10P Publishing

® CrossMark

OPENACCESS

RECEIVED
4June 2019

REVISED
29 August 2019

ACCEPTED FOR PUBLICATION
14 October 2019

PUBLISHED
1 November 2019

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 21(2019) 113003 https://doi.org/10.1088/1367-2630/ab4d9a

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Quantum-enhanced learning of rotations about an unknown
direction

Yin Mo' and Giulio Chiribella'~

! Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong
> Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, United Kingdom

E-mail: giulio.chiribella@cs.ox.ac.uk

Keywords: quantum memory, quantum learning, quantum reference frames, quantum benchmarks

Abstract

We design machines that learn how to rotate a quantum bit about an initially unknown direction,
encoded in the state of a spin-j particle. We show that a machine equipped with a quantum memory of
O (log ) qubits can outperform all machines with purely classical memory, even if the size of their
memory is arbitrarily large. The advantage is present for every finite jand persists as long as the
quantum memory is accessed for no more than O () times. We establish these results by deriving the
ultimate performance achievable with purely classical memories, thus providing a benchmark that
can be used to experimentally demonstrate the implementation of quantum-enhanced learning.

1. Introduction

Quantum machine learning [ 1, 2] explores the interface between machine learning and quantum information
science. On the one hand, quantum algorithms have been shown to offer speedups to a variety of classical
machine learning tasks [3—9]. On the other hand, ideas from machine learning stimulated the formulation of
new quantum tasks, such as quantum state classification [10-13], quantum learning of gates [14-16] and
measurements [13, 17].

An important component of any learning machine is its internal memory, wherein information gathered
from the environment is stored. A machine equipped with purely classical memory can only gather information
through measurements, and can only perform conditional operations controlled by classical data. In contrast, a
machine equipped with a quantum memory can gather information by interacting coherently with its
environment, and can perform operations that are controlled by quantum data. A fundamental question is
whether the additional freedom offered by the quantum memory can enhance the learning performance.

A task where quantum memories are known to enhance the performance is quantum cloning [18], which
can be rephrased as the task of learning how to prepare copies of an unknown quantum state by gathering sample
copies of it. In this task, a machine with a quantum memory can achieve strictly higher accuracy than all
machines with a purely classical memory [19-21].

A strikingly different situation occurs in the task of learning how to perform unitary gates. In this case,
quantum memories can enhance the performance of probabilistic learning machines [16, 22, 23, 23-27], but the
enhancements observed so far disappear if the machines are required to approximate the desired gate with unit
probability [14]. The reason for such behaviour is that the learning machines considered so far were designed to
perform groups of unitary gates, such as the group SO(3) of all qubit rotations, or the group U(1) of qubit
rotations about a fixed axis. In these highly symmetric scenarios, a general theorem by Bisio et al[14] implies that
every quantum machine operating with unit probability can be replaced by a machine that achieves the same
learning accuracy with a purely classical memory. Given the generality of this result, one may be tempted to
conjecture that quantum memories are of no use for deterministically learning unitary gates. Such conjecture
would be consistent with Nielsen and Chuang’s no-programming theorem [22], which implies that whenever a set
of unitary gates can be perfectly encoded into a set of quantum states, the states in the set must be orthogonal,
and therefore storable in a purely classical memory.
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In contrast with the above observations, here we show that quantum memories can generally enhance the
performance of deterministic machines attempting to learn unitary gates. To make this point, we provide a
concrete example where the optimal deterministic learning strategies, with and without quantum memory, can
be determined explicitly. Specifically, we consider machines that learn how to rotate a quantum particle by a
desired angle 6 about an initially unknown direction n = (ny, n,, 1), imprinted in the state of a spin-j particle.
We consider two different ways of imprinting the direction in a spin-j particle, corresponding to the following
scenarios.

* Scenario 1: spin relaxation. A static magnetic field B = (B,, B,, B,), pointingin an unknown direction
n = B/||B||, actsin a certain region of space. A spin-j probe enters the region and undergoes a thermalisation
process with respect to the magnetic dipole Hamiltonian H = —uB - J,where J = (J;, J,, J,) are the spin
operators, B - J := B.J, + B,J, + B.J;;and i > 0isasuitable constant. For simplicity, we assume that the
temperature is low enough that the thermal state is approximately the ground state of the Hamiltonian,
namely the eigenstate of the operator n - J := n,J, + n,J, + n,J, with maximum eigenvalue j, hereafter
denoted as | j, j)n. An extension to thermal states at finite temperature will be discussed in section 6.

* Scenario 2: action of an unknown unitary gate. A black box implements an unknown rotation g € SO(3),
which transforms the z-axis into the direction n. A machine prepares a spin-j probe in an initial state | ¢;)
(possibly depending on the desired rotation angle), and sends the probe as input to the black box. After the
action of the black box, the state of the probe is | ¢, g> = Uéj )| #,), where Uéj) is the unitary matrix representing
the action of the rotation g.

Scenario 2 is also relevant to the study of quantum reference frames [28]. Our learning task can be translated
into a distributed quantum protocol involving two distant parties, Alice and Bob, who do not share a reference
frame for spatial directions. The goal of the protocol is to allow Bob to rotate a target particle by a desired angle ¢
around the direction of Alice’s z-axis, encoded in the state of a spin-j particle prepared by Alice and sent to Bob as
atoken of her reference frame. In this setting, the unknown rotation g describes the mismatch between Alice’s
and Bob’s Cartesian axes, and the optimal learning strategy provides the optimal protocol for encoding the
direction of Alice’s z-axis in a spin-j particle and for rotating Bob’s target particle accordingly.

Akey difference between Scenarios 1 and 2 is that the initial state of the probe is irrelevant in Scenario 1
(every initial state is reset to the state | j, j),,), while it can be optimised in Scenario 2. More generally, the optimal
probe state in Scenario 2 could be an entangled state involving, in addition to the the spin-j particle, an auxiliary
system stored in the internal memory of the machine. Nevertheless, we will show that such auxiliary system does
notincrease the accuracy in the execution of the desired rotation, and therefore it can be omitted without loss of
generality.

In this paper we establish the optimal learning strategies for both Scenarios 1 and 2, focussing on the case
where the target particle is a qubit. A summary of the key result is as follows. For j > 1, we find that the optimal
strategies for Scenarios 1 and 2 coincide. In both cases, the optimal learning strategy consists in:

1. Preparing the probe in the initial state |§,) = |j, j), the eigenstate of J, with maximum eigenvaluej.

2. Imprinting the direction in the probe, and storing the resulting state in a quantum memory of
[log(2j + 1)]qubits.

3. Retrieving the probe’s state from the memory and letting it interact with the target through the isotropic
Heisenberg interaction H < o, Jx + 0y, + 0,J;, where ()i, ; are the Pauli matrices for the target qubit.

Notably, the structure of the optimal learning machine is independent of the desired rotation angle 6: a single
probe state and a single interaction Hamiltonian work optimally for all possible angles. The rotation angle only
affects the interaction time between the probe and the target.

Forevery j > 1, we prove that the optimal machine with quantum memory outperforms every machine
with purely classical memory. We determine the optimal fidelity over all machines with purely classical memory,
providing a benchmark that can be used to demonstrate the advantage of quantum memories in realistic
experiments. For example, we show that the optimal classical strategy for j = 3/2and 6 =  has fidelity 64%,
while the optimal quantum strategy has fidelity of 71%. As a consequence, every experimental fidelity above
64% guarantees the demonstration of quantum-enhanced learning. In general, we show that a non-zero
quantum advantage is present for every rotation angle § = 0 and for every j > 1. We also prove that the
advantage persists even if the memory is accessed multiple times, as long as the number of accesses to the
memory is O(j). In Scenario 1, we find that the quantum advantage persists at non-zero temperature 7, as long
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as the magnetic energy p||B||is large compared to the thermal fluctuation kg T', kg being the Boltzmann
constant.

For j = 1, we find out a striking difference between Scenarios 1 and 2. In Scenario 1, the quantum memory
offers an advantage for all possible rotation angles. In Scenario 2, the advantage disappears when the rotation
angle approaches 7. In that regime, the optimal strategy consists in:

1. Preparing the probe in the initial state |¢,) = |1, 0), the eigenstate of ], with eigenvalue m = 0.

2.Sending the probe to the unknown gate U(éj), and measuring the resulting state U(éj)|1, 0) on the basis
{11,0); Jic (x,y,2)» where |1, 0); is the eigenstate of J; with eigenvalue m = 0.

3. Conditionally on outcome i, performing a spin flip around the i-axis.

For j = 1/2, the optimal strategies for Scenarios 1 and 2 coincide, and the availability of a quantum memory
offers advantages for all rotation angles except # = 0 and § = 7.

The paper is structured as follows. In section 2 we introduce the problem of learning a rotation about an
unknown direction, considering two alternative ways of imprinting the direction into the state of a spin-j probe.
We derive the optimal quantum strategy in section 3, and the corresponding quantum benchmark in section 4.
In section 5, we show that the advantage persists even if the memory state is accessed multiple times, and in
section 6, we show that the optimal learning strategy for Scenario 1 is robust to thermal noise. In section 7, we
extend our results from qubits to systems of arbitrary dimensions. The conclusions are drawn in section 8.

2. Learning how to rotate about an unknown axis

In this section we introduce the task of learning how to rotate a quantum particle about an initially unknown
axis. We consider two scenarios, in which the unknown axis is imprinted in a quantum probe via two physically
different processes: (1) spin relaxation, and (2) action of an unknown rotation gate. We formalise the
optimisation problems corresponding to these scenarios and establish a relation between the corresponding
solutions.

2.1.Scenario 1: learning from a relaxation process

Suppose that a static magnetic field B = (B,, B,, B;) is turned on for a limited amount of time in a bounded
region of space. While the field is turned on, a spin-j particle is placed in the region and undergoes a relaxation
process, whereby its spin becomes aligned with the field’s direction. After the alignment has taken place, the state
of the particle is stored in the internal memory of a quantum machine, which will later use it to rotate a target
particle by a desired angle § about the direction n = B/||B||.

We denote the spin-j particle as P;, and let J;, ], and J, be its spin operators, satisfying the commutation
relations [J, J,] = iL, Uy, J.] = ik, and [],, J] = iJ,. Allthroughout the paper the standard notation | j, m)
(respectively, | j, m)y) for the eigenstate of the operator J, (respectively, n - J) with eigenvalue m.

The alignment of the magnet with the external magnetic field can be described by a thermalisation process,
whereby the initial state of the magnet converges to the thermal state of the magnetic Hamiltonian H =
—uB - J = —pu(BJ; + ByJ, + B.J,), where i > 0isasuitable constant. For simplicity, we will assume that the
temperature of the bath is low enough that the thermal state is approximately the ground state of H. Explicitly,
the ground state is the spin coherent state | 7, ).

Opverall, the alignment process can be modelled as a quantum channel (completely positive trace-preserving
map) 7, that resets every state of the probe to the state | j, ),. In section 6 we will extend our discussion to the
finite-temperature scenario, where the channel 7, resets the probe state to the thermal state of the magnetic
dipole Hamiltonian.

