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Abstract	
Research suggests that increasing collaboration in knowledge production is explained by rising 

complexity of knowledge. Yet, there is little long-run, systematic, empirical evidence on the 

relationship between complexity and collaboration. A new database is introduced that identifies 

all (co-)inventors on more than 3 million US patents between 1836-1975. Empirical analysis 

reveals (1) collaboration on U.S. patents began to increase in the 1940s; (2) there is a robust 

positive relationship between complexity & collaboration; and (3) increasing complexity is 

associated with local rather than non-local collaboration.  
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Introduction	
In a recent paper, Wuchty et al. (2007) show that U.S. invention increasingly results from 

collaboration. Theories explaining scientific collaboration  are extensive, ranging from resource 

optimization (Eaton, 1951), increased productivity (de Solla Price, 1986), access to ideas and 

resources (Wray, 2002), to intellectual or social linkages (Thorsteinsdottir, 2000). A broad 

argument that runs through much of this work is that knowledge production is becoming 

increasingly complex, requiring inputs that exceed the capacity of individual inventors. For 

example, to generate new knowledge on particle physics the Large Hadron Collider Project pools 

resources from over 100 countries, linking thousands of scientists and engineers, many of whom 

bring highly specialized and unique skillsets to the research team. 

 Political and scholarly interest in collaboration and complexity rests upon the notion that 

both have a positive relationship with the value, quality or quantity of output. Collaborative work 

is found to spur creativity (Uzzi & Spiro, 2005), receive more citations (Glanzel, 2002), have 

higher acceptance rates for academic publication (Presser, 1980), raise productivity (Lee & 

Bozeman, 2005) and enable researchers to engage with larger research questions (Thagard, 

1997). In similar vein, complex knowledge is seen as a key source of competitive advantage 

(Kogut & Zander, 1992; Maskell & Malmberg, 1999; Sorenson, Rivkin, & Fleming, 2006) for 

firms and regions (Balland & Rigby, 2017). Access to complex knowledge allows inventors to 

engage with more advanced activities and capture the benefits that might arise from such 

engagement. These benefits may be pecuniary within firms or manifest as increased levels of 

economic development within society.  

 Surprisingly, empirical evidence on the relationship between complexity and 

collaboration is limited. There is no long-run, large scale, systematic evidence linking 

collaboration and complexity, primarily because empirical data on historical collaboration is 
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lacking. Most research on collaboration focuses on relative short time-frames, specific fields or 

projects. The same is true for measures of complexity because these are difficult to design, 

construct and operationalize over time and space.  

 The primary aim of this paper is to examine patterns of co-invention on US patents along 

the axes of collaboration, complexity and geography. Using state-of-the-art machine learning and 

text mining algorithms, I construct a unique inventor-patent database that identifies all (co-

)inventors and their geographical location(s) on more than 3 million patents between 1836 and 

1975. The raw data originate in the United States Patent and Trademark Office (USPTO) and in 

the HISTPAT database of Petralia et al. (2016). I merge the inventor collaboration data with 

information on the technology classes of US patents, available from the USPTO, to construct 

measures of complexity for each patent. The resulting data reveals the characteristics of US 

inventor collaboration on patents of varying complexity, across geographies and at different 

moments in time. The key findings of this study are that (1) collaboration has increased sharply 

since the 1940s; (2) there is a positive and significant relationship between complexity and 

collaboration across US patents; and (3) the increasing complexity of patents promotes local 

rather than non-local collaboration.  

 The rest of this paper is structured as follows. In the second section I motivate the 

research and discuss recent work concerning collaboration, knowledge complexity, the 

geography of collaboration, and I situate this work in the context of shifts in U.S. economic 

history. The third section describes the construction of the historical long-run U.S. patent-

inventor database. Section four presents the empirical analysis. The final section presents and 

discusses the key findings of this paper.  
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2.	Literature	

2.1	Economic	and	institutional	context		

This paper examines patterns of collaboration between inventors on U.S. patents between 1836 

and 1975. This time-window covers important transformations that significantly impacted the 

U.S. economy. The period 1870-1970 is often referred to as the “Golden Age” of U.S. invention 

(Akcigit et al., 2017; Gordon, 2016). Researchers of American innovation have long stressed the 

importance of understanding shifts in the U.S. institutional environment across this period that 

altered the nature of invention. 

 First, the construction and enforcement of a patent system created a market for 

technologies which allowed inventors to appropriate, sell or license their ideas, providing 

incentives for inventors to specialize in technology (Lamoreaux et al., 2013; Lamoreaux & 

Sokoloff, 1996). Although the United States was not the first country to develop such a system, it 

is generally perceived as constructing the first modern patent system in 18361. This system with 

certified examiners promoted the diffusion of technological knowledge through publication of 

patent records (Lamoreaux & Sokoloff, 1999; Lamoreaux & Sokoloff, 2005). 

 Importantly, under the 1836 US patent system, only individuals were able to apply for 

patents. Firms were not allowed to patent, even if the invention was created in their shop (Coriat 

& Weinstein, 2012). Fisk (1998) argues that part of this legislation rested upon the notion that an 

invention is the result of one person’s ‘genius’. To maintain their competitive position, firms 

purchased or licensed new technological ideas from inventors, thus securing the market for 

knowledge (Lamoreaux & Sokoloff, 2005). The construction of the US postal system 

significantly impacted technological progress. During the late 18th and early 19th century, the 

postal system rapidly extended communications throughout the country, providing access to 
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information and long-distance communication (John, 2009). Acemoglu et al. (2016) provide 

empirical evidence that U.S. counties with a post office had significantly greater patenting rates 

than counties without a post office. 

