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Abstract
Wedesignmachines that learn how to rotate a quantumbit about an initially unknowndirection,
encoded in the state of a spin-j particle.We show that amachine equippedwith a quantummemory of

( )O jlog qubits can outperform allmachines with purely classicalmemory, even if the size of their
memory is arbitrarily large. The advantage is present for everyfinite j and persists as long as the
quantummemory is accessed for nomore than ( )O j times.We establish these results by deriving the
ultimate performance achievable with purely classicalmemories, thus providing a benchmark that
can be used to experimentally demonstrate the implementation of quantum-enhanced learning.

1. Introduction

Quantummachine learning [1, 2] explores the interface betweenmachine learning and quantum information
science. On the one hand, quantumalgorithms have been shown to offer speedups to a variety of classical
machine learning tasks [3–9]. On the other hand, ideas frommachine learning stimulated the formulation of
newquantum tasks, such as quantum state classification [10–13], quantum learning of gates [14–16] and
measurements [13, 17].

An important component of any learningmachine is its internalmemory, wherein information gathered
from the environment is stored. Amachine equippedwith purely classicalmemory can only gather information
throughmeasurements, and can only perform conditional operations controlled by classical data. In contrast, a
machine equippedwith a quantummemory can gather information by interacting coherently with its
environment, and can performoperations that are controlled by quantumdata. A fundamental question is
whether the additional freedomoffered by the quantummemory can enhance the learning performance.

A taskwhere quantummemories are known to enhance the performance is quantum cloning [18], which
can be rephrased as the task of learning how to prepare copies of an unknown quantum state by gathering sample
copies of it. In this task, amachinewith a quantummemory can achieve strictly higher accuracy than all
machineswith a purely classicalmemory [19–21].

A strikingly different situation occurs in the task of learning how to performunitary gates. In this case,
quantummemories can enhance the performance of probabilistic learningmachines [16, 22, 23, 23–27], but the
enhancements observed so far disappear if themachines are required to approximate the desired gate with unit
probability [14]. The reason for such behaviour is that the learningmachines considered so far were designed to
perform groups of unitary gates, such as the group SO( )3 of all qubit rotations, or the groupU( )1 of qubit
rotations about afixed axis. In these highly symmetric scenarios, a general theoremby Bisio et al [14] implies that
every quantummachine operatingwith unit probability can be replaced by amachine that achieves the same
learning accuracywith a purely classicalmemory. Given the generality of this result, onemay be tempted to
conjecture that quantummemories are of no use for deterministically learning unitary gates. Such conjecture
would be consistent withNielsen andChuang’s no-programming theorem [22], which implies that whenever a set
of unitary gates can be perfectly encoded into a set of quantum states, the states in the setmust be orthogonal,
and therefore storable in a purely classicalmemory.
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In contrast with the above observations, herewe show that quantummemories can generally enhance the
performance of deterministicmachines attempting to learn unitary gates. Tomake this point, we provide a
concrete examplewhere the optimal deterministic learning strategies, with andwithout quantummemory, can
be determined explicitly. Specifically, we considermachines that learn how to rotate a quantumparticle by a
desired angle θ about an initially unknown direction = ( )n n nn , ,x y z , imprinted in the state of a spin-j particle.
We consider two different ways of imprinting the direction in a spin-j particle, corresponding to the following
scenarios.

• Scenario 1: spin relaxation.A staticmagnetic field = ( )B B BB , ,x y z , pointing in an unknown direction

=  n B B , acts in a certain region of space. A spin-j probe enters the region and undergoes a thermalisation
process with respect to themagnetic dipoleHamiltonian m= - ·H B J, where = ( )J J JJ , ,x y z are the spin
operators, + +· ≔ B J B J B JB J x x y y z z , and m > 0 is a suitable constant. For simplicity, we assume that the
temperature is low enough that the thermal state is approximately the ground state of theHamiltonian,
namely the eigenstate of the operator + +· ≔ n J n J n Jn J x x y y z z withmaximum eigenvalue j, hereafter
denoted as ñ∣ j j, n. An extension to thermal states at finite temperature will be discussed in section 6.

• Scenario 2: action of an unknown unitary gate.Ablack box implements an unknown rotation SOÎ ( )g 3 ,
which transforms the z-axis into the direction n. Amachine prepares a spin-j probe in an initial state f ñq∣
(possibly depending on the desired rotation angle), and sends the probe as input to the black box. After the
action of the black box, the state of the probe is f fñ = ñq q∣ ∣( )Ug g

j
, , where ( )Ug

j is the unitarymatrix representing

the action of the rotation g.

Scenario 2 is also relevant to the study of quantum reference frames [28]. Our learning task can be translated
into a distributed quantumprotocol involving two distant parties, Alice and Bob, who do not share a reference
frame for spatial directions. The goal of the protocol is to allowBob to rotate a target particle by a desired angle θ
around the direction of Alice’s z-axis, encoded in the state of a spin-j particle prepared byAlice and sent to Bob as
a token of her reference frame. In this setting, the unknown rotation g describes themismatch betweenAlice’s
and Bob’s Cartesian axes, and the optimal learning strategy provides the optimal protocol for encoding the
direction of Alice’s z-axis in a spin-j particle and for rotating Bob’s target particle accordingly.

A key difference between Scenarios 1 and 2 is that the initial state of the probe is irrelevant in Scenario 1
(every initial state is reset to the state ñ∣ j j, n), while it can be optimised in Scenario 2.More generally, the optimal
probe state in Scenario 2 could be an entangled state involving, in addition to the the spin-j particle, an auxiliary
system stored in the internalmemory of themachine.Nevertheless, wewill show that such auxiliary systemdoes
not increase the accuracy in the execution of the desired rotation, and therefore it can be omittedwithout loss of
generality.

In this paperwe establish the optimal learning strategies for both Scenarios 1 and 2, focussing on the case
where the target particle is a qubit. A summary of the key result is as follows. For >j 1, we find that the optimal
strategies for Scenarios 1 and 2 coincide. In both cases, the optimal learning strategy consists in:

1. Preparing the probe in the initial state f ñ = ñq∣ ∣ j j, , the eigenstate of Jzwithmaximum eigenvalue j.

2. Imprinting the direction in the probe, and storing the resulting state in a quantum memory of
+⌈ ( )⌉jlog 2 1 qubits.

3. Retrieving the probe’s state from the memory and letting it interact with the target through the isotropic
Heisenberg interaction s s sµ + +H J J Jx x y y z z , where s =( )i i x j z, , are the Paulimatrices for the target qubit.

Notably, the structure of the optimal learningmachine is independent of the desired rotation angle θ: a single
probe state and a single interactionHamiltonianwork optimally for all possible angles. The rotation angle only
affects the interaction time between the probe and the target.

For every >j 1, we prove that the optimalmachinewith quantummemory outperforms everymachine
with purely classicalmemory.We determine the optimal fidelity over allmachines with purely classicalmemory,
providing a benchmark that can be used to demonstrate the advantage of quantummemories in realistic
experiments. For example, we show that the optimal classical strategy for =j 3 2 and q p= hasfidelity 64%,
while the optimal quantum strategy hasfidelity of 71%. As a consequence, every experimental fidelity above
64% guarantees the demonstration of quantum-enhanced learning. In general, we show that a non-zero
quantumadvantage is present for every rotation angle q ¹ 0 and for every >j 1.We also prove that the
advantage persists even if thememory is accessedmultiple times, as long as the number of accesses to the
memory is ( )O j . In Scenario 1, wefind that the quantumadvantage persists at non-zero temperatureT, as long
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as themagnetic energy m B is large compared to the thermalfluctuation k TB , kB being the Boltzmann
constant.

For =j 1, we find out a striking difference between Scenarios 1 and 2. In Scenario 1, the quantummemory
offers an advantage for all possible rotation angles. In Scenario 2, the advantage disappears when the rotation
angle approachesπ. In that regime, the optimal strategy consists in:

1. Preparing the probe in the initial state f ñ = ñq∣ ∣1, 0 , the eigenstate of Jzwith eigenvalue =m 0.

2. Sending the probe to the unknown gate ( )Ug
j , and measuring the resulting state ñ∣( )U 1, 0g

j on the basis

ñ Î{∣ } { }1,0 i i x y z, , , where ñ∣1, 0 i is the eigenstate of Jiwith eigenvalue =m 0.

3. Conditionally on outcome i, performing a spinflip around the i-axis.

For =j 1 2, the optimal strategies for Scenarios 1 and 2 coincide, and the availability of a quantummemory
offers advantages for all rotation angles except q = 0 and q p= .

The paper is structured as follows. In section 2we introduce the problemof learning a rotation about an
unknowndirection, considering two alternative ways of imprinting the direction into the state of a spin-j probe.
We derive the optimal quantum strategy in section 3, and the corresponding quantumbenchmark in section 4.
In section 5, we show that the advantage persists even if thememory state is accessedmultiple times, and in
section 6, we show that the optimal learning strategy for Scenario 1 is robust to thermal noise. In section 7, we
extend our results fromqubits to systems of arbitrary dimensions. The conclusions are drawn in section 8.

2. Learning how to rotate about an unknown axis

In this sectionwe introduce the task of learning how to rotate a quantumparticle about an initially unknown
axis.We consider two scenarios, inwhich the unknown axis is imprinted in a quantumprobe via two physically
different processes: (1) spin relaxation, and (2) action of an unknown rotation gate.We formalise the
optimisation problems corresponding to these scenarios and establish a relation between the corresponding
solutions.

2.1. Scenario 1: learning froma relaxation process
Suppose that a staticmagnetic field = ( )B B BB , ,x y z is turned on for a limited amount of time in a bounded
region of space.While the field is turned on, a spin-j particle is placed in the region and undergoes a relaxation
process, whereby its spin becomes alignedwith thefield’s direction. After the alignment has taken place, the state
of the particle is stored in the internalmemory of a quantummachine, whichwill later use it to rotate a target
particle by a desired angle θ about the direction =  n B B .

We denote the spin-j particle as Pj, and let J J,x y and Jz be its spin operators, satisfying the commutation
relations =[ ]J J J, ix y z , =[ ]J J J, iy z x, and =[ ]J J J, iz x y. All throughout the paper the standard notation ñ∣ j m,
(respectively, ñ∣ j m, n) for the eigenstate of the operator Jz (respectively, ·n J)with eigenvaluem.

The alignment of themagnet with the externalmagnetic field can be described by a thermalisation process,
whereby the initial state of themagnet converges to the thermal state of themagneticHamiltonian =H
m m- = - + +· ( )B J B J B JB J x x y y z z , where m > 0 is a suitable constant. For simplicity, wewill assume that the

temperature of the bath is low enough that the thermal state is approximately the ground state ofH. Explicitly,
the ground state is the spin coherent state ñ∣ j j, n.

Overall, the alignment process can bemodelled as a quantum channel (completely positive trace-preserving
map) n that resets every state of the probe to the state ñ∣ j j, n. In section 6wewill extend our discussion to the
finite-temperature scenario, where the channel n resets the probe state to the thermal state of themagnetic
dipoleHamiltonian.

