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Quantum chaos of unitary Fermi gases in the strong pairing fluctuation region
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The growth rate of the out-of-time-ordered correlator in a N-flavor Fermi gas is investigated and the Lyapunov
exponent λL is calculated to the order of 1/N . We find that the Lyapunov exponent monotonically increases as the
interaction strength increases from the BCS limit to the unitary region. At the unitarity, the Lyapunov exponent
increases while the temperature drops and it can reach to the order of λL ∼ T around the critical temperature
for the N = 1 case. For N → ∞, the Lyapunov exponent reaches its maximum λL ≈ 4.35T/N at the critical
temperature. The system scrambles faster for stronger pairing fluctuations. At the BCS limit, the Lyapunov
exponent behaviors as λL ∝ eμ/T a2

s T 2/N .
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I. INTRODUCTION

Information scrambling is a crucial stage in thermalization
of a closed system. During this process, the quantum entan-
glement spreads across all the freedoms of the system and the
memory of the initial state is lost, which is taken as a key
prerequisite for thermalization. Recently, studies in gauge-
gravity duality have inspired insights into quantum chaos
[1–8]. It is suggested that black holes are the fastest scram-
blers in nature [1]. Moreover, the experimental realizations
of nearly isolated quantum systems also attract increasing
attention to this area [9–11]. Analogous to the Lyapunov
exponents describing the growth of chaos in classical models,
the scrambling to the quantum chaos can also be probed by
the growth rate of the so-called out-of-time-ordered correlator
(OTOC).

The OTOC was first introduced by Larkin and
Ovchinnikov in the study of superconductivity [12].
Recently, this subject was revived by the discovery of
an unexpected bound on the Lyapunov exponent that
is extracted from OTOCs [1,13]. Several experiments on
measurements of OTOCs have been conducted [14–17].
Usually, instead of directly calculating the OTOC, it’s more
convenient to evaluate the “regulated” squared commutator
defined as C(t ) = Tr{√ρ[W (t ),V (0)]†√ρ[W (t ),V (0)]}
[18,19], where ρ = e−βH is the thermal density matrix and
W and V are local Hermitian operators in general. It can
be expanded as C(t ) = 2Tr{√ρW (t )V (0)

√
ρV (0)W (t )} −

2Re[Tr{√ρW (t )V (0)
√

ρW (t )V (0)}]. The first term is time
ordered. On the other hand, the second term is on an unusual
time order as illustrated in Fig. 1 and it’s called an OTOC.
In a chaotic system, C(t ) is expected to have an exponential
behavior at the timescale tL as C(t ) ∼ eλLt . Analogous to
the classical chaos, λL is called the Lyapunov exponent and
t−1
L ∼ λL. Based on some reasonable physical assumption,

the Lyapunov exponent is proven to have an upper bound of
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2πkBT/h̄ and it saturates in models with gravity duals [1,13].
An concrete example is the celebrated Sachdev-Ye-Kitaev
model [20–22] which holds a conformal symmetry in the
low-energy limit and is dual to an AdS2 gravity theory.

In condensed-matter physics, the systems usually don’t
possess conformal symmetry. However, there exist some ex-
ceptions. At the critical point, the conformal symmetry can
emerge for low energy and long distance. Investigations have
been done in this regime [19,23,24]. In these system, there
are no quasiparticle excitations and the temperature is the
only relevant scale. The Lyapunov exponents are found to
obey the relationship of λL ∼ κT . The unitary Fermi gas is
another example with scaling invariance. With the properties
of being highly controllable and hyperclean, it can be a perfect
playground to investigate information scrambling [25,26] and
thermalization in closed quantum systems. At the unitary
point, the nonrelativistic conformal symmetry emerges and
investigations have been taken to discuss its duality to a grav-
ity theory [27,28]. The behaviors of the Lyapunov exponent
in unitary Fermi gases have been studied in Ref. [29]. They
used the method of high-temperature expansion to investigate
the region of z � 1, where z = eβμ is the fugacity. They also
used the effective field theory to study the region of low
temperature deep in the superfluid phase. However, the region
close to the critical temperature has not been investigated,
where the fugacity z > 1. This region is more interesting since
it has been shown that around this region the system may
demonstrate some non-Fermi liquid behaviors [30–33].

In this paper, we calculate the Lyapunov exponent of a
N-flavor Fermi gas with tunable interaction in the region
close to the critical temperature. The OTOC is evaluated by
a series of ladder diagrams and the Lyapunov exponent is
calculated to the order of 1/N . As the interaction strength
increases from the BCS limit to the unitary regime, we find
that the Lyapunov exponent monotonically increases while
the temperature is fixed. We also investigate the temperature
dependence of the Lyapunov exponent at the unitarity. λL can
increase to λL ∼ T for N = 1 case when the temperature is
close to the critical temperature. For N → ∞, the Lyapunov
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exponent reaches its maximum λL ≈ 4.35T/N at the critical
temperature. Furthermore, we also find that the Lyapunov
exponent behaves as λL ∝ za2

s T 2/N for high temperature at
the BCS limit, where as → 0−.

