
Distributed Inter-Area Oscillation Damping Control for Power Systems by Using

Wind Generators and Load Aggregators⋆

Zhiyuan Tanga,∗, David J. Hillb,c, Tao Liub, Yue Songb

aDepartment of Electrical and Computer Engineering, University of Waterloo, Canada
bDepartment of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

cSchool of Electrical and Information Engineering, The University of Sydney, NSW 2006, Australia

Abstract

This paper investigates the potential of wind turbine generators (WTGs) and load aggregators (LAs) to provide sup-
plementary damping control services for low frequency inter-area oscillations (LFOs) through the additional distributed
damping control units (DCUs) proposed in their controllers. In order to provide a scalable methodology for the increas-
ing number of WTGs and LAs, a novel distributed control framework is proposed to coordinate damping controllers.
Firstly, a distributed algorithm is designed to reconstruct the system Jacobian matrix for each damping bus (buses with
damping controllers). Thus, the critical LFO can be identified locally at each damping bus by applying eigen-analysis to
the obtained system Jacobian matrix. Then, if the damping ratio of the critical LFO is less than a preset threshold, the
control parameters of DCUs will be tuned in a distributed and coordinated manner to improve the damping ratio and
minimize the total control cost at the same time. The proposed control framework is tested in a modified 10-machine
New England system and a modified 14-generator Australian power system. The simulation results with and without
the proposed control framework are compared to demonstrate the effectiveness of the proposed framework.

Keywords: Low frequency oscillation, load-side control, wind generator, distributed control

1. Introduction

Low frequency inter-area oscillations (LFOs) have al-
ways been a matter of concern to power system operators
due to their potential threats to the power system stability
[1]. With the development of the electricity market and5

growing power demand, future power systems will become
more stressed and operate closer to their stability limits,
which highlights the need to improve the damping ratio of
LFOs and prevent sustained oscillations that can result in
serious consequences such as system separations or even10

large-area blackouts [1].
The power system stabilizers (PSSs) installed on con-

ventional synchronous machines are the most important
components to improve system damping against LFOs.
However, the increasing penetration of wind power lim-15

its the availability of PSSs to provide sufficient damping
against LFOs. For one thing, the displacement of conven-
tional synchronous generators with wind turbine genera-
tors (WTGs) may reduce the damping ratio of inter-area
modes by the reconfiguration of line power flows, reduc-20

tion of system inertia, and interaction of converter con-
trols with power system dynamics [2]. For another thing,
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once the conventional synchronous machines are replaced
by WTGs, the associated PSSs are also removed from the
system with no replacement controllers for WTGs to pro-25

vide damping control services. Thus, if no new alterna-
tive controllers are developed to provide supplementary
damping control services, insufficient system controls may
jeopardize the system security and stability. To solve this
issue, in this paper, we are looking for solutions from both30

the generation and load sides.
For the generation side, we utilize the converter inter-

faced WTGs which can provide damping torques for LFOs
by quickly adjusting their active power outputs though a
proper control of electronic devices that interface them35

with the grid [3, 4]. For the load side, the option of us-
ing highly distributed controllable loads (demand control)
is appealing. Due to properties such as instantaneous
responses and spatial distributions, demand control has
gained a lot of attention [5, 6, 7]. In particular, demand40

control has been utilized to accomplish important system
support tasks such as frequency control [5], voltage control
[6], and small-disturbance angle stability enhancement [7].
However, the ability of demand control to provide sup-
plementary damping control services agaist LFOs has not45

been thoroughly investigated yet. In this paper, the load
aggregators (LAs) will be coordinated with WTGs to pro-
vide damping torques against LFOs through the additional
distributed damping control units (DCUs) developed in
their controllers.50
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In the literature, numerous methods have been pro-
posed to coordinate traditional damping controllers (e.g.
PSS) [8, 9, 10] and new damping controllers (e.g. FACTS
and HVDC) [11, 12, 13]. Approaches based on robust con-
trol theories and linear matrix inequalities (LMIs) have55

been utilized to deal with the uncertainties of operating
conditions [9, 10, 11]. For example, in [10], the synthesis
of the controller is formulated as a mixed H2/H∞ out-
put feedback control problem with regional pole place-
ment that is resolved through a linear matrix inequal-60

ity approach. However, such a robust controller design
method is too conservative and unable to incorporate all
system constraints (e.g. hard limits on the control signals).
Approaches based on model predictive control have been
utilized to incorporate all system constraints. For exam-65

ple, the authors of [12] propose a model predictive control
based HVDC supplementary controller which can incorpo-
rate plant constraints explicitly. Unfortunately, the model
used in such a method is developed at a pre-given op-
erating point, and hence, the obtained controller cannot70

directly guarantee robustness around the other operating
points. Approaches based on fuzzy logic have been uti-
lized to handle the variations of operating points [13]. For
example, a fuzzy logic adaptive control unit is proposed in
[13] to adjust control gains for different operating points.75

However, this fuzzy logic based method becomes very com-
plicated when the number of damping controllers becomes
large. Moreover, all the methods mentioned above are car-
ried out in a centralized manner that lacks scalability and
flexibility, i.e., a new damping controller is added into the80

original control system, the whole control law need to be
redesigned.

To overcome the drawbacks of the abovementioned meth-
ods, in this paper, a novel distributed control framework is
proposed to coordinate damping controllers, which can be85

implemented by local measurements and limited commu-
nications between neighboring buses. The proposed dis-
tributed control framework consists of two modules: a crit-
ical LFO identification module and a controller parameters
tuning module where the communication network used in90

each module is different. The critical LFO identification
module aims at reconstructing the system Jacobian matrix
for each damping bus (a bus with damping controller, i.e.,
buses with WTGs or LAs) in a distributed manner where
the communication network used covers all buses in the95

system. Thus, the critical LFO (the LFO with the least
damping ratio) can be identified locally at each damping
bus by applying eigen-analysis to the obtained system Ja-
cobian matrix. Further, if the damping ratio of the criti-
cal LFO is less than a preset threshold, the parameters of100

DCUs will be tuned in a distributed manner to improve
the damping ratio of the critical LFO and minimize the
total control cost at the same time where the communica-
tion network used only covers those damping buses. The
contributions of this paper are listed below:105

• A novel two-step communication based distributed

control framework is proposed to coordinate LAs and
WTGs. The proposed control method is suitable in
practice for its scalability.

• In the critical LFO identification module, based on110

structural properties of the original power grid, a
distributed calculation algorithm is developed to re-
cover the Jacobian matrices for each damping bus.

• In the controller parameters tuning module, based
on the eigenvalue sensitivities, a controller tuning115

problem is formulated and solved in a distributed
manner.

Compared with the robust control design (e.g., [10]),
the proposed approach has the following three advantages.
The first one is the low calculation cost involved in the120

controller parameter tuning process. For the robust de-
sign (e.g., [10]), the tuning process is handled by solving
large-size LMIs, while in this approach, only a small-size
convex optimization problem is involved. The second ad-
vantage comes from the improved control accuracy. In our125

approach, the control effect of each controller is assessed
based on the current operating condition, which is used
to determine the best coordination among controllers. In
other words, the proposed approach can fully exploit the
control potential of controllers under different operating130

conditions, whereas in the robust design, the control set-
tings are fixed and conservative since they are designed
over a wide range of possible operating conditions. The
third advantage is the improved scalability. For a cen-
tralized robust method, when a new controller is added135

in the network, it has to be redesigned [8]. While for the
proposed distributed approach, a new controller can take
part in the control process as long as it has the ability
of data processing and communicating with at least one
existed controller [14].140

The rest of the paper is organized as follows. Section
2 introduces the DCU and the power system model to be
studied. The proposed distributed control framework is
explicitly presented in Section 3. Section 4 presents a case
study by using a modified 10-machine New England sys-145

tem and a modified 14-generator Australian power system.
Conclusions are given in Section 5.

