
Journal Accepted Version 

 

 

Understanding the Determinants of Construction Robot Adoption: Perspective of Building 

Contractors 

Mi Pan, Wei Pan 

DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001821 

 

To appear in: Journal of Construction Engineering and Management 

Published online: February 29, 2020 

 

Please cite this article as: Pan, M., Pan, W. (2020). Understanding the Determinants of 

Construction Robot Adoption: Perspective of Building Contractors.  Journal of Construction 

Engineering and Management, 146(5), 04020040. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0001821. 

 

 

 

 

 

 

 

 

 

 

This is a PDF file of an article of the accepted version. This version will undergo additional 

copyediting, typesetting and review before it is published in its final form. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001821


J. Constr. Eng. Manage., 2020, 146(5): 04020040 

1 

 

CO8808 

Understanding the Determinants of Construction Robot 

Adoption: Perspective of Building Contractors 

Mi Pan, Ph.D.1 and Wei Pan, Ph.D.2  
 

1Postdoctoral Researcher, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong 

Kong, Hong Kong SAR, China (corresponding author). Email: panmi@connect.hku.hk 

2Associate Professor, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 

Hong Kong SAR, China. Email: wpan@hku.hk 

 

Abstract: Construction robots have emerged as a revolutionary technology for buildings. However, 

real-world adoption is still limited. Little is known how the decision of adopting construction robots or 

not is made in organizations, which inhibits the benefits of robots from being fully realized. This paper 

aims to investigate the determinants affecting construction robot adoption for building works at 

organizational level. Drawing on the technology-organization-environment framework, a research 

model with eleven hypotheses on determinants was developed, and empirically evaluated via a survey 

with 94 typical building contractors in Hong Kong using partial least squares structural equation 

modeling technique. The results indicate that relative advantage, top management support, 

organizational readiness, market competitive pressure, and high costs are significantly related to the 

adoption, among which top management support is most influential. A two-stage conceptual framework 

is derived that provides theoretical insights on the determinants and reveals the complexities and 

influence dynamics of determinants on the adoption during technology development. The findings offer 

useful suggestions for the effective development of robots for building works and lay a foundation for 

construction innovation adoption in a wider context.  
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Introduction 

Construction robots have emerged as a revolutionary technology for buildings that have the potential to 

reform and renovate the building sector. The development is manifold, ranging from upgraded 

construction equipment with robotic features (e.g., robotic excavators, robotic cranes), derived robots 

from other industries (e.g., welding robots, robotic drones), to construction specific robots (e.g. , facade 

installation robots, integrated robotized construction sites) (Bock 2015). Despite the increasing demand 

and futuristic ambition towards robots in the construction industry (World Economic Forum 2018), 

real-world adoption is still quite limited (Saidi et al. 2016). To invigorate the uptake of construction 

robots and enable their transformation power to the industry, it is critical to well understand the 

decisions pertain to adoption at organizational level. Although there is some literature on the 

opportunities and barriers of construction robots (e.g., Mahbub 2008; Bogue 2018), little is known how 

the decision of adopting construction robots or not is made in organizations, especially contractors who 

are directly responsible for the building works. This knowledge gap also inhibits the realization of the 

full benefits of construction robots for buildings. 

Therefore, this study aims to investigate the determinants affecting the adoption of construction 

robot for buildings at organizational level, from the perspective of building contractors. A research 

model with hypothesized relationships between determinants and adoption was developed, grounded in 

the technology-organization-environment (TOE) framework, which is a generic organizational 

innovation theory (Tornatzky and Fleischer 1990). The hypotheses were then empirically evaluated 

with a sample of 94 typical contractors in the Hong Kong building sector, using partial least squares 

structural equation modeling (PLS-SEM). The results and findings lead to the derivation of a two-stage 

model for understanding the determinants of construction robot adoption, thereby offering suggestions 

to promote the development and implementation of construction robots and contributing to the 

knowledge of construction innovation adoption in a wider context. 

The remainder of this paper is organized as follows. Background section sequentially discusses 

the relevant background of the study, followed by the theoretical model and hypotheses on determinants 

proposed in the research model and hypotheses section. Research methods section then introduces the 

measurement and data for testing the hypotheses, and the data analysis method. Results and analyses 
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section presents the results of the hypothesis testing using PLS-SEM. Discussion section discusses the 

findings and provides theoretical and practical insights for the future development and implementation 

of construction robots. Conclusions section concludes the paper and comments on future research 

directions. 

Background 

Construction robot adoption 

There are years of technological research efforts to speed up the breakthrough of construction robots 

(Bock and Linner 2016). In the 1980s and 1990s, many early adoption cases were reported on single-

task construction robots, such as mobile handling robots, concrete finishing robots, plastering robots, 

ceiling board installation robots, and fireproofing robots (Cousineau and Miura 1998; Bock and Linner 

2016). Most of them involved prototype robots stem from research projects, but many failed to be 

commercialized (Mahbub 2008). Except the areas of off-site prefabrication, pipe maintenance and 

demolition (Bock and Linner 2016), the real-world take-up of construction robots to date still remains 

limited (Saidi et al. 2016). 

There is a wide variety of research on construction robots led by academia. For example, 

researchers in ETH Zurich developed a mobile robotic system named ‘In situ Fabricator’ for fabricating 

building elements on the site (Giftthaler et al. 2017). A prototype cable-driven parallel robot to build, 

repair and maintain a building facade is under development by academics from Technical University of 

Munich (Taghavi et al. 2018). A research team from the University of Michigan is developing modeling 

techniques for adaptive and autonomous manipulation of construction robots (Lundeen et al. 2017; 

Lundeen et al. 2019). Besides, a growing number of start-ups with commercialized robots has been 

witnessed in recent years, such as the bricklaying robot SAM 100 by Construction Robotics and Hadrian 

X by Fastbrick Robotics for onsite masonry construction (Bogue 2018), the ceiling drilling robot by 

nLink for precise and continuous drilling of holes in concrete ceilings (nLink 2018). There are also 

increasing development efforts from research institutes, such as a humanoid robot prototype HRP-5P 

by Japan’s Advanced Industrial Science and Technology (2018). Although there are some adoption 

cases, many of these innovative robots are still discussed as a future technology with limited real-world 
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adoption yet (World Economic Forum 2018). Some examples of worldwide development are provided 

in Fig. 1. 