II. MODEL

We will start from a system with N fermion flavors. The
Hamiltonian can be cast as

Ĥ =
∫

d3r
{ ∑

iσ

ψ̂
†
iσ (r)

(
− ∇2

2m
− μ

)
ψ̂iσ (r)

− g

N

∑
i j

ψ̂
†
i↑(r)ψ̂†

i↓(r)ψ̂ j↓(r)ψ̂ j↑(r)
}
, (1)

where ψiσ (ψ†
iσ ) is the annihilation (creation) operator of

the fermion field with flavor i and spin σ . Parameter g is
the bare interaction strength between the fermions. Here we
assume the interaction strengths between different flavors are
the same and can be related to an s-wave scattering length as

by the following renormalization relation:

1

g
= − m

4πas
+

∫
d3k

(2π )3

1

2εk
, (2)

where εk = k2/2m and m is the mass of the fermions. By
introducing an auxiliary bosonic field ϕ, the four-fermion
interaction term can be decoupled through the Hubbard-
Stratonovich transformation. Then, in the imaginary time path
integral formulism, the partition function can be written as
Z = ∫

D[ψiσ , ψ
†
iσ , ϕ, ϕ̄]e−S[ψiσ ,ψ

†
iσ ,ϕ,ϕ̄], where the action S is

S[ψiσ , ψ
†
iσ , ϕ, ϕ̄]

=
∫

dτd3r
( ∑

iσ

ψ
†
iσ (τ, r)

(
∂τ − ∇2

2m
− μ

)
ψiσ (τ, r)

−
∑

i

ϕψ
†
i↑ψ

†
i↓ −

∑
i

ϕ̄ψi↓ψi↑ + N ϕ̄ϕ

g

)
. (3)

In this paper, we set h̄ = 1.
The imaginary time Greens’ functions of fermions and

bosons are defined as δi jδσσ ′G(τ, r) = 〈ψ†
iσ (τ, r)ψ jσ ′ (0, 0)〉

and G(τ, r) = 〈ϕ̄(τ, r)ϕ(0, 0)〉, respectively. In the momen-
tum space, the free propagators can be simply expressed as

G(0)(iω f
n , k) = −1

iωn − εk + μ
,

G (0)(iωb
n, k) = g/N, (4)

where ω
f
n = (2n + 1)π/β and ωb

n = 2nπ/β are the Matsub-
ara frequencies for fermions and bosons, respectively, and
β = 1/kBT . To calculate the Lyapunov exponent up to the
order of 1/N , we will involve the dressed propagators of fields
ψ and ϕ as shown in Fig. 2. The dressed propagator of ϕ is a
resummation of the bubble diagram. Then, it’s written as

G
(
iωb

n, k
) = g/N

1 − g�
(
iωb

n, k
) , (5)

FIG. 1. The complex time contour for calculating the out-of-
time-ordered correlators. The horizontal direction represents the real
time evolution and the vertical direction represents the imaginary
time evolution. It contains two real timefolds, which are separated
by iβ/2.

where �(iωb
n, k) is the one-loop bubble:

�
(
iωb

n, q
) =

∫
d3k

(2π )3

1 − nF (εk − μ) − nF (εq−k − μ)

−iωb
n + εk + εq−k − 2μ

.

(6)

nF (εk − μ) = 1/ exp(β(εk − μ) + 1) is the Fermi-Dirac dis-
tribution function. The dressed propagator of field ψi is

G
(
iω f

n , k
) = 1

−iω f
n + εk − μ − �

(
iω f

n , k
) ,

(7)

FIG. 2. (a) The Feynman diagram of the Dyson-Schwinger equa-
tion for field ϕ. (b) The Feynman diagram of the Dyson-Schwinger
equation for field ψiσ . The double solid (dashed) line and the solid
(dashed) line represent the dressed and free propagators of ψiσ (ϕ),
respectively. (c) The Feynman diagrams of the Bethe-Salpeter equa-
tions of the squared anticommutators.
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where the self-energy of fermions �(iω f
n , �k) is expressed as

�
(
iω f

n , k
) = 1

β

∑
ωb

m

∫
d3q

(2π )3

G
(
iωb

m, q
)

−iωb
m + iω f

n + εq−k − μ
.