The goal of the quantum machine is to rotate a target particle S by a given angle  about the direction n. We
will mostly focus on the case where the target is a spin-1/2 particle, regarded as a qubit. In this case, we denote
the target rotation by Vj , := cos g I — isin g n - o,where o = (0, 0y, 0;) are the three Pauli matrices,
andn - o = n.o, + n,0, + n,0;.

To learn how to implement the target rotation, the machine will transfer information from the magnet to its
internal memory M. Mathematically, this operation is described by a quantum channel & transforming states
of P into states of M. To be completely general, we allow the channel to depend on the desired angle 0. If the
memory is classical, the channel £y represents a measurement on the magnet, followed by the storage of the
outcome in the memory. If the memory is quantum, the channel £ can be any process transforming states of the
magnet into states of the memory.




I0OP Publishing NewJ. Phys. 21(2019) 113003 Y Mo and G Chiribella

R
@s s S @s Von s

Figure 1. Learning from a relaxation process. A spin-j particle, initially in the state |¢), undergoes a relaxation process 7T,,, which aligns
its spin with the direction n of an external magnetic field. Information about the direction is then transferred from the spin-j particle
into the machine’s internal memory M. The task of the machine is to rotate a target qubit S by an angle § about the direction n. To
this purpose, the machine will perform a joint operation R on its internal memory and on the target, designed to approximate the
desired unitary gate Vj .

When asked to perform the target rotation, the machine will retrieve information from its internal memory,
and will use such information to control the evolution of the target system, hereafter denoted by S. If the
memory is classical, the control amounts to a conditional operation on the target depending on the classical data
stored in the memory. If the memory is quantum, the control can be any general interaction between the
memory and the target system. In both cases, the control operation can be described by a quantum channel R
transforming joint states of the composite system M ©@ § into states of S.

Overall, the structure of the learning process is depicted in figure 1. If the initial state of the target is |¢)), then
the final state is

Pon = Ro(€o(ljs j)n (s ln) © 1) (V1) = Col )y j)n (3> jla © 1¢) (Y1), (1)

where Cy := Ryo(Ey ® Zs) is the effective quantum channel transforming joint states of the probe and the target
into states of the target alone.

To evaluate the accuracy of the learning process, we compare the output state p, , with the desired output
Vanlt) (¥ Vg, o As afigure of merit, we use the average input—output fidelity [29]

R, 0) = [dn [ dy (@IVEaLC0J fhn i la © 1) (D] Vaaltt), @

where dn is the rotationally-invariant probability distribution on the unit sphere, [¢)) is the initial state of the
target qubit, and dz is the unitarily invariant probability distribution on the pure states. The associated
optimisation problem is:

Problem 1. Find the quantum channel Cy that maximises the fidelity F,(j, #) in equation (2).

The optimisation can be performed with different constraints on the channel Cy, corresponding to different
assumptions on the machine’s internal memory. In this paper, we will consider two cases:

1. The machine is equipped with a quantum memory of log [2j 4+ 1] qubits. In this case, the channel Cy is an
arbitrary completely positive trace-preserving map.

2. The machine is equipped with a classical memory of arbitrary size. In this case, the channel Cy must be
decomposable into a measurement on the probe followed by a conditional operation on the target.

We will carry out both optimisations and compare the maximum fidelity achievable with a quantum memory
with the maximum fidelity achievable with classical memories of arbitrary size.

2.2.Scenario 2:learning from a rotation gate
Consider the following general problem. A quantum machine has access to one use of a black box implementing
some unknown unitary gate U,, randomly drawn from some set (U, ),cx. By interacting with the black box, the
machine has to learn how to perform another unitary gate V,, acting on a target system S. Typically, the gate
learning problems considered so far correspond to the case V, = U, (the machine attempts to emulate the gate
U, [14-16]), or to the case V, = U, (the machine attempts to invert the gate U, [14, 27]). In general, the relation
between U, and V, can be arbitrary.

To learn the target gate, the machine sends a probe P to the black box. In general, the probe can be entangled
with an auxiliary system A, stored in the machine’s internal memory. If the initial state of the composite system

P ® Ais|¢), then the state after the action of the black box is
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Figure 2. Learning from a unitary gate: the U,-to-V, learning problem. A machine learns to perform a target gate V, by probinga
training gate U,. In training phase, a probe is prepared together with an auxiliary system in a joint state | ). The probe undergoes the
gate U,, and the joint state of the probe and auxiliary system becomes |¢,) := (U; ® I4)|¢). Information from the state |¢, ) is then
transferred to the machine’s internal memory through an encoding channel £. In general, the memory can be quantum, classical, ora
hybrid quantum-—classical system. In execution phase, machine performs a joint operation R accessing its internal memory and use it
to try to perform V, on the target system.

|¢x> = (U ® 1n) |¢>’ 3)

where I, denotes the identity operator on the auxiliary system.

After the black box has acted, the probe returns to the machine, which transfers information from the state
|¢,) to its internal memory M. The transfer of information is described by a quantum channel £ with input
system P ® A and output system M. Overall, the imprinting of the parameter x in the machine’s memory is
called the training phase. Accordingly, we call U, the training gate.

After the training phase has been concluded, the machine will be asked to perform the gate V, on the target
system. We call this phase the execution phase. The machine will access its internal memory and use it to control
the evolution of the target system. The control mechanism is described by a quantum channel R with input
system M ® S and output system S.

We call the above scenario the U,-to-V, learning problem. Its overall structure is summarised in figure 2. The
temporal separation between the training phase and the execution phase makes the U,-to-V, learning problem
distinct from the problem of simulating the gate V, using the gate U, as a resource [30-35]. In that problem, the
gate V. is simulated by an arbitrary circuit using the gate U,, not necessarily a circuit of the form depicted in
figure 2.

A general result by Bisio et al concerns the case where the set X is a group and the mappings x — U, and
x — Vg (or x — V)are two unitary representation of the group X. In this scenario, the authors showed that
the optimal learning performance can be achieved with a purely classical memory [14]. In this paper, we present
an instance of U,-to-V, learning problem that evades Bisio et al no go theorem. In our scenario, x is a rotation
g € SO(3), the probe is a spin-j particle P}, the training gate is the unitary gate Uéj ) that implements the rotation
gonthe probe, the target is a qubit, and the target gate is the rotation Vj , defined by

Vog = U Vy Uy, 4

where € [0, 27) is a fixed, but otherwise arbitrary angle, U, is the 2-by-2 unitary matrix representing the
rotation g, and V) = cos % I — isin g o, is the 2-by-2 matrix representing a rotation by § about the z-axis. Since
the rotation angle is fixed, the target operations do not form a group, and therefore our learning problem falls
outside the hypotheses of Bisio et al’s no go theorem.

The Ug-to-Vj ¢ learning problem is also relevant to the study of quantum reference frames [28]. Suppose that
two distant parties, Alice and Bob, do not share a reference frame for directions. This means that Bob’s Cartesian

axes nSCB ), n(yB), and n(zB ) are related to Alice’s Cartesian axes n&A), n(yA), and n(ZA) by an unknown element of the

rotation group SO(3), namely n{® = gn¥, foralli € {x, y, z}. Now, imagine that Bob wants to rotate a qubit
by an angle 6 about the direction of Alice’s z-axis. To assist Bob in this task, Alice will send him a quantum system
carrying information about her reference frame. If the transmitted system is a spin-j particle, prepared by Alice
in the state |¢,), then Bob will receive the particle in the state Uéj )| #,), owing to the mismatch of their reference
frames. Using the state Ug(j )| ) as a resource, Bob can attempt to execute the desired rotation, corresponding to
the unitary gate V; , = U, Vp U; .More generally, Alice could send Bob a spin-j particle together with an auxiliary
particle A whose state space is invariant under rotations. In this case, Bob will receive the state (Uéj )@ Iy) [D0)>
where |¢,) is the initial state of the spin-j and the auxiliary particle. In this setting, the search for the optimal
communication protocol between Alice and Bob is equivalent to the search of the optimal learning strategy for
the U,-to-Vj, , learning problem.
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Figure 3. Learning from a rotation gate. A machine has access to a rotation gate Ugj ), which implements a rotation g on a quantum
particle of spin-j, denoted by P;. The goal is to learn how to perform rotations on a target qubit, denoted by S. Specifically, the machine
is designed to perform the qubit gate Vj , = U, Vj U, where 0 is a generic angle, and Vjis a rotation by ¢ about the zaxis. In the
training phase, the machine probes the gate Uéj ) by preparing the spin-j particle and an auxiliary system A in ajoint state |¢,). The
output state (Uéj ) ® I,) |@y) is then stored in the internal memory of the machine and is retrieved in the execution phase, when the
machine performs a joint operation R ¢ designed to approximate the action of the target gate V.

A diagrammatic representation of the Up-to-Vj , learning problem is provided in figure 3. The spin-j probe
and the auxiliary system A start off in the state |¢,). Then, the probe is sent through the gate Uéj ). After the action
of the gate Ugfj ), the probe and system A will be in the state

|9,0) = (U @ L) 1), (5)

where I, is the identity on the auxiliary system’s Hilbert space. Then, the state | ¢, ) is encoded in the machine’s
memory via a channel &. In the execution phase, the machine will perform a quantum channel Ry,
transforming the input state of the memory and the target into the output state of the target.

The average fidelity for Ug-to-Vj , learning task is

FaGio0) = [dg [[dw (WIV], Collong) (00,

®NY) (Y1) Vagl), (6)

where dg is the normalized Haar measure over the rotation group, and Cy :== Ry o (&) ® ) is the effective
channel transforming states of the composite system P; @ A ® S into states of S.
This leads to the following optimisation problem:

Problem 2. Find the auxiliary system A, the input state |¢,), and the channel Cy that maximise the fidelity
F,(j, 0) in equation (6).

Problem 2 reduces to Problem 1 of the previous subsection if system A is trivial, and if the initial state | ¢y) is
the spin coherent | j, 7), independently of 6. In this case, the state (5) inputted in the quantum machine is the spin
coherent state Uy| j, j) = |j» j)n(g)» where n(g) is the rotated z-axis n(g) = ge., e, = (0, 0, 1). Since the
rotation gis chosen at random according to the Haar measure, the direction n(g) is distributed uniformly over
the unit sphere (see e.g. section 4.1 of Holevo’s textbook [36]). Hence, one has

FG0) = [dg [ dv (v, Coldng) (@ndl) (W) Vigly)
= [ [ dv (Vi ag Coli dhace) Ui ey © 16) (D) Voo )
= [dn [ dw @1V Collis hn (il © 1) (6 Vanlth) = Fi(j, 6). )

Hence, the fidelities F, (j, #) and F,(j, 8) coincide when the input state |¢,) is the spin coherent state | j, j).
Under this condition, both fidelities F, (j, ) and F,(j, #) are maximised by the same quantum channel Cy.

