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We address the study of quantum metrology enhanced by indefinite causal order, demonstrating a
quadratic advantage in the estimation of the product of two average displacements in a continuous variable
system. We prove that no setup where the displacements are used in a fixed order can have root-mean-
square error vanishing faster than the Heisenberg limit 1=N, where N is the number of displacements
contributing to the average. In stark contrast, we show that a setup that probes the displacements in a
superposition of two alternative orders yields a root-mean-square error vanishing with super-Heisenberg
scaling 1=N2, which we prove to be optimal among all superpositions of setups with definite causal order.
Our result opens up the study of new measurement setups where quantum processes are probed in an
indefinite order, and suggests enhanced tests of the canonical commutation relations, with potential
applications to quantum gravity.
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The traditional formulation of quantum mechanics
assumes that the order of physical processes is well defined.
Recently, a number of works started exploring new
scenarios where the causal order is indefinite [1–6]. This
extension is motivated by ideas in quantum gravity, where
the order of events could be subject to quantum indefi-
niteness [7,8], and has potential applications in quantum
information, where advantages have been found in channel
discrimination tasks [9,10], nonlocal games [2,5], and
communication complexity [11].
A paradigmatic example of process with indefinite

causal order is the quantum SWITCH [1,4], a higher-order
operation that combines two input gates in a quantum
superposition of two alternative orders. When applied to
two unitary gates U1 and U2, the quantum SWITCH

generates the controlled unitary gate

SðU1; U2Þ ≔ j0ih0j ⊗ U2U1 þ j1ih1j ⊗ U1U2 ð1Þ

by querying each of the two gates fU1; U2g only once.
Here first register on the right-hand side of Eq. (1) serves as
a control of the order. When put in a coherent superposition
of the states j0i and j1i, it induces a coherent superposition
of the two alternative ordersU1U2 andU2U1. The quantum
SWITCH has been shown to offer a number of information-
processing advantages [9–11] and has inspired experiments
in quantum optics [12–16], where the superposition of
orders is reproduced by sending photons on a superposition
of alternative paths [17]. Recently, it has stimulated an

extension of Shannon theory to scenarios where the order
of the communication channels is in a quantum super-
position [18–20].
In this work, we show that the quantum SWITCH can

boost the precision of quantum metrology, beating the
limits associated with conventional schemes where proc-
esses are probed in a definite order. To illustrate this
phenomenon, we consider a situation where an experi-
menter has access to 2N black boxes, each acting on a
harmonic oscillator, with the promise that the first N boxes
perform displacements generated by a given quadrature X,
and the second N boxes perform displacements in the
conjugate quadrature P. Displacements performed by
different boxes are independent, and the task is to measure
the product of the average displacement in X and the
average displacement in P.
When the black boxes are used in a fixed order, we prove

that the root mean square error (RMSE) cannot vanish
faster than fðEÞ=N, where fðEÞ is a function of the energy
of the input states used to probe the black boxes. The
scaling 1=N is consistent with the Heisenberg limit of
quantum metrology [21], applied to the estimation of the
two average displacements in X and P. In stark contrast, we
show that a setup using the quantum SWITCH can achieve an
error vanishing with super-Heisenberg scaling 1=N2, inde-
pendently of the energy of the input states. Our result
demonstrates that a setup that probes a sequence of
processes in a coherent superposition of alternative orders
can extract more information than any setup where the
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order of the processes is fixed. Furthermore, we show that
the scaling 1=N2, achieved by our concrete setup, is
optimal among all setups obtained by superposing causally
ordered processes with bounded energy.
Our scenario can be described as follows. An experi-

menter has access to 2N black boxes, each implementing
either a position displacementDxj ¼ e−ixjP or a momentum
displacement Dpk

¼ eipkX (j; k ¼ 1;…; N), where X and P

are the conjugate variables X ≔ ðaþ a†Þ= ffiffiffi
2

p
and P ≔

iða† − aÞ= ffiffiffi
2

p
, and a and a† satisfy the canonical commu-

tation relation ½a; a†� ¼ I. The displacements fxjg and
fpkg are unknown, and vary independently within the
range ½xmin; xmax� and ½pmin; pmax�, respectively. The task is
to estimate the product A ≔ x̄ · p̄ between the average
displacements x̄ ≔