(8)

The corresponding retarded Green’s functions are defined
as usual as δi jδσσ ′GR(t, r) = −iθ (t )〈{ψiσ (t, r), ψ†

jσ ′ (0, 0)}〉
and GR(t, �r) = −iθ (t )〈[ϕ(t, �r), ϕ̄(0, 0)]〉, where θ (t ) is the
heaviside step function. In momentum space, the forms of the
retarded Green’s functions can be obtained by the analytic
continuation of Eqs. (5) and (7) as GR(ω, k) = G(iωb

n →
ω + i0+, k) and GR(ω, k) = −G(iω f

n → ω + i0+, k). Then
GR(ω, k) is written as

GR(ω, k) = −1

−ω − i0+ + εk − μ − �(ω + i0+, k)
. (9)

Hence, in the dressed retarded Green’s function, the pole is
modified by the self-energy. Working to the first order in �,
the pole can be approximately calculated as ω∗ = εk − μ −
Re �(εk − μ + i0+, k) + i�(k), and the quantum scattering
rate �(k) is defined as �(k) ≡ − Im �(εk − μ + i0+, k).

To evaluate the OTOC, we need to define the symmetrized
Wightman function as

δi jδσσ ′GW (t, r) = Tr{√ρψiσ (t, r)
√

ρψ
†
iσ (0, 0)},

GW (t, r) = Tr{√ρϕ(t, r)
√

ρϕ̄(0, 0)}. (10)

In the momentum space, they can be written in terms of the
spectral functions of fields ψiσ and ϕ as

GW (ω, k) = AF (ω, k)

2 cosh(ωβ/2)
,

GW (ω, k) = AB(ω, k)

2 sinh(ωβ/2)
. (11)

The spectral functions can be calculated as the imaginary parts
of the retarded Green’s functions AF (ω, k) = −2 Im GR(ω, k)
and AB(ω, k) = −2 Im GR(ω, k).

III. THE LYAPUNOV EXPONENT

To calculate the Lyapunov exponent, it’s convenient to
evaluate the regulated squared anticommutator defined as
[19,24]

C1(t ) = θ (t )

N2

∑
i, j

∫
d3rTr[

√
ρ{ψi↑(t, r), ψ†

j↑(0, 0)}

×√
ρ{ψi↑(t, r), ψ†

j↑(0, 0)}†]. (12)

The factor 1/N2 is to normalized the summation of indices
i, j. Since the system is symmetric about exchanging spin
indices, without losing any generality we investigate the reg-
ulated squared anticommutator of field ψi↑ as above. For the
calculation up to the order of 1/N the squared anticommuta-
tor C1 will couple to another squared anticommutator C2 as
demonstrated in Fig. 2(c). The squared anticommutator C2 is

written as the following:

C2(t ) = θ (t )

N2

∑
i, j

∫
d3rTr[

√
ρ{ψ†

i↓(t, r), ψ†
j↑(0, 0)}

×√
ρ{ψ†

i↓(t, r), ψ†
j↑(0, 0)}†]. (13)

At the moment of t = 0, the above anticommutators vanish
because of r �= 0. However, in chaotic systems, the time
evolution of the operators may involve increasing degrees of
freedom. As a result, the fields become nonlocal at a later
time. It is conjectured that the squared anticommutators will
have an exponential growth Ci(t ) ∼ eλLt at short time. Anal-
ogous to the approach in Ref. [18], to compute the λL to the
leading order in 1/N , we only keep the fastest-growing dia-
grams, which is a set of ladder diagrams as shown in Fig. 2(c).
The “rails” of the ladder correspond to the retarded Green’s
functions. They are defined on the two real timefolds. The two
rails are separated by an imaginary time difference iβ/2 and
they are connected by “rungs”. The rungs correspond to the
Wightman Green’s functions.

The Fourier transformation of Ci(t ) is denoted as Ci(ω)
with Ci(t ) = ∫

dωe−iωtCi(ω). To sum up all the ladder series,
it’s convenient to define functions fi(ν; ω, k) as

Ci(ν) = 1

N

∫
dωd3k
(2π )4

fi(ν; ω, k). (14)

The lowest order of f1(ν; ω, k) is simply expressed as
GR(ω, k)G∗

R(ω − ν, k). Summation of all the ladder diagrams
yields the Bethe-Salpeter equations,

f1(ν; ω, k) = GR(ω, k)G∗
R(ω − ν, k)

(
1 +

∫
dω′d3k′

(2π )4

× (K1(ν; ω, k; ω′, k′) f2(ν; ω′, k′)

+K2(ν; ω, k; ω′, k′) f1(ν; ω′, k′))
)
,

f2(ν; ω, k) = GR(ω, k)G∗
R(ω − ν, k)

×
∫

dω′d3k′

(2π )4
K1(ν; ω, k; ω′, k′) f1(ν; ω′, k′),

(15)

where K1 and K2 are the integral kernels corresponding to
the one-rung and two-rung diagrams in Fig. 2(c), respectively.
They are written as

K1(ν; ω, k; ω′, k′) = GW (ω′ + ω, k + k′),

K2(ν; ω, k; ω′, k′)

= N
∫

dω′′d3k′′

(2π )4
GR(ω′′, k′′)G∗

R(ω′′ − ν, k′′)

× GW (ω + ω′′, k + k′′)GW (ω′ + ω′′, k′ + k′′).