3. Optimal quantum strategies

Here we determine the optimal quantum strategies for learning rotations around an unknown direction. We
solve Problems 1 and 2 defined in the previous section for all values of the spin jand for all values of the rotation
angle 0. For j > 1, we show that the optimal state for Problem 2 is the spin coherent state | j, j), and therefore the
optimal fidelity coincides with the optimal fidelity for Problem 1. In both problems, the best approximation of
the target rotation is realised by setting up an isotropic Heisenberg interaction between the target and the probe.
For j = 1/2andj = 1, we find some curious features of the optimal strategies. Notably, the optimal solution of
Problem 2 deviates from the optimal solution of Problem 1 for j = 1 when the rotation angle approaches 7.

6
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3.1. Structure of the optimal solution of Problem 2
Here we focus on Problem 2 and determine the structure of its optimal solution. The main result is the following
theorem:

Theorem 1. The optimal strategy for learning the target gate Vy . = U, Vp Ug from the training gate Uéj) has the
following features:

1. No auxiliary system is needed.
2. The optimal input state is an eigenstate of J .

3. The optimal quantum channel is rotationally covariant, namely
CoUY ® Uy) = UyCy Vg € SOE), ®)

where Uy, and U (gj) are the quantum channels induced by the unitary gates Ug and Uéj), respectively.
The theorem follows from two lemmas:

Lemma 1. No auxiliary system is needed in the optimal strategy for learning the gate Vy , from the gate U(é”. The
optimal input is an eigenstate of the z-component of the angular momentum.

Proof. Note the target gate Vj , satisfies the relation Vj ;, = Vj 4, for every rotation h around the zaxis. Then, the
fidelity (6) can be rewritten as

RGO = [(an [dg [ av @1V, Cot6n, @ ) Viglt)
= [an [ak [ v @IV}, Culdpur @ ¥) Vo), ©)

where we used the shorthand notation  := |x) (x|, and we derived the second equality from the invariance of
the Haar measure with the change of variables k = gh. Defining the average state

(&) = [ah 6y, (10)
and its rotated version (@) = (U,fj) ® In) (@) (U,fj) ® I,)', the fidelity can be expressed as
FaGi ) = [k [av WIVi, Colloghe © ) Vaule). an
Since () is the average of ¢ over all rotations about the z axis, it can be expressed as
+j
(o) = 32 £ i m) (s ml @ lai?) (ol (12)
m=—j

where { pr(f)} i ;isa probability distribution, and each |a!?) is a pure state of the auxiliary system. Since the
fidelity is linear in the input state, the optimal choice is to pick one of the terms in the mixture, such as

L, m) (j, m| @ a2 (a!?]. Moreover, the state of the the auxiliary system can be absorbed in the definition of
the channel Cy. This concludes the proof that the optimal input state can be chosen to be | j, m) without loss of
generality and that no auxiliary system is needed. |

Consistently with the above result, we will omit the auxiliary system A from now on.

Lemma 2. The optimal channel Cy for learning the gate Vy o from the gate Uéj) can be chosen to be covariant without
loss of generality.

Proof. The optimality of covariant channels follows from the following chain of equalities:
G 0= [(dg [ av WG VUL Cotdye © ) UUTIY)
= [(dg [ IVjU] (@) @ U U Vi)
= [ dw W1 ViCu(gy © v) Vilw), (13)
having defined [¢') := Ug |1) in the second equality, and Cy' = f dg U ZC(;(U g) ® Uy) in the third equality.

Since Cy' is covariant, the above equality shows that every channel can be replaced by a covariant channel with
exactly the same fidelity. [
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Covariant channels have the same performance for all possible training gates. Hence, for a covariant channel
Cy the fidelity can be rewritten as

EGi 0) = [dv (W1V§ Colgy © ) Vilv). (14)

3.2. Choi operator formulation
Theorem 1 guarantees that the optimal input state for learning the gate Vj , from the gate Uéj) is an eigenstate of
.- Let us denote it generically as | j, my), for some mgbetween —j and +j, possibly depending on the rotation
angle . In the following we will search for the optimal value my and for the optimal covariant channel Cy.

First of all, we rewrite the average fidelity as

. L2 ..
B, 0) = 373 EX(j, 0), (15)

where F{? is the entanglement fidelity [37], defined as

EP(j, 0) = (2H(V) @ R)'(Cp @ TR) (|, mg) (j, mgl @ ®H] (Vh @ Ip)|®H), (16)

|&H) = (|0) ® [0) + |1) ® |1))/~/2 being the canonical maximally entangled state and R denoting a reference
qubit, entangled with the target qubit. In turn, the entanglement fidelity can be expressed as

FOG, 0) = - (Gl @ (@) Collj, ma) @ [0)), (7)
where |®y) is the rotated maximally entangled state
[®g) = (V) ® I)|T), (18)
and Cyis the Choi operator [38]
Cop=2(2 + 1) (Tg, ® Cp @ TR)(P] ® PT), (19)

R;being a reference system of dimension 2j + 1, Zg, (Zx) being the identity map on the reference system R; (R),

and|®]) =3, 1j, m) @ |j, m) / \2j + 1 being the canonical maximally entangled state in dimension 2j + 1.
The problem is to maximise the fidelity (17) over all Choi operators of covariant channels. The set of the
possible Choi operators is characterised by the following three conditions:

1. Covariance [39]: [Cy, Ug(j) ® U, ® U] = 0 for all rotations g € SO(3) (here Uéj) and U, denote the

entry-wise complex conjugates of the matrices Ug(j ) and U,, respectively.)
2. Positivity: Cyis positive semidefinite, denoted as Cy > 0.

3. Trace preservation: Tty [Cy] = L, where Tr,, denotes the trace over the output, and [, denotes the
identity over the input.

We now put the above conditions in a form that is convenient for optimization.
Covariance. The covariance condition can be further simplified using the fact that complex conjugate
representations of the rotation group are unitarily equivalent. Defining the operator

Cr=(""®I®a) Cy™ I a) (20)
the covariance condition becomes
[CH U ® U, ® U] =0, Vg € SO®). 1)

At this point, the total Hilbert space can be decomposed into orthogonal subspaces, corresponding to different
values of the total angular momentum. Specifically, the angular momentum takes values j — 1, j,and j + 1,
and the total Hilbert space is decomposed as

(C2j+1 ® (Cz ® (Cz — (Czj—l P (Czj+3 P ((Czj+1 ® Cz). (22)

Relative to this decomposition, using Schur’s lemmas and the covariance condition (21), the operator CH* can be
written as:

C;k = OCP]‘.H %) ﬂpj—l () (P] ® M): (23)

where P, is the projection on the factor with total angular momentum [, « and 3 are complex coefficients, and M
is a complex 2-by-2 matrix.

Positivity. The positivity of the operator Cy is equivalent to the positivity of the coefficients «, 3 and of the
matrix M.
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Trace preservation. The condition of trace preservation can be conveniently expressed in terms of the real
coefficients o, 3 and of the complex matrix M. Indeed, tracing over the output, we obtain

2]+ 3 2f +1
It s e M) 2 (M)
 + 2 2j +2

2j+ 1
TroulCi1 = @ T op, 28

for a suitable choice of basis {|+), |—) }. Using equation (24), the trace preservation condition Tr,[Cy] = [
becomes
2j+ 3 2j+ 1
] + o+ +

. — (+IMl+) =1
21+ 2 27+ 2

‘ (25)
2j — 1 27+1
T B+ = (-IMI-) =
2 %
Figure of merit. In terms of the operator C;, the entanglement fidelity can be expressed as
o 1. . . .
B2GL0) = = (s —mal © (¥ CF (1, —ma) © 19)), with [€) = (I & ~i0;) |y). (26)

The expression can be further simplified by decomposing the state | j, —14) ® |®}) on the subspaces of
equation (22). After a bit of labor with the Clebsch—-Gordan coefficients, we find the decomposition

ljs —mg) @ |®F) = alj+ 1, —mg) + b |j— 1, —mg) + ¢ |j, —mg) @ |+) + ¢ |j, —mg) @ | =), (27)
with

a= —ising \/(] +1 + mg)(j.+ L= mo) b = +isin— \/(] + mg)(] — ™)
2 (j+ 1)(21 +1 1(21 +1)

i+ 1
L= fcosg L — isin g il (28)
2V2+1 24/]+1)(2]+1 2]+1 2 (2]+1)

Using the above decomposition, the entanglement fidelity can be expressed as

2 2
FOj, gy = a0 ";' MO it 1) = e + e -), (29)

to be maximized over all positive coefficients o and 3, and over all non-negative matrices M satisfying the
constraint (25).

Lemma 3. The matrix M can be chosen to be rank-one without loss of generality, namely M = |v) (v| for some
suitablevector |v) = vi|+) + v.|—) € C%

Proof. The entanglement fidelity depends on the matrix M through the matrix element {c|M|c). Now, one has
the chain of inequalities

(cMle) <ley? (FIMI+) + Je? (=IM]=) + 2ley] || [{+IM]=)]
Il (FIMI4) + le? (—IMI=) + 2lei] le] J{(+IMI+) (—IM]-)

= (Ivel J(HIMI+) + | J(=IM]=))?, (30)

the second inequality following from the fact that M is positive.
The first inequality holds with the equality sign when the phase of the complex number (+|M|—) is equal to
the phase of the complex number ¢, c_. The second inequality holds with the equality sign if M is rank-one. In

particular, the upper bound is attained by the rank-one matrix M’ = |v) (v|with v, = /(+|M]|+)

andv. = /(—|M]|-) E+c,/|c+c,|.

Since the normalization constraint (25) involves only the diagonal matrix elements of M, the matrix M can
be replaced by the matrix M’ without loss of generality. [

The proof of the above lemma shows that the optimal entanglement fidelity has the form

alal + B16P + (el les] + el le-D?

5 €20)

F9(j, 0) =

with |v| = /(£|M]|+) . The maximum of the fidelity (31) under the constraints (25) can be determined with
the method of Lagrange multipliers. In the following we present the result of the maximization, leaving the
details to appendix A.
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Figure 4. Optimal average fidelity for j > 1. The dependence of the fidelity on the rotation angle # is illustrated for different values of
the spin from j = 2to j = 100. The fidelity is minimum for 6 = 7.

3.3. Optimal quantum strategy for j > 1
For j > 1,itturns out that Problems 1 and 2 have the same optimal solution:

Theorem 2. When j > 1, the optimal probe state for learning the gate Vp , = U, Vy U;' from the gate U;j) is|j, j) for
every value of 0. For both Problems 1 and 2, optimal average fidelity over all pure input states is

2j+1 0\2 2j+1 0\2
. 1—|—\/1 + 7 (cos;) + 7 (cosz)

. 1
E)pt(]: 0) = g ) 5 (32)
3 (1 - i.)
2j
and has the asymptotic expression

. 1 — cosf 1
B (o 0) = 1 — —— 22 O[.—z). (33)

3 J

The optimality of the probe state | j, ) is in agreement with a result by Holevo on the optimal estimation of
directions, see section 4.10 of [36]. In other words, the optimal probe state for learning how to rotate about an
unknown direction coincides with the optimal probe state for producing a classical estimate of such direction, as
long asjislarger than 1. Itis worth stressing, however, that the optimal quantum strategy for rotating about an
unknown direction is #0t based on estimation: in section 4 we will show that no estimation-based strategy can
achieve the optimal quantum fidelity (32).