P
N
j¼1 xj=N and p̄ ≔

P
N
j¼1 pj=N, by

querying each black box only once in every run of the
experiment. For simplicity, we will assume that the average
displacements x̄ and p̄ are nonzero and converge to nonzero
values in the large N limit.
The simplest way to estimate A is to measure each

displacement independently, as illustrated in Fig. 1(a). A
bound on the RMSE follows immediately from the quan-
tum Cramér-Rao bound [22–24], which can be applied to
the estimation of a displacement z, yielding the lower
bound Δz ≥ 1=

ffiffiffiffiffiffiffiffi
8νE

p
, where E ≔ hψ jðX2 þ P2Þjψi=2 is

the average energy of the probe state, and ν is the number of
repetitions of the experiment (see the Supplemental
Material [25] for a derivation.) This bound implies
that, once the energy E has been fixed, the error in the
estimation of a single displacement is a constant. The error

in the estimation of individual displacements then prop-
agates to the estimation of the product, yielding an overall
scaling 1=

ffiffiffiffiffiffi
νN

p
, corresponding to the standard quantum

limit [21].
A better scaling can be obtained if, instead of measuring

each displacement separately, one directly measures the
two average displacements x̄ and p̄, by applying the total x
displacement DNx̄ ¼ Dx1Dx2 � � �DxN and the total p dis-
placement DNp̄ ¼ Dp1

Dp2
� � �DpN

to two independent
probes, each of average energy E, as in Fig. 1(b). In this
case, the Cramér-Rao bound implies that the RMSE for
each average displacement is lower bounded by
1=ðN ffiffiffiffiffiffiffiffi

8νE
p Þ, and therefore error propagation gives the

RMSE scaling as 1=ð ffiffiffi
ν

p
NÞ for the estimation of the

product with any bounded energy E.
The 1=N scaling corresponds to the Heisenberg limit for

the estimation of the average displacements x̄ and p̄ [21].
Later in the Letter we will prove that the scaling 1=N is
optimal among all setups where the given black boxes are
probed in a definite order, using a finite amount of energy.

FIG. 1. Two causally ordered schemes. (a) Parallel scheme with
measurements of individual displacements. 2N independent
probes, each with average energy bounded by E, are used to
estimate the 2N displacements ðxiÞNi¼1 and ðpjÞNj¼1. The average
displacements x̄ ¼ P

i xi=N and p̄ ¼ P
j pj=N, and their prod-

uct A ¼ x̄ p̄ are then computed by classical postprocessing. The
RMSE of the scheme has the standard quantum limit scaling
1=

ffiffiffiffi
N

p
. (b) Sequential scheme with independent x and p

measurements. The average displacements x̄ and p̄ are measured
directly by applying the total x displacement Dx1Dx2 � � �DxN and
the total p displacement Dp1

Dp2
� � �DpN

to two independent
probes, each with average energy bounded by E. The product
A ¼ x̄ p̄ is then computed by classical postprocessing. The
RMSE of this scheme has the Heisenberg scaling 1=N.

FIG. 2. Definite vs indefinite order in a quantum metrology
setup. (a) Estimation scheme using the quantum SWITCH. The
total x displacements Dx1Dx2 � � �DxN and p displacements
Dp1

Dp2
� � �DpN

act in a coherent superposition of two alter-
native orders, controlled by the state of a control qubit. If the
control is prepared in the state j0i (j1i), the probe will
experience the displacements in the order corresponding to
the blue (orange) path. By preparing the probe in the mini-
mum-energy state j0i and the control qubit in the state jþi, this
scheme achieves the super-Heisenberg scaling 1=N2 of the
RMSE. (b) Generic causally ordered scheme. A probe and an
auxiliary system are prepared in a generic state, with average
energy of the probe bounded by E. Then, the probe undergoes
a sequence of displacements, arranged in a fixed order
ðz1;…; z2NÞ, where ðz1;…; z2NÞ is an arbitrary permutation
of the sequence ðx1;…; xN; p1;…; pNÞ. Each displacement
operation zi is followed by a unitary gate Vi, acting jointly
on the probe and the auxiliary system. Finally, a joint
measurement is performed on the probe and the auxiliary
system. Every estimation scheme of this form, including the
schemes in Figs. 1(a) and 1(b), must have the RMSE vanishing
no faster than 1=N.
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We now show that a setup using the quantum SWITCH can
achieve the super-Heisenberg scaling 1=N2. The setup
creates a coherent superposition of two configurations:
one where all the x displacements are used first, and one
where all the p displacements are used first, as in Fig. 2(a).
The process experienced by the probe is a unitary with a
qubit control