(16)

For the following calculation, we will take several approxi-
mations. First, one expects the f1(ν; ω, k) to be exponentially
growing, while the first term of f1 in Eq. (15) will be decaying.
Hence, this term can be safely dropped without affecting the
evaluation of the growth rate. Second, the pair of fermionic
Green’s functions GR(ω, k)G∗

R(ω − ν, k) in Eq. (15) can be
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approximated as 2π iδ(ω−εk+μ)
ν+2i�(k) . Third, because in the above

approximation all pairs of the retarded Green’s functions
include an on-shell delta function, it’s natural to postulate
the on-shell form of fi(ν; ω, k) as fi(ν; ω, k) ≈ fi(ν; k)δ(ω −
εk + μ) [18,19]. Please refer to Appendix A for the details
of the approximation. With all above approximations, the
Bethe-Saltpeter equations of Eq. (15) can be reduced to

[−iω + 2T �̃(k̃)] f1(ω; k̃)

= T

N

∫
dk̃′k̃′

k̃
(K̃1(k̃, k̃′) f2(ω; k̃′) + K̃2(k̃, k̃′) f1(ω; k̃′)),

[−iω + 2T �̃(k̃)] f2(ω; k̃) = T

N

∫
dk̃′k̃′

k̃
K̃1(k̃, k̃′) f1(ω; k̃′),

(17)

where the momenta have been rescaled to be dimensionless
as k̃ = k/

√
T and k̃′ = k′/

√
T . Correspondingly, we define

a dimensionless quantum scattering rate �̃ = �/T . Here we
have assumed the function f (ω, k) is rotationally invariant
and integrated over the angles. Then the function fi(ω, k) is
reduced to fi(ω, k) in Eq. (17). The dimensionless functions
K̃1 and K̃2 are written as

K̃1(k̃, k̃′) = N
∫ k̃′+k̃′′

|k̃′−k̃′′ |

p̃d p̃

(2π )2
G̃W (ε̃k′ + ε̃k′′ − 2μ̃, p̃),

K̃2(k̃, k̃′) = N2
∫

dk̃′′dω̃′′

128π5

|G̃R(ω̃′′, k̃′′)|2�(k̃, k̃′, k̃′′)

cosh
(

ε̃k−μ̃−ω̃′′
2

)
cosh

(
ε̃k′−μ̃−ω̃′′

2

) ,

(18)

where k̃′′ = k′′/
√

T , ω̃′′ = ω′′/T , ε̃k = εk/T , and μ̃ = μ/T
and the bosonic retarded Green’s functions and Wightman
function are also rescaled to be dimensionless by
G̃R = √

TGR and G̃W = √
TGW . The � function is defined

as �(k, k′, k′′) = θ (2k′k′′ + εk′′ − μ + k′′2)θ (2k′k′′ − εk′′ +
μ − k′′2)θ (2kk′′ + εk′′ − μ + k′′2)θ (2kk′′ − εk′′ + μ − k′′2).

To more easily solve for the Lyapunov exponent the Bethe-
Saltpeter equations of Eq. (17) can be written in a simple form,

−iωF (ω; k̃) = T

N

∫
dk̃′S (k̃, k̃′)F (ω; k̃′), (19)

where FT (ω; k̃) = (k̃ f1(ω; k̃), k̃ f2(ω; k̃)) and the dimension-
less integral kernel S (k̃, k̃′) is defined as the following:

S (k̃, k̃′)

=
(
K̃2(k̃, k̃′) − 2N�̃(k̃′)δ(k̃ − k̃′) K̃1(k̃, k̃′)

K̃1(k̃, k̃′) −2N�̃(k̃′)δ(k̃ − k̃′)

)
.

(20)

We do not know how to solve Eq. (19) analytically. How-
ever, it can be solved numerically by discretizing the momenta
k̃ and k̃′ in the integral kernel S (k̃, k̃′). Then, the integral
becomes the summation over the discrete momentum and
Eq. (19) can be written as

−iωF (ω; k̃i ) = T

N

∑
k̃ j

S (k̃i, k̃ j )F (ω; k̃ j ), (21)

where k̃i is the discrete momentum with a small internals.
Obviously, −iω is given by the eigenvalues of the kernel

FIG. 3. λL/T as a function of 1/askF . The red solid, the blue dot-
ted, and the green dashed curves correspond to different temperatures
T/Tc = 1.1, 1.5, and 2.0, respectively, where Tc = 0.22TF .