Notations

Denote R and C as the set of real numbers and com-
plex numbers, respectively. An m-dimensional vector is150

denoted as x = [xi] ∈ Rm. The transpose of a vector or
a matrix is defined as (·)T . The notation Im ∈ Rm×m

denotes the identity matrix, 0 is a zero vector or matrix
with an appropriate dimention, and ei ∈ Rp denotes the
vector with the ith entry being one and others being zeros.155

The notation |x| (∠x) takes the modulus (angle) of a com-
plex number x ∈ C. The notation V(A) means converting
the matrix A = [a1, . . . ,ap] ∈ R

m×p with ai ∈ R
m with

i = 1, . . . , p to a vector, i.e., V(A) = [aT
1 , . . . ,a

T
p ]

T ∈ Rmp.
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The symbols ‖ · ‖ and ‖ · ‖∞ denote the l2 and l∞ norms160

for a vector, respectively.

2. Network Description

In this section, we firstly introduce the DCU proposed
for each damping controller (i.e., WTGs and LAs). Then,
the power system network to be studied is introduced,165

which will be used to design the control framework in Sec-
tion 3.

2.1. Distributed Damping Control Unit

Figure 1: The control block diagram of the proposed DCU.

Fig. 1 shows the block diagram of the proposed DCU
which mimics the structure of PSS. The input is the local
bus voltage angle θi that is defined as the angle differ-
ence with respect to a synchronously rotating reference.
The output is posci which is added to the reference active
power demand of the WTG or LA to provide supplemen-
tary damping control services. The mathematical model
of the ith DCU is given by

ẋ1i = − 1

Twi

(Kiθi + x1i)

ẋ2i =
1

T2i

(

(1− T1i
T2i

)(Kiθi + x1i)− x2i

)

ẋ3i =
1

T4i

(

(1− T3i
T4i

)

(

x2i +

(

T1i
T2i

(Kiθi + x1i)

))

− x3i

)

posci = x3i +
T3i
T4i

(

x2i +
T1i
T2i

(Kiθi + x1i)

)

.

(1)

The dynamics can be written in a compact form as ẋCi =
fCi(xCi, θi) where xCi = [x1i, x2i, x3i]

T is the supplemen-170

tary state variables, Ki is the gain, Twi is the wash-out
time constant, T1i, T2i, T3i, and T4i are time constants
for lead-lag compensation. In the proposed control frame-
work, Ki, T1i, T2i, T3i, and T4i will be tuned to improve
the damping ratio of the critical LFO. It will be shown in175

the case study (Fig. 11) that the introduction of DCU has
an impact on the existed weak oscillation modes, but will
not create new weak modes.

Fig. 2 shows the implementation of DCU on each
damping controller (i.e., WTG and LA). In this paper, we180

consider the active power modulation for supplementary
damping proposes, i.e., the output of each DCU posci is
added to the reference active power demand of the WTG
or LA prefi to create new reference demand p⋆refi. In order
to avoid an excessive interference of the normal operation185

of WTGs and LAs, as did in [15, 16], the output of each
DCU posci is limited by the range [pmin

osci , p
max
osci ] which is

usually selected as ±5 % p.u. [16].

Figure 2: Schematic of DCU’s implementation.

2.2. Power system network

Consider a connected power system consisting of N190

buses with NG synchronous generators (SGs), NW WTGs,
NL loads, and NT transfer buses where N = NG +NW +
NL + NT . The SG (WTG or load) bus refers to a bus
that connects a SG (WTG or load) only. The transfer
bus is a bus with no generation or demand. We num-195

ber the SG buses as VG = {1, . . . , NG}, WTG buses as
VW = {NG+1, . . . , NG+NW }, load buses as VL = {NG+
NW +1, . . . , NG+NW +NL}, and transfer buses as VT =
{NG+NW +NL+1, . . . , N}. In order to make WTGs and
LAs provide supplementary damping control services, we200

assume that each WTG (LA) has a DCU.

2.2.1. SG model

To highlight the effectiveness of the proposed damp-
ing controllers, PSSs are not included in the SG models.
With the 4th-order two-axis synchronous machine model
and IEEE standard exciter model (IEEET1), the mathe-
matical model of the ith SG is written as:

ẋGi = fGi(xGi, θi, vi)

pGi = gpGi
(xGi, θi, vi)

qGi = gqGi
(xGi, θi, vi), i ∈ VG

(2)

where the state variable xGi is defined as xGi = [e′qi, e
′
di, δi,

ωi, xmi, xr1i, xr2i, xfi]
T ; e′qi and e′di are transient d-axis

and q-axis voltages, respectively; δi and ωi are the ro-205

tor angle and speed, respectively; xmi, xr1i, xr2i and xfi
are the state variables corresponding to the IEEET1 ex-
citer. The algebraic variables are the local bus voltage
angle θi and magnitude vi. The active and reactive power
injections of the ith SG bus are denoted as pGi and qGi,210

respectively. The detailed descriptions of nonlinear func-
tions fGi, gpGi

, gqGi
can be found in [17], which is also

given in Appendix 6.1 for completeness.

2.2.2. WTG model

A wind farm may consist of hundreds of wind turbines.
It is difficult and unnecessary to model each individual unit
in a wind farm for large system studies. In this work, a
large WTG model is employed to represent an equivalent
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Figure 3: Control block diagram of the controller for WTG.

lumped model of a wind farm, which has been widely used
in the literature (e.g., [16, 18]). For the WTG model, fully
rated converter (FRC) WTGs are adopted, which employ
the configuration of a synchronous machine with a perma-
nent magnet rotor [18]. Normally, the controller of WTG
gives a reference active power demand to optimize the
wind energy capture based on the measured rotor speed
(see the lower branch in Fig. 3). In this paper, two ad-
ditional control units are added into the original WTG’s
controller to adapt the active power reference set point,
i.e., the primary frequency support unit proposed in [19]
(see the upper branch in Fig. 3) and the DCU (see the
middle branch in Fig. 3). It is assumed that a small por-
tion of active power capacity (e.g. 5%) is reserved by each
WTG for damping control support and primary frequency
support [19]. The mathematical model of the ith WTG is
written as:

θ̇i = ωi

ẋWi = fWi(xWi, ωi, θi, vi)

pWi = gpWi
(xWi, ωi, θi, vi)

qWi = gqWi
(xWi, ωi, θi, vi), i ∈ VW

(3)

where ωi denotes the local bus frequency that is the fre-215

quency deviation from the nominal value. If the system
is (not) in steady state, the local bus frequencies of dif-
ferent buses are the same (can be different). The state
variable xWi = [ωmi, θpi, isqi, icdi,x

T
Ci]

T where ωmi
is the

rotor speed; θpi
is the pitch angle used for maximum power220

control; iqsi is the generator stator quadrature current
used for active power/speed control; and icdi is the con-
verter direct current used for reactive power/voltage con-
trol; xCi = [x1i, x2i, x3i]

T are state variables correspond-
ing to the DCU. The active and reactive power injections225

of the ith WTG bus are denoted as pWi and qWi, respec-
tively. The detailed descriptions of nonlinear functions
fWi, gpWi

, gqWi
are given in Appendix 6.2.

2.2.3. Load model

The active power of each load pLi is divided into two
parts: the controllable part di = posci(xLi, θi) (referred to
as LA in this paper) and static voltage frequency depen-
dent part, whereas the reactive power of each load qLi is
assumed to be static voltage frequency dependent. For the
LA at each load bus, we assume that it controls a group of
small controllable loads (e.g. electric springs in distribu-
tion networks [20]) that can change their power consump-
tions very quickly via the electronic interface. In this way,

each LA can provide the active power change (i.e., reserve
capacity) required for damping control via the introduced
DCU. With the additional DCU, the mathematical model
of the ith load bus is given as follows:

θ̇i =ωi

ẋLi =fLi(xLi, θi)

pLi =poi(vi)
αi(1 + kpfi(ωi − ω0)) + di(xLi, θi)

:=gpLi
(xLi, ωi, θi, vi)

qLi =qoi(vi)
βi(1 + kqfi(ωi − ω0))

:=gqLi
(ωi, vi), i ∈ VL

(4)

where poi and qoi are the nominal values; αi and βi are230

voltage coefficients; and kpfi and kqfi are frequency co-
efficients. The state variable xLi = [x1i, x2i, x3i]

T corre-
sponds to the DCU, which introduce the dynamics of the
load model.

