 0 0 0 

Bandwidth (Hz/pixel) 230 186 169 162 15.3 724 

Number of excitations 2 1 1 1 2 1 

T2W: T2-weighted; TSE: turbo spin echo; SPAIR: spectral attenuated inversion 

recovery; DWI: diffusion-weighted imaging; CE: contrast enhanced; T1W: T1-

weighted; THRIVE: T1 high-resolution isotropic volume excitation; TR/TE: 

repetition time / echo time; FOV: field of view. 
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Table 2. Clinical characteristics 

 

Characteristics Patients (n) 

Number 95 

Age (years) 55.4 ± 13.5 (range 21~93) 

Histological subtype  

  Squamous cell carcinoma (SCC) 77 

  Adenocarcinoma (ACA) 18 

Tumor grade  

  G1 5 

  G2 35 

  G3 55 

FIGO stage  

I 8 

  II 33 

  III 51 

  IV 3 

Nodal status  

  Positive 48 

  Negative 47 
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Table 3. Significant texture features in histological subtypes, tumour grades, FIGO 

stages and nodal status 

 

 

 

 

 

 

 

 

 

 

Histological subtypes Tumour grades FIGO stages Nodal status 

Sequences/ 

Features 

p-value Sequences/ 

Features 

p-value Sequences/ 

Features 

p-value Sequences/ 

Features 

p-value 

T2W  T2W  T2W  T2W  

   Mean2 0.0029       SD2 0.0347 Skewness0 

 

0.0436 

   Mean3 0.0013       MPP2 0.0237    Kurtosis3 0.0295 

   Mean4 0.0008       MPP3 0.0226    Kurtosis4 0.0345 

   Mean5 0.0014       MPP4 0.0160   

   Mean6 

 

0.0020 

 

      MPP5 0.0221   

   MPP2 0.0322       Entropy2 0.0215   

   MPP3 0.0208       Skewness0 0.0338   

   MPP4 0.0139       Kurtosis3 0.0325   

   MPP5 0.0123       

   MPP6 0.0161       

   Skewness2 0.0004       

   Skewness3 0.0099       

ADC  ADC  ADC  ADC  

    SD0 0.0165     Mean2 0.0170     Mean2 0.0072     Mean3 0.0406 

    MPP2 0.0363     Mean3 0.0127     Mean3 0.0058     Mean4 0.0461 

    MPP3 0.0188     Mean4 0.0291     Mean4 0.0083     Mean5 0.0429 

    MPP4 0.0315     Skewness0 0.0119     Mean5 0.0077     Mean6 0.0478 

    MPP5 0.0071 Kurtosis0 

 

0.0355     Mean6 0.0088     Entropy0 0.0046 

MPP6 

 

0.0055     Kurtosis4 0.0487     Entropy0 0.0012     Entropy2 0.0022 

    Entropy0 0.0279       Entropy2 0.0002     Entropy3 0.0020 

    Skewness3 0.0358       Entropy3 0.0001     Entropy4 0.0022 

    Skewness4 0.0416       Entropy4 0.0001     Entropy5 0.0032 

    Kurtosis0 0.0197       Entropy5 0.0002     Entropy6 0.0025 

        Entropy6 0.0001   

T1c  T1c  T1c  T1c  

    Mean0 0.0354     Skewness4 0.0399     Entropy5 0.0490     Entropy5 0.0498 

    MPP0 0.0354       Entropy6 0.0302     Entropy6 0.0371 

        Skewness4 0.0174   

        Skewness5 0.0477   
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Table 4. Summary of the SVM models 

SVM models Selected features AUC Accuracy Sensitivity Specificity 

Histological subtypes T2W_Skewness2

ADC_MPP5 

0.841 0.853 0.857 0.833 

Tumour grades ADC_Mean3 

ADC_Skewness0 

T1c_Skewness4 

0.850 0.842 0.873 0.800 

FIGO stages T2W_Skewness0 

ADC_Entropy3 

T1c_Skewness4 

0.898 0.853 0.870 0.829 

Nodal status T2W_Skewness0 

ADC_Entropy3 

T1c_Entropy5 

0.879 0.821 0.812 0.830 
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Figure 1. A 28-year-old patient with squamous cell carcinomas (SCC), G3 and FIGO 

IIIC1. ROI delineation on T2W image, ADC map and T1c image, with corresponding 

texture images at SSF = 2, 4 and 6, respectively. 

 

 

 

 

 