S (k̃i, k̃ j ) multiplied by a factor T/N . By examining Eqs. (18)
and (20), it’s straightforward to see that S (k̃i, k̃ j ) is a Hermi-
tian matrix. The eigenvalues are all real. Then the Lyapunov
exponent corresponds to the largest eigenvalue. Please refer to
Appendix B for the details of the numerical calculation of the
Lyapunov exponent.

IV. QUANTUM CHAOS AT THE UNITARY POINT

In this section, we study the case of unitary Fermi gases
by setting N = 1. This is not a fully controllable choice.
However, since we only focus on the variations of the Lya-
punov exponent with respect to the scattering length as and the
temperature, it may generate qualitative correct interpretation
as the large N cases and inspire useful insight. In Fig. 3,
we plot λL/T as a function of 1/askF for fixed temperature
T/Tc = 1.1, 1.5, and 2.0, where Tc = 0.22TF is the superfluid
critical temperature at 1/askF = 0, which is calculated in the
Nozières and Schmitt-Rink scheme [34,35]. One observes that
the Lyapunov exponent monotonically increases as 1/askF

goes from the BCS limit to the unitary regime. For lower
temperature, the λL increases much faster than the higher
temperature cases. At the unitary point 1/askF = 0, we plot
λL/T as a function of temperature T/TF in Fig. 4(a). As
the temperature drops, the Lyapunov exponent monotonically
increases and approaches the upper bound 2πT . At the tem-
perature T/Tc = 1.1, the Lyapunov exponent can reach a
value of λL ≈ 3.2T . Here we would like to point out that
we won’t be able to explore the region further close to Tc

for the N = 1 case, where our numerical calculation becomes
unstable. Please refer to Appendix B for details. The reason
is that the propagator of the bosonic field ϕ in Eq. (5) is
sensitive to the precision of the chemical potential μ as one
approaches the critical temperature. For the case of larger
N, the portion of preformed Cooper pairs becomes smaller
and the calculation becomes less sensitive to the precision of
the chemical potential. Hence, we would be able to calculate
the Lyapunov exponent at Tc. In Figs. 4(b)–4(b), we plot
NλL/T as functions of temperature T/TF for cases of N =
10, 100, and ∞. For N = 10, the calculation still cannot
reach the critical temperature. However, for N = 100 and
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(a) (b)

(c) (d)

FIG. 4. (a)–(d) are the graphs of NλL/T as a functions of temper-
ature T/TF at 1/askF = 0 for N = 1, 10, 100, and ∞, respectively.
The red dashed lines indicate the critical temperatures of the super-
fluid phase transitions for the four cases.

N = ∞, one observes that λL reaches a finite value at Tc and it
obeys the bound of 2π/β. Since there is no qualitative change
from the N = 1 to N = ∞ cases, we believe λL/T will also
reach a finite value at Tc for N = 1.

At the unitary point and temperature close to the critical
point, the system possesses two features. First, the system
is scaling invariant. It obeys the nonrelativistic conformal
symmetry (the Schrödinger group). Investigations have been
taken for the possible nonrelativistic version of ADS/CFT
duality [27,28]. Second, it has been shown that around the crit-
ical temperature, the system demonstrates a behavior of non-
Fermi liquid due to strong pairing fluctuations [30–33]. Some
research has shown that certain systems lacking quasipar-
ticle excitations demonstrate strong chaos [19,23,24,36,37].
Hence, it’s not surprising that our system scrambles the fastest
at the unitarity and the temperature close to Tc.

V. THE BEHAVIORS IN THE BCS LIMIT

At the BCS limit, the scattering length as → 0−. The
retarded Green’s function GR of the field ϕ can be expanded
in terms of small as as the following:

GR(ω, k)

= 1/N

− m
4πas

+ ∫
d3k

(2π )3
1

2εk
− ∫

d3k
(2π )3

1−nF (εk−μ)−nF (εq−k−μ)
−ω−i0++εk+εq−k−2μ

∝ as/N. (22)

Notice that the temperature must be far from the critical
temperature. Otherwise, according to the Thouless criterion,
one has − m

4πas
+ ∫

d3k
(2π )3

1
2εk

− ∫
d3k

(2π )3
1−nF (εk−μ)−nF (εq−k−μ)