2.2.4. Transfer bus235

As transfer buses have no generations or loads, the ith

transfer bus is simply modeled as:

pTi = 0, qTi = 0, i ∈ VT (5)

where pTi and qTi are the active and reactive power injec-
tions, respectively.

2.2.5. Network power flows

The network power flows are represented by the usual
set of algebraic power flow equations, which are used to
couple all buses power injection equations mentioned above.
For the ith bus in the system, the power flow equations are
given as:

0 = −pinji + vi

N
∑

j=1

vj(Gij cos θij +Bij sin θij)

0 = −qinji + vi

N
∑

j=1

vj(Gij sin θij −Bij cos θij), i ∈ V
(6)

where Gij and Bij are the real and imaginary parts of Yij
which is the (i, j) entry of the admittance matrix Y ; the240

notation θij is the short for θi− θj; the set V = VG∪VW ∪
VL ∪ VT ; p

inj
i and qinji are injected active and reactive

power of the ith bus, respectively. In particular, for SG
buses, pinji = pGi and q

inj
i = qGi; for WTG buses, pinji =

pWi and qinji = qWi; for load buses, pinji = −pLi and245

qinji = −qLi; and for transfer buses, pinji = pTi and q
inj
i =

qTi.

2.2.6. Overall system

Combining (2)-(6), the overall system can be expressed
as differential-algebraic equations:

ẋ = f(x,y)

0 = h(x,y)
(7)
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where the vector x = [xT
G, θ

T
W ,xT

W , θTL ,x
T
L]

T and the vec-
tor y = [θTG,ω

T
W ,ωT

L , θ
T
T ,v

T
G,v

T
W ,vTL ,v

T
T ]

T ; xk = [xT
k1, . . . ,250

xT
ki, . . . ,x

T
kNk

]T , i ∈ Vk, k ∈ {G,W,L}; θk = [θi] ∈
R

Nk , i ∈ Vk, k ∈ {G,W,L, T }; vk = [vi] ∈ R
Nk , i ∈

Vk, k ∈ {G,W,L, T }; ωk = [ωi] ∈ RNk , i ∈ Vk, k ∈
{W,L}. The nonlinear functions f and h represent the
system dynamics and network power flow equations, re-255

spectively, where f = [fT
S ,f

T
ωC ,f

T
C ,f

T
ωL,f

T
L ]T and h =

[hT
pS
,hT

pC
,hT

pL
,hT

qS
,hT

qC
,hT

qL
]T which are component-wise

(the component function hpSi
:= gpSi

− pinji , i ∈ VS ;

hpCi
:= gpCi

− pinji , i ∈ VC ; hpLi
:= gpLi

+ pinji , i ∈ VL;

hqSi
:= gqSi

− qinji , i ∈ VS ; hqCi
:= gqCi

− qinji , i ∈ VC ;260

and hqLi
:= gqLi

+ qinji , i ∈ VL).
Linearizing system (7) gives the following linear model:

[

∆ẋ
0

]

=

[

As Bs

Cs Ds

] [

∆x
∆y

]

(8)

where the detailed expressions of the matrices As, Bs,
Cs, and Ds are given in Appendix 6.3. Assuming Ds is
nonsingular (it is a common assumption adopted in the
literature [14]) and eliminating ∆y in (8) gives:

∆ẋ = Ar∆x (9)

whereAr = As−BsD
−1
s Cs ∈ RNA×NA withNA = 8NG+

8NW + 4NL.

Remark 1. In this work, we assume that there are DCUs
available at load and WTG buses which are used to provide265

the supplementary damping control services. This assump-
tion is not unreasonable for future power systems since
1) both WTGs and loads can change their power outputs
quickly thanks to the development of advanced electronic
devices (e.g., full converter wind turbines [18] and electric270

springs [20]) and 2) the proposed control block can be em-
bedded into their main control loops without increasing the
complexity of the device [21, 22]. Although the aggregate
load (i.e., LA) and lumped wind farm model (i.e., WTG)
are employed for study, it is worth mentioning that the275

responses of LAs and WTGs can serve as the reference
signals to the group of individual control devices controlled
by them (e.g., electric springs in distribution networks or
wind turbines in a wind farm) [5]. Then, the problem be-
comes how to make the hundreds or thousands of control280

devices work together to follow the reference signal. This
new problem deserves attention and will be studied in fu-
ture.

3. Distributed Control Framework

With the proposed DCUs described in Section 2, LAs285

and WTGs can provide supplementary damping control
services. In order to coordinate LAs and WTGs properly,
a novel distributed control framework is proposed in this
work. The proposed framework consists of two modules:

the critical LFO identification module and controller pa-290

rameters tuning module. In this section, based on the
system model described in Section 2, these two modules
will be introduced in details.

3.1. Critical LFO identification module

As mentioned earlier, this module aims at identifying295

the critical LFO for each damping bus in a distributed
manner. It is known that the critical LFO can be in-
vestigated by applying eigenvalue analysis based on the
global information, i.e., the system Jacobian matrix Ar in
(9) which is usually obtained in a centralized manner [1].300

However, in this paper, we will reconstruct the matrix Ar

for each damping bus in a distributed manner by revealing
the structure properties of the power grid contained in the
matrices As, Bs, Cs, and Ds.

By performing an elementary column operation, the
matrices As, Bs, Cs, and Ds can be reformulated as:

[

As Bs

Cs Ds

]

=

[

K1 K2

K3 Jpf

]

T (10)

where the matrix T is the elementary column operator305

and Jpf is the power flow Jacobian matrix. The detailed
expressions of the matrices T , K1, K2, K3, and Jpf are
given in Appendix 6.3.

Through the matrix transform (10), we can see that
the matrices As, Bs, Cs, and Ds can be reconstructed310

by all Jacobian matrices Kfi
xj
, Khi

xj
, Jpf (refer to (52) for

details), identity matrices, and T . For identity matrices
and T , since they are constant, they can be broadcasted
or stored at each damping bus in advance. For all Ja-
cobian matrices Kfi

xj
, Khi

xj
(which all are block diagonal315

matrices and expressed asK∧
∨ hereinafter for convenience)

and Jpf , we adopt the distributed algorithm proposed in
[14] that has total 2N steps to calculate their elements,
where the communication network used covers all buses
in the system and has the same topology as the physical320

grid. The communication network can be described by
the undirected graph G1 = {V , E}, where V is the set of
nodes (buses) and E ⊆ V × V represents the set of edges
(branches). The set of neighbors of node i is represent by
Ni = {j ∈ V : (j, i) ∈ E} with cardinality |Ni| = Di. We325

assume that 1) each bus knows the parameters of its local
machine (or load) and lines connecting it; 2) each damp-
ing bus knows the model structure of SG, WTG, and load;
3) each bus knows its own bus number and total number
of buses N ; 4) each bus in the system has the capabil-330

ity of local measurement, storing data, processing data,
communicating with its neighbors, and calculation; and 5)
communication delays are negligible.

At each step, bus i, i ∈ V has four columns of data for
communication, denoted as γa

i , ̟
a
i , γ

b
i , ̟

b
i ∈ R2N . The

data update process is designed as follows:

[Xa(τ + 1),Xb(τ + 1)] = Jpf [X
a(τ),Xb(τ)] (11)

5



where Xa(τ), Xb(τ) ∈ R2N×2N are the data matrices at
the τ th step iteration with the definitions as follows:

Xa(τ) = [γa
1 (τ), . . . ,γ

a
N (τ),̟a

1 (τ), . . . ,̟
a
N (τ)]T

Xb(τ) = [γb
1(τ), . . . ,γ

b
N (τ),̟b

1(τ), . . . ,̟
b
N (τ)]T

(12)

which are initialized byXa(0) = I2N andXb(0) = [γb
1(0),

. . . ,γb
N (0),̟b

1(0), . . . ,̟
b
N (0)]T . The vectors γb

i (0) and
̟b

i (0) assigned to the ith bus satisfies:

[γb
i (0);̟

b
i (0)] = [V(KfGi

xGi
);V(KfGi

θi
);V(KfGi

vi
);

V(K
hpGi
xGi );V(K

hqGi
xGi );0], i ∈ VG;

(13a)