The exact values of the average fidelity are plotted in figure 4 for various values of j from j = 2 to j = 100.
Note that the fidelity decreases monotonically with the rotation angle . Intuitively, rotating by smaller angles is
easier, because the uncertainty about the rotation axis has less influence on the performance. The easiest rotation
is the identity (9 = 0), which is independent of the rotation axis and therefore can be implemented without
error. The hardest rotation is the spin flip, corresponding to # = 7. In this case, the average fidelity has the
simple form

8 + 2

EpGym) =1—-—2 2
(5 ) 122 + 12 + 3

(34)

Note that, since the optimal probe state is | j, 7), the optimal channel Cy for Problem 1 coincides with the
optimal channel Cy for Problem 2. In appendix B, we show that an optimal channel Cy can be attained by setting
up an isotropic Heisenberg interaction between the memory spin and the target spin. Explicitly, we show that the
maximum fidelity (32) is attained by the channel

Conei(p) = Trp[UypUy], (35)

where Trp, denotes the partial trace over the probe, and Uy is the unitary operator

Uy = exp[—if ©) 2; :’1] (36)

inwhich o = (o, 0y, 0;) is the vector of the three Pauli matrices, J - o = Yicxydi ® 0 is the Heisenberg
coupling, and f (#) is the function

10
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1

0) = t]cotd + ————
f(8) = arcco [co &+ Do

] + s(9), (37)
where s(0) = 0for 6 € [0, w],and s(0) = 7 for f € (m, 27). Note that f () is approximately equal to € in the
large jlimit.

Physically, the unitary evolution (36) can be realized by setting up an isotropic Heisenberg interaction,
described by the Hamiltonian H = « J - o, for some suitable coupling constant «, and by letting the two spins
evolve for time

oy = 1O @)
Qj + Doz

depending on the angle 6 of the target rotation.Remarkably, the same probe states and the same interaction can

be used to control the full time evolution of the target system: one has only to adjust the interaction time

[determined by the angle f(0)]based on the evolution time in the target dynamics [determined by the angle 0].

For example, we can set § = wt and simulate the precession of a spin-1,/2 particle around the direction indicated

by the memory state.

An important feature of the optimal strategy is that the optimal probe state is independent of the rotation
angle 0. Since the operation of storing the state Uj| j, j) in the quantum memory is also independent of 6, it
follows that all the operations in the training phase can be accomplished without knowing the rotation angle.
This offers the possibility to decide the value of § at later times. In fact, the machine can optimally approximate
the full continuous-time dynamics of the target particle, because the optimal operations for different 6
corresponds to unitary evolutions with the same Hamiltonian, just with different evolution times.

The optimality of the Heisenberg interaction is not limited to the average fidelity. In terms of scaling with j,
the unitary gate (36) is optimal also for the worst-case fidelity, defined as

E,(j, ) = min minF(j, 6, g, ¥), (39)
g v

where F(j, 0, g, 1) is the fidelity for the simulation of V, on the specific input state |1). Indeed, in appendix C,
we show that the worst-case fidelity of the unitary gate (36) is

Fona(y 0) = 1 — L=< o[lz) (40)
J J

Hence, the worst-case infidelity 1 — F,, p.(j, 0) has the scaling 1 /5. This is the best scaling one can hope for,
because the average infidelity cannot vanish faster than 1/ (as shown by equation (33)), and the average
infidelity is a lower bound to the worst-case infidelity.

The optimality of the Heisenberg interaction answers in the affirmative a question raised by Marvian and
Mann [40], who assumed the Heisenberg interaction and showed that it can be used to approximate arbitrary
rotations in the limit of large j limit. In the conclusion of their work, Marvian and Mann asked whether the
Heisenberg interaction achieves the best scaling of the error with the spin size. Our results provide an affirmative
answer, showing that the Heisenberg interaction maximizes the average fidelity and has the optimal error scaling
O(1/j) in the worst-case scenario.

3.4. Optimal quantum strategy for j = 1/2
For j = 1/2, the optimal probe state for Problem 2 is still the coherent state | j, j) for every rotation angle 6, and
the optimal solutions of Problems 1 and 2 still coincide.

Curiously, the optimal learning strategy exhibits a transition when the rotation angle approaches 7. For
|0 — 7| > 6,/, = arccos[(4 + J7) / 9], the optimal fidelity is still given by equation (32), and the optimal
channel Cy is still given by equation (35).

For |0 — 7| < 612, instead, the optimal fidelity becomes

E)pt(].:l’ H)ZS—COSG 1 —cosf a1)
2 12 36(1 + 2cos®)

and is achieved by the following strategy:

1. Perform a joint measurement on the memory and the target. The measurement has two outcomes and is
described by the quantum operations Mye,(-) = Myes - Mo and M, (1) = My, - MJO,with

yes

4 4
Myes := |1 — 3 a Py + Py and M,, := 3 a Py, (42)

P;being the projector on the subspace with total angular momentum /, with I € {0, 1}.

11
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2. If the measurement yields outcome ‘yes’, then apply the unitary gate (36), corresponding to the Heisenberg
interaction, and discard the memory. If the measurement yields outcome ‘no’, then perform the optimal
2-to-1 universal NOT channel [41], namely the channel Cynor defined by

Covor(p) = [dg 3 (0I2(0DU*? p U(10) @ 10)) Ui1) (11U}, (43)

The probability of the outcome ‘no’, corresponding to the universal NOT, depends on the parameter « in
equation (A9). At the critical distance |§ — 7| = arccos[(4 + +/7)/9], onehas & = 0,and the optimal strategy
is realized through the Heisenberg interaction. As the rotation angle gets closer to , the coefficient «v increases,
reaching its maximum value o = 2/3 for § = . Atthis point, the weight of the universal NOT is maximum.
Notably, the value av = 1is never reached, meaning that the optimal joint measurement on the input qubits is
never projective.

3.5. Optimal quantum strategies for j = 1
The j = 1 case s the only case where Problems 1 and 2 yield different solutions. The difference appears when the
rotation angle is within a critical distance 6, = 0.237 from 7.

For|m — 6] > 6;, the optimal probe state for Problem 2 is |1, 1), and therefore the optimal solutions for
Problems 1 and 2 still coincide. The optimal average fidelity is still given by equation (32) and the optimal
channel Cy is still given by equation (35).

For |0 — 7| < 6, the optimal average fidelity for Problem 1 is

. 1{1 4 2 2
Fop(j=1,0) = 5[?3 + 5 1+ 3(cos g) + 2(c0s g) ], (44)

corresponding to equation (32) with j = 1. The optimal channel Cy is still given by equation (35).
Instead, the optimal fidelity for Problem 2 is

‘ 1 2(. 0V
Foopt(j=1,0) = 3 + g(sm E) , (45)

and is attained with the probe state |1, 0), the p-orbital aligned in the direction of the z-axis. In section 4.5, we
will show that the optimal quantum fidelity (45) is achievable with a purely classical memory. Specifically, we will
see that the optimal strategy is to perform a projective measurement on the probe, with the three measurement
outcomes corresponding to the three Cartesian axes. The measurement outcome is then stored into a classical
memory of 2 bits. In the execution phase, the machine rotates the target qubit by an angle 7 about the axis
corresponding to the measurement outcome.

3.6. Optimal fidelitiesfor j = 1/2and j = 1

The dependence of the fidelity on the rotation angle is plotted in figure 5 for j = land j = 1/2. The value of the
optimal quantum fidelity is contrasted with the maximum fidelity achievable with a purely classical memory,
which will be derived in section 4.

4. The quantum benchmark

In this section we derive the maximum fidelity achievable by learning machines with a purely classical memory
of arbitrarily large size. Such fidelity provides a benchmark that can be used to certify the experimental
demonstration of quantum-enhanced learning. We consider the two learning tasks corresponding to Problem 1
(learning from a spin coherent state) and Problem 2 (learning from a rotation gate) coincide. The quantum
benchmarks for these two problems coincide for all values of j except j = 1. For j = 1, the two benchmarks
become different when the desired rotation angle approaches 7.

4.1. Measure-and-operate (MO) channels

Here we consider learning strategies where the memory M in figures 1 and 3 is purely classical. In this case, the
transfer of information from the probe to the memory is described by a quantum-to-classical channel &y, of the
form

Eo() =D TrlPyy - 1ly) (¥l (46)

yeY
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Figure 5. Optimal quantum fidelities and benchmarks for j = 1/2and j = 1. Solid curves show the maximum of the fidelity over all
quantum machines, while dashed curves provide the corresponding benchmarks, equal to the maximum fidelity over all machines
equipped with a purely classical memory (derivation provided in the next section). For j = 1/2, the optimal strategies for Problems 1
and 2 coincide. The fidelity of the optimal quantum strategy is higher than the benchmark (blue dashed line) for all values of 6 except
0 = 0and 0 = = (although the difference in the transition region is so small that cannot be read out from the plot). A transition in the
optimal quantum channel Cy occurs at the critical distance |§ — 7| = 6, > == arccos[(4 + J7) / 9] ~ 0.236m.For j = 1, the optimal
strategies for Problems 1 and 2 coincide for |0 — 7| > 6, &~ 0.237, but become different for |§ — 7| < é; = 0.237. The optimal
fidelity for Problem 1 (black solid curve) is higher than the benchmark for every 6 = 0 (black dashed line). The optimal fidelity for
Problem 2 (red solid curve) deviates from the optimal fidelity for Problem 1 when the distance |§ — 7| goes below the critical value

61 &~ 0.237. At the critical distance, the optimal input state changes discontinuously from |1, 1) to |1, 0). In this region, the optimal
quantum fidelity becomes equal to the benchmark (red dashed curve).

where {|y)} ,cy is a set of orthogonal states of the memory, and (Py,,),cy is a positive operator-valued measure
(POVM), describing a quantum measurement on system P, in the case of figure 1, or a quantum measurement
onsystem P; @ A inthe case of figure 3.

The execution phase consists in reading out the index y from the classical memory and performing a
conditional operation Oy, on the system. Hence, the channel R has the form

Ro() = Opy(Trml- (Iy) (vl @ I))). (47)
y

The operations performed by machines with purely classical memory will be called measure-and-operate
(MO) strategies. Combined together, the ‘measure’ channel £y and the ‘operate’ channel R give a single
quantum channel Cy 0, of the form

Co(p) = Y Opy(Trs[(Py,y @ Is) pl), (48)
yeY

where Trg denotes the partial trace over all systems except system S.

In the following, we will solve the optimisations in Problems 1 and 2 under the constraint that the channel Cy
is of the MO form (48). By definition, the optimal MO fidelities are by definition no larger than the optimal
quantum fidelities derived in the previous section.

4.2. Structure of the optimal MO strategy for Problem 2
The structure of the optimal MO strategy for Problem 2 is summarized by the following Theorem, proven in
appendix D.