W ¼ j0ih0j ⊗
YN
j¼1

Dpj

YN
j¼1

Dxj þ j1ih1j ⊗
YN
j¼1

Dxj

YN
j¼1

Dpj
:

ð2Þ

Our scheme for estimating A is illustrated in Fig. 2(a). It
consists of the following steps: (1) Prepare the control of
the quantum SWITCH in the state jþi ≔ ðj0i þ j1iÞ= ffiffiffi

2
p

.
(2) Prepare the probe in an arbitrary state jψi, such as, e.g.,
the minimum-energy state j0i. (3) Apply the gate W to the
input state jþi ⊗ jψi. (4) Measure the control using the
projective measurement fjþihþj; j−ih−jg with j−i ≔
ðj0i − j1iÞ= ffiffiffi

2
p

. (5) Repeat the above procedure for ν
rounds and output the maximum likelihood estimate
Â ≔ argmaxA logpðm1;…; mνjAÞ, where mj ∈ fþ;−g is
the jth measurement outcome, and pðm1;…; mνjAÞ is the
probability of obtaining the measurement outcomes
fm1;…; mνg conditioned on the parameter being A.
Using the Weyl relation eipXe−ixP ¼ eixpIe−ixPeipX, the

output unitary of the SWITCH [Eq. (2)] can be cast into the
product form

W ¼ ðj0ih0j þ eiN
2Aj1ih1jÞ ⊗

�YN
j¼1

Dpj

YN
j¼1

Dxj

�
: ð3Þ

Then, one can immediately see that the final state of the
control qubit is ðj0i þ eiN

2Aj1iÞ= ffiffiffi
2

p
, and the probability of

getting the outcome � is pð�jAÞ ¼ ½1� cosðN2AÞ�=2.
Since our estimator is unbiased, its RMSE satisfies the

Cramér-Rao bound [28–30]

ΔASWITCH ≥
1ffiffiffiffiffiffiffiffi
νFA

p ð4Þ

where FA is the Fisher information of the parameter A,
given by

FA ≔
X

m∈fþ;−g
pðmjAÞ

�∂ lnpðmjAÞ
∂A

�
2

¼ N4: ð5Þ

The Cramér-Rao bound [Eq. (4)] is achievable in the large ν
limit, and we have the asymptotic equality

ΔASWITCH ¼ 1ffiffiffi
ν

p
N2

: ð6Þ

Hence, the estimation scheme based on the quantum
SWITCH achieves the super-Heisenberg scaling 1=N2 in
terms of the number of displacements contributing to the
average. Notice that the 1=N2 scaling is independent of the
energy of the probe, meaning that the quantum SWITCH

allows one to extract precise information even in the low-
energy regime.
Our estimation scheme provides an accurate estimate for

small values of the parameter A, i.e., values not exceed-
ing the period of the functions pðþjAÞ and pð−jAÞ.
Alternatively, our estimation scheme can be seen as a
way to estimate the total phase ϕ ≔

P
i;j xipj mod 2π with

RMSE ΔϕSWITCH ¼ 1=
ffiffiffi
ν

p
. This scaling cannot be achieved

with the causally ordered estimation scheme of Fig. 1(b),
because the total displacements in x and p grow as N, and
therefore error propagation implies that the RMSE of their
product grows as N, thus making the estimation of the
phase ϕ unreliable whenever N is large compared to 2π.
More generally, we will see that no causally ordered
scheme can achieve the RMSE scaling Δϕ ¼ 1=

ffiffiffi
ν

p
.