Innovation adoption theory 

Construction robots are essentially innovation to the building sector, which elicits strategic concerns of 

adoption decisions from an organizational perspective. Therefore, the construction robot adoption is 

related to the research field of innovation adoption, which has attracted intense research interest among 

different sectors. Fundamentally, innovation adoption is considered as ‘a decision to make full use of 

an innovation as the best course of action' (Rogers 2010), and organizational adoption of innovation is 

commonly intended to contribute to the performance or effectiveness of the adopting organization 

(Damanpour 1991). There are a variety of theoretical models proposed to examine and understand 

innovation adoption in organizations, and to summarize factors at multiple levels that potentially 

influence the adoption process in different fields (Hameed et al.  2012). Specifically, diffusion of 

innovations (DOI) theory is applicable for the analysis at both individual and organizational levels; 

theory of reasoned action, theory of planned behavior and technology acceptance model are generally 

applied at the individual level of analysis; and the technology-organization-environment (TOE) 

framework is adopted for the organizational level of analysis (Hameed et al. 2012). It has been noted 

that the TOE framework overlaps with the innovation characteristics in the DOI theory (Oliveira et al. 

2014). Therefore, many studies on organizational innovation adoption are grounded in the TOE 

framework while incorporating the DOI theory (Thiesse et al. 2011; Oliveira et al. 2014).  

Basically, the TOE framework (Tornatzky and Fleischer 1990) describes that the adoption of 

technological innovations for a company is influenced by the technology, organization, and external 

environment context. The technology context refers to the technological attributes that can affect the 

decision to adopt the innovation, the organization context describes the organizational characteristics 

that can inhibit or facilitate innovation adoption, and the environment context concerns factors external 

to the organization that can present challenges and opportunities to the adoption of innovation 

(Tornatzky and Fleischer 1990; Thiesse et al. 2011; Oliveira et al. 2014; Pan and Pan 2019). 
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Previous studies on construction innovation adoption 

The construction industry is always considered as a low-tech sector with poor innovation performance 

(Martínez-Román et al. 2017). One fundamental reason is pertained to the nature of the business, as it 

is project-oriented and requiring collaboration and interaction among multiple stakeholders and 

specialists over the whole project life cycle, resulting in considerable difficulties for innovation 

adoption agreement among different groups (Dubois and Gadde 2002). Furthermore, the construction 

process of buildings or other civil engineering structures is complicated, and often, the major barriers 

for innovation adoption are: 1) the uncertainties in ascertaining the benefits of adoption and, 2) the lack 

of clear understanding of how innovation can be best integrated into existing processes (Blayse and 

Manley 2004). Consequently, construction practitioners are always blocked in conventional 

construction methods and reluctant to innovation and changes. 

Therefore, researchers have long been interested in understanding and explaining the adoption and 

management of innovation in the construction industry (Ozorhon and Oral 2016). Great attention has 

been paid to information and communication technologies such as virtual reality (Whyte 2002), building 

information modelling (BIM) (Bin Zakaria et al. 2013; Lee and Yu 2015), as well as many other tools 

for construction project management (Ahuja et al. 2009). There are also studies in innovative 

construction methods, like off-site production (Pan et al. 2012). However, research is limited to new 

construction technologies in terms of tools and equipment (Sepasgozar et al.  2018), which include 

robotics. Therefore, discussions on construction robots could contribute to this knowledge gap in 

construction innovation adoption. 

Research model and hypotheses 

The TOE framework, integrating characteristics from the DOI theory, has been applied as the theoretical 

basis to explore the determinants of construction robot adoption in this study. TOE is a generic theory 

for innovation adoption at the organizational level of analysis that has been successfully adopted in a 

wide variety of research fields to explore and examine adoption determinants of innovative technologies 

(Thiesse et al. 2011; Hameed et al. 2012; Oliveira et al. 2014). Besides, the three contexts of the TOE 

framework echo with issues considered in many construction innovation adoption studies (Mitropoulos 
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and Tatum 1999; Taylor 2007). The previous study of robot adoption determinants in off-site 

construction (Pan and Pan 2019) also demonstrated the feasibility of applying TOE in this exploratory 

study regarding robot adoption for on-site building works.  

It has been noticed that project-based firms, like construction companies, can learn from general 

innovation literature if findings and research are focused on firms (Martínez-Román et al. 2017). 

Therefore, concerns from previous relevant studies in innovation adoption and construction robots were 

considered together. Based on the TOE framework and literature review, a research model is developed 

and illustrated in Fig. 2. There are twelve constructs in the model, including the eleven determinants in 

the TOE contexts as independent variables, and the construction robot adoption as the dependent 

variable. The examined determinants are based on the previous study for robot adoption in off-site 

construction (Pan and Pan, 2019), while supported by the reviewed studies in adoption of other 

innovation in construction or other disciplines (e.g. Grandon and Pearson 2004; Thiesse et al. 2011; 

Chong and Chan 2012; Oliveira et al. 2014; Wang et al. 2016). The descriptions of the eleven 

determinants are summarized in Table 1. The model graphically presents the hypothesized relationships 

between the determinants and adoption (constructs) and these hypotheses are detailed in the following 

subsections. 