The goal of the quantummachine is to rotate a target particle S by a given angle θ about the direction n.We
willmostly focus on the case where the target is a spin-1/2 particle, regarded as a qubit. In this case, we denote

the target rotation by s-q
q q≔ ·V I ncos i sinn, 2 2

, where s s s s= ( ), ,x y z are the three Paulimatrices,

and s s s s+ +· ≔ n n nn x x y y z z .
To learn how to implement the target rotation, themachinewill transfer information from themagnet to its

internalmemory M .Mathematically, this operation is described by a quantum channel q transforming states
of Pj into states of M . To be completely general, we allow the channel to depend on the desired angle θ. If the
memory is classical, the channel q represents ameasurement on themagnet, followed by the storage of the
outcome in thememory. If thememory is quantum, the channel q can be any process transforming states of the
magnet into states of thememory.
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When asked to perform the target rotation, themachinewill retrieve information from its internalmemory,
andwill use such information to control the evolution of the target system, hereafter denoted by S. If the
memory is classical, the control amounts to a conditional operation on the target depending on the classical data
stored in thememory. If thememory is quantum, the control can be any general interaction between the
memory and the target system. In both cases, the control operation can be described by a quantum channelq

transforming joint states of the composite system ÄM S into states of S.
Overall, the structure of the learning process is depicted infigure 1. If the initial state of the target is yñ∣ , then

thefinal state is

  r y y y y= ñ á Ä ñá = ñ á Ä ñáq q q q( (∣ ∣ ) ∣ ∣) (∣ ∣ ∣ ∣) ( )j j j j j j j j, , , , , 1n n n n n,

where    Äq q q≔ ◦( )S is the effective quantum channel transforming joint states of the probe and the target
into states of the target alone.

To evaluate the accuracy of the learning process, we compare the output state rq n, with the desired output

y yñáq q∣ ∣ †V Vn n, , . As afigure ofmerit, we use the average input–output fidelity [29]

ò òq y y y y yá ñ á Ä ñá ñq q q( ) ≔ ∣ [ (∣ ∣ ∣ ∣)] ∣ ( )†F j V j j j j Vn, d d , , , 2n n n n1 , ,

where nd is the rotationally-invariant probability distribution on the unit sphere, yñ∣ is the initial state of the
target qubit, and yd is the unitarily invariant probability distribution on the pure states. The associated
optimisation problem is:

Problem1. Find the quantum channel q thatmaximises the fidelity q( )F j,1 in equation (2).

The optimisation can be performedwith different constraints on the channel q, corresponding to different
assumptions on themachine’s internalmemory. In this paper, wewill consider two cases:

1. The machine is equipped with a quantummemory of +⌈ ⌉jlog 2 1 qubits. In this case, the channel q is an
arbitrary completely positive trace-preservingmap.

2. The machine is equipped with a classical memory of arbitrary size. In this case, the channel q must be
decomposable into ameasurement on the probe followed by a conditional operation on the target.

Wewill carry out both optimisations and compare themaximum fidelity achievable with a quantummemory
with themaximumfidelity achievable with classicalmemories of arbitrary size.

2.2. Scenario 2: learning froma rotation gate
Consider the following general problem. A quantummachine has access to one use of a black box implementing
some unknownunitary gateUx, randomly drawn from some set XÎ( )Ux x . By interactingwith the black box, the
machine has to learn how to perform another unitary gateVx, acting on a target system S. Typically, the gate
learning problems considered so far correspond to the case =V Ux x (themachine attempts to emulate the gate
Ux [14–16]), or to the case = †V Ux x (themachine attempts to invert the gateUx [14, 27]). In general, the relation
betweenUx andVx can be arbitrary.

To learn the target gate, themachine sends a probe P to the black box. In general, the probe can be entangled
with an auxiliary system A, stored in themachine’s internalmemory. If the initial state of the composite system

ÄP A is fñ∣ , then the state after the action of the black box is

Figure 1. Learning from a relaxation process. A spin-j particle, initially in the state fñ∣ , undergoes a relaxation process n, which aligns
its spinwith the direction n of an externalmagnetic field. Information about the direction is then transferred from the spin-j particle
into themachine’s internalmemory M . The task of themachine is to rotate a target qubit S by an angle θ about the direction n . To
this purpose, themachinewill perform a joint operation q on its internalmemory and on the target, designed to approximate the
desired unitary gate qV n, .
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f fñ Ä ñ∣ ≔ ( ) ∣ ( )U I , 3x x A

where IA denotes the identity operator on the auxiliary system.
After the black box has acted, the probe returns to themachine, which transfers information from the state

f ñ∣ x to its internalmemory M . The transfer of information is described by a quantum channel  with input
system ÄP A and output system M . Overall, the imprinting of the parameter x in themachine’smemory is
called the training phase. Accordingly, we callUx the training gate.

After the training phase has been concluded, themachinewill be asked to perform the gateVx on the target
system.We call this phase the execution phase. Themachinewill access its internalmemory and use it to control
the evolution of the target system. The controlmechanism is described by a quantum channel with input
system ÄM S and output system S.

We call the above scenario theUx-to-Vx learning problem. Its overall structure is summarised infigure 2. The
temporal separation between the training phase and the execution phasemakes theUx-to-Vx learning problem
distinct from the problemof simulating the gateVx using the gateUx as a resource [30–35]. In that problem, the
gateVx is simulated by an arbitrary circuit using the gateUx, not necessarily a circuit of the formdepicted in
figure 2.

A general result by Bisio et al concerns the case where the set X is a group and themappings x Ux and
x Vx (or  †x Vx ) are two unitary representation of the group X. In this scenario, the authors showed that

the optimal learning performance can be achievedwith a purely classicalmemory [14]. In this paper, we present
an instance ofUx-to-Vx learning problem that evades Bisio et al no go theorem. In our scenario, x is a rotation

SOÎ ( )g 3 , the probe is a spin-j particle Pj, the training gate is the unitary gate
( )Ug

j that implements the rotation
g on the probe, the target is a qubit, and the target gate is the rotation qV g, defined by

q q≔ ( )†V U V U , 4g g g,

where q pÎ [ )0, 2 is a fixed, but otherwise arbitrary angle,Ug is the 2-by-2 unitarymatrix representing the
rotation g, and s= -q

q qV Icos i sin z2 2
is the 2-by-2matrix representing a rotation by θ about the z-axis. Since

the rotation angle is fixed, the target operations do not form a group, and therefore our learning problem falls
outside the hypotheses of Bisio et alʼs no go theorem.

TheUg-to- qV g, learning problem is also relevant to the study of quantum reference frames [28]. Suppose that
two distant parties, Alice and Bob, do not share a reference frame for directions. Thismeans that Bob’s Cartesian
axes ( )n ,x

B ( )ny
B , and ( )nz

B are related toAlice’s Cartesian axes ( )n ,x
A ( )ny

A , and ( )nz
A by an unknown element of the

rotation group SO( )3 , namely =( ) ( )gn ni
B

i
A , for all Î { }i x y z, , . Now, imagine that Bobwants to rotate a qubit

by an angle θ about the direction of Alice’s z-axis. To assist Bob in this task, Alice will send him a quantum system
carrying information about her reference frame. If the transmitted system is a spin-j particle, prepared byAlice
in the state f ñq∣ , then Bobwill receive the particle in the state f ñq∣( )Ug

j , owing to themismatch of their reference

frames. Using the state f ñq∣( )Ug
j as a resource, Bob can attempt to execute the desired rotation, corresponding to

the unitary gate =q q
†V U V Ug g g, .More generally, Alice could send Bob a spin-j particle togetherwith an auxiliary

particle A whose state space is invariant under rotations. In this case, Bobwill receive the state fÄ ñq( )∣( )U Ig
j

A ,

where f ñq∣ is the initial state of the spin-j and the auxiliary particle. In this setting, the search for the optimal
communication protocol betweenAlice and Bob is equivalent to the search of the optimal learning strategy for
theUg-to- qV g, learning problem.

Figure 2. Learning from a unitary gate: theUx-to-Vx learning problem. Amachine learns to perform a target gateVx by probing a
training gateUx. In training phase, a probe is prepared together with an auxiliary system in a joint state fñ∣ . The probe undergoes the
gateUx, and the joint state of the probe and auxiliary systembecomes f fñ Ä ñ∣ ≔ ( )∣U Ix x A . Information from the state f ñ∣ x is then
transferred to themachine’s internalmemory through an encoding channel  . In general, thememory can be quantum, classical, or a
hybrid quantum–classical system. In execution phase,machine performs a joint operation  accessing its internalmemory and use it
to try to performVx on the target system.
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Adiagrammatic representation of theUg-to- qV g, learning problem is provided infigure 3. The spin-j probe

and the auxiliary system A start off in the state f ñq∣ . Then, the probe is sent through the gate ( )Ug
j . After the action

of the gate ( )Ug
j , the probe and system A will be in the state

f fñ Ä ñq q∣ ≔ ( ) ∣ ( )( )U I , 5g g
j

A,

where IA is the identity on the auxiliary system’sHilbert space. Then, the state f ñq∣ g, is encoded in themachine’s
memory via a channel q. In the execution phase, themachinewill perform a quantum channelq,
transforming the input state of thememory and the target into the output state of the target.

The average fidelity forUg-to- qV g, learning task is

ò òq y y f f y y y= á ñá Ä ñá ñq q q q q( ) ∣ (∣ ∣ ∣ ∣) ∣ ( )†F j g V V, d d , 6g g g g2 , , , ,

where gd is the normalizedHaarmeasure over the rotation group, and    Äq q q≔ ◦ ( )S is the effective
channel transforming states of the composite system Ä ÄP A Sj into states of S.

This leads to the following optimisation problem:

Problem2. Find the auxiliary system A, the input state f ñq∣ , and the channel q thatmaximise thefidelity
q( )F j,2 in equation (6).

Problem 2 reduces to Problem1 of the previous subsection if system A is trivial, and if the initial state f ñq∣ is
the spin coherent ñ∣ j j, , independently of θ. In this case, the state (5) inputted in the quantummachine is the spin
coherent state ñ = ñ∣ ∣ ( )U j j j j, ,g gn , where ( )gn is the rotated z-axis ( ) ≔g gn ez , = ( )e 0, 0, 1z . Since the
rotation g is chosen at random according to theHaarmeasure, the direction ( )gn is distributed uniformly over
the unit sphere (see e.g. section 4.1 ofHolevo’s textbook [36]). Hence, one has







ò ò
ò ò
ò ò

q y y f f y y y

y y y y y

y y y y y q

= á ñá Ä ñá ñ

= á ñ á Ä ñá ñ

= á ñ á Ä ñá ñ =

q q q q q

q q q

q q q

( ) ∣ (∣ ∣ ∣ ∣) ∣

∣ (∣ ∣ ∣ ∣) ∣

∣ (∣ ∣ ∣ ∣) ∣ ( ) ( )

†

( )
†

( ) ( ) ( )

†

F j g V V

g V j j j j V

V j j j j V F jn

, d d

d d , ,

d d , , , . 7

g g g g

g g g gn n n n

n n n n

2 , , , ,

, ,

, , 1

Hence, the fidelities q( )F j,1 and q( )F j,2 coincide when the input state f ñq∣ is the spin coherent state ñ∣ j j, .
Under this condition, bothfidelities q( )F j,1 and q( )F j,2 aremaximised by the same quantum channel q.