[γb
i (0);̟

b
i (0)] = [V(KfWi

θi
);V(KfWi

xWi
);V(KfWi

ωi
);

V(KfWi
vi

);V(K
hpWi
xWi );V(K

hpWi
ωi );

V(K
hqWi
xWi );V(K

hqWi
ωi );0], i ∈ VW ;

(13b)

[γb
i (0);̟

b
i (0)] = [V(KfLi

θi
);V(KfLi

xLi
);V(K

hpLi
xLi );

V(K
hpLi
ωi );V(K

hqLi
ωi );0], i ∈ VL;

(13c)

[γb
i (0);̟

b
i (0)] = [0], i ∈ VT . (13d)

The designed update process (11) can be realized in a
distributed manner via the communication network G1 =335

{V , E} mentioned earlier since

1. the initial values of vectors γa
i (0), ̟

a
i (0), γ

b
i (0), and

̟b
i (0) can be assigned locally for each bus i, be-

cause i) the vectors γa
i (0), ̟

a
i (0) can be assigned

locally as each bus knows its own bus number and340

ii) the elements of vectors γb
i (0), ̟

b
i (0) are obtained

from the local Jacobian matrices (see (13) for de-
tails), which can be calculated based on the local
steady-state measurements of θi, vi, p

inj
i , qinji , and

state variables related to its local device or load (i.e.,345

xGi, xWi, and xLi) since each bus is assumed to
know the parameters and model structures of its lo-
cal device or load [17, 18]. Here, the steady-state
measurements are used to replace the calculation of
the equilibrium point [14].350

2. for each sub-matrix J
hp

θ , J
hp
v , J

hq

θ , J
hq
v of Jpf (re-

fer to (52)), the nonzero elements of the ith row are
functions of measurements of bus i and its neighbor-
ing bus j ∈ Ni [23, 14].

During the update process, at each step τ, 0 < τ ≤ 2N ,
each damping bus i, i ∈ VW ∪ VL stores its own data and
data from its neighboring buses (which can be realized via
communication links between neighboring buses). Thus,
the whole distributed algorithm is expressed as:

[Xa(τ + 1),Xb(τ + 1)] = Jpf [X
a(τ),Xb(τ)]

[ξai (τ), ξ
b
i (τ)] = Si[X

a(τ),Xb(τ)], i ∈ VW ∪ VL

(14)

where the matrix Si = [ei, ej , eN+i, eN+j ]
T ∈ R2(Di+1)×2N ,

j ∈ Ni selects the rows with respect to the damping bus
i and its neighboring buses j, j ∈ Ni; ξ

a
i (τ), ξ

b
i (τ) ∈

R2(Di+1)×2N denote the data collected by the damping bus
i. We assume the discrete-time system (14) is observable,
which usually holds in practice [14], i.e., rank(Oi) = 2N
where Oi ∈ R

4(Di+1)N×2N is defined as

Oi = [ST
i , (SiJpf )

T
, . . . , (SiJ

2N−1
pf )

T
]T . (15)

After the update process (14), each damping bus i, i ∈
VW ∪ VL can recover Jpf and Xb(0) via the data it col-
lected ξai (τ) and ξbi (τ), τ = 0, 1, . . . , 2N . For simplicity,
we define the following data matrices:

Ξa
i1 = [ξai (0)

T , . . . , ξai (2N − 1)T ]T ∈ R
4(Di+1)N×2N

Ξa
i2 = [ξai (1)

T , . . . , ξai (2N)T ]T ∈ R
4(Di+1)N×2N

Ξa
i = [Ξa

i1
T ,Ξa

i2
T ]T ∈ R

8(Di+1)N×2N

Ξb
i1 = [ξbi (0)

T , . . . , ξbi (2N − 1)T ]T ∈ R
4(Di+1)N×2N .

(16)

The singular value decomposition of Ξa
i is also needed,

which is given as:

Ξa
i = [Ũξi , Ũ

0
ξi
]

[

Σξi

0

]

Ṽ T
ξi

= ŨξiΣξi Ṽ
T
ξi

(17)

where Σξi , Ṽξi ∈ R2N×2N , Ũξi ∈ R8(Di+1)N×2N , Ũ0
ξi

∈
R8(Di+1)N×(8(Di+1)N−2N). Based on the matrices given in
(16) and (17), each damping bus i, i ∈ VW∪VL can recover
Jpf and Xb(0) by the following equations:

Jpf = (ŨT
ξi1

Ξa
i1)

−1ΘiŨ
T
ξi1

Ξa
i1 (18a)

Xb(0) = (Ξa
i1)

†Ξb
i1 (18b)

where Ũξi1 , Ũξi2 ∈ R4(Di+1)N×2N are sub-matrices of Ũξi355

with Ũξi = [ŨT
ξi1
, ŨT

ξi2
]T , Θi = (ŨT

ξi1
Ũξi2 )(Ũ

T
ξi1
Ũξi1)

−1 ∈
R

2N×2N , and the superscript † denotes the Moore-Penrose
inverse. The mathematical proof of (18a)-(18b) can be
found in [14].

As mentioned earlier, each damping bus is assumed to360

know the model structures of SG, WTG, and load. Thus,
each damping bus can identify the type of bus i (i.e, SG,
WTG, load, or transfer bus) based on the γb

i (0) and ̟
b
i (0)

ofXb(0) obtained, and hence can recover allK∧
∨ Jacobian

matrices in K1, K2, and K3 of (10) from Xb(0) obtained365

based on (13). Combined with Jpf obtained, each damp-
ing bus can reconstruct Ar by (9) and (10). Therefore,
the critical LFO can be calculated by applying eigenvalue
analysis to Ar at each damping bus.

Remark 2. In the proposed update process (14), we as-370

sume that the sum of the length of all vectorized K∧
∨ ma-

trices related to each type of bus (i.e., SG, WTG, load,
or transfer bus) is less than the length of the data vec-
tors [γb

i ;̟
b
i ], i ∈ V assigned for each type of bus that is
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Figure 4: The closed-loop representation of the system.

4N (refer to (13) for details). If there exist one type of375

bus whose sum of the length of all vectorized K∧
∨ matrices

is more than 4N , additional data vectors γc
i , ̟

c
i ∈ R2N

are assigned for each bus to form the additional data ma-
trix Xc ∈ R2N×2N . For the type of bus whose sum of
the length of all the vectorized K∧

∨ matrices is more than380

4N , [γc
i (0);̟

c
i (0)] is initialized by the remaining elements.

For the other types of buses whose sum of the length of the
vectorized K∧

∨ matrices is less than 4N , [γc
i (0);̟

c
i (0)] is

initialized by zeros. The additional data matrix Xc(0) can
be recovered by each damping bus via the same way as the385

data matrix Xb(0) is recovered.

3.2. Controller parameters tuning module

In order to guarantee an adequate stability margin, the
damping ratio ςc of the critical LFO λc = σc + jωc should
satisfy ςc ≥ ς⋆ where ςc = −σc/|λc| and ς⋆ > 0 is the390

preset threshold. Once the damping ratio of the critical
LFO is less than ς⋆, the parameters of each DCU (i.e., Ki,
T1i, T2i, T3i, and T4i) of each damping bus will be tuned
coordinately to improve the damping ratio of the critical
LFO.395

Without loss of generality, we firstly study the impact
of the parameter changes of the ith, i ∈ VW∪VL DCU (i.e.,
the DCU of the bus NG + i) on λc. For analysis purposes,
the system model (8) is rewritten in the following form by
reordering the variables of x in (8):

[

∆ ˙̃xi

0

]

=

[

Ãsi B̃si

C̃si D̃si

] [

∆x̃i

∆y

]

(19)

where ∆x̃i = [∆xT
i ,∆x

T
Ci]

T , xi ∈ RNA−3 includes all
state variables in x except xCi ∈ R3 that is the corre-
sponding state of the ith DCU; Ãsi = T−1

i AsTi (here
Ti ∈ RNA×NA is invertable which is the corresponding ele-
mentary row operator such that x = Tix̃i); B̃si = T

−1
i Bs;