Hypotheses of the technology context 

Perceived relative advantage refers to the degree to which adopting construction robots are perceived 

as providing benefits to the organization. It has been generally agreed that the perceived relative 

advantage of an innovation is positively related to the rate or extent of adoption (Thiesse et al. 2011; 

Oliveira et al. 2014). Regarding construction robots, the potential to provide environmental, economic 

and social benefits to organizations and projects has been widely explored (Pan et al. 2018). Relative 

advantage offered by construction robots to replace or assist human in conducting dull, dirty, and 

dangerous works is a critical driver for adoption (Lim et al. 2012; Skibniewski and Zavadskas 2013). It 

is therefore hypothesized that: 

H1. Perceived relative advantage will positively influence construction robot adoption. 
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Compatibility between the innovation and firm’s culture, values, and practices is widely 

recognized as an influential determinant of the innovation adoption (Thiesse et al. 2011; Chong and 

Chan 2012; Oliveira et al. 2014; Wang et al. 2016). Perceived compatibility has also been identified as 

a vital issue in adopting robots for off-site production (Pan and Pan 2019). As for the general on-site 

building works, the compatibility issue could be even more problematic in terms of unique project 

characteristics, changing site environment, and human interaction. It is therefore hypothesized that: 

H2. Perceived compatibility will positively influence construction robot adoption. 

Perceived complexity often inhibits the adoption of new technology (Grandon and Pearson 2004; 

Chong and Chan 2012; Wang et al. 2016). In this study, complexity is considered the degree to which 

construction robots are perceived to be difficult to understand and use. Complexity is deemed to cause 

the uncertain future adoption of some construction robots (Bogue 2018). Adopting construction robots 

can be challenging to companies that lack technological expertise, which is often the situation in many 

construction companies with expertise only in their own trade fields. It is therefore hypothesized that: 

H3. Perceived complexity will negatively influence construction robot adoption. 

Previous studies have widely discussed that high costs would deter technology adoption (Lin 2014). 

With respect to construction robots, high costs have been long discussed to retard their real-world 

adoption, owing to the high capital cost, operation and maintenance cost (Cousineau and Miura 1998; 

Mahbub 2008; Bock and Linner 2016). High costs are also attributed to the lack of economic 

justification for the utilization of construction robots (Pan et al. 2018). It is therefore hypothesized that: 

H4. Perceived high costs will negatively influence construction robot adoption. 

Hypotheses of the organization context 

Top management support is identified as crucial in many innovation adoption studies of information 

systems, as it creates a positive environment to influence employees and provides organizational 

commitment (Oliveira et al. 2014). Its importance has also been emphasized for innovation adoption in 

the construction industry (Ozorhon and Oral 2016). Construction robots as the innovation to be applied 

at the organizational level, top management support primarily refers to the degree to which top 
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management understands the importance of adopting construction robots and the extent to provide 

sufficient support in making the adoption decision. It is therefore hypothesized that: 

H5. Top management support will positively influence construction robot adoption. 

Firm size is an important organizational factor established in previous research that can affect the 

adoption of many new technologies (Lin 2014; Wang et al. 2016). Large firms are more likely to adopt 

new technologies than small ones, as they have more flexibility, resources, and risk tolerance. Previous 

studies have demonstrated the influence of firm size for the construction innovation adoption, such as 

prefabrication (Pan et al. 2012) and BIM (Bin Zakaria et al. 2013). It is therefore hypothesized that:  

H6. Firm size will positively influence construction robot adoption. 

Organizational readiness is considered as the readiness of the organization in terms of financial 

resources and technological knowledge (Grandon and Pearson 2004; Chong and Chan 2012), to adopt 

an innovation. Many construction robots require trials and additional development before real-world 

implementation. Sufficient financial resources, professional knowledge, and technological capability in 

the construction companies are the fundamental concerns to guarantee the research and development 

efforts, and the adoption, on construction robots (Pan and Pan 2019). It is therefore hypothesized that: 

H7. Organizational readiness will positively influence construction robot adoption.  

Hypotheses of the environment context 

Market competitive pressure drives organizations in all industries to seek competitive advantages by 

adopting new technologies (Lin 2014; Oliveira et al. 2014; Wang et al. 2016). Accordingly, competitive 

pressure is widely discussed as an important determinant in the adoption of new systems or technologies 

(Oliveira et al. 2014). This study defines market competitive pressure as pressure resulting from the 

practices of competitors and a need to gain competitive advantage. The building sector is quite 

competitive, fraught with various difficulties and challenges like low productivity and labor shortage 

(Pan et al. 2018). Construction robots as a disruptive innovation are expected to support early adopters 

to compete for successfulness in the highly competitive market. It is therefore hypothesized that: 

H8. Market competitive pressure will positively influence construction robot adoption. 
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The influence of market demand on innovation has been highlighted from the market pull 

perspective in innovation studies, especially in the innovation generation (Di Stefano et al. 2012). As 

for construction robots, the adoption intention has also been reckoned to meet the market demands for 

workforce replenishment, productivity improvement, and environmental impact reduction (Pan et al.  

2018). It is therefore hypothesized that: 

H9. Market demand will positively influence construction robot adoption. 

Regulatory support refers to the support from the government or its authority to encourage the 

adoption of an innovation (Thiesse et al. 2011; Oliveira et al. 2014). Regulatory policies and standards 

could facilitate innovation adoption by reward schemes or mandatory regulations (Ozorhon and Oral 

2016). In the building sector, the role of the government is critical for innovation adoption, not only to 

formulate regulation and guidance, but also as the largest client.  It is therefore hypothesized that: 

H10. Regulatory support will positively influence construction robot adoption. 

Trading partners across the supply chain can be positively related to the adoption of technological 

innovations (Thiesse et al. 2011). Pressure from trading partners from both upstream and downstream 

supply chain is a key impetus that the powerful partners may request or persuade the company to adopt 

the new technology (Wang et al. 2010). Trading partners are also influential in construction as a project-

based community (Sepasgozar 2018). Besides, the construction robot application would initiate a new 

stakeholder group – robot vendors. A close relationship with robot vendors is necessary for construction 

companies to make decisions on adopting robots (Pan and Pan 2019). It is therefore hypothesized that: 

H11. Trading partner support will positively influence construction robot adoption.  