3.Optimal quantum strategies

Herewe determine the optimal quantum strategies for learning rotations around an unknown direction.We
solve Problems 1 and 2 defined in the previous section for all values of the spin j and for all values of the rotation
angle θ. For >j 1, we show that the optimal state for Problem2 is the spin coherent state ñ∣ j j, , and therefore the
optimal fidelity coincides with the optimal fidelity for Problem1. In both problems, the best approximation of
the target rotation is realised by setting up an isotropicHeisenberg interaction between the target and the probe.
For =j 1 2 and j=1, we find some curious features of the optimal strategies. Notably, the optimal solution of
Problem2deviates from the optimal solution of Problem1 for j=1when the rotation angle approachesπ.

Figure 3. Learning from a rotation gate. Amachine has access to a rotation gate ( )Ug
j , which implements a rotation g on a quantum

particle of spin-j, denoted by Pj . The goal is to learn how to perform rotations on a target qubit, denoted by S. Specifically, themachine
is designed to perform the qubit gate =q q

†V U V Ug g g, , where θ is a generic angle, andVθ is a rotation by θ about the z axis. In the

training phase, themachine probes the gate ( )Ug
j by preparing the spin-jparticle and an auxiliary system A in a joint state f ñq∣ . The

output state fÄ ñq( ) ∣( )U Ig
j

A is then stored in the internalmemory of themachine and is retrieved in the execution phase, when the
machine performs a joint operation q designed to approximate the action of the target gate qV g, .
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3.1. Structure of the optimal solution of Problem2
Herewe focus on Problem 2 and determine the structure of its optimal solution. Themain result is the following
theorem:

Theorem1.The optimal strategy for learning the target gate =q q
†V U V Ug g g, from the training gate ( )Ug

j has the
following features:

1. No auxiliary system is needed.

2. The optimal input state is an eigenstate of Jz.

3. The optimal quantum channel is rotationally covariant, namely

SO    Ä = " Îq q( ) ( ) ( )( ) g 3 , 8g
j

g g

where g and 
( )
g
j are the quantum channels induced by the unitary gatesUg and

( )Ug
j , respectively.

The theorem follows from two lemmas:

Lemma1.No auxiliary system is needed in the optimal strategy for learning the gate qV g, from the gate ( )Ug
j . The

optimal input is an eigenstate of the z-component of the angularmomentum.

Proof.Note the target gate qV g, satisfies the relation =q qV Vg gh, , for every rotation h around the z axis. Then, the
fidelity (6) can be rewritten as





ò ò ò
ò ò ò

q y y f y y

y y f y y

= á Ä ñ

= á Ä ñ

q q q q

q q q q-

( ) ∣ ( ) ∣

∣ ( ) ∣ ( )

†

†

F j h g V V

h k V V

, d d d

d d d , 9

gh g gh

k kh k

2 , , ,

, , ,1

wherewe used the shorthand notation c c cñá≔ ∣ ∣, andwe derived the second equality from the invariance of
theHaarmeasurewith the change of variables =k gh. Defining the average state

òf fá ñ =q q - ( )hd 10h, 1

and its rotated version f fá ñ = Ä á ñ Äq q( ) ( )( ) ( ) †U I U Ik k
j

A k
j

A , thefidelity can be expressed as

ò òq y y f y y= á á ñ Ä ñq q q q( ) ∣ ( ) ∣ ( )†F j k V V, d d . 11k k k2 , ,

Since fá ñq is the average off over all rotations about the z axis, it can be expressed as

åf a aá ñ = ñá Ä ñáq
q q q

=-

+

∣ ∣ ∣ ∣ ( )( ) ( ) ( )p j m j m, , , 12
m j

j

m m m

where q
=-{ }( )pm m j

j is a probability distribution, and each a ñq∣ ( )
m is a pure state of the auxiliary system. Since the

fidelity is linear in the input state, the optimal choice is to pick one of the terms in themixture, such as
a añá Ä ñáq q∣ ∣ ∣ ∣( ) ( )j m j m, , m m .Moreover, the state of the the auxiliary system can be absorbed in the definition of

the channel q. This concludes the proof that the optimal input state can be chosen to be ñ∣ j m, without loss of
generality and that no auxiliary system is needed. +

Consistently with the above result, wewill omit the auxiliary system A fromnowon.

Lemma2.The optimal channel q for learning the gate qV g, from the gate ( )Ug
j can be chosen to be covariant without

loss of generality.

Proof.The optimality of covariant channels follows from the following chain of equalities:



  



ò ò
ò ò
ò

q y y f y y

y y f y y

y y f y y

= á Ä ñ

= ¢ á ¢ Ä ¢ ¢ñ

= ¢ á ¢ ¢ Ä ¢ ¢ñ

q q q q

q q q q

q q q q

( ) ∣ ( ) ∣

∣ ( ( ) ( ) ∣

∣ ( ) ∣ ( )

† † †

† † ( )

†

F j g U V U U V U

g V U U V

V V

, d d

d d

d , 13

g g g g g

g g
j

g g

2 ,

having defined y y¢ñ ñ∣ ≔ ∣†Ug in the second equality, and     ò¢ Äq q≔ ( )† ( )gd g g
j

g in the third equality.
Since  ¢q is covariant, the above equality shows that every channel can be replaced by a covariant channel with
exactly the same fidelity. +
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Covariant channels have the same performance for all possible training gates. Hence, for a covariant channel
q thefidelity can be rewritten as

òq y y f y y= á Ä ñq q q q( ) ∣ ( ) ∣ ( )†F j V V, d . 142

3.2. Choi operator formulation
Theorem1 guarantees that the optimal input state for learning the gate qV g, from the gate ( )Ug

j is an eigenstate of

Jz. Let us denote it generically as ñq∣ j m, , for somemθ between-j and+j , possibly depending on the rotation
angle θ. In the followingwewill search for the optimal valuemθ and for the optimal covariant channel q.

First of all, we rewrite the average fidelity as

q q= +( ) ( ) ( )( )F j F j,
1

3

2

3
, , 152 2

e

where ( )F2
e is the entanglement fidelity [37], defined as

 q áF Ä Ä ñá Ä F Ä F ñq q q q q
+ + +( ) ≔ ∣( ) [( )(∣ ∣ )] ( )∣ ( )( ) †F j V I j m j m V I, , , , 16R R R2

e

F ñ = ñ Ä ñ + ñ Ä ñ+∣ (∣ ∣ ∣ ∣ )0 0 1 1 2 being the canonicalmaximally entangled state and R denoting a reference
qubit, entangledwith the target qubit. In turn, the entanglementfidelity can be expressed as

q = á Ä áF ñ Ä F ñq q q q q( ) ( ∣ ∣) (∣ ∣ ) ( )( )F j j m C j m,
1

2
, , , 172

e

where F ñq∣ is the rotatedmaximally entangled state

F ñ = Ä F ñq q
+∣ ( )∣ ( )V I , 18R

andCθ is the Choi operator [38]

  = + Ä Ä F Ä Fq q
+ +( ) ( )( ) ( )C j2 2 1 , 19R R jj

Rj being a reference systemof dimension +j2 1, Rj
(R) being the identitymap on the reference system Rj (R),

and F ñ = å ñ Ä ñ ++∣ ∣ ∣j m j m j, , 2 1j m being the canonicalmaximally entangled state in dimension +j2 1.
The problem is tomaximise the fidelity (17) over all Choi operators of covariant channels. The set of the

possible Choi operators is characterised by the following three conditions:

1.Covariance [39]:  Ä Ä =q[ ]( )C U U U, 0g
j

g g for all rotations SOÎ ( )g 3 (here ( )Ug
j and Ug denote the

entry-wise complex conjugates of thematrices ( )Ug
j andUg, respectively.)

2.Positivity:Cθ is positive semidefinite, denoted as qC 0.

3.Trace preservation: =q[ ]C ITrout in, where Trout denotes the trace over the output, and Iin denotes the
identity over the input.

We nowput the above conditions in a form that is convenient for optimization.
Covariance.The covariance condition can be further simplified using the fact that complex conjugate

representations of the rotation group are unitarily equivalent. Defining the operator

* s sÄ Ä Ä Äq
p

q
p-≔ ( ) ( ) ( )C I C Ie e 20J

y
J

y
i iy y

the covariance condition becomes

SO* Ä Ä = " Îq[ ] ( ) ( )( )C U U U g, 0, 3 . 21g
j

g g

At this point, the totalHilbert space can be decomposed into orthogonal subspaces, corresponding to different
values of the total angularmomentum. Specifically, the angularmomentum takes values -j j1, , and +j 1,
and the totalHilbert space is decomposed as

      Ä Ä = Å Å Ä+ - + +( ) ( ). 22j j j j2 1 2 2 2 1 2 3 2 1 2

Relative to this decomposition, using Schurʼs lemmas and the covariance condition (21), the operator *qC can be
written as:

* a b= Å Å Äq + - ( ) ( )C P P P M , 23j j j1 1

where Pl is the projection on the factorwith total angularmomentum l,α andβ are complex coefficients, andM
is a complex 2-by-2matrix.

Positivity.The positivity of the operatorCθ is equivalent to the positivity of the coefficients a b, and of the
matrixM.

8
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Trace preservation.The condition of trace preservation can be conveniently expressed in terms of the real
coefficients a b, and of the complexmatrixM. Indeed, tracing over the output, we obtain

* a b=
+
+

+
-

+ á+ +ñ
+
+

+ á- -ñ
+

q + - + -[ ] ∣ ∣ ∣ ∣ ( )C
j

j
P

j

j
P M

j

j
P M

j

j
PTr

2 3

2 2

2 1

2

2 1

2 2

2 1

2
, 24j j j jout 1

2
1
2

1
2

1
2

for a suitable choice of basis +ñ -ñ{∣ ∣ }, . Using equation (24), the trace preservation condition =q[ ]C ITrout in

becomes

a

b

+
+

+
+
+

á+ +ñ =

-
+

+
á- -ñ =

⎧
⎨
⎪⎪

⎩
⎪⎪

∣ ∣

∣ ∣
( )

j

j

j

j
M

j

j

j

j
M

2 3

2 2

2 1

2 2
1

2 1

2

2 1

2
1.