         Transformations of the US capitalist system also significantly affected US knowledge 

production. At the turn of the 19th and 20th centuries the US transformed from entrepreneurial 

capitalism to corporate capitalism, dominated by large firms (Coriat & Weinstein, 2012). With 

the anti-trust Sherman Act of 1890, large corporations faced increased competition and relying 

on the acquisition of technologies from external inventors was an increasingly risky strategy. As 

an alternative, firms began to construct in-house R&D facilities to internalize knowledge 

production, complicating questions over the ownership of intellectual property.  Although the 

1836 Patent Act only allowed individuals to apply for patents, knowledge ownership rights 

began to change with the emergence of the ‘shop right’ doctrine in the 1880s. Shop rights’ 

granted employees ownership of patents they invented, but employers were granted licenses to 

the patented technology if they funded the research producing the new ideas. By the early 1900s 

new technologies became increasingly complicated, demanding multiple and different skills and 

resources. Fisk (1998, p.1141) argues that “collective research and development had become the 

source of most inventions long before courts and the public finally realized it”. This new reality 

led to a 1933 Supreme Court ruling that ‘the respective rights and obligations of employer and 

employee, touching an invention conceived by the latter, spring from the contract of 

employment’ (in Coriat & Weinstein, 2012). Thus, if employees were ‘hired-to-invent’, the 

product of their labor now belonged to the firm. 
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2.2	Collaboration	

Scholars across different disciplines have recognized the increasing presence of collaboration in 

the production of knowledge. Since the 1950s, there is empirical evidence that knowledge 

production in general is no longer the product of the ‘lone-wolf’ (Patel, 1973) or individual 

genius (Merton, 1968), but increasingly the outcome of cooperation. This trend is observed in 

almost every field and across the globe (Crescenzi et al.,2016; Hoekman et al., 2010; Jones et al., 

2008; Merton, 1973; Wuchty et al., 2007). 

 The increasing complexity of contemporary knowledge production requires inputs that 

exceed that of the individual. De Solla Price (1963) refers to this trend as the shift to ‘big 

science’, emphasizing the increasing importance of complex science-based technologies (Noble, 

1979; Pavitt, 1984). Within such a system, knowledge producers collaborate to optimize 

resources (Eaton, 1951), increase productivity (de Solla Price, 1986), access complementary 

ideas and resources (de Solla Price, 1970; Wray, 2002) or for social reasons (Thorsteinsdottir, 

2000). Jones (2009) argues that the cumulative nature of knowledge produces a ‘knowledge 

burden’ that makes subsequent innovation all the harder. This knowledge burden is dampened to 

some degree by collaboration (Uzzi & Spiro, 2005). 

 Collaboration is positively associated with the value, quality or quantity of output. 

Collaborative work receives more citations than individual work (Frenken et al., 2005; Glanzel, 

2002), it has  higher acceptance rates in academic publication (Presser, 1980), it raises 

productivity (Lee & Bozeman, 2005) and enables researchers to engage with more significant 

research questions (Thagard, 1997). On the team-level there is ample evidence that diversity 

among collaborators increases performance (Burt, 2004; Uzzi & Spiro, 2005).  Faems et al. 

(2005) find that collaborating firms are more likely to produce commercially successful products 
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than non-collaborating firms. Katz & Martin (1997) provide a critical review on research 

collaboration. 

 An important subset of collaboration in knowledge production is inventor collaboration. 

The collaboration of inventors has received increasing attention in the last few decades, ranging 

from analysis of the composition of collaborative teams (Bercovitz & Feldman, 2011; Crescenzi 

et al., 2016) to network formation in groups of inventors (Cowan, Jonard, & Zimmermann, 2007) 

to examination of co-invention and innovative productivity (Breschi & Lenzi, 2016; Giuliani, 

Martinelli, & Rabellotti, 2016; Van der Wouden & Rigby, 2019). In this work, collaborative 

inventive activity is seen as an important aspect of the knowledge creation process, because it is 

a key mechanism through which knowledge flows between agents (Strumsky & Thill, 2013).  

 The analysis of inventor collaboration has been restricted to relatively recent data. Using 

USPTO patent records from 1975 to 1995, Wuchty et al. (2007) report that the average number 

of inventors on patents has been increasing over time. Others report similar findings (Crescenzi 

et al., 2016; Fleming & Frenken, 2007; Lobo & Strumsky, 2008). While this research shows the 

rise of inventor collaboration over the last 30-40 years, we have little information about the 

longer-run history of co-invention. Collaboration on inventive activities before 1975 remains 

largely a black box.  

2.3	Knowledge	complexity	

The production of knowledge is widely recognized as a critical source of competitive advantage 

and long-run economic growth (Romer, 1986; Solow, 1957). Combined with a growing 

awareness of the heterogeneity of firms (Nelson & Winter, 1982), this has prompted 

development of the knowledge-based view of the firm, in which coordination, recombination and 

integration of the (specialized) knowledge of individuals is seen as central to firm performance 
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(Grant, 1996; Almeida and Kogut, 1999). That not all knowledge is equal is clear from Polanyi 

(1958). Thus, some forms of knowledge impact the competitiveness of firms and regions more 

than others (Maskell & Malmberg, 1999; Asheim and Gertler, 2005). 

 There is growing awareness of the importance of complexity to the production and value 

of knowledge. Knowledge complexity is linked to the architecture of ideas by Simon (1962). 

Kogut & Zander (1992) argue that complexity is a critical dimension of what makes knowledge 

tacit. Different visions of knowledge complexity exist in the field. For Fleming & Sorenson 

(2001), complexity can be derived from the interaction between knowledge components and how 

easily these components can be combined. Others argue that knowledge is complex when it can 

surprise the observer and its characteristics cannot simply be linked to components (Axelrod & 

Cohen, 2000; Tsoukas, 2005). From both perspectives, complex knowledge is emergent and 

more likely to rely on tacit, non-ubiquitous knowledge than less complex knowledge. Like tacit 

knowledge, complex ideas tend not to flow readily over space (Balland & Rigby, 2017; Sorenson 

et al., 2006).  

 Many scholars have argued that knowledge is becoming increasingly complex over time, 

witnessed in the shift to big science and the importance of science-based technologies (Pavitt, 

1984; de Solla Price, 1963). Some stress this is troublesome as producing new knowledge 

becomes increasingly difficult and costly, slowing economic growth (Jones, 2009). Surprisingly, 

there is limited empirical evidence of the growth of knowledge complexity over time, though 

Balland et al. (2018) explore this question. This paper explores long-run shifts in knowledge 

complexity within U.S. patents and links collaboration to these shifts. 
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2.4	Geography	of	collaboration	

For many of the reasons discussed above, the production of complex knowledge is more often 

the result of collaboration than is the production of less complex knowledge. At this time, we 

know relatively little about the characteristics of co-inventors on patents that exhibit different 

degrees of complexity. Sorenson et al. (2006) and  Balland & Rigby (2017) use patent citation 

data to report that more complex knowledge does not flow as readily as less complex knowledge. 