−ω+εk+εq−k−2μ
→

0 when T approaches Tc and GR cannot be expanded
for small as. Furthermore, since the Wightman function
GW and the quantum scattering rate �(k) can be calcu-

lated by GW (ω, k) = − Im GR (ω,k)
sinh(ωβ/2) and �(k) = ∫ d3q

2(2π )3 GW (εk +
εq−k − 2μ, q) cosh[(εk−μ)/2T ]

cosh[(εq−k−μ)/2T ] , their behaviors for small as

can be easily derived as GR ∝ za2
s

√
T /N and �(k) ∝

za2
s T 2/N , where z ≡ exp(μ/T ) is the fugacity. Please refer to

Appendix C for details. K̃1(k̃, k̃′) and K̃2(k̃, k̃′) in the integral
kernel of Eq. (20) are functions of GR and GW as shown in
Eq. (18). Then it’s straightforward to obtain the behaviors as
K̃1(k̃, k̃′) ∝ za2

s T and K̃2(k̃, k̃′) ∝ za2
s T . The three terms in

Eq. (20) all have the same asymptotic form of za2
s T . Hence, as

as → 0−, the Lyapunov exponent behaves as λL ∝ za2
s T 2/N ,

which is consistent with the results on the Fermi liquid theory
with well-defined quasiparticles [29,38,39].

VI. CONCLUSIONS

We have computed the Lyapunov exponent for an N-flavor
Fermion system using 1/N expansion. The variation of the
Lyapunov exponent with respect to the scattering length as

and temperature T has been investigated. When T is fixed,
the Lyapunov exponent monotonically increases as the 1/askF

increases from the BCS limit to the unitary regime. When
the scattering length is fixed to 1/askF = 0, the Lyapunov
exponent increases while the temperature drops. Around the
critical temperature, it can reach to the order of λL ∼ T for
the N = 1 case. Basically, our results indicate that with strong
pairing fluctuations the system exhibits strong chaos. Further-
more, the behavior of λL at the BCS limit was calculated
as λL ∝ za2

s T 2/N , which is consistent with the Fermi liquid
theory.
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APPENDIX A: APPROXIMATIONS FOR
THE REDUCTION OF EQ. (17)

With the first approximation, the first term of f1 in Eq. (15)
is dropped. Then the Bethe-Salpeter equations in Eq. (15) is
reduced to

f1(ν; ω, k) = GR(ω, k)G∗
R(ω − ν, k)

∫
dω′d3k′

(2π )4

× (K1(ν; ω, k; ω′, k′) f2(ν; ω′, k′)

+K2(ν; ω, k; ω′, k′) f1(ν; ω′, k′) ),

f2(ν; ω, k) = GR(ω, k)G∗
R(ω − ν, k)

×
∫

dω′d3k′

(2π )4
K1(ν; ω, k; ω′, k′) f1(ν; ω′, k′).

(A1)

The second approximation is performed on the pair propa-
gators GR(ω, k)G∗

R(ω − ν, k). In the free fermion case, it’s
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expressed as

GR(ω, k)G∗
R(ω − ν, k)

= 1

ω − εk + μ + i0+
1

ω − ν − εk + μ − i0+ . (A2)

The integration over ω can be evaluated by the method of
residue. Then it’s straightforward to yield

GR(ω, k)G∗
R(ω − ν, k) = 2π iδ(ω − εk + μ)

ν + 2i0+ . (A3)

The approximation is taken by replacing the 0+ by the scatter-
ing rate �(k) for the interacting case. Then,

GR(ω, k)G∗
R(ω − ν, k) = 2π iδ(ω − εk + μ)

ν + 2i�(k)
. (A4)

As discussed in the main text, the third approximation is to
postulate the on-shell form fi(ν; ω, k) ≈ fi(ν; k)δ(ω − εk +
μ). Then the Eq. (A1) can be written as

[−iν + 2�(k)] f1(ν; k)

=
∫

dω′d3k′

(2π )4
2πδ(ω−εk + μ)(K1(ν; ω, k; ω′, k′) f2(ν; k′)

+K2(ν; ω, k; ω′, k′) f1(ν; k′)), [−iν + 2�(k)] f2(ν; k)

=
∫

dω′d3k′

(2π )4
2πδ(ω − εk + μ)K1(ν; ω, k; ω′, k′) f1(ν; k′).

(A5)

Assuming fi(ν; k′) is rotationally invariant and performing
the integration by implementing the delta function δ(ω − εk +
μ), one obtains the Eq. (17).

APPENDIX B: REMARKS ON NUMERICAL TECHNIQUE

To numerically solve for the Lyapunov exponent, we first
discretize the momenta k̃ and k̃′ of the integral kernel S (k̃, k̃′)
in Eq. (20) into Nsize pieces. The cutoffs of momenta k̃ and k̃′
are set to � = 15. We have also checked the convergence of
the results by performing the calculation for larger cutoffs.
The kernel S (k̃, k̃′) is symmetric for exchanging k̃ and k̃′.
Then it can be easily diagonalized to obtain the eigenvalues,
which are denoted as λi here. The Lyapunov exponent is
related to the largest eigenvalue as λLN/T = max(λi ). Then
the same calculation is performed for different Nsize and the
corresponding value of λLN/T is obtained. As an example, we
illustrate the case of 1/askF = 0 and T/Tc = 1.1 in Fig. 5(a).
The final value of λLN/T is read by the extrapolation to
1/Nsize = 0. In Fig. 5(b), we present the extrapolation of the
case T/Tc = 1.04, where one observes that squared residuals
are large and hence the numerical calculation is unreliable.