Theorem 3. The optimal MO strategy for learning the gate Vy , = U, V Ug from the gate Uéj) has the following
features:

1. No auxiliary system is needed.

2. The optimal probe state is an eigenstate of |, denoted as | j, mg).

3. The outcome of the optimal POVM is an element of the rotation group SO(3), denoted as §.
4. The optimal POVM (Py ¢)ge s03) 1S rotationally covariant [36], and has the form

Py = 2j + DU &) (& U, (49)

where |&,) is a unit vector.

13
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5. The optimal conditional operation has the form Oy, = U (gj) o OgolU (g’j)‘f’ where Oy is a fixed channel acting
on the target qubit.

In the following we will maximise the gate fidelity over all MO strategies with the features described by
theorem 3. For convenience we will express the gate fidelity in terms of the entanglement fidelity (see
equation (15)).

4.3. Choi operator formulation
For an optimal strategy as in theorem 3, the entanglement fidelity takes the form

o . ; Ny (D o109 4Py ,)
Fiol 0)= @+ 1) [ dgl(GIUP UYL, mo) P =228

. - (@) 41001 P5 )
=@+ 1) [ dgH&IUP 1, ma) P (50)

where Oy ; is the Choi operator of the channel Oy 4, Oy is the Choi operator of the channel O,
and |(I>('9*)g> = (Voo @ I) |DT).
Our goal is to maximise the entanglement fidelity (50) over all values of 114, over all unit vectors |&,), and over

all Choi operators Oy. To this purpose, the key observation is that the Choi operator Oy can be chosen to be real
in a suitable basis. Specifically, we have the following

Proposition 1. The Choi operator Oy maximizing the fidelity (50) can be chosen to be real in the Bell basis
Bpar = {|®7), i(ox ® DI®F), i(0y ® D]|DT), i(o; @ )|DF)}. (51

Proof. Every unitary V5, = U, Vy U is areal linear combination of the matrices I, i, ioy, and io,. Hence, every
vector |<I>§,g> = (Vpg ® I)|®")isareal linear combination of the vectors |9*), i[¥") = (i, ® I)|®T),

[¥7) = (io, ® D|®"),and i|]®7) = (io, ® I)|P™). Since the fidelity depends on the Choi operator Oy only
through the matrix elements (@3 ,|Oy|®f, ), the optimal Choi operator can be chosen to be real in the same basis
as the vectors |Dj ). m

Thanks to proposition 1, the maximization of the fidelity can be restricted to the set of Choi operators that
arereal in the Bell basis. This set of Choi operators can be equivalently characterized as the set of Choi operators
of unital channels, i.e. quantum channels mapping the identity operator to itself. Indeed, we have the following

Proposition 2. A qubit channel is unital if and only if its Choi operator is real in the Bell basis
Bpen = {|®o) = |2T), |®1) = i(ox ® D|DTF), |D2) = i(0y ® D]|DT), |D3) = i(0; ® D]|PT)}. (52)

Proof. If a qubit channel is unital, then it is a convex combination of unitary channels [42]. For every unitary
channel, the corresponding Choi operator is real in the Bell basis. Indeed, every unitary channel has a Kraus
decomposition with a single unitary operator of the form U = cos% I— isin% n - o,with 7 € [0, 27)and

n € R3. Hence, the Choi operator 2 (U ® I)|®*) (®F|(U @ I)' is real in the Bell basis. Since the set of real Choi
operators is convex, every unital channel is contained in it.

Conversely, suppose that a channel C has a Choi operator Cthat is real in the Bell basis, i.e.
C = >k Cu |®x) (P, for some real symmetric matrix (Cy). Then, one has

1<k<3 1<k<I<3
3
c P > Cii
=X+ Y wlIi==1=1, (53)
1<k<I<3 2
the last equality following from the relation 2 = Tr[I] = Tr[C(I)] = Tr[C] = ?:0 C;;. Hence, the channel C
is unital. |

Since the fidelity is a linear function, its maximization can be restricted to the extreme points of the set of
unital channels. For qubits, such extreme points are unitary channels [42]. Hence, we obtained the following

Theorem 4. The quantum channel Oy maximizing the fidelity (50) can be chosen to be unitary without loss of
generality.
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Thanks to theorem 4, the optimal entanglement fidelity (50) can be expressed as

Flioo(h O = max  max max {@j+ 1 [dglgIUli, mP @050 F ], 69
mg€ (=fouen j} 1€g):1€0) [|=1 Wo: Wy Wo=1

where Wy is a suitable unitary and |<I>J‘X,H> = (W) @ R) |D).
The optimization can be further simplified using the following observation:

Proposition 3. The unitary gate Wy maximizing the fidelity (50) can be chosen without loss of generality to be a
rotation about the z axis.

Proof. Every unitary W, can be written as Wy = Uj, Vi U, where Vj is a rotation about the z axis by an angle ¢/,
and h is the rotation that transforms the z axis into the rotation axis of Wy. Hence, the corresponding state can be
writtenas |Dy,) = (U, © Ty) |D7,).

Using this fact, the optimal MO fidelity can be rewritten as

Flioo(h = max  max max {@j+ D [de il UYL ma)l [(@5) 5 F ]
mg€{—joefb 1€p): 1) =1 Wo: Wy Wo=1

= max max - max {4 1) [l UYPTUPL G mo)P 1405, (U © UD | 950P |
mg€ (=feensf} 1 )ill1 gD =1 Wo: Wy Wp=1

= max max omax max @i+ 0 [dg 1€l UL Joma)P @7 95,08 )
me€ {—jr..ni} [€):[1€p) =1 heSOB) VoV, V=1 ’

— max  max  max {(2j+ ) f dg’ <&, UD| j, ma)P 1(@5 | @;g,nz},
Mo € (—joeen} 1€Vl EMI=1 ViV V=1 g
(55)

(here U}l denotes the transpose of the matrix Uy,). The last equation shows that the maximisation of the fidelity
can be reduced to rotations about the z axis. [ |

At this point, it remains to maximise the fidelity (55) over my, £, and V. The result of the optimization is
summarised in the following, while the details are provided in appendix E.

4.4. Optimal MO strategy for j = 1
For j = 1,itturns out that the quantum benchmarks for Problems 1 and 2 coincide.

Theorem 5. For j = 1, the optimal probe state for learning the gate Vy , = U, V Ug from the gate Ué(,j) by MO
operationsis|j, j) for every value of 0. For both Problems 1 and 2, optimal MO fidelity is

4j 4+ 4 + (2j + 1)cos(6 — ) L (2j + 1)(cos B + cos @) + cos(d + 0') + 1

F ,0 ( .) 9) = N A N (56)
MOepet] 327 1 3) 3G+ D@+ 3)
and has the asymptotic expression
) 2(1 — cosf 1
Fro,opt(J, 0) = 1 — ¥ + O(,—z)- (57)
3 J
The optimal MO strategy consists in:
1. Measuring the probe with the POVM P; = (2j + 1) Uéj)lj, (s j|U§j)T, and
2. Rotating the target qubit about the rotated z-axis § e, by the angle
2cosf + 2j + 1
0’ = arccot | cotf + M + s(0), (58)
(272 + 3j)sind

where s(0) = 0for6 € [0, 7], and s(0) = wfor 6 € (m, 2m).

Note that the probe state and the measurement are both independent of the rotation angle 6. This means that
the machine can be trained optimally even before the value of the rotation angle has been decided. The
operations in the training phase coincide with the optimal estimation strategy for directions, derived in the
classic work by Holevo [36].

The optimal MO strategy can be implemented by a learning machine with a purely classical memory. The
size of the classical memory can be chosen without loss of generality to be [2 log(2j + 1) ] bits. This is because the
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Figure 6. Benchmark for quantum learning of rotation gates. The quantum benchmark (blue dots) and the optimal quantum fidelity
(red dots) are plotted for rotations of 180° in a function of the spin size, with j ranging from 3/2 to 10.

fidelity is a linear function of the POVM, and therefore its maximum is attained by an extreme point of the
convex set of all POVMs with outcomes in SO(3). The extreme points of such set consist of POVMs that assign
non-zero probability to at most (2j + 1)? rotations [43]. Hence, the optimal POVM in theorem 5 can be
replaced by another, equally optimal POVM with at most (2j + 1)? outcomes, which can be stored into a
classical memory of [2log(2j + 1) ] bits.

A plot of the MO fidelity and of the optimal quantum fidelity is provided in figure 6. Note that the error (one
minus fidelity) goes to zero in both cases, but the rate for quantum strategies is twice as fast, as one can see by
comparing equations (33) and (57).

4.5. Optimal MO strategies for j = 1

The j = 1 case exhibits an anomalous behaviour when the rotation angle approaches 7. For |7 — 6| > 0.303,
Problems 1 and 2 have the same optimal MO fidelity, and the same optimal MO strategy, described in theorem 5.
For|r — 6] < 0.303m, the optimal the optimal MO fidelities become different. For |0 — 7| < &, the optimal
average fidelity for Problem 1 is

8 + 3cos(d — 0" n 3(cos @ + cosf’) + cos(f0 + 60") + 1
15 30 ’

(59)

Fl,MO,opt(j =1, 9) =

with
2cosf + 3

0’ = arccot [cot@ +
5sin

] 50 (60)

corresponding to equation (56) with j = 1. The MO strategy is still the one described in theorem 5.
For Problem 2, the optimal probe states transitions from |1, 1) to |1, 0), and the optimal fidelity becomes

. 1 2(. 6V
Fymo,opi(j =1, 0) = 3 + g(sm E) . (61)

The optimal MO strategy consists of:

1. Measuring the memory with the POVM operators Py = (2j + 1) Ugﬁj)|1, 0)(1, 0|Ug£m.

2. Rotating the target qubit about the axis n = ¢ e, by an angle 7, independently of .

Physically, the optimal POVM can be interpreted as a randomisation of the projective measurement that projects
the spin-1 particle along the three Cartesian axes x, y,and z[43]. This projective measurement corresponds

to the orthonormal basis {|x), |y), |z)} for C? defined by |z) := |1, 0),|x) = (|1, 1) + |1, —1))/~/2,and

ly) = (|1, 1) — |1, —1))/~/2.In the language of atomic physics, |x), | y), and |z) are the p-orbitals aligned in the
directions x, y, and z, respectively. Since the fidelity is a linear function of the POVM, the optimal POVM Py =
2+ Uéj |1, 0) (1, 0 Uéj )* can be replaced by an equally optimal POVM based on the projective measurement
of {|x), |y), |z)}, followed by a rotation by 7 about the Cartesian axis identified by the measurement outcome. In
this discretised version of the MO strategy, the learning machine only needs a classical memory of 2 bits.
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5. Persistence of the quantum advantage

We have seen that a machine equipped with a quantum memory can outperform every classical machine at the
task of learning rotations about an unknown axis. Still, our analysis was restricted to the scenario where the
quantum process accesses its memory only once, with the goal of reproducing a single use of the target gate. In
the following we will study how the performance depends on the number of required executions of the

target gate.