However, it is unclear whether this means that there is an inverse relationship between the 

knowledge complexity of patents and the distance separating the co-inventors of these patents. 

 Within the economic geography literature debate is raging around the nature of 

knowledge flow and the extent to which local and non-local forms of interaction are more 

important for aggregate regional performance. On the one hand, it is argued that knowledge 

production depends heavily on face-to-face interactions provided by local buzz, the dynamics 

and interactions that arise from the co-location of economic agents (Storper & Venables, 2004).  

On the other hand, Bathelt et al., (2004) claim that knowledge pipelines linking clusters of agents 

across space have been given insufficient attention. There is plenty of empirical work in support 

of both sides of this debate, and growing awareness of the costs as well as the benefits of 

interaction (Esposito & Rigby, 2018). 

 To the extent that knowledge varies in quality, and that more complex knowledge tends 

to be more valuable, examining the geography of co-inventorship across patents characterized by 

different levels of complexity would add to these debates. This question is explored in the 

historical analysis of collaboration and complexity presented below. 
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3.	Data		

3.1	Searching,	matching	and	recording	

The data generated for this work extends the publicly available HistPat database (Petralia et al., 

2016). HistPat contains geographical information for historical patents provided by the USPTO 

between 1790 and 1975. The authors of this work scraped text from digitized historical patent 

files available from Google and EspaceNet, and recorded the first inventor and a geographical 

location for each patent. Unfortunately, the early versions of HistPat provided no information for 

any possible additional co-inventors.  

 I contribute to these data by identifying all inventors and their geographical locations for 

each USPTO patent generated within the U.S. between 1836 and 19752. I use the raw scraped 

text files for the 4,125,734 patents and examine whether each word in these text files is part of a 

first or family name, or a geographical location in the US. Figure 1 shows an example of the data 

for USPTO patent 1. The upper part of the image is the scanned copy of the original document. 

The lower part is the digitized version of this document, published by Google Patents. Note that 

the quality of the original patent document may have deteriorated over time, resulting in 

digitized documents that can be difficult to read by Optical Character Recognition software and 

ultimately misspelled texts. The data for the lists of first and family names comes from the 

digital USPTO patents from 1975 up to 2005 (Lai et al., 2012), inventor names in HistPat, and 

the U.S. Census. The data for the geographical locations come from the same sources as well as 

the U.S. Bureau of Economic Analysis.  

 Once a (fuzzy) match between a word on the patent text with one of the lists with names 

and/or location occurs, a series of complex algorithms is run. These algorithms can broadly be 

placed in two groups. The first set examines the words before and after the matched word to 
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determine whether the matched word is a name or geographical location. For example, the word 

“EDISON” can be matched to inventor “THOMAS EDISON”, but also to the location 

“EDISON, NEW JERSEY”. Examining the text before and after the matched word helps to 

distinguish between name and location. At the end of this stage, more than 8 million names on 

the 4.1 million patents are recorded. For about 60% of these observed names, the algorithms also 

associate a location. All the words that are categorized as geographical locations but can’t be 

linked to a name on the patent are ignored. 

 The second set of algorithms record a series of more than 30 statistics for each matched 

word. These statistics are used for the machine learning exercise, discussed below, to determine 

whether an observed name is truly an inventor and not a witness, examiner, corporation or 

reference. For instance, once a name is observed I count how often it occurs in the text, how far 

the name is from the word “inventor”, how many words are between the observed name and the 

top and bottom of the patent, if it is adjacent to corporate identifications, and so on. Similar 

operations are undertaken for an observed geographical location that is linked to a name, but 

those statistics are only used to generate a likelihood measure of a correct name-location link. 

Table 1 shows a truncated snapshot of the resulting database. Note that the algorithms have been 

able to match words from the digitized text in Figure 1 to actual names and locations. At this 

stage it is still unclear whether the observed name corresponds to an inventor. 
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Figure 1. Photo-copied and digitized records of USPTO patent US1A 
 

 
 
 
Table 1. Observed names and geographical locations for USPTO patents (truncated) 
 
Patent  Year  Possible Inventor  City  County  State  A1  Ax 

1  1836  JOHN RUGGLES  THOMASTON  KNOX  MAINE  3  … 
2  1836  GEORGE SULLIVAN        0  … 
2  1836  FRANKLIN BROWN        0  … 
3  1838  FOWLER M RAY  CATSKILL    NEW YORK  ‐48  … 
4  1853  BENJAMIN IRVING  GREENPOINT  KINGS  NEW YORK  0  … 

	



14 
 

3.2	Supervised	machine	learning	to	identify	inventors	
The next step is to distinguish between inventors and non-inventors in the data. Non-inventor 

names can correspond to other entities that have name-like characteristics. I use supervised 

machine learning techniques to classify each of the 8 million observed names as either an 

inventor (1) or a non-inventor (0). Each observed name on a patent is called an event. 

 To distinguish between inventors and non-inventors, I use supervised binary 

classification machine learning algorithms. These techniques typically make use of three 

different datasets. The training set contains verified or known information on events and the 

corresponding characteristics. Machine learning algorithms can be deployed to this dataset to 

model and learn which characteristics and structure among the characteristics can best classify 

events. A validation dataset is used to tune the parameters of the candidate models and prevent 

the models from over-fitting to the training data. A test set is used to evaluate the performance of 

the candidate models and select the final model. The final model is used to predict for the events 

in the mined data whether each event is an inventor. 