25

Figure ofmerit. In terms of the operator *qC , the entanglementfidelity can be expressed as

* * * *q s= á - Ä áF - ñ Ä F ñ F ñ = Ä - F ñq q q q q q q( ) ( ∣ ∣) (∣ ∣ ) ∣ ( ) ∣ ( )( )F j j m C j m I,
1

2
, , , with i . 26y2

e

The expression can be further simplified by decomposing the state *- ñ Ä F ñq q∣ ∣j m, on the subspaces of
equation (22). After a bit of laborwith theClebsch–Gordan coefficients, wefind the decomposition

*- ñ Ä F ñ = + - ñ + - - ñ + - ñ Ä +ñ + - ñ Ä -ñq q q q q q+ -∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )j m a j m b j m c j m c j m, 1, 1, , , , 27

with

q q

q q q q

=-
+ + + -

+ +
= +

+ -
+

=-
+
+

-
+ +

=
+

-
+

q q q q

q q
+ -

( )( )
( )( )

( )( )
( )

( )( ) ( )
( )

a
j m j m

j j
b

j m j m

j j

c
j

j

m

j j
c

j

j

m

j j

i sin
2

1 1

1 2 1
i sin

2 2 1

cos
2

1

2 1
i sin

2 1 2 1
cos

2 2 1
i sin

2 2 1
. 28

Using the above decomposition, the entanglementfidelity can be expressed as

q
a b

=
+ + á ñ

ñ = +ñ + -ñ+ -( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )( )F j
a b c M c

c c c,
2

, with , 292
e

2 2

to bemaximized over all positive coefficientsα andβ, and over all non-negativematricesM satisfying the
constraint (25).

Lemma3.ThematrixM can be chosen to be rank-one without loss of generality, namely = ñá∣ ∣M v v for some
suitable vector ñ = +ñ + -ñ Î+ -∣ ∣ ∣v v v 2.

Proof.The entanglement fidelity depends on thematrixM through thematrix element á ñ∣ ∣c M c . Now, one has
the chain of inequalities




á ñ á+ +ñ + á- -ñ + á+ -ñ

á+ +ñ + á- -ñ + á+ +ñ á- -ñ

= á+ +ñ + á- -ñ

+ - + -

+ - + -

+ -

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

c M c c M c M c c M

c M c M c c M M

v M v M

2

2

, 30

2 2

2 2

2

the second inequality following from the fact thatM is positive.
Thefirst inequality holds with the equality signwhen the phase of the complex number á+ -ñ∣ ∣M is equal to

the phase of the complex number + -c c . The second inequality holdswith the equality sign ifM is rank-one. In

particular, the upper bound is attained by the rank-onematrix ¢ = ñá∣ ∣M v v with = á+ +ñ+ ∣ ∣v M

and = á- -ñ- + - + -∣ ∣ ∣ ∣v M c c c c .
Since the normalization constraint (25) involves only the diagonalmatrix elements ofM, thematrixM can

be replaced by thematrix ¢M without loss of generality. +

The proof of the above lemma shows that the optimal entanglement fidelity has the form

q
a b

=
+ + ++ + - -( ) ∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )( )F j

a b v c v c
,

2
, 312

e
2 2 2

with = á ñ∣ ∣ ∣ ∣v M . Themaximumof the fidelity (31) under the constraints (25) can be determinedwith
themethod of Lagrangemultipliers. In the followingwe present the result of themaximization, leaving the
details to appendix A.
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3.3.Optimal quantum strategy for >j 1
For >j 1, it turns out that Problems 1 and 2 have the same optimal solution:

Theorem2.When >j 1, the optimal probe state for learning the gate =q q
†V U V Ug g g, from the gate ( )Ug

j is ñ∣ j j, for
every value of θ. For both Problems 1 and 2, optimal average fidelity over all pure input states is

q = +
+ + +

+

q q+ +

( )
( ) ( )

( ) ( )F j,
1

3

1 1 cos cos

3 1
, 32

j

j

j

j

j

opt

2 1

2

2 2 1

2 2

2

1

2

2

2 2

and has the asymptotic expression

q
q

= -
-

+
⎛
⎝⎜

⎞
⎠⎟( ) ( )F j

j
O

j
, 1

1 cos

3

1
. 33opt 2

The optimality of the probe state ñ∣ j j, is in agreementwith a result byHolevo on the optimal estimation of
directions, see section 4.10 of [36]. In otherwords, the optimal probe state for learning how to rotate about an
unknowndirection coincides with the optimal probe state for producing a classical estimate of such direction, as
long as j is larger than 1. It is worth stressing, however, that the optimal quantum strategy for rotating about an
unknowndirection is not based on estimation: in section 4wewill show that no estimation-based strategy can
achieve the optimal quantumfidelity (32).

The exact values of the average fidelity are plotted infigure 4 for various values of j from =j 2 to =j 100.
Note that thefidelity decreasesmonotonically with the rotation angle θ. Intuitively, rotating by smaller angles is
easier, because the uncertainty about the rotation axis has less influence on the performance. The easiest rotation
is the identity q =( )0 , which is independent of the rotation axis and therefore can be implementedwithout
error. The hardest rotation is the spin flip, corresponding to q p= . In this case, the average fidelity has the
simple form

p = -
+

+ +
( ) ( )F j

j

j j
, 1

8 2

12 12 3
. 34opt 2

Note that, since the optimal probe state is ñ∣ j j, , the optimal channel q for Problem1 coincides with the
optimal channel q for Problem2. In appendix B, we show that an optimal channel q can be attained by setting
up an isotropicHeisenberg interaction between thememory spin and the target spin. Explicitly, we show that the
maximumfidelity (32) is attained by the channel

 r r=q q q( ) [ ] ( )†U UTr , 35P,Hei j

where TrPj
denotes the partial trace over the probe, andUθ is the unitary operator

s
q= -

+
q

⎡
⎣⎢

⎤
⎦⎥( ) · ( )U f

j

J
exp i

2 1
36

inwhich s s s s= ( ), ,x y z is the vector of the three Paulimatrices, s s= å Ä=· JJ i x y z i i, , is theHeisenberg
coupling, and q( )f is the function

Figure 4.Optimal average fidelity for >j 1. The dependence of thefidelity on the rotation angle θ is illustrated for different values of
the spin from =j 2 to =j 100. The fidelity isminimum for q p= .
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q q
q

q= +
+

+
⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( )f

j
sarccot cot

1

2 1 sin
, 37

where q =( )s 0 for q pÎ [ ]0, , and q p=( )s for q p pÎ ( ), 2 . Note that q( )f is approximately equal to θ in the
large j limit.

Physically, the unitary evolution (36) can be realized by setting up an isotropicHeisenberg interaction,
described by theHamiltonian sa= ·H J , for some suitable coupling constantα, and by letting the two spins
evolve for time


q

q
a

=
+

( ) ( )
( )

( )t
f

j2 1
, 38

depending on the angle θ of the target rotation.Remarkably, the same probe states and the same interaction can
be used to control the full time evolution of the target system: one has only to adjust the interaction time
[determined by the angle q( )]f based on the evolution time in the target dynamics [determined by the angle θ].
For example, we can set q w= t and simulate the precession of a spin-1/2 particle around the direction indicated
by thememory state.

An important feature of the optimal strategy is that the optimal probe state is independent of the rotation
angle θ. Since the operation of storing the state ñ∣U j j,g in the quantummemory is also independent of θ, it
follows that all the operations in the training phase can be accomplishedwithout knowing the rotation angle.
This offers the possibility to decide the value of θ at later times. In fact, themachine can optimally approximate
the full continuous-time dynamics of the target particle, because the optimal operations for different θ
corresponds to unitary evolutions with the sameHamiltonian, just with different evolution times.

The optimality of theHeisenberg interaction is not limited to the average fidelity. In terms of scalingwith j,
the unitary gate (36) is optimal also for theworst-case fidelity, defined as

q q y=
y

( ) ( ) ( )F j F j g, min min , , , , 39w
g

where q y( )F j g, , , is the fidelity for the simulation ofVg on the specific input state yñ∣ . Indeed, in appendix C,
we show that theworst-case fidelity of the unitary gate (36) is

q
q

= -
-

+
⎛
⎝⎜

⎞
⎠⎟( ) ( )F j

j
O

j
, 1

1 cos 1
. 40w,Hei 2

Hence, theworst-case infidelity q- ( )F j1 ,w,He has the scaling j1 . This is the best scaling one can hope for,
because the average infidelity cannot vanish faster than j1 (as shown by equation (33)), and the average
infidelity is a lower bound to theworst-case infidelity.

The optimality of theHeisenberg interaction answers in the affirmative a question raised byMarvian and
Mann [40], who assumed theHeisenberg interaction and showed that it can be used to approximate arbitrary
rotations in the limit of large j limit. In the conclusion of their work,Marvian andMann askedwhether the
Heisenberg interaction achieves the best scaling of the error with the spin size. Our results provide an affirmative
answer, showing that theHeisenberg interactionmaximizes the average fidelity and has the optimal error scaling

( )O j1 in theworst-case scenario.

3.4.Optimal quantum strategy for =j 1 2
For =j 1 2, the optimal probe state for Problem 2 is still the coherent state ñ∣ j j, for every rotation angle θ, and
the optimal solutions of Problems 1 and 2 still coincide.

Curiously, the optimal learning strategy exhibits a transitionwhen the rotation angle approachesπ. For
q p d- > = +∣ ∣ [( ) ]arccos 4 7 91 2 , the optimal fidelity is still given by equation (32), and the optimal
channel q is still given by equation (35).

For q p d-∣ ∣ 1 2, instead, the optimal fidelity becomes

q
q q

q
= =

-
-

-
+

⎜ ⎟⎛
⎝

⎞
⎠ ( )

( )F j
1

2
,

5 cos

12

1 cos

36 1 2 cos
41opt

and is achieved by the following strategy:

1. Perform a joint measurement on the memory and the target. The measurement has two outcomes and is
described by the quantumoperations =(·) · †M Myes yes yes and =(·) · †M Mno no no, with

a a- +≔ ≔ ( )M P P M P1
4

3
and

4

3
, 42yes 1 0 no 1

Pl being the projector on the subspacewith total angularmomentum l, with Î { }l 0, 1 .
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2. If themeasurement yields outcome ‘yes’, then apply the unitary gate (36), corresponding to the Heisenberg
interaction, and discard thememory. If themeasurement yields outcome ‘no’, then perform the optimal
2-to-1 universal NOT channel [41], namely the channel UNOT defined by

 òr rá Äá ñ Ä ñ ñáÄ Ä( ) ≔ ( ∣ ∣) (∣ ∣ ) ∣ ∣ ( )† †g U U U Ud 3 0 0 0 0 1 1 . 43g g g gUNOT
2 2

The probability of the outcome ‘no’, corresponding to the universal NOT, depends on the parameterα in
equation (A9). At the critical distance q p- = +∣ ∣ [( ) ]arccos 4 7 9 , one has a = 0, and the optimal strategy
is realized through theHeisenberg interaction. As the rotation angle gets closer toπ, the coefficientα increases,
reaching itsmaximumvalue a = 2 3 for q p= . At this point, theweight of the universal NOT ismaximum.
Notably, the value a = 1 is never reached,meaning that the optimal jointmeasurement on the input qubits is
never projective.

3.5.Optimal quantum strategies for =j 1
The =j 1 case is the only casewhere Problems 1 and 2 yield different solutions. The difference appears when the
rotation angle is within a critical distance d p= 0.231 fromπ.