C̃si = CsTi; and D̃si = Ds. Then the system model
(19) can be written in the closed-loop form [24]. In the
closed-loop form, the system model is partitioned into two
subsystems. For subsystem 1, which does not depend on
parameters of the ith DCU, we have the following state
space description:

[

∆ẋi

0

]

=

[

Ai Bi

Ci Di

] [

∆xi

∆y

]

+

[

Ei

Fi

]

∆ui. (20)

where ui = posci is the output of the ith DCU. Assuming
Di is nonsingular and eliminating ∆y in (20) gives:

∆ẋi = Asi∆xi +Bsi∆ui; ∆θi = Csi∆xi (21)

where Asi = Ai − BiD
−1
i Ci ∈ R(NA−3)×(NA−3), Bsi =

Ei−BiD
−1
i Fi ∈ RNA−3 andCT

si ∈ RNA−3. For subsystem
2, which only depends on the parameters of the ith DCU,
we have the following state space description:

[

∆ẋCi

∆ui

]

=

[

ACi BCi

CCi DCi

] [

∆xCi

∆θi

]

. (22)

where ACi, BCi, CCi, and DCi can be easily obtained
from (1). A transfer function description for (22) is given
as:

Fi(s,Ki) = CCi(sI −ACi)
−1BCi +DCi (23)

where Ki ∈ R is the gain factor in the ith DCU model.
Based on (21) and (23), the schematic diagram of the
closed-loop form is given in Fig. 4.

Then the sensitivity of λc with respect to Ki of the
transfer function Fi(s,Ki) is given by [24]:

∂λc
∂Ki

= Ri

∂Fi(s,Ki)

∂Ki

∣

∣

∣

∣

s=λc

(24)

where Ri = Csiφsiψ
T
siBsi ∈ C is the residue with re-

spect to the critical eigenvalue λc; φsi ∈ R
NA−3 and ψsi ∈

RNA−3 are the right and left eigenvectors of λc, respec-
tively. Here, φsi (ψsi) consists of the first NA − 3 ele-
ments of φi ∈ RNA (ψi ∈ RNA) which is the right (left)
eigenvector of λc with respect to Ãri that is obtained by
eliminating ∆y in (19), i.e.,

Ãri = Ãsi − B̃siD̃
−1
si C̃si = T

−1
i ArTi. (25)

Combining (24) and the transfer function of DCU given
in Fig. 1, the sensitivity of λc with respect to Ki becomes:

si =
∂λc
∂Ki

= Ri ·
10λc

1 + 10λc
· 1 + T1iλc
1 + T2iλc

· 1 + T3iλc
1 + T4iλc

. (26)

Here, the wash-out time constant of each DCU is assumed
to be 10, i.e., Twi = 10.400

Figure 5: Representation of the residue based eigenvalue sensitivity.

Fig. 5 shows the mechanism how a residue based method
changes the close loop eigenvalue. The residue Ri in (26)
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is a complex number, which gives the indication of how
the critical mode λc will be affected by the ith DCU with
just a gain block (no washout and lead-lag compensation405

blocks). In particular, the angle of the residue ∠Ri gives
the direction in which the root locus leaves λc [25, 21].
Therefore, to produce the desired damping, i.e., to make
λc move left, the phase shift created by the ith DCU should
be the complement of the residue angle [25].410

Based on this, it follows from (26) that the tuning
process of DCUs can be split into two parts: 1) tun-
ing parameters of lead-lag compensation of the ith DCU
such that ∠si = 180◦; and then 2) tuning gain factors
Ki of all DCUs such that λc moves to the desired loca-
tion, i.e.,

∑NW+NL

i=1 |si|∆Ki ≥ ∆ℜ(λc)⋆ where ∆ℜ(λc)⋆ =

ς⋆|ωc|/
√

1− (ς⋆)2 + σc is the expected real part change of
λc. For part 1), the parameters of T1i, T2i, T3i, and T4i
can be calculated by [26]











αi = (1 + sin(∠Ki)/2)/(1− sin(∠Ki)/2)

T1i = T3i = (
√
αi)/ωc

T2i = T4i = 1/(
√
αiωc)

(27)

where ∠Ki = 180◦ − ∠Ri. For part 2), the gain factor
change ∆Ki is calculated by solving the following opti-
mization problem:

min

NW+NL
∑

i=1

ci (28)

s.t.

NW+NL
∑

i=1

real(si)∆Ki ≥ ∆ℜ(λc)⋆ (29)

∆Kmin
i ≤ ∆Ki ≤ ∆Kmax

i , i = 1, . . . , NW +NL

(30)

where real(si) refers to the real part of si, ∆Kmin
i and

∆Kmax
i are the lower and upper bounds on the gain fac-

tor of the ith DCU, respectively. To ensure the control
accuracy, ∆Kmin

i and ∆Kmax
i should not be large num-

bers. To account for the damping controller adjustments,
in this work, we introduce a simple quadratic cost func-
tion for the ith damping bus which has been widely used
in the literature (e.g., [12]), i.e., ci = πi∆K

2
i and πi > 0 is

the cost parameter assigned for the ith damping bus. The
objective (28) is to minimize the total control cost. For
convenience, the convex optimization problem (28)-(30) is
rewritten in a compact form as:

min
∆K

NW+NL
∑

i=1

ci(∆Ki) s.t. g(∆K) ≤ 0,∆Ki ∈ ∆K̂i (31)

where ∆K = [∆K1, . . . ,∆KNW+NL
]T denotes the gain

factor changes of NW +NL DCUs; g(∆K) ≤ 0 represents
the global constraint in (29); ∆K̂i represents the local con-
straint in (30).

As mentioned earlier, in this module, the proposed two-
part tuning process will be realized in a distributed man-
ner. For the first part tuning process, it is realized locally

as the Ri required of the ith damping bus can be obtained
locally. It follows from (24) that Ri can be calculated by
Ãri, Bsi, and Csi. For Csi, based on (21), it can be easily
obtained as the ith damping bus knows the order of vari-
ables in xi. For Ãri , it can be calculated by (25) as Ti

is known locally and Ar has been obtained in the critical
LFO identification module for each damping bus. ForBsi,
based on (19)-(22), we have

Ãsi =

[

Ai +EiDCiCsi EiCCi

BCiCsi ACi

]

, B̃si =

[

Bi

0

]

C̃si =
[

Ci + FiDCiCsi FiCCi

]

, D̃si = Di.

(32)

The Bsi can be obtained by (21) locally as: 1) matrices415

ACi, BCi, CCi, and DCi is known locally, 2) according to
(19), matrices Ãsi, B̃si, C̃si, and D̃si can be calculated
based on As, Bs, Cs, and Ds which have been obtained
by each damping bus in the critical LFO identification
module, and 3) Csi can be obtained locally, then based on420

the matrix relations in (32), matrices Ai, Bi, Ci, Di, Ei,
and Fi can be calculated.

For the second part tuning process, in order to solve
the convex optimization problem (28)-(30) in a distributed
manner, we decompose the Lagrange function of (31) into
a sum of NW +NL local Lagrange functions where each of
them is assigned to a damping bus:

L(∆K, µ) =

NW+NL
∑

i=1

Li(∆K, µ) (33)

where Li(∆K, µ) = ci(∆Ki) + µg(∆K), scalar µ is the
Lagrange multiplier for g(∆K) ≤ 0 in (31).

Inspired by (33), based on the distributed Lagrangian425

primal-dual sub-gradient algorithm proposed in [27], a dis-
tributed algorithm is designed to update the decision vari-
ables ∆K and Lagrangian multiplier µ via communica-
tion between neighboring damping buses. The communi-
cation network used only covers damping buses and is al-430

lowed to have a different topology from the physical grid,
which can be described by the undirected graph G2 =
{V2, E2,W}, where V2 = VW ∪ VL, E2 ⊆ V2 × V2, and
W = {wij} ∈ R(NW+NL)×(NW+NL). If (i, j) ∈ E2, i 6= j,

then wij = wji > 0 and
∑NW+NL

j=1,i6=j wij < 1; otherwise,435

wij = wji = 0. We define the diagonal entry wii of the

matrix W as wii = 1−∑NW+NL

j=1,i6=j wij . In the proposed dis-
tributed algorithm, the following assumptions are adopted:

1. The function g in (31) is known to all damping buses.

2. The topology of the communication network G2 is440

undirected and connected, and communication de-
lays are negligible.