 To construct the co-inventor data I follow this approach, but have to overcome a key 

issue. The only training data that can be built for this project is the first inventor data recorded in 

HistPat. If the observed names generated by my algorithms match with the inventor listed on the 

patent recorded in HistPat, I have a known event for an inventor with corresponding 

characteristics3. However, I have no information on known events for non-inventors. Such 

situations call for a one-class classifier approach in which only characteristics for one class can 

be learned. Events are classified into that class if their characteristics fit into the class given 

certain thresholds derived from distributions in the training data. The quality and accuracy of 

one-class classifiers often underperform multi-class classifiers because they can only learn from 

one class. Based on this underperformance, I follow a multi-class classifying approach4. 
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 To be able to continue with the multi-class classifier approach, I generate artificial known 

event data for non-inventors. From the work of Wuchty et al. (2007) it is reasonable to assume 

that the average number of inventors on a patent is well below two before 1975. Given the fact 

that there are more than 8 million events for 4 million patents a fair share of events are non-

inventors. I take a random sample of 30% of all the events that are not known inventors and 

artificially classify them in my training data as known non-inventors5. The remaining 70% of not 

known inventors are excluded from the training data. The training data now consists of over 3 

million events with known inventors and more than 1 million artificial known non-inventors. 

Although there might be false-negative events in the latter group (non-inventors that are actually 

inventors), the majority of events provide data to learn from.    

 There is an expansive battery of machine learning algorithms available that can be used 

to train a supervised binary classification model. It is uncertain which algorithm will generate the 

best performance. Therefore, it is best practice to explore a variety of algorithms and examine 

fitness criteria. Some of the algorithms have multiple parameters that can be optimized to 

increase the performance of the models. This leads to extensive searches through parameter 

space and requires considerable computing power. The final trained model is fit using gradient 

boosting machine algorithms.  

 The next step is to disambiguate the inventors that are assigned to patents and assign each 

unique inventor with a classifying ID. This means that we want to know if Josephine Bruin 

living in Los Angeles in 1919 is the same inventor as Josephine Bruin living in Los Angeles in 

1921. To deal with such issues, many disambiguation approaches have been developed. I loosely 

follow Ventura et al. (2015) and construct a supervised machine learning approach. This 

approach involves a training, validation and test dataset. My training and validation dataset is the 
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Lai et al. (2012) database that holds information on disambiguated inventors on US patents 

between 1975 and 2012. The test database is the event data I have mined. All databases hold 

event-level information with a series of similar characteristics. Importantly, the training database 

also holds information about which inventors are the same.  

 The disambiguation approach involves the following steps: 

1. Select characteristics on which pairs of inventors are to be compared. These 

characteristics need to occur in all databases. I select: first name, middle name, last name, 

year, city, county, state, technology class (1:5).  

2. Generate for each of the characteristics a method to compare similarity between two 

strings (i.e. ‘Josephine’ and ‘Josphine’) 

3. Pair-wise compare all inventors in the training database and find the similarity score for 

each of the characteristics. This results in 12 similarity scores. 

4. For each pair-wise comparison in the training database we know whether the pair of 

inventors are the same unique inventor. We can classify the vector of similarity scores 

with a 1 if the compared inventors are the same and 0 if they are not. 

5. Train a series of supervised machine learning algorithms to ‘learn’ which combination of 

similarity characteristics correspond to pair-wise comparison of identical (1) and different 

inventors (0). The trained model can be used to predict whether a vector of similarity 

characteristics correspond to the same inventor or not. 

6. Repeat step 3 and 4 for the newly mined event data. This results in hundreds of millions 

of vectors with similarity characteristics.  

7. Apply the model generated in step 5 to the data generated in step 6. 

8. Assign the inventors that are identified as the same individuals with the same ID.  
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 The resulting inventor-patent database identifies 1,922,754 inventors, with 4,437,960 

observations on 3,365,253 unique US patents between 1836 and 1975. Figure 2 shows the annual 

number of patents granted by the USPTO (left axis) and the percentage of the patents for which 

at least one inventor is identified. On average approximately 80-90% of the patents produced 

each year are captured in the new inventor-patent dataset. The wide coverage of the annual 

number of patents and lack of theoretical or empirical motivations to expect systematic bias in 

the unobserved patents suggests that this database is a representative sample of the historical 

USPTO patents granted between 1836 and 1975. 

 Table 2 shows the top 10 inventors identified by these exercises. All names in this table 

are well known inventors. Surprisingly, Thomas A. Edison is not the most observed inventor in 

our dataset, although he is generally regarded as the most inventive individual in the late 19th and 

early 20th century. Time Magazine assigns 1,093 patents to his name, while I only find 536 

patents on which he is an inventor. There are at least two reasons why Edison might not be 

identified on the other 500 or so patents. First, the quality of the photo-copy may have been too 

poor to read. Additionally, Edison’s name occurs on a disproportionately large numbers of 

patents as a reference and later as a firm name or assignee. The machine learning algorithms 

have learned this and require a large number of positive scores to identify “Thomas A. Edison” 

as an inventor. If the algorithms can’t construct these scores in the patent document, the 

probability that “Thomas A. Edison” is truly an inventor of the patent is assessed as low by the 

learning algorithm and is not regarded as such. This ‘Edison effect’ is not likely to affect other 

inventors because they do not occur so often on other patents as a reference, firm name or 

assignee. The number of patents associated with other top-inventors in the database closely 

reflects the counts other data-sources associate to these inventors. 
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Table 2. Top 10 inventors in database 
Number Name Patents 
1 Francis H. Richard 738 
2 Thomas A. Edison 536 
3 Elihu Thomson 516 
4 John F. O’Connor 511 
5 Edwin H. Land 465 
6 Clyde C. Farmer 458 
7 George Albert Lyon 453 
8 Carleton Ellis 481 
9 Louis H. Morin 406 
10 Thomas E. Murray 388 
 

Figure 2. Annual number of patents granted and percentage of patents in database  
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4.	Empirical	results	

4.1	Collaboration	on	US	patents	

Collaboration on US patents has increased over time. Figure 3 indicates that up until the 1920s, 

the annual share of patents generated by co-inventors remained below 20 percent. After the 

1920s a rapid increase in rates of co-invention occurs and by the 1960s about 30 percent of 

patents result from collaboration. By the 1970s, approximately 40 percent of patents result from 

co-invention. 