For p q d- >∣ ∣ 1, the optimal probe state for Problem2 is ñ∣1, 1 , and therefore the optimal solutions for
Problems 1 and 2 still coincide. The optimal average fidelity is still given by equation (32) and the optimal
channel q is still given by equation (35).

For q p d-∣ ∣ 1, the optimal average fidelity for Problem1 is

q
q q

= = + + +⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥( ) ( )F j 1,

1

9

13

3

4

3
1 3 cos

2
2 cos

2
, 441,opt

2 2

corresponding to equation (32)with =j 1. The optimal channel q is still given by equation (35).
Instead, the optimal fidelity for Problem2 is

q
q

= = + ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )F j 1,

1

3

2

5
sin

2
, 452,opt

2

and is attainedwith the probe state ñ∣1, 0 , the p-orbital aligned in the direction of the z-axis. In section 4.5, we
will show that the optimal quantum fidelity (45) is achievable with a purely classicalmemory. Specifically, wewill
see that the optimal strategy is to perform a projectivemeasurement on the probe, with the threemeasurement
outcomes corresponding to the three Cartesian axes. Themeasurement outcome is then stored into a classical
memory of 2 bits. In the execution phase, themachine rotates the target qubit by an angleπ about the axis
corresponding to themeasurement outcome.

3.6.Optimalfidelities for =j 1 2 and =j 1
The dependence of the fidelity on the rotation angle is plotted infigure 5 for =j 1 and =j 1 2. The value of the
optimal quantumfidelity is contrastedwith themaximum fidelity achievable with a purely classicalmemory,
whichwill be derived in section 4.

4. The quantumbenchmark

In this sectionwe derive themaximum fidelity achievable by learningmachines with a purely classicalmemory
of arbitrarily large size. Such fidelity provides a benchmark that can be used to certify the experimental
demonstration of quantum-enhanced learning.We consider the two learning tasks corresponding to Problem1
(learning froma spin coherent state) and Problem2 (learning froma rotation gate) coincide. The quantum
benchmarks for these two problems coincide for all values of j except =j 1. For =j 1, the two benchmarks
become different when the desired rotation angle approaches π.

4.1.Measure-and-operate (MO) channels
Herewe consider learning strategies where thememory M infigures 1 and 3 is purely classical. In this case, the
transfer of information from the probe to thememory is described by a quantum-to-classical channel q, of the
form

Y

 å= ñáq q
Î

(·) [ · ] ∣ ∣ ( )P y yTr , 46
y

y,
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where Yñ Î{∣ }y y is a set of orthogonal states of thememory, and Yq Î( )P y y, is a positive operator-valuedmeasure
(POVM), describing a quantummeasurement on system Pj in the case offigure 1, or a quantummeasurement
on system ÄP Aj in the case offigure 3.

The execution phase consists in reading out the index y from the classicalmemory and performing a
conditional operationq y, on the system.Hence, the channelq has the form

 å= ñá Äq q(·) ( [· (∣ ∣ )]) ( )y y ITr . 47
y

y M S,

The operations performed bymachines with purely classicalmemorywill be calledmeasure-and-operate
(MO) strategies. Combined together, the ‘measure’ channel q and the ‘operate’ channelq give a single
quantum channel q,MO, of the form

Y

 år r= Äq q q
Î

( ) ( [( ) ]) ( )P ITr , 48
y

y S y S, ,

where TrS denotes the partial trace over all systems except system S.
In the following, wewill solve the optimisations in Problems 1 and 2 under the constraint that the channel q

is of the MO form (48). By definition, the optimalMO fidelities are by definition no larger than the optimal
quantumfidelities derived in the previous section.

4.2. Structure of the optimalMO strategy for Problem 2
The structure of the optimalMO strategy for Problem 2 is summarized by the following Theorem, proven in
appendixD.

Theorem3.The optimalMO strategy for learning the gate =q q
†V U V Ug g g, from the gate ( )Ug

j has the following
features:

1. No auxiliary system is needed.

2. The optimal probe state is an eigenstate of Jz, denoted as ñq∣ j m, .

3. The outcome of the optimal POVM is an element of the rotation group SO( )3 , denoted as ĝ .

4. The optimal POVM SOq Î( ) ( )P g g, 3 is rotationally covariant [36], and has the form

x x= + ñáq q q( ) ∣ ∣ ( )ˆ ˆ
( )

ˆ
( ) †P j U U2 1 , 49g g

j
g

j
,

where x ñq∣ is a unit vector.

Figure 5.Optimal quantum fidelities and benchmarks for =j 1 2 and =j 1. Solid curves show themaximumof thefidelity over all
quantummachines, while dashed curves provide the corresponding benchmarks, equal to themaximum fidelity over allmachines
equippedwith a purely classicalmemory (derivation provided in the next section). For =j 1 2, the optimal strategies for Problems 1
and 2 coincide. The fidelity of the optimal quantum strategy is higher than the benchmark (blue dashed line) for all values of θ except
q = 0 and q p= (although the difference in the transition region is so small that cannot be read out from the plot). A transition in the
optimal quantumchannel q occurs at the critical distance q p d p- = + »∣ ∣ ≔ [( ) ]arccos 4 7 9 0.2361 2 . For =j 1, the optimal
strategies for Problems 1 and 2 coincide for q p d p- > »∣ ∣ 0.231 , but become different for q p d p- < »∣ ∣ 0.231 . The optimal
fidelity for Problem1 (black solid curve) is higher than the benchmark for every q ¹ 0 (black dashed line). The optimal fidelity for
Problem 2 (red solid curve)deviates from the optimalfidelity for Problem1when the distance q p-∣ ∣goes below the critical value
d p» 0.231 . At the critical distance, the optimal input state changes discontinuously from ñ∣1, 1 to ñ∣1, 0 . In this region, the optimal
quantum fidelity becomes equal to the benchmark (red dashed curve).
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5. The optimal conditional operation has the form   =q q◦ ◦ˆ ˆ
( )

ˆ
( ) †

g g
j

g
j

, , whereq is a fixed channel acting
on the target qubit.

In the followingwewillmaximise the gatefidelity over allMO strategies with the features described by
theorem3. For convenience wewill express the gatefidelity in terms of the entanglement fidelity (see
equation (15)).

4.3. Choi operator formulation
For an optimal strategy as in theorem 3, the entanglement fidelity takes the form

ò

ò

q x

x

= + á ñ
áF F ñ

= + á ñ
áF F ñ

q q
q q q

q q
q q q

+ +

+ +

( ) ( ) ∣ ∣ ∣ ∣
∣ ∣

( ) ∣ ∣ ∣ ∣
∣ ∣

( )

( )
ˆ
( ) † ( ) ˆ

( )

F j j g U U j m
O

j g U j m
O

, 2 1 d ,
2

2 1 d ,
2

, 50

g
j

g
j g g g

g
j g g

2,MO
e 2 , , ,

2 , ,

where q ˆO g, is the Choi operator of the channelq ĝ, , qO is theChoi operator of the channelq,
and F ñ Ä F ñq q

+ +∣ ≔ ( ) ∣V Ig g, , R .

Our goal is tomaximise the entanglement fidelity (50) over all values ofmθ, over all unit vectors x ñq∣ , and over
all Choi operatorsOθ. To this purpose, the key observation is that the Choi operatorOθ can be chosen to be real
in a suitable basis. Specifically, we have the following

Proposition 1.TheChoi operator Oθmaximizing the fidelity (50) can be chosen to be real in the Bell basis

B s s s= F ñ Ä F ñ Ä F ñ Ä F ñ+ + + +{∣ ( )∣ ( )∣ ( )∣ } ( )I I I, i , i , i . 51x y zBell

Proof.Every unitary =q qV U V Ug g g, is a real linear combination of thematrices s sI , i , i ,x y and si z . Hence, every

vector F ñ = Ä F ñq q
+ +∣ ( )∣V Ig g, , is a real linear combination of the vectors F ñ+∣ , sY ñ = Ä F ñ+ +∣ ( )∣Ii i x ,

sY ñ = Ä F ñ- +∣ ( )∣Ii y , and sF ñ = Ä F ñ- +∣ ( )∣Ii i z . Since thefidelity depends on theChoi operatorOθ only

through thematrix elements áF F ñq q q
+ +∣ ∣Og g, , , the optimal Choi operator can be chosen to be real in the same basis

as the vectors F ñq
+∣ g, . +

Thanks to proposition 1, themaximization of the fidelity can be restricted to the set of Choi operators that
are real in the Bell basis. This set of Choi operators can be equivalently characterized as the set of Choi operators
of unital channels, i.e. quantum channelsmapping the identity operator to itself. Indeed, we have the following

Proposition 2.Aqubit channel is unital if and only if its Choi operator is real in the Bell basis

B s s s= F ñ = F ñ F ñ = Ä F ñ F ñ = Ä F ñ F ñ = Ä F ñ+ + + +{∣ ∣ ∣ ( )∣ ∣ ( )∣ ∣ ( )∣ } ( )I I I, i , i , i . 52x y zBell 0 1 2 3

Proof. If a qubit channel is unital, then it is a convex combination of unitary channels [42]. For every unitary
channel, the correspondingChoi operator is real in the Bell basis. Indeed, every unitary channel has a Kraus
decompositionwith a single unitary operator of the form s= -t t ·U I ncos i sin

2 2
, with t pÎ [ )0, 2 and

În 3. Hence, the Choi operator Ä F ñáF Ä+ +( )∣ ∣( )†U I U I2 is real in the Bell basis. Since the set of real Choi
operators is convex, every unital channel is contained in it.

Conversely, suppose that a channel  has a Choi operatorC that is real in the Bell basis, i.e.
= å F ñáF∣ ∣C Ck l kl k l, , for some real symmetricmatrix ( )Ckl . Then, one has


    

  

å å

å
å

s s s s s s

d

= = +
- +

+
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= + = ==

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
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⎞
⎠( ) [ ]
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C
i i
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C
I C I
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I I

Tr
2 2 4

2 2 2
, 53

k
k

k k

k l
kl

k l l k

k l
kl

kl i
ii

in 00
1 3

0
1 3

00

1 3

0

3

the last equality following from the relation = = = = å =[ ] [ ( )] [ ]I I C C2 Tr Tr Tr i ii0
3 . Hence, the channel 

is unital. +

Since the fidelity is a linear function, itsmaximization can be restricted to the extreme points of the set of
unital channels. For qubits, such extreme points are unitary channels [42]. Hence, we obtained the following

Theorem4.The quantum channelqmaximizing the fidelity (50) can be chosen to be unitary without loss of
generality.
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Thanks to theorem 4, the optimal entanglement fidelity (50) can be expressed as

òq x= + á ñ áF F ñ
x x

q q q
Î - ñ ñ = =

+ +

q q q q q q
q  { }( ) ( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )( )

{ } ∣ ∣

( )
†

F j j g U j m, max max max 2 1 d , , 54
m j j W W W I

g
j

W g2,MO,opt
e

,..., : 1 :

2
,

2

whereWθ is a suitable unitary and F ñ Ä F ñq
+ +

q
∣ ≔ ( ) ∣W IW R .