APPENDIX C: BEHAVIORS AT BCS LIMIT

At the BCS limit, one has a−1
s → −∞. Then the asymp-

totic behaviors of various propagators and the scattering rate
�(k) are demonstrated as the following. The full propagator
of field ϕ is

GR(ω, k) = 1/N

1/g − �(ω, k)
≡ 1/N

Re + iIm
, (C1)

(a) (b)

FIG. 5. The extrapolation of λL/T as a function of the discretized
interval 1/Nsize. Graphs (a) and (b) are for the cases of T/Tc = 1.1
and 1.04, respectively, and 1/askF = 0 in both graphs.

where

Re = − m

4πas
+

∫
d3k

(2π )3

1

2εk

−
∫

d3k
(2π )3

1 − nF (εk − μ) − nF (εq−k − μ)

−ω + εk + εq−k − 2μ
,

Im = −π

∫
d3k

(2π )3
[1 − nF (εk − μ) − nF (εq−k − μ)]

× δ(−ω + εk + εq−k − 2μ). (C2)

After we rescale all the momenta and frequency by k →
k/

√
T , q → q/

√
T , and ω → ω/T , it’s straightforward to get

the following asymptotic behaviors for large a−1
s :

Re ∝ a−1
s ,

Im ∝
√

T . (C3)

Notice that the temperature here must be far from the super-
fluid critical temperature, otherwise Re → 0. Then for large
a−1

s the propagator GR(ω, k) behaves as

GR(ω, k) ∝ as/N. (C4)

The imaginary part of GR(ω, k) is

Im GR(ω, k) = − 1

N

Im

Re2 + Im2 ∝ a2
s

√
T /N. (C5)

The Wightman function of field ϕ behaves as

GW (ωk − 2μ, k) ≡ AB(ωk − 2μ, k)

2 sinh[(ωk − 2μ)β/2]

= − Im GR(ωk − 2μ, k)

sinh[(ωk − 2μ)β/2)]

∝ za2
s

√
T /N. (C6)

The self-energy of fermions is

�(iω f
n , k) = 1

β

∑
ωb

m

∫
d3q

(2π )3

G(iωb
m, q)

−iωb
m + iω f

n + εq−k − μ
,

(C7)
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where the summation over ωb
m is equivalent to a contour

integration as the following:

�(iω f
n , k) =

∫
d3q

(2π )3

( ∫
dz

2π i

nB(z)(GR(z, q) − GA(z, q))

−z + iω f
n + εq−k − μ

−G
(
iω f

n + εq−k − μ, q
)
nF (εq−k − μ)

)
, (C8)

where GA is the advanced Green’s function for field ϕ. After
we take a analytical continuation, the imaginary part of the
self-energy can be calculated as

Im �(ω + i0+, k)

= −
∫

d3q
2(2π )3

(
nF (εq−k − μ)AB(ω + εq−k − μ)

+
∫

dzAB(z)δ(−z + ω + εq−k − μ)nB(z)

)

= −
∫

d3q
2(2π )3

GW (ω + εq−k − μ, q)
cosh

(
ω

2T

)
cosh

( εq−k−μ

2T

) .

(C9)

The quantum scattering rate is defined as �(k) =
− Im �(εk − μ + i0+, k). Then it can be written as

�(k) =
∫

d3q
2(2π )3

GW (εk + εq−k − 2μ, q)
cosh

(
εk−μ

2T

)
cosh

( εq−k−μ

2T

) .

(C10)

As we have derived in Eq. (C6), the asymptotic behavior of the
Wightman function is GW (εk + εq−k − 2μ, q) ∝ za2

s

√
T /N ,

then the asymptotic behavior of the quantum scattering rate
for large a−1

s is as the following:

�(k) ∝ za2
s T 2/N. (C11)

With all above asymptotic forms of GR(ω, k), GW (ω, k), and
�(k), straightforward calculation yields

K̃1(k̃, k̃′) ∝ za2
s T,

K̃2(k̃, k̃′) ∝ za2
s T, (C12)

and hence

S (k̃, k̃′) ∝ za2
s T . (C13)

Then the asymptotic behavior of Lyapunov exponent λL for
large a−1

s is

λL ∝ T
(
za2

s T
)
/N = za2

s T 2/N. (C14)

[1] Y. Sekino and L. Susskind, J. High Energy Phys. 10 (2008) 065.
[2] J. Maldacena, Adv. Theor. Math. Phys. 2231 (1998); Int. J.