 The average number of inventors on patents has also expanded over time. Figure 4 shows 

the annual average number of inventors on U.S. patents. The number of co-inventors on patents 

remained relatively stable until the 1940s. However, after 1940, a steady increase in the number 

of inventors on patents is observed. By 1970 the average team size is 1.6 inventors per patent 

compared with a value of about 1.2 inventors at the end of the 19th century. The same trend is 

observed if only collaborative patents are considered. The in-set in Figure 4 shows that in the 

1940s the average team-size increases rapidly. This indicates that the increase in the average 

number of inventors on a patent is not produced by fluctuations in the annual number of single 

inventors, but can be attributed to growing average team-sizes. Note that the figures presented 

here for the late 1970s align closely with the average numbers documented for 1975 in Wuchty 

et al. (2007).  

  



20 
 

Figure 3. Share of collaborative patents between 1836 and 1975 
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Figure 4. Average number of inventors on a patent between 1836 and 1975 
 

 

	

4.2	Complexity	and	collaboration	

Did the complexity of patents increase over time, and is there a positive relationship between 

complexity and collaboration? The complexity measure of a patent originates in  Fleming & 

Sorenson (2001) and is based on the NK model of Kauffman (1993). Patent examiners classify 

each patent into technological classes. The patents examined here are classified in 438 primary 

classes that can be disaggregated to 10,562 mainline classes and 153,305 sub-classes. The 

proposed complexity measure is based on the ease with which each mainline class can be 

recombined with other mainline classes on a single patent. That is, if a mainline class co-occurs 

relatively often with other mainline classes on a patent, the ease of recombination of the 
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technology class is relatively high. Formally, the ease of recombination of mainline class i is 

defined as 

 

 Ei  =  (1) 

 

 However, the number of mainline classes increases rapidly over time and has an 

influence on the ease of recombination measure. Patents in 1840 are classified in 372 mainline 

classes, while the 1970 patents are classified across 7,722 mainline classes. This means that the 

ease of recombination of technology classes in early year patents is relative low compared to 

later year patents because there are fewer classes in which a patent can be located.  As a control I 

construct a standardizing coefficient S defined as 

 

 
 

(2) 

 

This standardizing coefficient S is used to get an adjusted ease of recombination score 

 

  (3) 

 

The complexity of patent l is defined as the number of mainline classes divided by the sum of the 

ease of recombination of these classes. Formally,  

 

 Complexity l  =  (4) 
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The ease of recombination for a patent is calculated using a ten-year window of patent 

recombinations recorded up to the grant year date of the focal patents. Thus, the ease of 

recombination for technology classes shifts over time. 

 Figure 5 shows that the average complexity of patents has been increasing over time. The 

inset shows that the average complexity increases through the nineteenth century, falls from the 

1920s to the mid-1940s and then increases once more. The period of initial increase matches the 

Second Industrial Revolution (Gordon, 2016) and the ‘golden age’ of US invention (Akcigit et 

al., 2017). The drop in complexity after the 1920s aligns with the Great Depression. The increase 

in complexity after the 1940s is consistent with the literature documenting the shift to ‘big 

science’ in knowledge production.  

 The average complexity of patents varies across the six broad technological categories 

defined by Hall et al. (2001). Up until the 1900s the ‘Drugs & Medical’ patents were most 

complex. Throughout the first half of the 20th century, patents in the ‘Computers & 

Communication’ category are most complex, on average. This period marks the development of 

the telephone. The decrease after the 1920s might be the result of the ‘exhaustion’ of this 

generation of communication technologies. Indeed, complexity rises again in the 1950s when 

computer related technologies begin to emerge. In the 1960s ‘Chemicals’ patents are on average 

the most complex. Patents in the ‘Drugs & Medical’ category increased in complexity when the 

production of drugs became integrated with synthetic organic chemistry post World War II 

(Drews, 2000). Remarkably, the ‘Mechanical’ category has long been among the most complex 

categories, but falls to the bottom of the complexity ranking by 1975.  
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Figure 5. Average complexity per technological category between 1836 and 1975 

 
 
    
 
 A key question in this paper is whether there is a positive relationship between 

complexity and collaboration at the patent level. Figure 6 plots the annual correlation between 

complexity and collaboration on all patents by year. There is no consistent and systematic 

relationship between complexity and collaboration before the 1920s. During the 1920s there is a 

significant but weak negative relationship between complexity and collaboration. Interestingly, 

from 1940s onwards there is an increasing, significant and positive relationship, suggesting that 

increasing complexity is associated with a higher probability of a patent being produced through 

collaboration. 
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Figure 6. Correlation between complexity and collaboration on a patent between 1836 and 
1975  
 

 

 These ideas are extended in models examining the relationship between complexity and 

collaboration. The dependent variable is a binary variable indicating whether the patent is the 

result of a collaboration (1) or not (0). The key independent variable of interest is the complexity 

of the patent. The second independent variable is a time dummy that indicates whether the patent 

is produced after 1940 or not. This cut-off point is chosen because there is a significant structural 

break in the trend (Bai & Perron, 2003; Zeileis et al., 2003). Figure 6 clearly indicates there is a 

structural relationship between complexity and collaboration after 1940. Given the evidence on 

increasing collaboration and complexity over time presented above, a positive coefficient is 

expected. To explore whether the nature of the relationship between complexity and 

collaboration shifts after 1940 an interaction terms is added as the product of the time dummy 
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and complexity. City, year and technology fixed effects are added to the model. It is plausible 

that specific city-level characteristics can promote or hinder collaboration. Year fixed effects 

control for time-specific shocks in collaboration across the sample. Technology fixed effects 

control for the possible heterogeneity in the propensity to collaborate across technology classes. 

The sample size is restricted to patents for which the primary inventor (first listed on patent) 

lives in an MSA to satisfy the requirements for the city fixed effects variable. The unit of 

analysis is the patent. Each patent is assigned to the MSA of the first inventor.     

 The results presented in Table 3 indicate that there is indeed a positive and significant 

relationship between complexity and collaboration on a patent, regardless of the model 

specification. Model 1 is the baseline model and reports a positive and significant relationship 

between complexity and collaboration. A coefficient of β1 = 0.15 means that a 2.71 factor6 

increase in complexity is associated with a change in the odds of a patent being a collaboration 

by a factor of 1.16. In models 2-6, technology, city and year fixed effects are introduced. The 

estimated coefficient for complexity remains roughly the same value and is always significant.  