Note that our scheme does not involve any measurement
on the probe. The scheme can be further improved by
measuring the probe with a heterodyne measurement,
whose measurement operators are projections on coherent
states. When the probe is initialized in a coherent state, such
as the minimum-energy state j0i, we show that our scheme
can achieve RMSE

ΔA0
SWITCH ¼ 1ffiffiffi

ν
p

N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2 þ p̄2

x̄2 þ p̄2 þ 1=N2

s
: ð7Þ

The derivation of Eq. (7) can be found in the Supplemental
Material [25].
We now show that the error scaling 1=N2 cannot be

achieved if the unknown displacements are used in a
definite order. Specifically, we will show that every
estimation strategy with fixed order [see Fig. 2(b)] will
have a RMSE vanishing no faster than 1=N. Suppose that
the first displacement operation in the sequence is Dx1 . In
this case, every estimation scheme with fixed causal order
can also be used to estimate A in the less challenging
scenario where all the displacements except x1 are known.
In this scenario, the RMSE is simply Δx1=j∂x1=∂Aj ¼
jp̄jΔx1=N, where Δx1 is the error in estimating x1 from
the displacement operation Dx1 . Similarly, if the first
displacement operation is Dp1

, one obtains RMSE
Δp1=j∂p1=∂Aj ¼ jx̄jΔp1=N, where Δp1 is the error in
estimating p1 from the displacement operation Dp1

. In
general, the RMSE for the estimation of A in any fixed
causal order is lower bounded as

ΔAfixed ≥
minjjcjj · Δzj

N
; ð8Þ
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where fzjg are the 2N displacements, and cj ¼ p̄ (x̄) if zj is
a position (momentum) displacement. Since the RMSE in
estimating a displacement zj is lower bounded by 1=

ffiffiffiffiffiffiffiffi
8νE

p
with E being the initial energy of the probe, Eq. (8) yields
the bound

ΔAfixed ≥
minfjx̄j; jp̄jgffiffiffiffiffiffiffiffi

8νE
p

N
: ð9Þ

A more formal derivation of the bound Eq. (9) is provided
in the Supplemental Material [25].
The advantage of indefinite causal order can immedi-

ately be identified when comparing the RMSEs Eqs. (7)
and (9). Using a quantum SWITCH, the error vanishes
as 1=N2 instead of 1=N. In terms of the phase ϕ ¼
N2A mod 2π, the quantum SWITCH offers RMSE scaling
as 1=

ffiffiffi
ν

p
with the number of repetitions of the experiment,

while every scheme with definite causal order has RMSE
scaling at best as N=

ffiffiffi
ν

p
in the ν ≫ N regime. In Fig. 3 we

compare the RMSE Eq. (7) with the lower bound Eq. (9) for
various values of N and E.
A natural question is whether more general forms of

indefinite causal order, other than the quantum SWITCH, can

beat the scaling 1=N2. As it turns out, the answer is
negative for all superpositions of definite causal orders.
The argument can be sketched as follows. The RMSE in the
estimation of A is lower bounded by the RMSE in the
situation where all displacements except one (say x1) are
known. In that case, we have ΔA ¼ p̄Δx1=N. We then
show that no superposition of causal orders with bounded
energy can achieve RMSE Δx1 vanishing faster than 1=N.
Putting everything together, this means that the RMSE for
the estimation of A cannot vanish faster than N2 (see the
Supplemental Material [25] for the full argument.)
Our protocol suggests a way to test modifications of the

canonical commutation relations, such as those envisaged
in certain theories of quantum gravity [31–34]. For exam-
ple, Ref. [34] argues that the commutation relation should
be replaced by ½X;P� ¼ iðI þ βP2Þ, where β ≪ 1 is a
suitable coefficient. Using the quantum SWITCH setup
one can in principle create the superposition

jΨi ¼ ðI ⊗ DpDxÞðj0i ⊗ jψi þ j1i ⊗ UjψiÞffiffiffi
2

p ð10Þ

FIG. 3. Definite vs indefinite order in the nonasymptotic regime. The RMSE achievable with the quantum SWITCH is plotted against
the lower bound to the RMSE for every estimation scheme with definite causal order. The four plots correspond to the parameter values
jx̄j ¼ jp̄j ¼ z̄ > 0, ν ¼ 10, and (a) E ¼ 0.5, N ¼ 5; (b) E ¼ 1, N ¼ 5; (c) E ¼ 0.5, N ¼ 15; (d) E ¼ 1, N ¼ 15. The y axis shows the
RMSE ΔA in units of 2π=N2. The solid red lines show the RMSE ΔA0