The optimization can be further simplified using the following observation:

Proposition 3.The unitary gateWθmaximizing the fidelity (50) can be chosenwithout loss of generality to be a
rotation about the z axis.

Proof.Every unitaryWθ can bewritten as =q q¢
†W U V Uh h , where q¢V is a rotation about the z axis by an angle q¢,

and h is the rotation that transforms the z axis into the rotation axis ofWθ. Hence, the corresponding state can be
written as F ñ = Ä F ñ+ +

q q¢
∣ ( ) ∣U UW h h V .

Using this fact, the optimalMOfidelity can be rewritten as

SO
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,..., : 1 :
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(hereUh
T denotes the transpose of thematrixUh). The last equation shows that themaximisation of the fidelity

can be reduced to rotations about the z axis. +

At this point, it remains tomaximise the fidelity (55) overmθ, xq, and q¢V . The result of the optimization is
summarised in the following, while the details are provided in appendix E.

4.4.OptimalMO strategy for ¹j 1
For ¹j 1, it turns out that the quantumbenchmarks for Problems 1 and 2 coincide.

Theorem5. For ¹j 1, the optimal probe state for learning the gate =q q
†V U V Ug g g, from the gate ( )Ug

j byMO

operations is ñ∣ j j, for every value of θ. For both Problems 1 and 2, optimalMO fidelity is

q
q q q q q q

=
+ + + - ¢
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+

+ + ¢ + + ¢ +
+ +
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3 2 3

2 1 cos cos cos 1

3 1 2 3
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and has the asymptotic expression
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j
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2 1 cos
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. 57MO,opt 2

The optimalMO strategy consists in:

1.Measuring the probe with the POVM = + ñá( ) ∣ ∣ˆ ˆ
( )

ˆ
( ) †P j U j j j j U2 1 , ,g g

j
g

j , and

2. Rotating the target qubit about the rotated z-axis ĝ ez by the angle

q q
q

q
q¢ = +

+ +
+

+
⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )j

j j
sarccot cot

2 cos 2 1

2 3 sin
, 58

2

where q =( )s 0 for q pÎ [ ]0, , and q p=( )s for q p pÎ ( ), 2 .

Note that the probe state and themeasurement are both independent of the rotation angle θ. Thismeans that
themachine can be trained optimally even before the value of the rotation angle has been decided. The
operations in the training phase coincidewith the optimal estimation strategy for directions, derived in the
classic work byHolevo [36].

The optimalMO strategy can be implemented by a learningmachinewith a purely classicalmemory. The
size of the classicalmemory can be chosenwithout loss of generality to be +⌈ ( )⌉j2 log 2 1 bits. This is because the
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fidelity is a linear function of the POVM, and therefore itsmaximum is attained by an extreme point of the
convex set of all POVMswith outcomes in SO( )3 . The extreme points of such set consist of POVMs that assign
non-zero probability to atmost +( )j2 1 2 rotations [43]. Hence, the optimal POVM in theorem5 can be
replaced by another, equally optimal POVMwith atmost +( )j2 1 2 outcomes, which can be stored into a
classicalmemory of +⌈ ( )⌉j2 log 2 1 bits.

A plot of theMO fidelity and of the optimal quantum fidelity is provided infigure 6.Note that the error (one
minusfidelity) goes to zero in both cases, but the rate for quantum strategies is twice as fast, as one can see by
comparing equations (33) and (57).

4.5.OptimalMO strategies for =j 1
The =j 1 case exhibits an anomalous behaviourwhen the rotation angle approachesπ. For p q p- >∣ ∣ 0.303 ,
Problems 1 and 2 have the same optimalMO fidelity, and the same optimalMO strategy, described in theorem5.
For p q p-∣ ∣ 0.303 , the optimal the optimalMO fidelities become different. For q p d-∣ ∣ 1, the optimal
average fidelity for Problem1 is

q
q q q q q q

= =
+ - ¢

+
+ ¢ + + ¢ +( ) ( ) ( ) ( ) ( )F j 1,

8 3 cos

15

3 cos cos cos 1

30
, 591,MO,opt

with

q q
q
q

q¢ = +
+

+
⎡
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⎤
⎦⎥ ( ) ( )sarccot cot

2 cos 3

5 sin
60

corresponding to equation (56)with =j 1. TheMOstrategy is still the one described in theorem5.
For Problem2, the optimal probe states transitions from ñ∣1, 1 to ñ∣1, 0 , and the optimalfidelity becomes

q
q

= = + ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )F j 1,

1

3

2

5
sin

2
. 612,MO,opt

2

The optimalMO strategy consists of:

1.Measuring thememorywith the POVMoperators = + ñá( ) ∣ ∣ˆ ˆ
( )

ˆ
( ) †P j U U2 1 1, 0 1, 0g g

j
g

j .

2. Rotating the target qubit about the axis = gn ez by an angleπ, independently of θ.

Physically, the optimal POVMcan be interpreted as a randomisation of the projectivemeasurement that projects
the spin-1 particle along the three Cartesian axes x y, , and z [43]. This projectivemeasurement corresponds
to the orthonormal basis ñ ñ ñ{∣ ∣ ∣ }x y z, , for 3 defined by ñ ñ∣ ≔ ∣z 1, 0 , ñ ñ + - ñ∣ ≔ (∣ ∣ )x 1, 1 1, 1 2 , and
ñ ñ - - ñ∣ ≔ (∣ ∣ )y 1, 1 1, 1 2 . In the language of atomic physics, ñ∣x , ñ∣y , and ñ∣z are the p-orbitals aligned in the

directions x y, , and z, respectively. Since the fidelity is a linear function of the POVM, the optimal POVM =ˆPg

+ ñá( ) ∣ ∣ˆ
( )

ˆ
( ) †j U U2 1 1, 0 1, 0g

j
g

j canbe replacedby an equally optimal POVMbasedon the projectivemeasurement

of ñ ñ ñ{∣ ∣ ∣ }x y z, , , followed by a rotationbyπ about theCartesian axis identified by themeasurement outcome. In
this discretised version of theMOstrategy, the learningmachine onlyneeds a classicalmemory of 2 bits.

Figure 6.Benchmark for quantum learning of rotation gates. The quantumbenchmark (blue dots) and the optimal quantum fidelity
(red dots) are plotted for rotations of 180° in a function of the spin size, with j ranging from 3/2 to 10.
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5. Persistence of the quantumadvantage

Wehave seen that amachine equippedwith a quantummemory can outperform every classicalmachine at the
task of learning rotations about an unknown axis. Still, our analysis was restricted to the scenario where the
quantumprocess accesses itsmemory only once, with the goal of reproducing a single use of the target gate. In
the followingwewill study how the performance depends on the number of required executions of the
target gate.

Let us focus on the regular case >j 1, where the optimal strategies for Problems 1 and 2 coincide, and the
channel is realised by setting up aHeisenberg interaction between thememory and the target qubit. An
important question is howmany times thememory can be accessed before the accuracy drops below a certain
threshold. In the context of quantum reference frames, themaximumnumber of accesses such that the fidelity is
above thresholdwas called the longevity in [44]. Another important question is howmany times thememory can
be accessed before the quantumadvantage is lost. Themaximumnumber of accesses for which thefidelity is
above the quantumbenchmark (56)will be called persistence of the quantum advantage in the following.

Suppose that the joint evolution ofmemory and target is described by the same unitary gate at every step.
Assuming the gate to be of the formof equation (36) for some fixed function q( )f , we obtain the close-form
expression

q
q q

= -
- - +

+
⎛
⎝⎜

⎞
⎠⎟( ) · ( ) ( )F j n

j

n j

j
O

j
, , 1

1 cos

3

1 cos 1
62

2

quantifying the average fidelity at the leading order in j (see appendix F for the derivation). From this expression
one can see that the longevity grows as j2. However, the persistence of the quantum advantage ismuch shorter:
comparing thefidelity (62)with theMO fidelity (57), wefind that the quantumadvantage disappears when the
number of repetitions is larger than

q
q

=
-

+( ) ( ) ( )N j
j

O,
1 cos

1 . 63

One could also considermore elaborate strategies where the interaction time betweenmemory and target is
optimised at every step.However, wefind that these strategies do not increase the longevity nor the persistence
of the quantumadvantage in the large j limit.

6. Robustness to thermal noise

In Problem1,wemade the simplifying assumption that the unknown direction n is imprinted into the pure
spin-coherent state ñ∣ j j, n, regarded as the low-temperature approximation of the thermal state of themagnetic
dipoleHamiltonian. An interesting question is how this approximation affects our discussion of the quantum
advantage. In the followingwewill address this question in the large j limit, showing that quantummemories are
useful whenever themagnetic energy is sufficiently large compared to the thermalfluctuations.

The thermal states of theHamiltonian m= - ·H B J can bewritten as

år
g

g
g

m
=

+
ñá =g

g

[( ) ]
∣ ∣ ∣ ∣ ( )

j
e j m j m

k T

Bsinh

sinh 2 1
, , ,

2
, 64

m

m
n n,

2

B

whereT is the temperature and kB is the Boltzmann constant. The spin coherent state ñ∣ j j, n is retrieved in the
low temperature (g  ¥) limit, as one has r = ñ ág g¥ ∣ ∣j j j jlim , ,n n n, .

Now, suppose that the learning strategy designed for the spin coherent state ñ∣ j j, n is adopted for themixed
state rg n, . In appendixG, we show that the average fidelity has the asymptotic expression

q g
q
g

= -
-

+
⎛
⎝⎜

⎞
⎠⎟( ) ( )F j

j
O

j
, , 1

1 cos

3 tanh

1
. 651 2

The above fidelity can be compared the benchmark in equation (57), which quantifies themaximum fidelity
achievable with classicalmemories. Note that equation (57) provides the benchmark for both Problems 1 and 2,
meaning that the benchmark applies to every pure probe state of the form y yñ = ñq∣ ∣( )Ug g

g
, , and by convexity, to

everymixed probe state of the form r r= ( ) ( ) †U Ug g
j

g
j . In particular, it applies to the thermal states rg n, , as the

average fidelity over all directions n is equal to the average fidelity over all rotations g. Comparing thefidelity
(65)with the benchmark in equation (57), we obtain that the quantum strategy outperforms all classical
strategies whenever gtanh is larger than 1/2, corresponding to the condition g > »ln 3 0.551

2
. Hence, the

quantumadvantage persists whenever themagnetic energy m∣ ∣B is larger than 1.1 times the thermal energy k TB .
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Note that the quantumbenchmark in equation (57) is the optimal fidelity achievable with arbitrary probe
states. If one further enforces the condition that the the probe state be thermal, then the value of the benchmark
would be even lower, thereby extending the set of temperatures for which the quantummemory offers an
advantage.

Note also that the above discussion applies to a variant of Problem 2where the probe is subject to thermal
noise before the action of the training gate ( )Ug

j , resulting into amixed input state r rg g≔ e, z
. Also in this setting,

the quantummemory offers a provable advantage when the parameter γ is larger than ln 31

2
.