Research methods 

To assess the hypotheses developed above, a questionnaire survey was conducted among typical 

building contractors in Hong Kong. The questionnaire included demographic information on the 

participant, an open-ended question for those have experience of construction robots to specify the area 

of applications, and pertinent questions regarding determinants of the construction robot adoption. The 

overall research methodology is presented in Fig. 3 and described in the subsections below. 
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Measurement of determinants 

The questionnaire items to measure the constructs in the research model (relative advantage, 

compatibility, complexity, high costs, top management support, firm size, organizational readiness, 

market demand, market competitive pressure, regulatory support, trading partner support, and 

construction robot adoption) were based upon published literature (see Table 2). To be consistent with 

the sources, the constructs were measured using a five-point Likert scale ranging from “strongly 

disagree” to “strongly agree”, except those noted otherwise. To test the research instrument, a pilot 

study was conducted with ten relevant experts from academia and industry by inviting them to complete 

the questionnaire and provide comments. The results were not included in the main survey since some 

of the invited experts do not currently work for a contractor. The pilot study verified that the 

questionnaire is understandable and easy to fill. 

Research participants  

The questionnaire was emailed to qualified individuals (CEOs, directors, senior managers) at 800 

contractors for building works in Hong Kong, attached with an editable PDF file and an online filled 

link. The potential contractors were identified using publicly available databases supplemented by the 

networks of the researchers. Examples of the databases included: Development Bureau’s (2018) list of 

approved contractors, Building Department’s (2018) list of registered contractors, and Hong Kong 

Trade Development Council’s (HKTDC 2018) database of contractors. In total, 94 valid questionnaires 

were returned out of 800 sent out, yielding an overall response rate of 11.8%, which is comparable to 

other studies as an internet-based survey in the construction field (Zhao et al. 2018). Profiles of 

questionnaire participants are shown in Table 3. The respondents were experienced and qualified 

individuals, indicating a good quality of data. The Harman’s one-factor (or single-factor) test 

(Podsakoff et al. 2003) was used to examine the common method bias that the majority of the variance 

in the model (>50%) cannot be explained by a single factor, and no significant common method bias 

was found in the returned data set as a single factor accounted for 37.9 % from the test.  
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Data analysis  

Variance-based structural equation modeling (SEM) was adopted to evaluate the research model, using 

partial least squares (PLS) for the analysis, which is namely the partial least squares structural equation 

modeling (PLS-SEM) technique. The primary motivations for choosing PLS-SEM instead of other 

covariance-based SEM methods (Hair et al. 2016) is the consideration of the relatively small sample 

size, non-normal data, as well as nature of this exploratory research. Previous studies have also 

illustrated the usefulness of PLS-SEM in exploratory studies in the construction field (Yap et al. 2018). 

Particularly, SmartPLS was used as a tool for analysis.   

Although PLS-SEM has a relatively lower requirement for sample size than covariance-based 

SEM, it has minimum sample size requirements to ensure the effectiveness of using PLS-SEM for 

analysis. Many studies follow the ten times rule by Barclay et al. (1995) that the minimum sample size 

should be ten times the largest number of, either indicators used to measure one construct, or structural 

paths directed at a latent construct in the structural model. However, this guideline has received many 

debates recently (Hair et al. 2016) and regarded as a rough estimation, while a more scientific way to 

decide sample size should be based on model complexity and data characteristics (Hair et al.  2016). 

Hair et al.’s (2016) suggestion for the rules of thumb by Cohen (2013) recommends the minimum 

sample size for PLS-SEM based on the required statistical power level, pre-specified significance level, 

the population effect size and the number of arrows pointing at a construct in the path model, which can 

also be calculated by G*Power (Faul et al. 2007). The sample size in this study consists of 94 contractors, 

which satisfies both Barclay et al.’ (1995) ten times rule (the minimum sample size should be 60) and 

Cohen’s (2013) recommendation considering a 90% power level, 0.05 significance level and small 

effect size (R2=0.25) (the minimum sample size should be 67 for 11 determinants). Variance inflation 

factors (VIFs) were calculated to detect potential multicollinearity, which occurs when there is a strong 

linear correlation among items for measuring constructs. According to the requirement that VIF should 

be lower than the threshold of 5 to avoid multicollinearity (Oliveira et al. 2014), two items, CB4 

(VIF=5.762) and CB5 (VIF=7.133) for measuring the compatibility were deleted.  
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There are a set of criteria to assess partial model structures in a two-step process, including the 

assessment of the measurement (the outer) model and the assessment of the structure (the inner) model 

(Hair et al. 2016), which are explained as follows.  

The measurement model was assessed in terms of reliability and validity. The reliability of each 

item for measuring constructs could be examined with loadings. Considering that a latent variable 

(items) should explain a substantial part (usually at least 50%) of each indicator’s variance (Hair et al. 

2016), the items with loading less than 0.7 ( 0.5 ) should be removed. The internal consistency 

reliability is traditionally assessed by Cronbach’s α. Another measure, composite reliability (CR) is 

proposed as a more suitable assessment criterion for reliability in PLS-SEM (Hair et al. 2016). For both 

reliability coefficients, the satisfactory value is considered as above 0.7 in early research stages and 

above 0.8 or 0.9 in more advanced research stages (Nunnally and Bernstein 1994). The validity is 

usually examined with convergent validity and discriminant validity (Hair et al. 2016). The convergent 

validity using average variance extracted (AVE) should higher than 0.50. The discriminant validity 

could be assessed using Fornell–Larcker criterion and cross-loadings. Specifically, the Fornell–Larcker 

criterion postulates that the square root of AVE should be larger than the correlations between the 

constructs (Fornell and Larcker 1981). The cross-loadings criterion requires that the loading of each 

construct should be larger than all item cross-loadings (Chin 1998).  

The structure model was then tested to verify the hypotheses in the research model. The effect size 

was calculated by Cohen's f2 that 0.02, 0.15, 0.35 are considered for weak, moderate, strong effects for 

the evaluated variables (Hair et al. 2016). The f2 should therefore larger than 0.02 in order to have 

meaningful explanation. The significance level (p) of standardized paths were calculated, with 

resampling using bootstrapping was conducted, to estimate path coefficients for hypotheses testing. The 

explanatory power of the model to explain all the data was measured by R2 value.  