SWITCH, achievable by measuring the probe and the control [Eq. (7)].
The dashed lines show the RMSE ΔASWITCH, achievable by measuring the control alone [Eq. (6)]. The blue lines show the lower bound of
the RMSE ΔAfixed [Eq. (9)].
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where U is the unitary operator

U ¼ D−xD−pDxDp

¼ e−ixpe−iβxðpP2þp2Pþ1
3
p3Þ þOðβ2Þ: ð11Þ

Choosing the state jψi to be close to an eigenstate of
the momentum operator, we then obtain the state
jΨi ≈DxDpjψi ⊗ ðj0i þ e−ixp½1þð7=3Þβp2�j1iÞ= ffiffiffi

2
p

. If the
size of the displacements grows linearly, namely, x ¼
Nx̄ and p ¼ Np̄ for two fixed values x̄ and p̄, then the
constant β can be measured with RMSE scaling as 1=N4. In
other words, our scheme offers a favorable scaling with the
size of the displacements.
Other theories of quantum gravity [32] exhibit non-

commutativity of the position operators associated with
different Cartesian coordinates. For example, the position
operators X and Y can become conjugate variables,
satisfying the canonical commutation relation ½X; Y� ¼
icxyI where cxy is a small constant. Therefore, in this
scenario protocol could in principle offer a way to measure
the constant and to discover small amounts of noncommu-
tativity of the two coordinates X and Y.
These potential applications motivate the search for

experimental implementations of our setup. For discrete
variables, the quantum SWITCH can be reproduced on
photonic systems using superpositions of paths
[12,13,15]. For continuous variables, Ref. [35] suggests
that a quantum SWITCH could be implemented in new
experiments with Gaussian quantum optics. However, no
photonic realization of the continuous-variable quantum
SWITCH has been proposed to date. Alternatively, we
suggest that the continuous-variable quantum SWITCH

could be implemented with massive particles with a
continuous-variable internal degree of freedom, using the
path of the particle to control the order of different
displacement operations. For example, the internal degrees
of freedom could be the vibrational modes of a molecule or
the internal states of a Bose-Einstein condensate. Another
alternative is to reproduce our setup in ion trap systems,
where the spin and the axial mode of motion of an ion can
be coupled together in a way that implements the control-
unitary gates Uj ¼ j0ih0j ⊗ Dxj þ j1ih1j ⊗ D†

xj and Vj ¼
j0ih0j ⊗ D†

xj þ j1ih1j ⊗ Dxj [36,37]. In this scenario, the
quantum SWITCH can be simulated by first applying all the
gates Uj (with j running from 1 to n), then all the dis-
placements Dpj

, and finally all the gates Vj. Overall, this
sequence of gates results in the gate ðj0ih0jþ
e2N

2Aij1ih1jÞ ⊗ D†
Nx̄DNp̄DNx̄, from which the parameter

A can be estimated with RMSE ΔA ¼ 1=ð2 ffiffiffi
ν

p
N2Þ.

In summary, we showed the quantum metrology
schemes using indefinite causal orders can sometime out-
perform the standard schemes where quantum processes are
probed in a definite order. Specifically, we showed that

every estimation scheme that probes N pairs of displace-
ments in a definite order has an error vanishing no faster
than 1=N for the estimation of the product of the average
displacements. Instead, we showed that an estimation
scheme using the quantum SWITCH achieves the enhanced
scaling 1=N2. Our result opens up a new area of research on
the study of quantum metrology schemes powered by
indefinite causal order.
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Note added.—Recently, we found two studies on the
application of the quantum SWITCH in quantum thermom-
etry [38] and channel identification [39]. These works
showed an increase of the quantum Fisher information by a
constant amount when the order of two channels is put in a
coherent superposition, but did not address the comparison
with the performances of arbitrary schemes with definite
causal order.
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