Let us focus on the regular case j > 1, where the optimal strategies for Problems 1 and 2 coincide, and the
channel is realised by setting up a Heisenberg interaction between the memory and the target qubit. An
important question is how many times the memory can be accessed before the accuracy drops below a certain
threshold. In the context of quantum reference frames, the maximum number of accesses such that the fidelity is
above threshold was called the longevity in [44]. Another important question is how many times the memory can
be accessed before the quantum advantage is lost. The maximum number of accesses for which the fidelity is
above the quantum benchmark (56) will be called persistence of the quantum advantage in the following.

Suppose that the joint evolution of memory and target is described by the same unitary gate at every step.
Assuming the gate to be of the form of equation (36) for some fixed function f (), we obtain the close-form
expression

PG om =1 - Lol pA sl O(iz) )
3 J J

quantifying the average fidelity at the leading order in j (see appendix F for the derivation). From this expression
one can see that the longevity grows as j°. However, the persistence of the quantum advantage is much shorter:
comparing the fidelity (62) with the MO fidelity (57), we find that the quantum advantage disappears when the
number of repetitions is larger than

j

N(j,0) = ———
(> &) 1 — cosf

+ O(1). (63)

One could also consider more elaborate strategies where the interaction time between memory and target is
optimised at every step. However, we find that these strategies do not increase the longevity nor the persistence
of the quantum advantage in the large jlimit.

6. Robustness to thermal noise

In Problem 1, we made the simplifying assumption that the unknown direction n is imprinted into the pure
spin-coherent state | j, j),, regarded as the low-temperature approximation of the thermal state of the magnetic
dipole Hamiltonian. An interesting question is how this approximation affects our discussion of the quantum
advantage. In the following we will address this question in the large jlimit, showing that quantum memories are
useful whenever the magnetic energy is sufficiently large compared to the thermal fluctuations.

The thermal states of the Hamiltonian H = —uB - J can be written as
sinhy Dy 5 . pIB|
= ' § e g, m)(j, mlp, v= > 64
Prn sinh[(2j + D~] 5, [ m) (o mlas Y 2k T (64)

where T'is the temperature and kg is the Boltzmann constant. The spin coherent state | j, j), is retrieved in the
low temperature (y — oo) limit,asonehas lim, .o p, , = |, j)n (J> jln-

Now, suppose that the learning strategy designed for the spin coherent state | j, j), is adopted for the mixed
state p, . Inappendix G, we show that the average fidelity has the asymptotic expression

1 — cosf 1
F(j, 6, =1—— 4+ 0|—=1| 65
15> 0, 7) 3 tanhy (].2] (65)

The above fidelity can be compared the benchmark in equation (57), which quantifies the maximum fidelity
achievable with classical memories. Note that equation (57) provides the benchmark for both Problems 1 and 2,
meaning that the benchmark applies to every pure probe state of the form |1y o) = Uég )|4)), and by convexity, to
every mixed probe state of the form Py = Uéj ) pUgfj )%, In particular, it applies to the thermal states Py > as the
average fidelity over all directions n is equal to the average fidelity over all rotations g. Comparing the fidelity
(65) with the benchmark in equation (57), we obtain that the quantum strategy outperforms all classical
strategies whenever tanh y is larger than 1/2, corresponding to the condition v > % In3 = 0.55.Hence, the
quantum advantage persists whenever the magnetic energy 1|B|islarger than 1.1 times the thermal energy ky T'.
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Note that the quantum benchmark in equation (57) is the optimal fidelity achievable with arbitrary probe
states. If one further enforces the condition that the the probe state be thermal, then the value of the benchmark
would be even lower, thereby extending the set of temperatures for which the quantum memory offers an
advantage.

Note also that the above discussion applies to a variant of Problem 2 where the probe is subject to thermal
noise before the action of the training gate Uéj ), resulting into a mixed input state Py = Py, Alsoin this setting,

the quantum memory offers a provable advantage when the parameter ~yis larger than % In 3.

7. Learning higher dimensional gates

Our result establishes the existence of a quantum advantage for learning single-qubit rotations about an
unknown axis. This finding is conceptually important, because the advantage for single qubits implies an
advantage of coherent learning for quantum systems of arbitrary dimension. Indeed, one can immediately prove
the advantage by using the qubit benchmark for gates that act nontrivially only in a fixed two-dimensional
subspace.

Our results also give a heuristic for the problem of learning rotation gates on higher dimensional spins. The idea
is to encode the rotation axis in a spin coherent state and to let the memory and target spin interact as closed system.
Explicitly, we make two spin systems undergo the Heisenberg interaction Uék) = exp[—if 2J - K/(2j + 1)], where
K = (K|, K,, K;)are the spin operators of the target spin. Using the unitary gate U, in appendix H we obtain the
average fidelity

kQ2k + 1)(1 — cos )

Fuei(j, k, 0) =1 —
3

(66)

in the large j limit. Remarkably, the error grows quadratically—rather than linearly—with the size of the target
spin: in order to ensure high fidelity, the size of the memory must be large compared to the square of the size of
the target system. The same conclusion holds for the worst-case fidelity, which has the asymptotic expression

[k(k + 1) + c(®)] (1 — cos6)
j bl

Fw,Hei(j’ k, 9) =1- (67)
with ¢(k) = 0 forevenkand c(k) = 1/4 for odd k.

The quantum strategy exhibits an advantage over the MO strategy consisting in measuring the direction n
from the spin coherent state pointing in direction n and performing a rotation based on the outcome. Again, we
find that the error of the quantum strategy vanishes in the macroscopic limit of large memory systems, at a rate
twice as fast than the error of the classical strategy (see appendix H for more details). It is an open question
whether the above quantum and MO strategies are optimal for arbitrary k > 1/2.

8. Conclusions

We determined the ultimate accuracy for the task of learning a rotation of a desired angle f about an unknown
axis, imprinted in the state of a spin-j particle. In this task, we found that quantum memories enhance the
learning performance for every j > 1and for every rotation angle § = 0. Specifically, we found that a quantum
machine with a memory of [ log(2j + 1)]qubits outperforms all learning machines with classical memory of
arbitrarily large size.

We found that the advantage of the quantum memory persists even when the memory is accessed multiple
times, as long as the total number of accesses is at most linear in the spin size. Quite interestingly, we observe a
relation between the persistence and the size of the advantage: in the large j limit, the quantum advantage is of
size O(1/}) and persists when the memory is accessed for O ( j) times. Our results indicate that, as the memory
size grows, the quantum advantage is spread over a larger amount of time. This tradeoff achieves the classical
limit for spins of infinite size, for which the advantage disappears and the memory can be accessed infinitely
many times.

At the fundamental level, our results provides the first example of a quantum memory advantagein a
deterministic learning task involving unitary gates as the target operations. Advantages of quantum memories
have been known for longer time for non-deterministiclearning tasks, where the learning machine hasanon-
zero probability of aborting. For example, [22, 23, 23-27] provide examples of machines that learn an unknown
unitary gate without errors, albeit with a non-unit probability of success. In all these examples, a quantum
memory is necessary in order to achieve error-free learning. In practice, however, no real machine is error-free,
and in order to experimentally demonstrate the advantage of the quantum memory one needs a benchmark that
quantifies the best performance achievable with classical machines. No such benchmark has been derived for the
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non-deterministic learning tasks considered in [22, 23, 23-27], and a rigorous demonstration of the advantage
of the quantum memory has not been possible so far. A promising direction of future research is to apply the
techniques developed in this paper to the derivation of quantum benchmarks for non-deterministic learning of
unitary gates.

Our work calls for the experimental demonstration of quantum-enhanced learning of rotations around an
unknown direction. For small values of the spin, a possible testbed is provided by NMR systems, where spin—
spin interactions are naturally available [45]. Another possibility is to use quantum dots, where one can engineer
a coupling between a single spin and an assembly of spins effectively behaving as a single spin j particle [46]. This
scenario, named the box model, can be achieved through a uniform coupling of a central spin to the
neighbouring sites. No matter what platform is adopted, our results provide the rigorous benchmark that can be
used to validate the successful demonstration of quantum-enhanced unitary gate learning in realistic scenarios
where the implementation is subject to noise and experimental imperfections.
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Appendix A. Derivation of the optimal quantum strategy

In order to find the maximum of the fidelity (31) under the constraints (25) we use the method of Lagrange
multipliers, setting & = x?and 3 = y2. The search of the stationary points of the fidelity yields the following
four cases:

Case 1: x = y = 0. Inthis case, the fidelity is given by

E9(3j, 0) = +

2
) , (AL)

cosg('+1)+isingm cosg’fisingm
21 5 ™o 2] 5 o

1
Qj+ 1 (
and is attained by the Choi operator

Ci =P @ v) (v, (A2)

lv) = ﬂ e |+) + e [—L— =), 0, = arctan| anl] o —-L (A3)
2j+1 2j+1 J+1 2 2

The maximum of the fidelity is attained by my = j, independently of 6. Explicitly, the maximum fidelity is

1+ /1—&—(:052%% _i_cosz%ij;l
Fz(e)(j’ 0) = N .
2(1+5)

Note that the fidelity converges to 1 in the large jlimit, meaning that the learning becomes nearly perfect for large
spins. Comparison with Cases 2, 3, and 4 in the following shows that the fidelity (A4) is optimal for every angle
whenever the spin is larger than 1.

Case2: x = 0, y = 0.Inthis case, the Lagrangian method yields the fidelity

with

(A4)

o - i+ 1 j c_|?
Fé)(]’e):ﬁlalz 1+ J |c| (A5)

. 2+1 bl
1 T g e

2j+3

% lesc |
v = | , , (A6)
24+ 1 Ftlin .2
]+ 2j+3|a| le4

and x according to equation (25). The fidelity does not tend to 1 in the large jlimit, indicating that the Case 2
strategy is suboptimal for large j. Still, it turns out that for j = 1/2 this strategy is optimal for some values of the
angle faround 6 = 7. In this case, the entanglement fidelity becomes

achieved by setting
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1 — cosf 1
FO>j=1/2,0) = 1 - A7
=129 8 [ 3(1+2c050)] (A7)

and the optimal Choi operator is
Cy'=aPsn @ (Prja® |v){v]) (A8)

with

o 1 + 8cosf 4 9(cos 0)?

3 4 1 0
> vl = =1 — —a, arg(vy) = arctan| — tan —
3(1 + 2cosb) 2 3 3 2

v | = \E , arg(r) = —2. (A9)

The transition from the Case I strategy to the Case 2 strategy occurs when the distance |7 — 6] is below the
critical value §. = arccos[(4 + ~7) /9] ~ 0.2367.