7. Learning higher dimensional gates

Our result establishes the existence of a quantum advantage for learning single-qubit rotations about an
unknown axis. This finding is conceptually important, because the advantage for single qubits implies an
advantage of coherent learning for quantum systems of arbitrary dimension. Indeed, one can immediately prove
the advantage by using the qubit benchmark for gates that act nontrivially only in afixed two-dimensional
subspace.

Our results also give aheuristic for theproblemof learning rotation gates onhigher dimensional spins. The idea
is to encode the rotation axis in a spin coherent state and to let thememory and target spin interact as closed system.
Explicitly,wemake two spin systemsundergo theHeisenberg interaction q= - +q [ · ( )]( )U jJ Kexp i 2 2 1k , where

= ( )K K KK , ,x y z are the spinoperators of the target spin.Using theunitary gate q
( )U k , in appendixHweobtain the

averagefidelity

q
q

= -
+ -( ) ( )( ) ( )F j k

k k

j
, , 1

2 1 1 cos

3
, 66Hei

in the large j limit. Remarkably, the error grows quadratically—rather than linearly—with the size of the target
spin: in order to ensure highfidelity, the size of thememorymust be large compared to the square of the size of
the target system. The same conclusion holds for theworst-case fidelity, which has the asymptotic expression

q
q

= -
+ + -( ) [ ( ) ( )] ( ) ( )F j k

k k c k

j
, , 1

1 1 cos
, 67w,Hei

with =( )c k 0 for even k and =( )c k 1 4 for odd k.
The quantum strategy exhibits an advantage over theMO strategy consisting inmeasuring the direction n

from the spin coherent state pointing in direction n and performing a rotation based on the outcome. Again, we
find that the error of the quantum strategy vanishes in themacroscopic limit of largememory systems, at a rate
twice as fast than the error of the classical strategy (see appendixH formore details). It is an open question
whether the above quantum andMOstrategies are optimal for arbitrary >k 1 2.

8. Conclusions

Wedetermined the ultimate accuracy for the task of learning a rotation of a desired angle θ about an unknown
axis, imprinted in the state of a spin-j particle. In this task, we found that quantummemories enhance the
learning performance for every >j 1 and for every rotation angle q ¹ 0. Specifically, we found that a quantum
machinewith amemory of +⌈ ( )⌉jlog 2 1 qubits outperforms all learningmachineswith classicalmemory of
arbitrarily large size.

We found that the advantage of the quantummemory persists evenwhen thememory is accessedmultiple
times, as long as the total number of accesses is atmost linear in the spin size. Quite interestingly, we observe a
relation between the persistence and the size of the advantage: in the large j limit, the quantumadvantage is of
size ( )O j1 and persists when thememory is accessed for ( )O j times. Our results indicate that, as thememory
size grows, the quantum advantage is spread over a larger amount of time. This tradeoff achieves the classical
limit for spins of infinite size, for which the advantage disappears and thememory can be accessed infinitely
many times.

At the fundamental level, our results provides the first example of a quantummemory advantage in a
deterministic learning task involving unitary gates as the target operations. Advantages of quantummemories
have been known for longer time for non-deterministic learning tasks, where the learningmachine has a non-
zero probability of aborting. For example, [22, 23, 23–27] provide examples ofmachines that learn an unknown
unitary gate without errors, albeit with a non-unit probability of success. In all these examples, a quantum
memory is necessary in order to achieve error-free learning. In practice, however, no realmachine is error-free,
and in order to experimentally demonstrate the advantage of the quantummemory one needs a benchmark that
quantifies the best performance achievable with classicalmachines. No such benchmark has been derived for the
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non-deterministic learning tasks considered in [22, 23, 23–27], and a rigorous demonstration of the advantage
of the quantummemory has not been possible so far. A promising direction of future research is to apply the
techniques developed in this paper to the derivation of quantumbenchmarks for non-deterministic learning of
unitary gates.

Ourwork calls for the experimental demonstration of quantum-enhanced learning of rotations around an
unknowndirection. For small values of the spin, a possible testbed is provided byNMR systems, where spin–
spin interactions are naturally available [45]. Another possibility is to use quantumdots, where one can engineer
a coupling between a single spin and an assembly of spins effectively behaving as a single spin j particle [46]. This
scenario, named the boxmodel, can be achieved through a uniform coupling of a central spin to the
neighbouring sites. Nomatter what platform is adopted, our results provide the rigorous benchmark that can be
used to validate the successful demonstration of quantum-enhanced unitary gate learning in realistic scenarios
where the implementation is subject to noise and experimental imperfections.
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AppendixA.Derivation of the optimal quantum strategy

In order tofind themaximumof thefidelity (31) under the constraints (25)we use themethod of Lagrange
multipliers, setting a = x2 and b = y2. The search of the stationary points of thefidelity yields the following
four cases:

Case 1: = =x y 0. In this case, the fidelity is given by
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Themaximumof the fidelity is attained by =qm j, independently of θ. Explicitly, themaximumfidelity is

q =
+ + +

+

q q+ +

( )
( ) ( )( )F j,

1 1 cos cos

2 1
. A4

j

j

j

j

j

2
e

2
2

2 1 2
2

2 1

2

1

2

2

2 2

Note that thefidelity converges to 1 in the large j limit,meaning that the learning becomes nearly perfect for large
spins. ComparisonwithCases 2, 3, and 4 in the following shows that thefidelity (A4) is optimal for every angle θ
whenever the spin is larger than 1.

Case 2: ¹ =x y0, 0. In this case, the Lagrangianmethod yields thefidelity

q =
+
+

+
+ -

-
+
+ +

⎡
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achieved by setting

=
+ -

+
+ -

+
+ +

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )v
j

j

c c

a c

2

2 1
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j

j

2 1
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and x according to equation (25). Thefidelity does not tend to 1 in the large j limit, indicating that theCase 2
strategy is suboptimal for large j. Still, it turns out that for =j 1 2 this strategy is optimal for some values of the
angle θ around q p= . In this case, the entanglement fidelity becomes
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and the optimal Choi operator is
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The transition from theCase 1 strategy to theCase 2 strategy occurs when the distance p q-∣ ∣ is below the
critical value d p= + »[( ) ]arccos 4 7 9 0.236c .

Case 3: ¹x 0, ¹y 0. Note that a strategywith ¹y 0 can only exist for >j 1 2, because for =j 1 2 there
is no subspacewith spin -j 1, and therefore the coefficient y is not present. Themethod of Lagrangemultipliers
implies that, among the strategies with ¹x 0 and ¹y 0, themaximumfidelity is attainedwhen x and y take
theirmaximumvalues. The corresponding theChoi operator *qC is

* =
+
+

+
-q + ( )C

j

j
P
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j

2 2
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and itsfidelity is
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Themaximum, attained for =qm 0, is

q
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Thefidelity does not reach 1 in the large j limit, indicating that theCase 3 strategy is suboptimal for large j.
Nevertheless, we find out that for =j 1 theCase 3 strategy is optimal for rotation angles around q p= . For
=j 1, the entanglementfidelity is

q
q

= = ⎜ ⎟⎛
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⎞
⎠( ) ( )( )F j 1,

3
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sin

2
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e
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Anumerical comparisonwith thefidelity forCase 1 indicates that the above fidelity is optimal for q p d-∣ ∣ c,
with d p= 0.23c . For p q d- >∣ ∣ c, instead, theCase 1 strategy is optimal.

Case 4: = ¹x y0, 0. This case is similar toCase 3, and thefidelity has the expression

q =
-

+
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+
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By comparisonwith the other cases, we find that theCase 4fidelity is never optimal.
Note that for Problem 1with =j 1, only Case 1 andCase 2 need to be considered as thememory state is
ñ∣1, 1 . It is easy to check that +∣ ∣v in equation (A6) does not satisfy constraint equation (25) for arbitrary θ,

showing that Case 1 is always the optimal solution for Problem1when =j 1.

Appendix B.Heisenberg interaction is the optimal learning strategy

In this section, we prove that the channel q,Hei in equation (35)with unitary gateUθ in equation (36) is the
optimal learning channel. To this purpose, we calculate its entanglement fidelity q( )( )F j,Hei

e , and show that it is
equal to the optimal entanglementfidelity given by equation (A1).

First of all, we note that the unitary gateUθ can be expanded as

= +q
q q-

+ -[ ] ( )( ) ( )U P Pe e , B1h f
j j

i i 1
2

1
2

where q( )h is an irrelevant global phase, whichwewill ignore fromnowon.Using this expression, we obtain the
relations
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The entanglement fidelity for this physical realization can bewritten as

 q = áF Ä Ä ñá ÄF Ä F ñq q q
+ + +( ) ∣( ) [( )(∣ ∣ )] ( )∣ ( )( ) †F j V I j j j j V I, , , , B4R R RHei

e
,Hei

where R being the identitymap on the reference system R. Then by inserting equation (B3) and
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into equation (B4), we can get that:
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where the equalitywill be reachedwhenwe set f (θ) equal to equation (37). It is equal to the optimal entanglement
fidelity in equation (A1).

AppendixC.Worst-casefidelity

Herewe show that learning to perform target gate qV g, by usingHeisenberg interaction in equation (35, 36) has
an error scaling in j1 in terms of theworst-case fidelity (defined by equation (39)).

Theworst-case fidelity is over all learning gate g and over all input target statesψ:

q q y=
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q y y y y= á ñá Ä ñq q q( ) ∣ (∣ ∣ ) ∣ ( )†F j g V j j j j V, , , , , , C2g g gHei , ,Hei ,

is thefidelity for the simulation ofVg on the specific input state yñ∣ , and
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is calculated according to the optimal physical realization.
Note that the trace is invariant under cyclic permutations and =q q

†V U V Ug g g, , we can rewrite
equation (C2) as:
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By inserting equation (C5) into equation (C2), we can get
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AppendixD. Proof of Theorem3

The proof of thefirst two items of theorem 3 is identical of the proof of lemma 2.
It remains to prove that there exists an optimalMO strategy consisting of a covariant POVM q( )ˆP g, and of

conditional operations   =q q◦ ◦ˆ ˆ ˆ
†

g g g, .
TheMO fidelity for Problem2 can be expressed as
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and the quantum channels
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g, satisfy the normalization condition
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following fromSchur’s lemma.
In terms of the above probabilities, POVMs, and channels, the expression (D1) can be rewritten as
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Since thefidelity is a convex combination, we have the upper bound

 ò òq y f f y y y yá ñ á ñá ñq q q q{ }( ) ∣ ∣ ∣ (∣ ∣) ∣ ( )( ) †F j g P V V, max d d . D7
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It is immediate to check that the bound is attained by theMO strategy consisting of the POVM G*q Î( )( )P g
y

g, and of
the conditional operations

*
q y g, , , where *

y is the outcome thatmaximizes the expression in the right-hand-side
of equation (D7).
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Appendix E.Optimization of theMOstrategy

Our goal is tomaximize thefidelity
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over all values ofm, all unit vectors xq, and all unitary gates q¢V . Using the relation s s=U Ug y g y, we can rewrite
thefidelity as
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having used the notation ñ∣l n j j, ; ,1 2 for the eigenstates of the z-component of the total spin of a bipartite system
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Moreover, the fidelity can be expressed as
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Expanding x ñq∣ as x xñ = å ñq q∣ ∣ j n,n n, , we obtain
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Note that the bound can be attained by choosing x ñq∣ to be an eigenstate of Jzwith suitable eigenvalue n.