Theor. Phys. 38, 1113 (1999).
[3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.

B 428, 105 (1998).
[4] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[5] S. H. Shenker and D. Stanford, J. High Energy Phys. 03 (2014)

067.
[6] D. A. Roberts, D. Stanford, and L. Susskind, J. High Energy

Phys. 03 (2015) 051.
[7] S. H. Shenker and D. Stanford, J. High Energy Phys. 05 (2015)

132.
[8] A. Kitaev, Hidden correlations in the hawking radiation and

thermal noise, talk given at Fundamental Physics Prize Sym-
posium, in Proceedings of the Stanford SITP seminars, 2014,
http://online.kitp.ucsb.edu/online/joint98/kitaev/.

[9] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008).

[10] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J.
Schmiedmayer, Nat. Phys. 9, 640 (2013).

[11] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

[12] A. I. Larkin and Yu. N. Ovchinnikov, J. Exp. Theor. Phys. 28,
1200 (1969).

[13] J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy
Phys. 08 (2016) 106.

[14] G. Zhu, M. Hafezi, and T. Grover, Phys. Rev. A 94, 062329
(2016).

[15] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-
Kurn, J. E. Moore, and E. Demler, arXiv:1607.01801.

[16] M. Gättner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017).

[17] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J.
Du, Phys. Rev. X 7, 031011 (2017).

[18] D. Stanford, J. High Energy Phys. 10 (2016) 009.
[19] D. Chowdhury and B. Swingle, Phys. Rev. D 96, 065005

(2017).
[20] S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
[21] A. Kitaev, A simple model of quantum holography. KITP http:

//online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).
[22] J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002

(2016).
[23] Aavishkar A. Patel and S. Sachdev, Proc. Natl. Acad. Sci. USA

114, 1844 (2017).
[24] S. Jian and H. Yao, arXiv:1805.12299.
[25] G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J.

Daley, S. S. Gubser, and M. Schleier-Smith, Phys. Rev. Lett.
123, 130601 (2019).

[26] C. B. Da and L.-M. Duan, Phys. Rev. A 99, 052322 (2019).
[27] K. Balasubramanian and J. McGreevy, Phys. Rev. Lett. 101,

061601 (2008).
[28] D. T. Son, Phys. Rev. D 78, 046003 (2008).
[29] P. Zhang, J. Phys. B: At., Mol. Opt. Phys. 52, 135301 (2019).
[30] S. Krinner, M. Lebrat, D. Husmann, C. Grenier, J.-P. Brantut,

and T. Esslinger, Proc. Natl. Acad. Sci. USA 113, 8144 (2016).
[31] B. Liu, H. Zhai, and S. Zhang, Phys. Rev. A 95, 013623 (2017).
[32] D. Husmann, M. Lebrat, S. Häusler, J.-P. Brantut, L. Corman,

and T. Esslinger, Proc. Natl. Acad. Sci. USA 115, 8563
(2018).

[33] X. Han, B. Liu, and J. Hu, Phys. Rev. A 100, 043604 (2019).

045123-7

https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP05(2015)132
http://online.kitp.ucsb.edu/online/joint98/kitaev/
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nphys2739
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevA.94.062329
http://arxiv.org/abs/arXiv:1607.01801
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevLett.70.3339
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1073/pnas.1618185114
http://arxiv.org/abs/arXiv:1805.12299
https://doi.org/10.1103/PhysRevLett.123.130601
https://doi.org/10.1103/PhysRevA.99.052322
https://doi.org/10.1103/PhysRevLett.101.061601
https://doi.org/10.1103/PhysRevD.78.046003
https://doi.org/10.1088/1361-6455/ab0af9
https://doi.org/10.1073/pnas.1601812113
https://doi.org/10.1103/PhysRevA.95.013623
https://doi.org/10.1073/pnas.1803336115
https://doi.org/10.1103/PhysRevA.100.043604


XINLOONG HAN AND BOYANG LIU PHYSICAL REVIEW B 102, 045123 (2020)

[34] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195
(1985).

[35] Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402
(2002).

[36] B. Swingle and T. Senthil, Phys. Rev. B 87, 045123 (2013).

[37] S. A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quan-
tum Matter (The MIT Press, 2018).

[38] Igor L. Aleiner, L. Faoro, and Lev B. Ioffe, Ann. Phys. 375, 378
(2016).

[39] S. Banerjee and E. Altman, Phys. Rev. B 95, 134302 (2017).

045123-8

https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevB.87.045123
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1103/PhysRevB.95.134302