Case3: x = 0, y = 0.Note that a strategy with y = 0 can only existfor j > 1/2,because for j = 1/2 there
is no subspace with spin j — 1, and therefore the coefficient y is not present. The method of Lagrange multipliers
implies that, among the strategies with x = 0 and y = 0, the maximum fidelity is attained when x and y take
their maximum values. The corresponding the Choi operator C; is

2]+ 2 2j
=2 2p,+ 7 (A10)
2j+3 2j— 1
and its fidelity is
. 2 2 D 2
FOG, 6) = sip | U XD —mi S mp | (AlD)
20 Qi+ 1D@j+3) @+ D@i—1)
The maximum, attained for my = 0, is
" .
Fz(e)(]" 0) = SmZQ _yry-1 (A12)

2 2j+3)Qi—1)

The fidelity does not reach 1 in the large j limit, indicating that the Case 3 strategy is suboptimal for large j.
Nevertheless, we find out that for j = 1 the Case 3 strategy is optimal for rotation angles around § = 7. For
j = 1, the entanglement fidelity is

2
E9>j=1,0) = %(sin g) . (A13)

A numerical comparison with the fidelity for Case I indicates that the above fidelity is optimal for |§ — 7| < &,
with 6. = 0.237. For |m — 0] > &, instead, the Case 1 strategy is optimal.
Case4: x = 0, y = 0. This case is similar to Case 3, and the fidelity has the expression

j+1 le,?

: i+l 2 |
jo el e

FO(j, 0) = ﬁ {1+ (Al4)

By comparison with the other cases, we find that the Case 4 fidelity is never optimal.

Note that for Problem 1 with j = 1, only Case 1 and Case 2 need to be considered as the memory state is
|1, 1).Itis easy to check that |1 | in equation (A6) does not satisfy constraint equation (25) for arbitrary 6,
showing that Case 1 is always the optimal solution for Problem 1 when j = 1.

Appendix B. Heisenberg interaction is the optimal learning strategy

In this section, we prove that the channel Cy y.; in equation (35) with unitary gate Uy in equation (36) is the
optimal learning channel. To this purpose, we calculate its entanglement fidelity F{$:(j, 6), and show that it is
equal to the optimal entanglement fidelity given by equation (A1).

First of all, we note that the unitary gate Uy can be expanded as

Up = e @[e¥O Py 4 Py 4], (B1)

where h(6) is an irrelevant global phase, which we will ignore from now on. Using this expression, we obtain the
relations
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Ulj )| 5 3) =<7 O13 ] 3 5)

O 1Y, 2O -1
(EELEN PIRtRe TS

Uli | 5 =5) = |1+ S5 T i ules) @

and we can get:

U@ R U, ) @ 10 = 1)) ®[ej;) 33 153) +(1 +%] BT i>]

\/;(efif(e) - .. 11\ |1 1
Ty . T 33 [5-3)
(B3)
The entanglement fidelity for this physical realization can be written as
F§aGh 0) = (@710 © L) [Cone @ To) (1 ) (> 1OPH] (V@ R)IET), (B4)

where 7y being the identity map on the reference system R. Then by inserting equation (B3) and
(Conei @ ZR)(1j> ) (4 j1 © ®5) = Trpl(Up @ R, j) (> jl @ @)Uy @ Ip)] (B5)

into equation (B4), we can get that:

F](fgi(], 0)=————[1+ 2j + 452 + 2jcosf (0) + (1 + 2j)cos O + 2j(1 + 2j)cos(d — f(0))]
2(1 + 2j)2
. 2+ 1 2+ 1 . ; ;
< 252 + 0+iy1+22j+1 9+2+12], B6
0T 2j)2[] 5 cos ]\/ (2 )cos (2 ) (B6)

where the equality will be reached when we set f(6) equal to equation (37). Itis equal to the optimal entanglement
fidelity in equation (A1).

Appendix C. Worst-case fidelity

Here we show that learning to perform target gate Vj , by using Heisenberg interaction in equation (35, 36) has
an error scaling in 1/ in terms of the worst-case fidelity (defined by equation (39)).
The worst-case fidelity is over all learning gate gand over all input target states ¢:

Fw,Hei(j) 9) - min minFHei(jy Ha g) w)’ (Cl)
g ¥

where
Fuei(j, 0, & ¥) = <1/J|V§,g Couei(lfs 1) (3> Jlg @ ) Vpglth), (C2)

is the fidelity for the simulation of V, on the specific input state |1)), and
Coeillf» ) (i jlg @ ) = Trp[Up(1o ) (s flg © ¥IUJ), (€3)

is calculated according to the optimal physical realization.
Note that the trace is invariant under cyclic permutationsand Vy , = U, Vy UgT , We can rewrite
equation (C2) as:

Fuei (s 05 8> ¥) = (U Vi (Trp[Up (s 1) (s 1 @ UL0) (¥ Up) U D Vo Uflh). (CH
%, —l>}:UgT|w> = cos% ‘ %, l> + eiﬁsin%

2 2
Uy(lj ) ® Ujl)) = cos 1} j) © | > %>

+ewsm2l P |j,j—1>®\i,i>]

By expanding U;h/}) in basis { ‘ %, %>, %, — % >, we find that:

201 + 2 2142

o Qo] 2wy NY 1
+e Slnze % [1+2j|]’]>®‘2, 2> 1+2j|]’] 1>®‘2’2>' (€3)
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By inserting equation (C5) into equation (C2), we can get

FuaaGi 0, g ) = 1 — sint . L2 <080 o[iz) (C6)
2 ] J
showing that
Eonei(jy 6) =1 — @ + o(]lz) (C7)

Appendix D. Proof of Theorem 3
The proof of the first two items of theorem 3 is identical of the proof of lemma 2.
It remains to prove that there exists an optimal MO strategy consisting of a covariant POVM (Py,¢) and of

conditional operations Oy s = Uy o Oy o U 2.
The MO fidelity for Problem 2 can be expressed as

FanoGis 0) = 3 [dg [dw (6lUQ" Ry, UPI6) (W1V, Onyl) (1) Viglt). (D1)
y

Forevery y € Y, we define the probability

Tr[Py,]
_ 32 D2
By = 51 2
the POVM
uy T(P )
Py = S0, (D3)
qﬁ,y
and the quantum channels
Opyg = Z/{Z; o Oy, o Uy (D4)
Note that the operators (Pg(f'g) )ee satisfy the normalization condition
f dg P =T Vye, (D5)
following from Schur’s lemma.
In terms of the above probabilities, POVMs, and channels, the expression (D1) can be rewritten as
Fanols )= a5, [[dg [[dv (81 PG 16) (6] UV UL Oy1) (0 UV ULIY)
y
= au, [(dg [ (6B 16) (WIV] UL O0(Udt') (01U Uy Vil
y
=S ay, [[dg [[dv (GIP16) (WIV] Onyt) (/D Vilw), (D6)
y
Since the fidelity is a convex combination, we have the upper bound
EasioGi 0) < max{ [dg [dv (612 16) (41V] O, V0 1) }. 7)
y

Itis immediate to check that the bound is attained by the MO strategy consisting of the POVM (Pg(f';) )ee and of

the conditional operations Oy, ,, where y, is the outcome that maximizes the expression in the right-hand-side
of equation (D7).
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Appendix E. Optimization of the MO strategy

Our goal is to maximize the fidelity

Fuols =@+ 1) [ dg &l mh P 1003, 195,) P
=@+ 1) [ dgIGIUL L, mbP (@3, 10V, © DIST)P
=@+ 1) [ dg HGIUP 1, m)P @3, Ve U] @ DIOH)P

=@+ 1) [ dglGIUL L m) P 1@, 1L & TIah) P, (E1)

over all values of m, all unit vectors &,, and all unitary gates Vj. Using the relation (7g = 0, U, 0,, we can rewrite
the fidelity as

Fuolis 0) = @+ 1 [dg [{&Upljs m) P 1(@F,1(U & UpI@h) . (E2)

with |<I>$H,> =(UI®0a) |<I>é,’ﬁ,> and|¢$ﬁ) =(UI® ) |<I>é,;>
For every angle a, the vector | Dy, ) can be expanded as

11 . 11
0) 0) ) _> +Slng‘ 17 0) ) _>)
2 2 2 2 2

.o
|®Y, ) = icos B

having used the notation |1, n; j, j,) for the eigenstates of the z-component of the total spin of a bipartite system
consisting of two spins j; and j,, respectively. Hence, we have
/ 0 /

(@7, 1(U; @ Up)|®y,) = cos%cosz + sin%sing (1, OIUél)ll, 0)

and

0’ %) 1 o’ 0 o’ o' 0
F (U, @ U)|PEV? = cos? — cos? = + —sin? — sin? — + 2 cos — cos — sin — sin — (1, 0|UP|1, 0
[{Dy, (U Py | 5 53 3 > 5 5 > 2< [Ug(1, 0)

!/
+ 2 sin? v sin? 0 (2, 0|U§2)|2, 0).
3 2 2
(E3)

Moreover, the fidelity can be expressed as
ot 0) = @ + 1) [ dg (0%, 1(U; © Ul PHEIUY L, m) P
=@+ 1) [ g 1@}, © UIOE) P (&lUP L, m) €T 1), m)
=@+ 1) [ dg 1@}, ® UIOE) P (€U, m) e UDe™j, m)

=(=D"Qj+ 1D f dg (@7, 1(U; @ Up|@%) P (&) ® (& UL @ UP) (1, m) @ |, —m)),

(E4)
having defined |€,) = '™ |£,). We now insert equation (E3) into the above expression, taking advantage of the
orthogonality relation

[z @ vl W) Ui e g = ZZL 1 o ) 0 3 (E5)
In this way, the fidelity becomes
Fiio(h ) = (=177 & + DUIDED T (, m) @ |, —m)),
with
0’ 0 1 o' 0
I'=|cos®’—cos*— + —sinz—sinz—) 0, 0 j, 1) (0, 0 , j
( 5 cos? - sin® —-sin 10, 0., j) (0, 05 j, i
2 o 6.6 .6 . .
+ | —cos—cos—sin—sin—| |1, 0; 7, 1, 0; 7,
(3 S cos—sin = 2)I 3 7)1 05 4,
2 0’ 0
+ —sinz—sinz—) 2,057, 1) (2, 0; 7, il. E6
(15 S st 12,03 4, ) {2, 05 (E6)
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Expanding |&y) as |€y) = 3=, &, |j> 1), we obtain
FuoUs 0) = 2 + DX 16, (=1 (o nl @ (jy —nD) T (I, m) @ |j, —m))

<@+ Dmax (=" ((j, nl ® (j, —nD T (|j, m) ® |j, —m)). (E7)

Note that the bound can be attained by choosing |€,) to be an eigenstate of J, with suitable eigenvalue 7.

Now, let || = JT? be the the modulus of andlet Iy := (|I'| + I)/2and I_ := (]| — T") /2 be the
positive and negative part of I', respectively. With inserting these definitions in equation (E7), the fidelity can be
upper bounded as

Fi0(h 0 < @2 + 1>m3x|(<j, nl @ (j, —nD(JTy + VIOTE — VIO (1j, m) @ |j, —m))|

< @Qj+ Dmax [(j,nl @ (, =aD V[ (j,n) @ 1j, —m) ((jyml @ (jy —m) U1 (jy m) & |j, —m))
< @+ Dmax((j, m| @ (j, =m) || (1j, m) @ |j, —m)),
(E8)

the second inequality following from the Cauchy-Schwarz inequality applied to the vectors (\/1“_Jr -Jm)

(lj, m) ® |j, —my))and (\/ﬁ +JI) (17, n) ® |j, —n)). We will discuss the attainability of the bound (E8)
in the end of the proof.