Table 4 summarizes the above-mentioned criteria and rules of thumb adopted in this study for 

evaluating data, measurement model and structure model. 
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Results and Analyses 

In general, the results demonstrated the currently minimal adoption of construction robots by 

contractors in Hong Kong with only 8.5 % indicated the adoption stage as “have already adopted”.  For 

those adopters, the details about their adopted robots were asked using an open-ended question. The 

identified applications included robot for excavation and bricklaying, automated guided vehicle, lifter, 

robotic gantry, exoskeleton suit, robotic arms for drilling holes, concrete breaker, demolition robot, 

drones and robots for maintenance, monitoring, and inspection. Besides, the intention was also 

mentioned by some respondents to adopt some new types of robots, such as cable-driven parallel robots, 

collaborative robots, and three-dimensional printing. Some examples of the mentioned construction 

robots that are adopted or under trials in Hong Kong are presented in Fig. 4. 

The assessment of the measurement model and the structure model are presented in the following 

subsections.  

Assessment of the measurement model 

From the measurement model in this research, the reliability of each item was first tested, where 

four items were removed, remaining those with loadings above 0.7 and statistically significant at the 

0.01 level formulated a revised model. The mean, standard deviation (SD), Cronbach’s α, CR and AVE 

of constructs in the revised model were calculated and shown in Table 5. The internal consistency 

reliability and convergent validity were satisfied. As for discriminant validity, both Fornell–Larcker 

criteria (see Table 6) and cross-loadings criteria were also satisfied. Therefore, all the required criteria 

were met for a reliable and valid measurement of constructs in the revised model.  

Assessment of the structural model 

In this step, the hypothesized relationships between the constructs were estimated via the assessment of 

the structural model. The estimation indicated that two constructs, market demand (H9) and trading 

partner support (H11), have very low f2 value (<0.02) to support a meaningful explanation (Cohen, 

2013). Therefore, these two were removed in further analysis. To evaluate the significance of 

standardized paths in the structural model, the bootstrapping method of 5000 re-samples was used. The 
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results are presented in Table 7 and Fig. 5. The hypotheses for relative advantage (H1) (p < 0.05), high 

costs (H4) (p < 0.05), top management support (H5) (p < 0.001), organizational readiness (H7) (p < 

0.1), market competitive pressure (H8) (p < 0.05) are confirmed, while compatibility (H2) is oppositely 

confirmed. Complexity (H3), firm size (H6), and regulatory support (H10) are not statistically supported 

at a significant level. R2 value is 0.57, showing the whole research model explains 57% of adoption 

potential of construction robots. 

Discussion 

Hypotheses discussion 

The results revealed the limited adoption of construction robots in Hong Kong. The evaluation of the 

research model confirmed the hypotheses of five determinants to affect the adoption of construction 

robots: relative advantage, high costs, top management support, organizational readiness, and market 

competitive pressure. The results further indicated a singularity regarding the influence of compatibility. 

All the results of hypotheses are discussed as follows. 

From the technology context, relative advantage (H1) is found to positively influence the adoption 

of construction robots among contractors. This finding is consistent with previous arguments made by 

construction robot researchers (Lim et al. 2012; Skibniewski and Zavadskas 2013). It further echoes 

Pan et al. (2018)’s argument that the advantage of construction robots in terms of environmental, 

economic and social benefits could be the possible trigger for the future large-scale adoption of robots 

for building works. Unexpectedly, the influence of compatibility (H2) is confirmed but in the opposite 

direction, which means that the result indicates the negative influence of compatibility on the adoption. 

This might because that those potential or existing adopters are facing the compatibility issues during 

adoption, while non-adopters are not very concerned about this problem in their planning. The influence 

of complexity (H3), concerned by previous studies (Bogue 2018), is not found to negatively influence 

the adoption at a significant level. High cost (H4) is confirmed to negatively influence the adoption, 

which is also consistent with prior studies that perceived high costs is a key inhibitor for construction 

robot adoption (Cousineau and Miura 1998; Mahbub 2008; Bock and Linner 2016).  
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From the organization context, the study unravels that top management support (H5) is the most 

influential determinant in explaining the adoption of construction robots. It could positively influence 

the adoption, with the highest path coefficient value and f-value among all tested determinants. This 

result confirmed the importance of top management, which is also consistent with studies in other 

innovation adoption in construction (Whyte et al. 2002; Bin Zakaria et al. 2013). Firm size (H6) is not 

found to significantly influence the adoption. This might because some surveyed contractors considered 

its firm size from an industry-wide concern while some subcontractors may compare it to others in the 

same trade. Organizational readiness (H7) is confirmed as a positive determinant to the adoption, which 

also reflects the need for financial and human resources in construction robot adoption.  

From the environment context, market competitive pressure (H8) is found to positively influence 

the adoption. This is consistent with the findings on robot adoption in off-site precast production (Pan 

and Pan 2018), as well as the argument on the initial driving force of construction robot adoption in 

Japan (Mahbub 2008). Regulatory support (H10) is not identified to have a noticeable influence on 

adoption. This is might because there is still no explicit regulation or financial support for construction 

robots, and therefore regulatory support is not a powerful driver for the current adopters or potential 

adopters. Market demand (H9) and trading partner support (H11) are not found to have a significant 

influence on the adoption. A possible explanation is that the lack of knowledge and unclear vendors for 

construction robots limit the understanding of two determinants from the survey participants.  

The results together indicate that the adoption of construction robots is influenced by the factors 

from the technology, organization, and environment contexts, while the top management support has 

the most decisive effect. More investigations are needed for these unsupported hypotheses. The 

implications to theory and practice are summarized as follows. 

Theoretical implications 

Construction innovation has not yet received much attention in the field of innovation adoption, and 

particularly, there is a research need to understand technology adoption in construction especially for 

tools and equipment (Sepasgozar et al. 2018). The study contributes to this knowledge field by exploring 

the determinants of the adoption of construction robots for the building sector. It also supplements many 
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previous qualitative studies on construction innovation adoption (e.g., Whyte et al. 2002; Bin Zakaria 

et al. 2013; Pan and Pan 2019) by a quantitative investigation based on structural equation modeling.   