Now, let G = G∣ ∣ 2 be the themodulus ofΓ, and let G G + G+ ≔ (∣ ∣ ) 2 and G G - G- ≔ (∣ ∣ ) 2 be the
positive and negative part ofΓ, respectively.With inserting these definitions in equation (E7), thefidelity can be
upper bounded as
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the second inequality following from theCauchy–Schwarz inequality applied to the vectors G - G+ -( )
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in the end of the proof.
Inserting the definition ofΓ (equation (E6) in the bound (E8), we obtain
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which becomes
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E10

2 2 2 2

2

2 2
2 2 2

For >j 1, one can easily see that each of the three summands in the above expression has itsmaximumvalue
for =∣ ∣m j, independently of the angles θ and q¢. Setting =m j and optimizing over q¢we obtain that the
maximum is obtained for

q q
q
q

¢ = +
+ +

+

⎡
⎣⎢

⎤
⎦⎥( )

( )j

j j
arccot cot

2 1 2 cos

2 3 sin
, E11

2

for θ in p[ ]0, , and by

q p q
q
q

¢ = + +
+ +

+

⎡
⎣⎢

⎤
⎦⎥( )

( )j

j j
arccot cot

2 1 2 cos

2 3 sin
, E12

2

for θ in p p( ), 2 (recall that the range of arccot is between 0 andπ). For these values of q¢, the entanglement
fidelity is

q
q q q q q q

=
+ + - ¢

+
+

+ + ¢ + + ¢ +
+ +

( ) ( )( ( ))
( )

( )( ) ( )
( )( )

( )( )F j
j

j

j

j j
,

2 1 1 cos

2 2 3

2 1 cos cos cos 1

2 1 2 3
. E132,MO,opt

e

The same approachworks for =j 1 2, inwhich case =∣ ∣m j is the only possible choice, and the optimization
over q¢ yields again the optimal value (E11).

Note that the choiceof angles q¢ in equations (E11) and (E12) satisfies the condition q q q q¢ ¢cos cos sin sin 0
2 2 2 2

.

Hence, theoperatorΓ is positive, and therefore G = G∣ ∣.As a consequence, the inequality (E8) is attainedby choosing
x ñ = ñq∣ ∣ j m, .

For =j 1, the optimalMO strategy is determined by a brute-force approach, by setting =m 0 and =m 1,
optimizing the right-hand-side of equation (E10) over q¢.When p q p- >∣ ∣ 0.303 , the optimalMO strategy is
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the same aswhen ¹j 1.When p q p-∣ ∣ 0.303 , the optimalm is =m 0, and the optimal angle q¢ becomes
q p¢ = . Also in this case, the operatorΓ is positive, and therefore the inequality (E8) is attained by
choosing x ñ = ñq∣ ∣ j m, .

Appendix F. Persistence of the quantumadvantage

The state of thememory spin after the interaction can be obtained by application of the complementary channel
q , defined by

 r r= Äq q q
 ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )( ) ( ) †U

I
UTr

2
, F1j j

S

where TrS denotes the partial trace over the target spin, andUθ is the unitary operator in equation (36).
To evaluate this state, it is convenient to look at the evolution of the basis states ñ ñ∣ ≔ ∣( )j m U j m, ,g g

j . By
explicit calculation, we obtain the relation

 åñá = + ñá +q
=-

+ (∣ ∣ ) ∣ ∣ ( )j m j m c j m i j m i, , , , , F2g
i

m i m g
1

1

,

where the coefficients +cm i m, are given by

q
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q
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1 2
1 cos
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m m
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m m
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2

, 1, 1,

1, 2

2

At thefirst step, thememory starts in the state ñ∣ j j, g . By repeatedly applying equation (F1), we then obtain
thememory state at every step. Explicitly, thememory state for the nth usage is given by

 å qñá = - ñáq
-

= - +

 (∣ ∣ ) ( ) ∣ ∣ ( )j j j j p n m j m j m, , 1, , , , , F3
n

g
m j n

j

g
1

1

where q-( )p n m1, , is the probability distribution after -n 1usages, which is given by

åq

q q

= - -

= -
- - +

´ - + + -
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q
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, F4

i j m

n
i j m

j i

j m

2

1 cos

1

U being Tricomi’s function (confluent hypergeometric function of the second kind). Using the recursion
formula

= - + + + - + - + +( ) ( ) ( ) ( )( ) ( ) ( )U a b z a b z U a b z a a b U a b z, , 2 2 1, , 1 2 2, , , F5

we get the asymptotic expression

q
q

q
q

=
- +

-
- +

+
-⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟( )

( )
· ( )

( )
( )p n m

j

n j

n

n j
O

j
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1 cos 2

1 cos

1 cos 2

1
. F6

j m

Now, equation (F3) gives us thememory state at the nth iteration. Thefidelity obtained by using this state is
given by

åq q q= -( ) ( ) ( ) ( )F j n p n m F j m, , 1, , , , , F7
m

Hei Hei

where q( )F j m, ,Hei is the average fidelity when the probe is in the state ñ∣ j m, g , namely

ò òq y y y y= á ñ á Ä ñq q q q( ) ∣ [ (∣ ∣ ) ] ∣ ( )† †F j m g V U j m j m U V, , d d Tr , , . F8g P g g gHei , ,j

The average over the input states can be easily computed using the relationwith the entanglement fidelity,
equation (15). Using equation (35) for the gateUθ, we obtain the asymptotic expression

q
q

= -
+ - -

+
⎛
⎝⎜

⎞
⎠⎟( ) ( )( ) ( )F j m

j m

j
O

j
, , 1

1 2 2 1 cos

3

1
. F9Hei 2
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One can see directly that in asymptotics, q( )F j m, , is a arithmetic progression and q( )p n m, , is a
geometric progression. Inserting the above expressions into equation (F7)we obtain

q
q q

= -
- - +

+
⎛
⎝⎜

⎞
⎠⎟( ) · ( ) ( )F j n

j

n j

j
O

j
, , 1

1 cos

3

1 cos 1
. F10Hei 2

Comparingwith theMO fidelity in equation (57), we obtain that the persistence of the quantumadvantage tends
to q q= -( ) ( )N j j, 1 cos .

The exact dependence of the fidelity on n is shown infigure F1 for different values of the spin and for rotation
angle q p= . Interestingly, the persistence of the quantum advantage is exactly equal to the asymptotic value j 2
for all the values of j shown in thefigure.

We showed the explicit calculation of q( )F j m, , and q-( )p n m1, , when the interaction time is fixed at
every step.More general strategies where the interaction time is optimized at every step can be studied in the
sameway. In the large j limit, we find that such step-by-step optimization is not needed: thefidelity tends to the
same value, nomatter whether the interaction time is optimized at every step or once for all. As a result, the
persistence of the quantumadvantage is the same in both scenarios.

AppendixG. Robustness of the quantum strategy

Herewe evaluate thefidelity in the execution of the gate s= -q
q q ·V I ncos i sinn, 2 2

when the optimal
learning strategy for pure states is adoptedwith a probe in the thermal state r gn, . Thefidelity of this strategy is

ò òq g y y r y yá Ä ñq q g q q( ) ≔ ∣ [ ( ) ] ∣ ( )† †F j V U U Vn, , d d Tr , G1Pn n nHei , , ,j

withUθ as in equation (36). Inserting the expression for the state r gn, into the above equation, we obtain

åq g
g

g
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+
g( )

[( ) ]
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j
F j m, ,

sinh

sinh 2 1
e , , , G2

m

m
Hei

2
Hei

with q( )F j m, ,Hei defined as in equation (F8). The asymptotic expression for q( )F j m, ,Hei was computed in
equation (F9). Inserting this expression in the above equation, we obtain
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Figure F1.Degradation of thefidelity with the number of recycling steps. The dependence of thefidelity on the number n of recycling
steps is plotted for =j 100 (red solid line), =j 200 (green solid line), and =j 400 (blue solid line), in the case of rotation angle
q p= . The plot shows an inverse linear scalingwith the recycling step n. The dotted lines give the values of theMOfidelities for
=j 100 (red), =j 200 (green), and =j 400 (blue). The fidelity of this protocol falls under theMOfidelity when the number of

recycling steps is larger than j 2.
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AppendixH. Learning higher dimensional rotations for spin-kparticle

Following the structure of the optimal learningmechanism for spin 1/2, we choose thememory state to be ñ∣ j j, g

andwe let the two spins undergo theHeisenberg interaction

q= -
+q

⎡
⎣⎢

⎤
⎦⎥

· ( )( )U
j

J K
exp i

2

2 1
, H1k

where = ( )K K KK , ,x y z are the spin operators of the target spin.
Using the above strategy, we can explicitly compute the entanglement fidelity, given by

 q = áF Ä Ä ñá Ä F Ä F ñq q q
+ + +( ) ∣( ) [( )(∣ ∣ )] ( )∣ ( )( ) ( ) ( ) † ( ) ( ) ( ) ( )F j k V I j j j j V I, , , , , H2k k
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+ +( )(∣ ∣ ) [( )(∣ ∣ )( )] ( )( ) ( ) ( ) ( ) ( ) †j j j j U I j j j j U I, , Tr , , , H3k

R
k

P
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R
k k

R,Hei j

where F ñ = å ñ Ä ñ+
+ =-∣ ∣ ∣( ) k m k m, ,k

k m k
k1

2 1
being the canonicalmaximally entangled state of two spin-k

particles, R denotes a reference qubit, entangledwith the target spin-k particle, and q
( )V k is a rotation of θ around

the z axis in +k2 1 representation.
Inserting the formula of q

( )U k in equation (H2), using the expressions of theClebsch–Gordan coefficients, we
arrive at the asymptotic expression
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The average fidelity is then given by
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A similar calculation can be done for theMOstrategy consisting inmeasuring thememory state with POVM
= + ñá( ) (∣ ∣)ˆ ˆ

†P j j j j j2 1 , ,g g and then performing the conditional operation =q qˆ
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target spin-k particle, whichmeans rotate with angle θwith the rotated z-axis ĝez :
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By denotingj as the angle between ñ∣ j j, g and ñ∣ ˆj j, g , and τ the rotation angle for the rotation q q
( ) †

ˆ
( )V Vg

k
g

k
, , , the

entanglement fidelity can be rewritten as
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Performing the average, we obtain the asymptotic expression
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which can then be used to evaluate the average fidelity as

q q= -
+

- +
⎛
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⎞
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By comparingwith equation (H5), we again see that the error is exactly twice the error of the coherent quantum
learning strategy.
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