For assumption 1), since As, Bs, Cs, and Ds have been
obtained by each damping bus via the critical LFO identi-
fication module, then all sensitivities si in function g can445

be calculated locally for each damping bus via the same
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method used for calculating Ri in the first part tuning
process.

Based on the abovementioned assumptions, the update
process of decision variables ∆K and Lagrangian multi-
plier µ is expressed as follows:

∆Ki(τ + 1) = P∆K̂i
[∆K̄i(τ)− ς(τ)DLi,∆K̄i(τ)]

µi(τ + 1) = P
Ûi
[µ̄i(τ) + ς(τ)DLi,µ̄i (τ)]

(34)

where ∆Ki ∈ RNW+NL and µi ∈ R are the information
data assigned for the ith damping bus. We use ∆K̄i(τ) =450

∑NW+NL

j=1 wij∆K
j(r) and µ̄i(r) =

∑NW+NL

j=1 wijµ
j(r) for

short. At each time τ + 1, the ith damping bus calculates
vectors DLi,∆K̄i = ∂Li/∂(∆K̄

i) and DLi,µ̄i = ∂Li/∂µ̄
i

in the gradient direction of its local Li. Combined with
information received from its neighboring buses ∆K̄i(τ)455

and µ̄i(τ), the ith damping bus updates its own decision
variables ∆Ki(τ +1) and µi(τ +1) by taking a projection
onto its local constraint ∆K̂i and Ûi = {µi ≥ 0}, respec-
tively. Here, the projection operator P∆K̂i

is defined by
the definition of P∆K̂i

[x̄] = argmin
x∈∆K̂i

‖x̄ − x‖, where460

x̄ is a given vector. The projection operator P
Ûi

is defined
in the same way as P∆K̂i

. The diminishing step size is

ς(r) which satisfies limr→+∞ ς(r) = 0,
∑+∞

r=0 ς(r) = +∞,

and
∑+∞

r=0 ς(r)
2 < +∞. It has been proven in [27] that for

a convex optimization problem, the proposed distributed465

algorithm will asymptotically converge to a pair of primal-
dual optimal solutions (i.e., limτ→∞ ∆Ki(τ) = ∆K∗, i =
1, . . . , NW + NL where ∆K∗ = [∆K∗

1 , · · · ,∆K∗
NW+NL

]T

is the optimal solution) under the Slater’s condition, as-
sumptions 1) and 2) mentioned above. In our case, the470

optimization problem (28)-(30) is a convex optimization
program whose global optimal solutions can be solved in
a distributed way via the algorithm (34).

It is worth mentioning that, different damping buses
have different geometric controllability/obserbility mea-475

sures (COs) of the critical LFO λc under different oper-
ating conditions [10]. The definition of the CO of the ith

damping bus is given as COi =
|ψT

siBsi|
||ψsi||||Bsi||

· |Csiφsi|
||Csi||||φsi||

which can be calculated locally. In the proposed two-part
tuning process, only the damping buses with high COs480

participate the tuning process. In other words, if the CO
of the ith damping bus satisfies COi < CO⋆ where CO⋆

is a threshold, then this damping bus does not participate
the first part tuning process and the second part tuning
process by setting ∆Kmin

i = ∆Kmax
i = 0 in (30) locally.485

In this way, the parameters needing to be tuned will be
reduced by as many as possible.

The whole tuning process is summarized in the block
diagram shown in Fig. 6.

3.3. Implementation discussion490

Fig. 7 illustrates the proposed online control frame-
work, where communications between neighboring agents
are required in both modules to exchange information for

Figure 6: The flowchart of tuning procedure.

algorithm realization (see (14), (34), and the related dis-
cussions for details). In our assumption, communication495

delays are ignored. However, in practice, it is inevitable
that the execution of distributed algorithms in both mod-
ules (i.e., (14) in the critical LFO identification module
and (34) in the controller parameter tuning module) has
latency that comes from the communication delay. Those500

delays can typically vary from tens to several hundreds
of milliseconds [28, 29]. Considering the information up-
date steps required in (14) and (34) (2N steps for (14)
and several hundred steps for (34) [6]), if we assume that
the communication time required in (14) and (34) for each505

communication between neighboring agents are the same
(e.g., 100 ms) and the delays vary from 0 to 200 ms [28],
then in worst case the total communication time required
for the control framework is about several minutes. Since
the typical time duration for a certain load and generation510

pattern varies from 10 to 15 minutes [30], the time delay
may not have a noticeable influence on the control per-
formance. However, if the proposed control framework is
applied to a huge system where there are several thousand
buses, the impact of time delay cannot be ignored. This515

issue deserves attention and will be studied in future.
In the proposed control framework, we also assume that

the communication link between neighboring agents pro-
vides perfect services, which is a common assumption used
for distributed algorithms proposed in the literature (see520

[5, 14] for examples). However, communication failures
may happen in practice. For the distributed algorithm
(14) in the critical LFO identification module, as shown in
Fig. 7, its communication network has the same structure
as the power grid since each bus needs to communicate525

with its physically neighbouring buses. This structure is
not immune to a communication link failure or a change
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Figure 7: Diagram of control framework.

of communication network topology [14]. To solve this
issue, some more reliable communication schemes can be
adopted. For example, each bus can send information to530

its neighbours via a wired architecture such as power line
communication [31]. How to develop an alternative al-
gorithm of (14) that can survive a communication link
failure or the change of communication network topology
deserves attention and will be studied in future. While for535

distributed algorithm (34) in the controller parameter tun-
ing module, it always works as long as the communication
network is connected even if a communication link fails or
a change of communication network topology occurs [27].

Remark 3. In order to show the control effectiveness of540

the proposed damping controller, as mentioned earlier, the
PSSs are not included in the system model. But it should
be noted that the proposed control algorithm can be easily
extended to incorporate PSSs in the network by regard-
ing buses with PSSs as new damping buses since the PSS545

shares the similar control structure with the proposed DCU.
New damping buses can take part in the proposed control
framework as long as they have the ability of data process-
ing and communicating with at least one existed damping
buses. It should also be noted that the proposed control550

algorithm can be extended to handle the scenario where
there are several critical modes (both local and inter-area
ones). In this case, the tuning process can be conducted
sequentially for each critical mode. This design is reason-
able since the most effective damping buses (damping buses555

with high COs) for different critical modes are usually dif-
ferent, whose effectiveness is verified in the case study.

4. Case Study

In this section, the modified 10-machine New England
system and 14-generator model of the SE Australian power560

system are used to show the effectiveness of the proposed
control framework. For each test system, the model de-
scription is introduced firstly, then, the simulation results
and explanations will be presented.

4.1. 10-machine New England system565

4.1.1. System description

Fig. 8 shows the modified 10-machine New England
system that is used to demonstrate the proposed distributed

Figure 8: The modified 10-machine New England system.

control framework. In the modified system, the SG at bus
10 is replaced by a FRC-WTG with the same size of maxi-570

mum power generation. All buses are renumbered accord-
ing to the rules described in Section 2.2, i.e., NG = 9,
NW = 1, NL = 17, and NT = 12. The damping buses
considered are 1 WTG bus and 17 load buses. The model
and system parameters are taken from [32]. For model575

parameters that are not provided in [32], we use the de-
fault values of models given in the library developed in
PSAT/MATLAB, which are typical values used in dy-
namic simulations [33] and also verified by the case study.

For the communication network G2 used in the control
parameters tuning module for realizing algorithm (34) (see
(34) for details), each edge is assigned a weight wij that
is the element of a doubly stochastic matrix W [27]. To
obtain such a matrix, a simple approach proposed in [34]
is adopted, which is used in [35] and given by:

wij =
1

1 +max{D̃i, D̃j}
, i ∈ V2, j ∈ Ñi (35)

where Ñi defines the set of adjacent damping buses of the580

ith damping bus with the definition of Ñi = {j ∈ V2 :
(j, i) ∈ E2} and cardinality |Ñi| = D̃i.