The study builds upon the TOE framework to integrate various perspectives into a proposed 

research model. The model considers the determinants from technology, organization, and environment 

contexts that underlie the adoption of construction robots. Reliability and validity tests have verified 

the revised measurement for constructs used in this study. Therefore, the research model and the 

measurement could provide a sound foundation for understanding the determinants of construction 

robot adoption and might be applicable for other construction innovation studies.  

Compared with the prior study for construction robot adoption in precast concrete production (Pan 

and Pan 2019), the findings have further theoretical implications on the adoption determinants for robots 

in different technology readiness levels (the maturity of technology). In particular, construction robots 

in precast concrete production have entered the market since the early 1990s which are well-developed 

technologies with a high technology readiness level (Pan and Pan 2019). Nine of the examined 

determinants in this study were considered important and highly correlated in determining adoption 

decisions of robots for precast concrete production, with compatibility identified as a primary reason 

for non-adoption (Pan and Pan 2019). While construction robots for general on-site building works, as 

the focus of this study, are mainly in research and development stages with a low technology readiness 

level. The discussion on hypotheses in the above subsection indicates that significant determinants of 

construction robot adoption identified in this study somehow differ from the off-site context, as reported 

by Pan and Pan (2019). Consequently, a two-stage conceptual framework is derived for understanding 

the determinants of construction robot adoption (Fig. 6). For the early stage of construction robot, like 

most of the robots for on-site building works discussed in this study, determinants at the organizational 

context, especially the top management support, are the most decisive ones, while the determinants at 

the external environment are not quite influential. For the later stage, like robots for off-site construction 

that are mature and established (Pan and Pan 2019), determinants at the technological and environment 

contexts might exert greater influence on the adoption decision. Along with the technology development, 

the compatibility could be an increasingly important concern for adoption, since technology adaptation 

is often necessitated in the adoption of construction robots. Trading partner support (Sepasgozar 2018; 
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Pan and Pan 2019) might be influential when robots have reached a high technology readiness level. 

Besides, the correlation between technology, environment, and organization contexts could be increased, 

indicating the growing complexities for the adoption at the later stage of technology development. 

Therefore, the framework reveals the complexities of determinants and their influence dynamics on the 

construction robot adoption during technology development. This framework should also be applicable 

to explain and understand the determinants of adopting other technological innovation in construction, 

and further validation studies are needed. 

Practical implications 

The findings also provide important practical implications to both contractors and robot developers to 

promote the future development and adoption of construction robots. Although the empirical data were 

collected in Hong Kong, some implications are irradiative to other regions. The generality of findings 

requires further studies in other cities or countries. 

First, the perceived relative advantage is currently the main driver while perceived high costs is 

the main barrier for construction robot adoption in the technological context. Construction robots could 

offer the relative advantages of productivity, quality, safety, and sustainability improvement as well as 

economic benefits in reducing the cost of expensive labor (Pan et al. 2018). However, perceived high 

costs associated with construction robots themselves inhibit the adoption intention. These concerns 

require the decision-makers to clearly define all the trade-offs in a dialectical systems manner to make 

proper decisions. Besides, cooperation with partners via cost‐sharing agreements could reduce the cost 

impacts on the adoption decision (Thiesse et al. 2011). 

Second, compatibility has been noticed as an issue for some adopters and potential adopters, which 

is attributable to the nature of uniqueness of building projects that increase the difficulties for the real-

world adoption of construction robots. Comparatively, complexity might not be a significant concern 

for the adoption of construction robots. For the future adopters and robot developers, great attention 

should be paid on the adaption of construction robots to fit for the project-based construction companies 

and address the compatibility issues. In this regard, robot developers and vendors could also exploit 
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business opportunities in addressing compatibility of robots with other emerging themes in construction, 

such as modular integrated construction (Pan and Hon 2018). 

Third, the study emphasized the importance of top management support in the construction robot 

adoption. For the contractors, the top management should be mindful of possible promises and pitfalls 

of the available construction robots in making the appropriate adoption decisions. To accelerate the 

adoption process, it is essential for robot developers and vendors to actively building up the awareness 

and acknowledgment of construction robots among the top management in the construction companies. 

Fourth, market competitive pressure in the environmental context was found as a driver to 

construction robot adoption, which has also been identified as a facilitator for robot implementation in 

the off-site construction (Pan and Pan 2019). Such driving forces might be progressively significant 

along with the increasing technology readiness and market maturity of construction robots in the future.  

Conclusions 

This paper has investigated the determinants of construction robot adoption from the perspectives of 

building contractors. A research model was developed in the technology, organization, and environment 

contexts, with embedded hypothesized relationships between determinants and adoption. The 

hypotheses were empirically evaluated based on a questionnaire survey with 94 typical contractors for 

building works in Hong Kong using partial least squares structural equation modeling. The results 

indicate that the four determinants, namely, relative advantage, top management support, organizational 

readiness, and market competitive pressure, are significantly positively related to construction robot 

adoption, while one determinant, high costs, is significantly negatively related to the adoption. Top 

management support was identified as the most influential determinant for the adoption. Compatibility 

is unexpectedly found to negatively influence the adoption, revealing that the potential or existing 

adopters are still fraught with compatibility issues that however are less noticed by non-adopters. 

Complexity, firm size, market demand, market competitive pressure, regulatory support, and trading 

partner support are found to have no statistically significant influence, since the relevant hypotheses are 

not supported. For them, further investigation is necessary to reach more definitive insights.  
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A two-stage conceptual framework of the determinants of construction robot adoption is derived, 

which paints an insightful picture of what determines the adoption of construction robots at different 

stages of technology development. The framework conceptualizes the complexities and influence 

dynamics of determinants on the adoption. Practical suggestions are offered for contractors to make 

thoughtful decisions towards the successful implementation of available construction robots, as well as 

for robot developers and vendors to address issues stem from important determinants for the effective 

development of future construction robots for buildings. The framework and findings also lay a good 

foundation for future research into other technology adoption for the construction industry. Further 

research can examine the complexities of, correlation between, and influence power on the determinants 

of construction robot adoption or other innovation, which should elicit more insightful findings to 

further improve and contextualize the two-stage framework, as well as to support technology 

development and deployment.  