 In model 7 the time dummy and its interaction with complexity are introduced. The 

coefficient for complexity now corresponds to patents produced before 1940 (dummy variable is 

zero). For these patents, controlling for city and technology fixed effects, a coefficient of β1 = 

0.06 means that a 2.71 factor increase in complexity is associated with a change in the odds that 

a patent is produced by more than one inventor by a factor of 1.06. The significant coefficient for 

the interaction term between the time dummy and complexity indicates that post-1940, an 

increase of one unit of complexity raises the log odds of a patent being generated through 

collaboration by about 50% over the pre-1940 log odds ratio. The results presented here provide 
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the first long-run, empirical evidence of a positive and significant relationship between the 

complexity of ideas and co-inventor collaboration. 

 
Table 3. Results of Logistic Regression with fixed effects 

Dependent variable Is patent collaborated (0/1)? 

(1) (2) (3) (4) (5) (6) (7) 

Complexity (log) 0.15*** 0.10*** 0.15*** 0.10*** 0.10*** 0.03*** 0.06*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 

Dummy > 1940 0.54*** 

(0.01) 

Complexity (log) * 
Dummy > 1940       

0.03*** 

(0.004) 

Fixed Effects:        

- Technology        

- City        

- Year        

Constant -1.23*** -1.78*** -1.38*** -1.78*** -1.09*** -1.88*** -1.95*** 

(0.003) (0.02) (0.12) (0.13) (0.42) (0.44) (0.13) 
N 1,764,733 1,764,733 1,764,733 1,764,733 1,764,733 1,764,733 1,764,733 

Log Likelihood -997,311 -976,428 -993,265 -974,236 -972,388 -960,603 -964,249 

AIC 1,994,627 1,953,710 1,987,254 1,950,044 1,945,059 1,923,055 1,930,074 

*p < .1; **p < .05; ***p < .01    
 
 

4.3	Geography	of	co‐invention	

This final section of analysis explores the geography of collaboration in U.S. patent production 

since 1836. The data used for this analysis comprise only those patents for which all inventors 

reside in a metropolitan area. 

Geographical	distance	of	co‐invention	

Geographic patterns of co-invention have changed over time. Figure 7A reveals that there is an 

increase in the share of between-city co-invention. Between-city collaboration increased from 
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roughly 5 percent throughout the 19th century to over 10 percent in 1975. In addition, Figure 7B 

shows that the average geographic distance between co-inventors from multiple cities doubled 

from about 250 kilometers in the early-19th century to around 750 kilometers by 1975. 

Interestingly, the increase in average distance of between-city co-inventors seems to stagnate 

since the 1940s. This might have to do with the dynamics in the spatial distribution of the US 

population and inventors as the US expanded to the West. Such expansion might have spurred 

coast-to-coast collaboration in the initial years of settlement in the West, but leveled off as the 

population on the west-coast started to grow and provided an increasing local pool of possible 

(co-)inventors, limiting the need for long-distance coast-to-coast collaboration. Indeed, Hicks et 

al. (2001) show the increasing importance of west-coast patenting in the US innovative activity 

from 1983 to 1997. By the mid-1990s the Pacific census region is producing the most patents in 

the US.     
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Figure 7. (A) Percentage of between-city co-invented patents and (B) average distance 

between-city co-inventors over time 
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Within	and	between	city	collaboration	

Collaboration occurs primarily by inventors from the same city. Figure 8 shows that within-city 

collaboration is growing at a faster rate than between-city collaboration, even as the cost of 

communication between cities has declined. Single authorship of patents is dropping rapidly 

across all categories. Although these general trends are observed across the six aggregate 

technology categories, patterns of collaboration differ across categories. For instance, since the 

1940s the majority of patents in the ‘Chemicals’ category result from collaboration, whereas it 

takes until the 1960s for patents in the ‘Mechanicals’ and ‘Others’ category to reach this point.7 

 

Figure 8. Collaboration across technology categories 
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Geography,	collaboration	and	complexity	

Is complexity associated with within-city rather than between-city collaboration? Collaboration 

on complex patents might tend to be local, because complex, tacit forms of knowledge are 

known to be difficult to move over space. At the same time, Van der Wouden and Rigby (2019) 

report that cities with more specialized knowledge cores build longer co-inventor pipelines than 

more diversified cities. Thus, the geographical pattern of collaboration and its relationship with 

complexity is still unclear. 

 To examine the geographical patterns of collaboration three separate analyses are 

performed. First, logistic regression models are estimated. The unit of analysis is the patent. Only 

collaborative patents are selected for which all inventors resided in an MSA. The dependent 

variable indicates whether a collaborative patent is the result of a within-city (0) or between-city 

(1) partnership. The key independent variable is, once more, the complexity of the patent. An 

additional independent variable controls for the number of inventors on a patent. Larger teams 

might be more likely to be non-local. If a patent becomes complex to the point that inputs from a 

larger number of inventors is needed, the probability this input is not found locally might 

increase too. City, year and technology fixed effects are added to the model. 

 To isolate the effect of complexity on collaboration, a matching procedure has been 

undertaken in which between-city collaborated patents are matched to within-city collaborated 

patents with identical scores on the number of inventors, city, year and primary technology class. 

Unmatched observations are dropped. The outcome is a sample with balanced covariates for 

within and between-city collaborated patents, except for the complexity score of the patent. 

 The results presented in Table 4 demonstrate a negative and significant relationship 

between complexity and between-city collaboration. In model 1 the estimated coefficient for 
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complexity (β1 = -0.08) indicates that a 2.71 factor increase in the complexity score is associated 

with an expected change in the odds of between-city collaboration by a factor of 0.92. Similar 

results are found for models with different specifications. In model 6, controlling for Number of 

Inventors and year, city and technology fixed effects, the estimated coefficient for Complexity (β-

1 = -0.16) suggest that a 2.71 factor increase in the complexity score is associated with an 

expected change in the odds of between-city collaboration by a factor of 0.85. The Number of 

Inventors on a patent has a positive and significant relationship with between-city collaboration 

in all models. In model 6, controlling for Complexity and year, city and technology fixed effects, 

the estimated coefficient for Number of Inventors (β2 = 0.43) indicates that for every additional 

inventor on the patent, the odds of the patent resulting from inter-city collaboration increases by 

1.54. Together, these results indicate that, controlling for the number of inventors, complex 

patents are more likely to be produced by inventors in the same city. 