4.1.2. Simulation results

Following the procedure described in Section 3.1, the
critical LFO identified by each damping bus is −0.0476±585

j1.7311 with the damping ratio ςc = 0.0275 (the preset
threshold ς⋆ = 0.1) and oscillation frequency equal to 0.275
Hz, where G2-G9 oscillate against G1 (see Fig. 12(a) and
participation factors in Fig. 9 for illustration). Then, the
controller parameter tuning module is activated to tune590

the corresponding parameters as described in Section 3.2.
The price parameters needed for the optimization problem
(28)-(30) are given in Table 1. In this case study, for sim-
plicity, we assume the gain limits for DCUs are the same
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Table 1: The parameters for damping controllers

Bus no. π ∆K⋆ Bus no. π ∆K⋆

10 0.8692 37 19 0.8524 0
11 0.9566 0 20 0.9367 60
12 0.7578 0 21 0.7306 33
13 1.2769 0 22 0.9391 0
14 0.8650 0 23 0.7993 0
15 1.3035 0 24 1.1363 0
16 1.3578 0 25 1.0443 0
17 0.9937 42 26 0.7898 0
18 1.0715 0 27 0.9862 0

(i.e. ∆Kmin = −10 and ∆Kmax = 60). It is worth men-595

tioning that the maximal gain (i.e., the gain limit) selected
for each DCU is less than the instability gain (the gain
value produces instability) [36], i.e., the variation range of
gain limits of DCUs is valid. To avoid an excessive inter-
ference of the normal operation of WTGs and LAs, the600

limits of the supplementary input posc of DCUs are as-
sumed to vary in the range of ±0.05 p.u.. As mentioned in
Section 3.2, only the damping buses with high COs partic-
ipate the tuning process. Fig. 10 shows the COs of all 18
damping buses, and the threshold CO⋆ = 10−4. It follows605

from Fig. 10 that buses 10, 17, 20, and 21 participate in
the parameter tuning process. The obtained optimal gain
factor changes are also given in Table 1. The Table 2 com-
pares the original λc, expected λc, and the new λc. It can
be seen from Table 2 that the critical LFO is stabilized as610

desired.

Figure 9: Participation factors of major variables related to λc.

Table 2: Original, expected, and new λc

Original λc Expected λc New λc

−0.0476± j1.7311 −0.1749± j1.7311 −0.1785 ± j1.7340

In order to show the impact of the tuning process of
DCUs on other modes (i.e., noncritical modes), Fig. 11
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Figure 10: CO measures of all damping buses.

shows the eigenvalue profile of the system in three cases:
without DCUs, with DCUs (before tuning), and with DCUs615

(after tuning). Here, the simple zero eigenvalue shown in
Fig. 11 (and also Fig. 16) corresponds to a uniform shift
∆θ 7→ ∆θ + α1N of all phase angle deviations ∆θ. Since
phase angle is defined only up to a synchronously rotating
reference, this trivial degree of freedom can be removed by620

selecting one bus in the system as the angle reference bus
[14]. From Fig. 11, we can see that 1) there is one critical
mode and it is the inter-area mode considered, 2) the in-
troduction of DCUs has an impact on the weak modes but
will not create new weak modes, and 3) the tuning process625

of DCUs do not have a noticeable adverse impact on other
modes.

Figure 11: Eigenvalue profile of 10-machine New England system.

To illustrate the effectiveness of the proposed distributed
control framework, we test the control performance with
a large disturbance, i.e, a three-phase fault, which is com-630

monly used in the literature for damping control test (see
[9, 29] for examples). The variation of rotor angle of G1
after a three-phase fault before and after the proposed tun-
ing process is investigated. The three-phase fault happens
at 1 s for 0.1 seconds on bus 25. From Fig. 12(b) we635

can see that the system performance is improved with the
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Figure 12: (a) Compass plot of relative mode shape (ref. G6) and
(b) rotor angle of G1 responses to a three-phase fault on bus 25.

presence of the proposed distributed control framework.
We also compare the active power injections of 4 activated
damping buses (i.e., buses 10, 17, 20, and 21) during the
disturbance before and after the proposed tuning process.640

Fig. 13 and Fig. 14 show the variation profiles of p⋆ref and
posc for 4 damping buses, respectively. By comparing Fig.
13 and Fig. 14, we see that the output of DCU posc of
each damping bus is very small, i.e., only a small portion
of the power capacity of WTGs and LAs is required for645

supplementary damping control services.

Figure 13: Variation profile of p⋆
ref

for damping buses.

Figure 14: Variation profile of posc for damping buses.

4.2. 14-generator Australian power system

4.2.1. System description

Fig. 15 shows the modified 14-generator Australian
power system [37] that is used to demonstrate the effec-650

tiveness of the proposed distributed control framework. In
the modified system, the SGs at buses 203, 302, and 401
are replaced by WTGs with the same size of their max-
imum power generations. The damping buses considered
are 3 WTG buses and 29 load buses. The model and sys-655

tem parameters are taken from [37]. For the parameters
used in the control algorithms, they take the same settings
as that used in Section 4.1.2 except the preset damping ra-
tio threshold that is selected as ς⋆ = 0.15.

Figure 15: The modified 14-generator Australian power system.

4.2.2. Simulation results660

Following the control procedure described in Section
3.1, five critical modes are detected in the system, whose
damping ratio are less than 0.15 and are circled by a black
ellipse in Fig. 16. It has been mentioned in Remark 3
that the proposed control approach can be extended to665
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handle the case where there are multiple critical modes.
By implementing the parameter tuning process described
in Section 3.2 on each critical mode sequentially, all critical
modes are moved left, which are circled by a red ellipse in
Fig. 16. The movement of critical modes shown in Fig. 16670

demonstrates the effectiveness of such a tuning procedure.

Figure 16: Eigenvalue profile of 14-generator Australian power sys-
tem.

In order to show the advantage of our control approach,
we compare the tuning effect of our approach with a tra-
ditional design method called P-Vr method [1]. The P-Vr
method is designed in a robust fashion, i.e., a range of675

modal frequency is considered. In our case, the range is
selected as 1.5 to 12 rad/s. The detailed tuning process
of P-Vr method can be found in [37]. Fig. 16 shows the
eigenvalue profile in three cases: before tuning, after tun-
ing with P-Vr method, and after tuning with the propose680

approach. It can be seen from Fig. 16 that both the meth-
ods can move the critical modes left but the tuning effect
of P-Vr method is not as good as that of the proposed ap-
proach. This is due to the proposed approach being able
to fully exploit the control potential of controllers for a685

given operating condition when compared with a robust
design (mentioned in Section 1).

In addition, to illustrate the effectiveness of the pro-
posed approach, we test the system performance with a
small disturbance where all active loads in Area 2 are in-690

creased by 20% at t = 1 s. Fig. 17 shows the frequency
responses of generators in five areas, where the frequency
response of one generator in each area is selected to repre-
sent the frequency behaviour of each area, dotted and solid
lines refer to the cases before and after tuning with the695

proposed approach. From 17 we can see that the system
performance is improved with the presence of the proposed
distributed control framework.

5. Conclusions and future work

In this paper, with the introduction of DCU, WTGs700

and LAs have been coordinated to provide damping torques
for the critical low frequency oscillation by adapting their

Figure 17: Frequency profile under disturbance.

active power generations and consumptions, respectively.
In order to provide a scalable control framework for the
increasing number of WTGs and LAs, a novel distributed705

control framework has been proposed, which consists of
two modules: the critical LFO identification module and
controller parameter tuning module. In the identification
module, the system matrix required for eigenvalue analysis
is reconstructed in a distributed manner. Then, based on710

the obtained matrix information, the parameters of DCU
are tuned also in a distributed manner, which forms the
second module. The simulation results have shown that
the proposed distributed control framework is feasible and
effective.715

In the proposed control framework, communication de-
lays are ignored in the distributed algorithms. How to cope
with the communication delay and handle its impact on
the control performance will be studied in future. In addi-
tion, it is assumed that communication network is reliable.720

An important extension is to cope with the situation where
the communication link failure happens.