Data Availability Statement 

All data, models, or code generated or used during the study are available from the corresponding author 

by request. 
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Fig. 1. Examples of worldwide development on construction robots: (a) ceiling drilling robot 

(image courtesy of nLink); (b) humanoid robot prototype HRP-5P (images courtesy of AIST); 

and (c) demolition robot (image courtesy of BROKK). 
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Fig. 2. The research model for contractors’ adoption of construction robots 
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Fig. 3. The overall research methodology 
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Fig. 4. Examples of applications of construction robots in Hong Kong: (a) exoskeleton suit 

exhibited by Atoun at Construction Innovation and Technology Application Centre (CITAC); 

(b) indoor air quality (IAQ) disinfection robot for maintenance exhibited by Gammon at 

CITAC; and (c) adaptive welding robot for onsite construction works. [Images in (a and b) by 

authors; image in (c) courtesy of Welbot Technology Limited.] 
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Fig. 5. Results of structural model evaluation for the hypothesized relationships 
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Fig. 6. A two-stage conceptual framework for understanding the determinants of construction 

robot adoption 
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List of Tables 

Table 1. Descriptions of determinants in the research model  

Determinant Description 

Relative 

advantage  

The degree to which adopting construction robots are perceived as providing 

benefits to the organization 

Compatibility  The degree to which construction robots are perceived to be compatible with the 

needs, existing practices, and other technologies  

Complexity  The degree to which construction robots are perceived to be difficult to 

understand and use 

High costs  The perceived high costs (capital cost, operation and maintenance cost) of 
adopting construction robots 

Top 

management 
support  

The degree to which top management understands the importance of adopting 

construction robots and the extent to provide sufficient support in making the 
adoption decision 

Firm size The size of the organization 

Organizational 

readiness 

The readiness of the organization in terms of financial resources and 

technological knowledge to adopt construction robots 

Market 
competitive 

pressure  

The pressure resulting from the practices of competitors and a need to gain 
competitive advantage from adopting construction robots 

Market 
demand 

The market demands 

Regulatory 

support  

The support from the government or its authority to encourage the adoption of 

construction robots 

Trading 

partner 

support 

The support and pressure from trading partners from both upstream and 

downstream supply chain to adopt construction robots 

Note: the organization refers to the potential adopter of construction robots 
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Table 2. Measurement items for constructs 

Constructs Items Refereed sources 

Relative 

advantage (RA)  

RA1: My company expects construction robots to help improve 

project productivity performance 

(Thiesse et al. 2011; 

Chong and Chan 
2012; Oliveira et al. 

2014; Wang et al. 
2016) 

RA2: My company expects construction robots to help reduce 

construction cost (labor-saving, material saving) 

RA3: My company expects construction robots to help improve 

project environmental performance 

RA4: My company expects construction robots to help improve 
project quality performance 

RA5: My company expects construction robots to help improve 
worker safety & healthy performance 

 RA6: My company expects construction robots to secure the 
technological lead 

Compatibility 
(CB) 

CB1: Construction robots are compatible with existing practices 
in my company 

(Grandon and 
Pearson 2004; 
Thiesse et al. 2011; 

Chong and Chan 
2012; Oliveira et al. 

2014; Wang et al. 
2016) 

CB2: Construction robots are compatible with the typology of 
buildings (the implementation situation) 

CB3: Construction robots fit with the existing values of my 

company 

CB4: Construction robots are compatible with the task to perform 

CB5: Construction robots are compatible with existing equipment 
and other technologies in my company 

Complexity 
(CX) 

CX1: My company believes that construction robots are complex 
to use 

(Grandon and 
Pearson 2004; Chong 
and Chan 2012; 

Wang et al. 2016) 
CX2: My company believes that construction robots are 
bulkiness, heavy and high-power 

CX3: My company believes that the implementation of 

construction robots is a complex process 

High costs (HC) HC1: Construction robots have high initial costs (Lin 2014) 

HC2: Construction robots have high operating and maintenance 
costs 

HC3: Lead time to complete testing and training before starting to 
construction robots is long. 

Top 
management 

support (TMS) 

TMS1: My top management is likely to invest funds in 
construction robots 

(Chong and Chan 
2012; Lin 2014; 

Wang et al. 2016) TMS2: My top management is willing to take risks involved in 

the adoption of construction robots 

TMS3: My top management is likely to consider the adoption of 

construction robots as strategically important 

Firm size (FS) FS1: The capital of my company is high compared to the industry (Wang et al. 2010; 

Chong and Chan 
2012; Lin 2014; 
Wang et al. 2016) 

 FS2: The revenue of my company is high compared to the 

industry 

 FS3: The number of employees at my company is high compared 
to the industry 

Organizational 
readiness (OR) 

OR1: Our company has the financial resources to adopt 
construction robots 

(Grandon and 
Pearson 2004; Chong 

and Chan 2012) OR2: Our company has recruited/is recruiting the robot-related 

professionals  

OR3: Training and education related to construction robots are 

provided to employees 
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OR4: Our company has the technical knowledge and skills to 

adopt construction robots 

Market 

competitive 
pressure (MP) 

MP1: My company experiences competitive pressure to adopt 

construction robots 

(Lin 2014; Oliveira 

et al. 2014; Wang et 
al. 2016) MP2: Construction robots are being adopted by my competitors 

MP3: My company would have experienced a competitive 

disadvantage if not adopt construction robots 

Market demand 

(MD) 

MD1: The industry is faced with an urgent need to improve 

occupational safety and health 

(Pan and Pan 2019) 

 MD2: The industry is faced with an urgent need to provide 

sustainable construction 

 

 MD3: The industry is faced with serious shortages in skilled labor 
in the field of my company's business/practice 

 

 MD4: The industry is faced with a significantly aging workforce 
problem 

 

Regulatory 
support (RS) 