Inserting the definition of I" (equation (E6) in the bound (E8), we obtain

. . . . 0’ 0 1 .,0 ..,0 A .
{(j, ml @ (j, —mDIT|(|j, m) @ |j, —m)) = (coszgcoszg + §51n2?51n2 5)|<0, 0; 7, (17, m) ® |j, —m))|?
+

2 o’ 0 0’ [/
= cos — cos — sin — sin — |[{1, 0; 7, | (|, m) ® |j, —m)) |?
‘ S 08 —sin —-sin - ‘I( B3l g m) @ 1, —m)) |

3
2 L0 . 0 o . )
+(15 sin 2sm 2)|(2,O,],]|(|], m) ® |j, —my)) |?,
(E9)
which becomes
0’ 0 1 0’ 0 1
i, ml®(ji, —m|) || (|, m)  |j, —m)) = cosz—cosz—+—sin2—sin2—)
((j» ml@(j, —m|) L] (|j, m) @ |j, —m)) 5 SRR Y Er
‘2 0’ 0 . 6 . 9‘ 3m?
+ | —=cos—cos—smm—sin— | ————
3 2 2 21 jG+DEj+ 1
/ 2 i 22N
+(isin20—sin29) — 5(]‘ +J ‘Sm) . .
15 2 2)jG+ D@ - DQ+ DE+3)
(E10)

For j > 1, one can easily see that each of the three summands in the above expression has its maximum value
for |m| = j,independently of the angles § and ¢’. Setting m = j and optimizing over 0 we obtain that the
maximum is obtained for

0" = arccot | cot§ + M , (E11)
(272 + 3j)sin0
forfin [0, 7], and by
2+ 142 0
0" = 7 + arccot | cotd + u , (E12)
(2§ + 3j)sinf

for fin (m, 2) (recall that the range of arccot is between 0 and 7). For these values of #’, the entanglement
fidelity is
2j + (1 + cos(d@ — 6") L (2j + 1)(cos B + cos @) + cos(d + 0') + 1

2(2j + 3) 2+ D@j+ 3) '
The same approach works for j = 1/2, in which case [m| = j is the only possible choice, and the optimization
over 6’ yields again the optimal value (E11).

Note that the choice of angles 6’ in equations (E11) and (E12) satisfies the condition cos % cos % sin % sin g > 0.
Hence, the operator I'' is positive, and therefore I' = |I'|. Asa consequence, the inequality (E8) is attained by choosing
1€5) = 1], m).

For j = 1, the optimal MO strategy is determined by a brute-force approach, by settingm = 0O and m = 1,
optimizing the right-hand-side of equation (E10) over 8. When |r — 6| > 0.303, the optimal MO strategy is

FZ(,eIi/IO,opt(ji 9) =

(E13)
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the same aswhen j = 1. When |7 — 0] < 0.3037, the optimal mis m = 0, and the optimal angle 6’ becomes
0" = 7. Also in this case, the operator I' is positive, and therefore the inequality (E8) is attained by
choosing £,) = |7, m).

Appendix F. Persistence of the quantum advantage

The state of the memory spin after the interaction can be obtained by application of the complementary channel
Cy, defined by

Co(pV) = Trs[Ug(p(j) ® é)ug], (F1)

where Tr; denotes the partial trace over the target spin, and Uy is the unitary operator in equation (36).
To evaluate this state, it is convenient to look at the evolution of the basis states | j, 1), := Uéf) |7, m).By
explicit calculation, we obtain the relation
1

Collj, m) (j mlg) = > Cpvipm |jo m + i) (j, m + ilg, (F2)

i=—1

where the coefficients ¢, ; ,, are given by

-

) . I
S (j+m(QA +.] m) | — cosf — sm.9
(1 + 2j)? 2j

Cmm =1 — Cn1,m — Cnr1,m

. . .
S (j—mQA —l—.]—&-m) 1 — cosf — sm.9 ‘
(1 + 25)? 2j

L

At the first step, the memory starts in the state | j, j),. By repeatedly applying equation (F1), we then obtain
the memory state at every step. Explicitly, the memory state for the nth usage is given by

Sn— . . . . ] . .
Co Ui Ghil) = S pln— 1, m, 0) [, m)(j, mlg, (F3)

m=j—n+1
where p(n — 1, m, 0)isthe probability distribution after n — 1 usages, which is given by
n ) |
o= 3 o () )
ponm 0= 3 (] R
1—cosf
2j n!

:(_1)j—m+l
(1 —cosf) (n—j+

9i
xU(j—m+1,n+2,——] ) (F4)
m)! 1 — cosf

Ubeing Tricomi’s function (confluent hypergeometric function of the second kind). Using the recursion
formula

U@, b,2)=Qa—-b+z+2)Ua+1,b,z) —(a+ 1(a—-b+2)U(a + 2, b, 2), (F5)
we get the asymptotic expression
. j—m
p(n, m, 0) = 2 | zcosh) B o[ L) (F6)
n(l —cos®) +2j | n(l — cosf) + 2j j

Now, equation (F3) gives us the memory state at the nth iteration. The fidelity obtained by using this state is
given by

FHei(j) 9’ 7’1) = ZP(” - 1) m, 0) FHei(j) 9) m)) (F7)
where Fyei(j, 6, m)is the average fidelity when the probe is in the state | j, 71),, namely

Fuua G 0, m) = [dg [av @IV, TeolUn(ljy m)g G mly © 0)U1 Vagle). (F8)

The average over the input states can be easily computed using the relation with the entanglement fidelity,
equation (15). Using equation (35) for the gate Uy, we obtain the asymptotic expression

Fua(jy 0, my =1 — L EH = 2’3”,)(1 —cosh) o[l). (F9)
]
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Figure F1. Degradation of the fidelity with the number of recycling steps. The dependence of the fidelity on the number # of recycling
steps is plotted for j = 100 (red solid line), j = 200 (green solid line), and j = 400 (blue solid line), in the case of rotation angle
6 = m.The plot shows an inverse linear scaling with the recycling step n. The dotted lines give the values of the MO fidelities for
j = 100 (red), j = 200 (green), and j = 400 (blue). The fidelity of this protocol falls under the MO fidelity when the number of
recycling steps is larger than j/2.

One can see directly that in asymptotics, F(j, 8, m) isaarithmetic progressionand p(n, m, 0)isa
geometric progression. Inserting the above expressions into equation (F7) we obtain

FHei(j> 01 7’1) =1-

1— c‘osﬂ on(1 — C(‘>59) +J n O(%J (F10)

3 j j

Comparing with the MO fidelity in equation (57), we obtain that the persistence of the quantum advantage tends
to N(j, 0) =j/(1 — cosb).

The exact dependence of the fidelity on 7 is shown in figure F1 for different values of the spin and for rotation
angle § = 7. Interestingly, the persistence of the quantum advantage is exactly equal to the asymptotic value j/2
for all the values of j shown in the figure.

We showed the explicit calculation of F(j, 8, m)and p(n — 1, m, 6) when the interaction time is fixed at
every step. More general strategies where the interaction time is optimized at every step can be studied in the
same way. In the large jlimit, we find that such step-by-step optimization is not needed: the fidelity tends to the
same value, no matter whether the interaction time is optimized at every step or once for all. As a result, the
persistence of the quantum advantage is the same in both scenarios.

Appendix G. Robustness of the quantum strategy

Here we evaluate the fidelity in the execution of the gate Vj ,, = cos g I — isin % n - o when the optimal
learning strategy for pure states is adopted with a probe in the thermal state p, .. The fidelity of this strategy is

FuaCir 0,7) = [dn [dv @V, TralUs(py,, © ¥)UJT Vaalt), (G

with Upas in equation (36). Inserting the expression for the state p, ., into the above equation, we obtain

sinhy > eM™ Fua(j, 0, m), (G2)

F ei " 9) U —
tei (> 6> 7) sinh[(2j + 1)7] 5

with Fy;(j, 6, m) defined as in equation (F8). The asymptotic expression for Fy;(j, 6, m)was computed in
equation (F9). Inserting this expression in the above equation, we obtain

Fue(j 0 ) = —0T 57 g2 [1 -l oD, o[i)]

2

sinh[(2j + D] 5 3j j
—p Lot o) (G3)
3j tanh vy 72
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Appendix H. Learning higher dimensional rotations for spin-k particle

Following the structure of the optimal learning mechanism for spin 1,/2, we choose the memory state to be | j, j),
and we let the two spins undergo the Heisenberg interaction

2] K
U® = e —i60 R H1
0 XP[ T 1] (HD)

where K = (K, K,, K;)are the spin operators of the target spin.
Using the above strategy, we can explicitly compute the entanglement fidelity, given by

Gy b 0) = (@9H(VEP @ I [(Cha ® T () ) (sl © OO (VP ® 1e®),  H)
(€ © T ) (ol © DO = Trapl(UP @ (1o j) G 1 @ @ODHWUPT @ R, (H3)
where [pR+) = #Hzlfnszlk, m) ® |k, m)being the canonical maximally entangled state of two spin-k

particles, R denotes a reference qubit, entangled with the target spin-k particle, and V‘;k) is arotation of f around
the zaxisin 2k + 1representation.

Inserting the formula of Ue(k) in equation (H2), using the expressions of the Clebsch—Gordan coefficients, we
arrive at the asymptotic expression

FOG ko) =1 - XEED - osp) 4 of L) (H4)
3j i
The average fidelity is then given by
Fua(iy b, 0) = 1 — @(1 ~ cosh) + o(,lz). (H5)
] J

A similar calculation can be done for the MO strategy consisting in measuring the memory state with POVM
Py = (2j + I)UE(IJ', 7) (j» j|) and then performing the conditional operation Ve(,kg) = Uék) v U‘g‘)T on the
target spin-k particle, which means rotate with angle 6 with the rotated z-axis ge,:

FioGis ks ) = [dg [dgTriPa IFOG, K, 0, g, 9)
with

FOUj, k, 0, g, §) = | Tr [V VIR . (He)

1
2k + 1) *

By denoting ¢ as the angle between | j, j); and | j, j)g,and 7 the rotation angle for the rotation Vé,kg) t Vég, the
entanglement fidelity can be rewritten as

in? (2641
foﬂ dy sin ¢ (cos @)Y M

sin?Z
2

FIEZ)O(]" k0= 2k + 1)2 foﬂ d sin ¢ (cos <p)4j' ()
Performing the average, we obtain the asymptotic expression
Fso(is b, 0) =1 — %fl)(l — cosf) + o(jiz), (H8)
which can then be used to evaluate the average fidelity as
Fyo(j, k, 0) =1 — %ﬁl)(l — cosf) + O(]lz] (H9)

By comparing with equation (H5), we again see that the error is exactly twice the error of the coherent quantum
learning strategy.
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