 A second analytical model explores the relationship between the average distance 

observed among co-inventors from different cities and the complexity of the patent1. Figure 9A 

plots these variables and a non-linear concave relationship is observed. Each point is a co-

invented patent by inventors from different cities. The colors indicate the decade the patent was 

granted. The histograms on top and next to Figure 9A indicate the density of data-points on the 

complexity and distance axes, respectively. The figure suggests that initially the average 

geographical distance between inventors rises with the complexity of a patent. Perhaps this 

increase results from the lack of motivation for inventors to collaborate with non-local 

individuals on patents of rather low complexity – the perceived benefits of collaboration might 

not outweigh the extra costs of collaborating across distance. When complexity increases the 

                                                 
1 Note that co-invented patents produced by inventors from the same city are excluded, because it is impossible to 
measure the geographical distance between these inventors in the historical patent data 
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benefits of collaboration may increasingly outweigh these costs, giving rise to an upward trend. 

However, when patents become increasingly complex, collaboration becomes gradually more 

local as indicated by the negative trend-line. This suggests that inventors of complex patents rely 

more strongly on the geographical co-location of inventors than inventors of less complex 

patents do. 

 
 The third piece of analysis focuses on within-city dynamics and links these dynamics to 

the average complexity of patents in a city. Operationalizing within-city collaboration with a 

metric distance of zero is problematic, because it assumes that the average distance between 

inventors is the same for all cities and over time. To allow for variation on the city-level, a 

measure of inventor density is constructed as the annual number of inventors in the city divided 

by the area of the city measured in square kilometers. In cities where density is higher the 

average geographical distance between inventors in that city is lower. In such cities, inventors 

will have greater opportunities for coordinated and unexpected interactions, enhancing 

knowledge spillovers between inventors (Carlino et al., 2001; Lobo & Strumsky, 2008; van der 

Wouden & Rigby, 2019).  

Figure 9B plots the average complexity of all patents in a city in a given year by the 

inventor density of this city at that time. The color of the points indicates the year of the 

observations, grouped 30 year time-windows. The figure shows a significant and positive 

relationship between the inventor density of a city and the average complexity of the patents in a 

city in a given year. This suggests that in cities where the average distance between inventors is 

smaller, the complexity of patents is on average greater. Figure 9C plots the same relationship 

but for the five 30 year time-windows separately. The average complexity and inventor density 

of cities are increasing over time. For all time-windows the relationship between average 
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complexity and inventor density is positive and significant, except for the observations in 1860-

1880. Interestingly, the slope of the relationship is getting steeper over time, indicating that city-

level inventor density and the average complexity of the patent stock become more strongly tied 

together in recent decades. Together, the results of the three analyses indicate that increasing 

complexity on patents is associated with within-city rather than between-city collaboration. 

 
Table 4. Statistical models on within- and between-city collaboration 

Dependent variable: Patent is collaborated within-city (0) or between-city (1) 

(1) (2) (3) (4) (5) (6) 

Complexity (log) -0.08*** -0.07*** -0.32*** -0.18*** -0.15*** -0.16*** 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Number of Inventors 0.34*** 0.38*** 0.36*** 0.38*** 0.40*** 0.43*** 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Fixed effects:       

- City        

- Year       

- Technology        

       

Constant -2.14*** -1.80*** -1.78*** -2.29*** -2.15*** -1.69*** 

(0.03) (0.07) (0.68) (0.14) (0.75) (0.75) 

N 160,484 160,484 160,484 160,484 160,484 160,484 

Log Likelihood -76,919 -75,809 -76,768 -76,177 -76,066 -75,098 

AIC 153,844 151,983 153,775 153,131 153,143 151,566 

*p < .1; **p < .05; ***p < .01 
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Figure 9. Relationships between (A) average distance and complexity,, (B) inventor density 
and average complexity of city  
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5.	Conclusion	

This paper examined historical U.S. inventor collaboration for the years 1836 to 1975 and 

presented a series of stylized facts on the collaboration, complexity and geography of co-

invention for this largely unexplored era of patent production. Recent research has shown the 

increasing importance of collaboration in the production of knowledge. The key underlying 

assumption is that the rising complexity of knowledge requires resources that exceed the inputs 

of individuals. However, little empirical evidence on the relationship between collaboration and 

complexity has been available. The key findings of the empirical analysis in this paper are that 

(1) collaboration has increased sharply since the 1940s; (2) there is a positive relationship 

between complexity and collaboration on US patents; and (3) increasing complexity on patents 

promotes within-city collaboration. 

 Using the raw text files of the HistPat database I utilize search, match and machine 

learning techniques to identify and disambiguate all (co-)inventors including their geographical 

location as recorded on US patents between 1836 and 1975. The resulting inventor-patent 

database contains about 80-90% of the patents granted by the USPTO and identifies 1,922,754 

inventors, from 4,437,960 observations on 3,365,253 unique patents. These data are used to 

examine co-invention on U.S. patents.  

 The research finds evidence for a growing tendency to collaborate on US patents between 

1836 and 1975. This finding is in line with other research on inventor collaboration on US 

patents  (Wuchty et al., 2007)  and scientific collaboration on papers (Jones et al., 2008) that both 

extend back to 1975. The observed increase in the percentage of patents collaborated, along with 

the growth in average team-size after the 1930s might be linked to the 1933 US Supreme Court 

ruling to assign the rights of technologies developed by inventors hired-to-invent directly to the 
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firm. This provided an incentive for firms to recruit and hire inventors, instead of buying licenses 

to patented technologies by inventors operating privately. In doing so, the firm becomes a 

platform in which inventors can collaborate instead of being direct competitors. More general, 

infrastructure and transportation developments throughout the 19th and 20th century have made it 

easier for inventors to collaborate across increasing distance. By the 1920s almost all major US 

cities were connected by the railroads; in 1930 about 40% of US homes had a telephone 

connection and 20% of Americans had access to an automobile. 