6. Appendix

6.1. SG model

With 4th-order two-axis synchronous machine model725

and IEEE standard exciter model (IEEET1), the resulting
differential-algebraic equations for the ith SG bus are given
as:

6.1.1. Differential equations

ė′qi =
1

T ′
doi

(

−e′qi − (xdi − x′di)idi + vfi
)

(36a)

ė′di =
1

T ′
qoi

(

−e′di − (xqi − x′qi)iqi
)

(36b)

δ̇i = ω0(ωi − 1) (36c)
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ω̇i =
1

Mi

(

pmi − e′diidi − e′qiiqi − (x′qi − x′di)idiiqi (36d)

−Di(ωi − 1)) (36e)

v̇mi =
1

Tri
(vi − vmi) (36f)

v̇r1i =
1

Tai

(

Kai(vrefi − vmi − vr2i −
Kfi

Tfi
vfi)− vr1i

)

(36g)

v̇r2i = − 1

Tfi
(
Kfi

Tfi
vfi + vr2i) (36h)

v̇fi = − 1

Tei
(vfi(Kei + Sei(vfi)− vri)) (36i)

where ω0 is the base frequency, T ′
doi and T

′
qoi; xdi and xqi;730

x′di and x
′
qi; idi and iqi are the d-axis and q-axis transient

time constant; reactance; transient reactance; current, re-
spectively; pmi, Di, and Mi are the mechanical power,
damping coefficient, and moment of inertia, respectively;
vfi and vrefi are the field and reference voltages, respec-735

tively; Tri, Tai, Tfi, and Tei are measurement, amplifier,
stabilizer, and field circuit time constants, respectively;
Kai, Kfi, and Kei are amplifier, stabilizer, and field cir-
cuit gains, respectively; Sei is the ceiling function.

6.1.2. Algebraic equations740

The stator algebraic equations are given as:

pGi =idivi sin(δi − θi) + iqivi cos(δi − θi)

qGi =idivi cos(δi − θi)− iqivi sin(δi − θi).
(37)

In order to express network voltages in the polar form, idi
and iqi in (36) and (37) are expressed in terms of state
variables xGi and algebraic variables vi, θi:

[

idi
iqi

]

=

[

rsi −x′qi
x′di rsi

]−1 [
e′di − vi sin(δi − θi)
e′qi − vi cos(δi − θi)

]

(38)
where rsi is the stator resistance. Substitution of (38) into
(36) and (37) gives

ẋGi = fGi(xGi, θi, vi)

pGi = gpGi
(xGi, θi, vi)

qGi = gqGi
(xGi, θi, vi), i ∈ VG

(39)

6.2. WTG model

The model of a WTG includes models of the direct
drive synchronous generator (DDSG), controller, and con-
verter.

6.2.1. DDSG model745

As the stator and rotor flux dynamics are fast in com-
parison with grid dynamics and the converter controls de-
coupled the generator from the grid, the steady-state elec-
trical equations of DDSG are assumed. The differential
and algebraic equations for DDSG of the ith WTG are
given as:

ω̇mi =
1

2Hmi

(τmi − τei)

psi = vsdiisdi + vsqiisqi

qsi = vsqiisdi − vsdiisqi

(40)

with

τmi =
pwi(θpi)

ωmi

τei = ψsdiisqi − ψsqiisdi

vsdi = −rsiisdi − ωmiψsqi

vsqi = −rsiisqi + ωmiψsdi

ψsdi = −xsdiisdi + ψpmi

ψsqi = −xsqiisqi

(41)

where Hmi is the rotor inertia; pwi(θpi) is the mechanical
power which is the function of pitch angle θpi; τmi and
τei are the mechanical and electrical torques, respectively;
vsdi and vsqi; isdi and isqi; xsdi and xsqi; ψsdi and ψsqi are
stator d-axis and q-axis voltages; currents; reactances; and
fluxes, respectively; psi and qsi are produced active and
reactive power, respectively; rsi is the stator resistance;
ψpmi is the permanent magnet flux of rotor. Assuming
the power factor equal to 1 (permanent magnet rotor),
the reactive power output of the DDSG equals zero, i.e.,
qsi = 0. Substituting (41) into (40) and expressing isqi
with isdi based on qsi = 0 in (40) gives:

ω̇mi = fmi(ωmi, θpi, isqi)

psi = gspi(isqi).
(42)

6.2.2. Controller

The model of the controller includes models of the pitch
angle control unit, primary frequency control unit, and
the DDCU. For pitch angle control unit, its dynamic is
described by the differential equation:

θ̇pi =
1

Tpi
(Kpiφi(ωmi − ωmrefi)− θpi) (43)

whereKpi, ωmrefi, and Tpi are pitch control gain, reference
rotor speed, and pitch control time constant, respectively;
φi is a function which allows varying the pitch angle set
point only when the difference ωmi−ωmrefi exceeds a pre-
defined value ±∆ωmi. For the primary frequency control
unit, its control is given as:

pfi = Kfi(ωi − ω0) (44)
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with ωi = θ̇i where ω0 is the nominal frequency and Kfi

is the control gain. For the DDCU, its model is already
given in Section 2.1 and repeated here for completeness:

ẋ1i =− 1

Twi

(Kiθi + x1i)

ẋ2i =
1

T2i

(

(1 − T1i
T2i

)(Kiθi + x1i)− x2i

)

ẋ3i =
1

T4i

(

(1 − T3i
T4i

)

(

x2i +

(

T1i
T2i

(Kiθi + x1i)

))

− x3i

)

posci =x3i +
T3i
T4i

(

x2i +
T1i
T2i

(Kiθi + x1i)

)

.

(45)

6.2.3. Converter model

Converter dynamics are highly simplified as they are
fast in comparison with the electromechanical transients.
Thus, the converter are modeled as an ideal current source.
The differential equations for the converter of the ith WTG
are given as:

i̇sqi =
1

Tpri
(isqrefi − isqi)

i̇dci =
1

TV i

((vrefi − vi)− icdi)

(46)

with the reference current isqrefi is defined as

isqrefi =
p⋆refi

ωmi(ψpmi − xsdiisdi)

=
prefi(ωmi) + pfi + posci
ωmi(ψpmi − xsdiisdi)

(47)

where isqi and idci are state variables and are used for the
active power/speed control and the reactive power/voltage
control, respectively, prefi(ωmi) is the power-speed charac-
teristic which roughly optimizes the wind energy capture
and is calculated by based on current rotor speed ωmi. The
active and reactive power injected into the grid from the
converter are given as:

pci = vcdiicdi + vcqiicqi

qci = vcqiicdi − vcdiicqi
(48)

where vcdi = −vi sin θi and vcqi = vi cos θi.
Assuming a lossless converter, the outputs of the WTG

become

pWi = pci = psi

qWi = vi

(

icdi cos θi +
sin θi(psi + viicdi sin θi)

vi cos θi

)

.
(49)

Substituting pfi in (44) and posci in (45) into (47), com-
bining (42), (43), (45), (46), and (49) gives

θ̇i = ωi

ẋWi = fWi(xWi, ωi, θi, vi)

pWi = gpWi
(xWi, ωi, θi, vi)

qWi = gqWi
(xWi, ωi, θi, vi), i ∈ VW .

(50)

6.3. Matrices

The expression of matricesAs,Bs, Cs, andDs is given750

in (51), where the notationKfi
xj

(Jhi
xj
) expresses the Jaco-

bian matrix of the function fi (hi) in the superscript with
respect to the variable xj in the subscript.

The expression of matrices K1, K2, K3, and Jpf is
shown in (52), where all the Jacobian matrices Jhi

xj
in (52)

form the power flow Jacobian matrix Jpf ∈ R2N×2N where

Jpf =

[

J
hp

θ J
hp
v

J
hq

θ J
hq

v

]

. (53)

The expression of matrix T is given as
























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









I8NG 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 INW 0 0 0 0 0 0

0 0 I7NW 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 INL 0 0 0 0 0

0 0 0 0 I3NL 0 0 0 0 0 0 0 0

0 0 0 0 0 ING 0 0 0 0 0 0 0

0 INW 0 0 0 0 0 0 0 0 0 0 0

0 0 0 INL 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 INL 0

0 0 0 0 0 0 0 0 0 0 0 0 INT
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.
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