RS1: Government provides financial support for adopting 
construction robots (e.g., incentives and R&D support) 

(Thiesse et al. 2011; 
Oliveira et al. 2014) 

RS2: Government adopts the adoption of construction robots in 
public project  

RS3: Government provides technical guidance for adopting 

construction robots 

Trading partner 
support (TPS) 

TPS1: The important trading partner recommended the adoption 
of construction robots 

(Wang et al. 2010) 

TPS2: My company has a close relationship with the vendor and 
research institutes of possible robotic technologies 

TPS3: Technical support and training are provided by the robot 
vendor 

TPS4: The client recommended/promoted the adoption of 
construction robots 

Construction 
robot adoption 
(AD) 

AD1: At what stage is the company currently engaged regarding 
the adoption of possible construction robots in the field of my 
company's business/practice? Not considering; Currently 

evaluating; Have evaluated, but do not plan to adopt; Have 
evaluated and plan to adopt; Have already adopted. 
AD2: If anticipating that my company will adopt possible 

construction robots in the future. How will it happen? Not 
considering; More than 10 years; Between 5 and 10 years; 

Between 3 and 5 years; Between 1 and 3 years; Less than 1 year; 
Have already adopted. 

(Thiesse et al. 2011; 
Oliveira et al. 2014) 

Note: All items are based on the 5-point scale except those noted otherwise. 
The items CB4, CB5 were deleted in the final analysis due to multicollinearity issue tested by variance inflation 
factor (VIF, >5); The items CX3, OR3, OR4, MD4, RS3, TPS4 were deleted in the final analysis due to low 

loading (<0.7).  
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Table 3. Profiles of questionnaire participants (n=94) 

Items Descriptions Number Percentage 

Years of 

work 
experience 

6-9 years 6 6.4% 

10-19 years 20 21.3% 

20-29 years 36 38.3% 

30-39 years 24 25.5% 

More than 40 years 8 8.5% 

Total 94 100% 

Positions CEO, chairman, director 42 44.7% 

Head of department, manager  39 41.5% 

Senior engineer, senior staff 13 13.8% 

Total 94 100% 
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Table 4. Adopted criteria and rules of thumb for PLS-SEM method 

Criterion 

 

Rules of thumb 

Data issues  

Sample size Ten times rule as rough requirement, and considering the required statistical 

power level, pre-specified significance level, the population effect size and 
the number of arrows pointing at a construct in the path model 

Multicollinearity Variance inflation factor (VIF) < 5 

Measurement (outer) model evaluation 

Item reliability Standardized item loadings ⩾ 0.7 

Construct reliability Cronbach’s α ⩾ 0.7 or Composite reliability (CR) ⩾ 0.7 

Convergent validity  Average variance extracted (AVE) ⩾ 0.5 

Discriminant 

validity 

Fornell–Larcker criterion: the square root of AVE should be larger than the 

correlations between the constructs 

Cross-loadings: the loading of each construct should be larger than all item 

cross-loadings 

Structure (the inner) model evaluation 

Effect size  Cohen's f2: 0.02, 0.15, 0.35 for weak, moderate, strong effects, and less than 

0.02 indicates no effect  

Path coefficient 

estimation 

The significance level (p) of standardized paths < 0.1 

R2 Research context determines the acceptable value 
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Table 5. Mean, standard deviation and reliability indicators for the constructs 

Constructs Item Mean SD Cronbach’s α AVE CR 

RA 6 3.68 0.90 0.940 0.769 0.952 

CB 3 3.17 1.00 0.901 0.835 0.938 
CX 2 3.23 0.90 0.723 0.738 0.846 

HC 3 3.76 0.87 0.931 0.877 0.955 

TMS 3 3.28 0.96 0.902 0.836 0.938 

FS 3 3.09 1.01 0.929 0.873 0.954 

OR 2 2.93 1.04 0.778 0.818 0.900 
MCP 3 2.99 1.03 0.857 0.777 0.913 

MD 3 3.80 0.91 0.811 0.726 0.888 

RS 2 3.52 1.07 0.863 0.874 0.932 

PS 3 3.14 1.07 0.808 0.719 0.884 

AD 2 2.66 1.56 0.767 0.811 0.896 
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Table 6. Correlations and the square roots of the average variance extracted 

Constructs RA CB CX PC TMS FS OR MCP MD RS PS AD 

RA 0.88            

CB 0.71 0.91           

CX 0.35 0.24 0.86          

HC 0.35 0.22 0.57 0.94         

TMS 0.72 0.68 0.13 0.10 0.91        

FS 0.49 0.54 0.19 0.13 0.63 0.93       

OR 0.49 0.60 0.13 -0.02 0.70 0.79 0.90      

MCP 0.65 0.68 0.43 0.29 0.57 0.50 0.48 0.88     

MD 0.55 0.40 0.24 0.35 0.45 0.44 0.32 0.40 0.85    

RS 0.37 0.32 0.30 0.06 0.31 0.14 0.21 0.40 0.27 0.94   

PS 0.48 0.59 0.31 0.05 0.47 0.37 0.49 0.68 0.34 0.58 0.85  

AD 0.47 0.37 -0.13 -0.19 0.64 0.38 0.52 0.37 0.20 0.09 0.27 0.90 

Note: The square roots of the AVE are diagonal in bold.  
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Table 7. Structural model evaluation results 

Hypotheses Constructs Path coefficients t-values Hypothesis 
supported  

H1 Relative advantage  0.294 2.298** yes 
H2 Compatibility  -0.243 2.193** no 

H3 Complexity  -0.163 1.331 no 

H4 High costs  -0.225 2.133** yes 

H5 Top management support  0.495 3.511*** yes 

H6 Firm size  0.191 1.286 no 
H7 Organizational readiness 0.277 1.68* yes 

H8 Market competitive pressure  0.265 1.959** yes 

H10 Regulatory support  -0.132 1.263 no 

  R2=0.57  
*significance at p<0.1, significance at **p<0.05, significance at ***p<0.001 
H9 and H11 have no meaningful effect identified and are not supported 

 

 