 The observed robust, significant positive relationship between complexity and 

collaboration on US patents confirms the theoretical claim that complexity and collaboration are 

significantly correlated. In addition, the evidence presented in this paper suggests that the impact 

of complexity on the odds of a patent being collaborated becomes markedly stronger after the 

1940s. This supports a shift to ‘big science’ after World War II, in which the complexity of 

knowledge production accelerated. However, the directions of possible causal links between 

complexity and collaboration are not investigated and remain unclear.  

 Co-invention on US patents has a distinct geography. Most metropolitan collaboration is 

mostly between inventors from the same city. Moreover, as complexity increases, the odds of 

within-city collaboration increases and the average distance between inventors on patents 

decreases. Moreover, cities with higher inventor density – a crude measure of within-city 

distance of inventors – produce on average more complex patents than cities with lower inventor 

density do. These findings suggest that the production of complex knowledge relies more 

strongly on the geographical co-location of inventors than does less complex knowledge. Local 

collaboration allows repeated face-to-face meetings, spontaneous encounters and other 

interactions facilitated by the local buzz, than non-local collaboration. These interactions might 
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be particularly important for the production of complex knowledge, because such knowledge 

relies difficult to diffuse tacit knowledge. 

 These findings have a number of implications. The role of teamwork in the production of 

knowledge has been shown to increase following a rather linear trend between 1955 and 2000 

(Wuchty et al., 2007). With regards to patent data, we now know that this trend starts around the 

1940s – before the 1940s there is no clear trend. Although not explicitly tested in this research, 

this change in patterns of collaboration correspond with the 1933 Supreme Court ruling to assign 

the patent rights directly to the firm if the inventors are on their pay-roll. Organizing the 

production of patents on the level of the firm, inventors become collaborators instead of 

competitors. This finding is in line with the general research findings put forward by Lamoreaux 

& Sokoloff (1996; 1999; 2005) and Lamoreaux et al. (2011).  

 The significant and positive relationship between the complexity of a patent and 

collaboration can be linked to the ‘burden of knowledge’ debate. Following the arguments put 

forward in Jones (2009), the accumulative nature of knowledge requires its subsequent producers 

to be knowledgeable of increasing stocks of knowledge. Since the resources of economic agents 

are limited, individual specialization and teamwork is an interesting strategy to produce 

knowledge. To some extent, one can think of collaboration and patent complexity this way. 

Collaborative patents tend to be more complex because they combine the specialized sets of 

knowledge of individual inventors. Indeed, highly specialized inventors only have expertise in a 

very limited number of technology classes and when combined on patents provide very complex 

patents. Tracking the average complexity of patents over time, the plateau it reaches in the first 

half of the 20th century perhaps indicates a technological paradigm shift in which the burden of 
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knowledge decreases because of the emergence of radical new technologies lacking burdening 

stocks of knowledge. 

 The local nature of collaboration has important implications for the diffusion of 

knowledge across space. Although the localized nature of knowledge flows has been long 

recognized (see Almeida & Kogut, 1999; Audretsch & Feldman, 1996; Breschi & Lissoni, 2009; 

Feldman & Kogler, 2010; Jaffe, Trajtenberg, & Henderson, 1993; Malmberg & Maskell, 2002), 

how complexity mediates the relationship between collaboration and geography has largely 

remained unexplored. While Balland & Rigby (2017) report an uneven spatial distribution of 

knowledge complexity across US cities and Sorenson et al. (2006) illustrate how knowledge 

complexity affects the diffusion of knowledge across agents, the findings in this paper highlights 

that inventors are more likely to collaborate with local inventors when knowledge becomes 

increasingly complex. This suggests that complex knowledge is stickier than less complex 

knowledge because localized patterns of collaboration facilitate geographical lock-in of 

knowledge.  

 This stickiness of complex knowledge speaks to the literature on urban agglomeration 

and the geographic location of firms and industries. Economic agents sourcing non-local 

complex knowledge might face barriers not present sourcing less complex knowledge, providing 

incentives to co-locate with the specific complex knowledge. The processes of co-location set in 

motion important agglomerative dynamics, because it provides the current local economic agents 

with greater opportunities to collaborate local, enhancing the attractiveness of co-location even 

further. Indeed, from this perspective the local nature of collaboration on complex knowledge 

gives rise to forces of agglomeration and shapes uneven distributions of complex knowledge 
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across space. The tendency of industries to co-locate in space might relate to the complexity of 

their knowledge (see Sorenson et al., 2006).   

 The paper presented here has at least two major short-comings. First, this paper has 

focused on inventors located in US cities. In doing so, the geography of collaboration as 

presented in this work is biased because it doesn’t include rural-urban and foreign collaboration. 

Second, the poor quality of the text files makes it difficult to retrieve all (co-)inventors and 

geographical locations on patents. As a consequence, about 5-20% of patents per year are 

missing in the database.  

 Future research could focus on the understanding of patterns of rural-urban and foreign 

collaboration on US patents and examine the direction of causality between complexity and 

collaboration. Moreover, little is known on the mechanisms that structure tie formation between 

co-inventors and to what extent these structures have evolved over time. In addition, much 

remains unclear on how the movement of inventors in space affects patterns of collaboration and 

impact urban networks of invention. Finally, the role of firms has been neglected and remains 

unclear in collaboration on historical US patents. 
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Footnotes	
                                                 
1 US Congress, “An Act to Promote the Progress of Useful Arts”, July 1836 

2 The analysis is limited to 1836 because before 1836 the USPTO did not make use of patent examiners. It 

is generally accepted that this institutional change has significantly impacted US patenting activity 

(Lamoreaux et al., 2011; Sokoloff, 1988).  

3 This assumes that the scraped inventor names recorded in the HistPat data are correct. 

4 Several extensive one-class classifier algorithms are ran. None came close to the performance of multi-

class classifiers.  

5 In larger samples the quality of my trained models decreases, indicates that I falsely artificially assign 

inventors to the non-inventor class, obscuring the learning process. In smaller samples there are not 

enough correct non-inventors artificially assigned as non-inventor in the training data to learn from.  

6 The complexity score is log transformed using natural logarithms, for which the base is approximately 2.71.  

7 Figure 8 slightly deviates from Figure 1. The data used in Figure 1 includes patents with inventors who 

reside in non-MSA locations. These are excluded from Figure 8. 


