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Abstract

This paper addresses the synthesis of fixed-order outpdbée& controllers for stability and per-
formance of continuous-time switched linear systems witleltitime constraints or arbitrary switching.
Specifically, the paper starts by considering the stahiinaproblem, which is addressed by searching
for a family of homogeneous polynomial Lyapunov functiorP(Fs) parameterized polynomially by
the sought controller. In order to conduct this search, patyials are introduced for approximating the
matrix exponential and for quantifying the feasibility dfet Lyapunov inequalities. It is shown that a
stabilizing controller exists if and only if a condition ltusolving three convex optimization problems
with linear matrix inequalities (LMIs) holds for polynoniéaof degree sufficiently large. Analogous
conditions for the existence of a controller ensuring aesinpper bounds on th&,; norm and on the
RMS gain of the closed-loop system are derived by searchong ffamily of homogeneous rational

Lyapunov functions (HRLFs) parameterized rationally bg #ought controller.

Index Terms

Switched system, Stabilityo norm, RMS gain, Feedback synthesis.

. INTRODUCTION

Switched systems are dynamical systems allowed to charthelve time in a finite family as
effect of a signal called switching rule. Switched systenay @ fundamental role in automatic
control, and can be found in a number of fields, such as mech€4dB6], power systems [41]
and systems biology [22], [28]. In this paper, the switchinlp is assumed to be an exogenous

deterministic signal.
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Switched systems are generally classified into two mairselgsdepending on the admissible
switching rules: switched systems with dwell time consti®and switched systems with arbitrary
switching. In the former class, the changes among the mattieshmodels can occur only after
a minimum time, called dwell time, which can be hard or averag the latter class, the
changes among the mathematical models can occur arlyitfast. In this paper, (hard) dwell
time constraints and arbitrary switching are considered.

A fundamental problem in switched systems is stability gsial This problem has been
investigated in numerous works for continuous-time svétthinear systems. See for instance
the books [3], [8], [29], [44], the surveys [18], [31], [32¥2], and the papers [5], [24], [30],
[34], [37], [45]. Linear matrix inequality (LMI) conditios have been proposed in [16], [17],
[19], [27], [35] based on various types of Lyapunov funcipisuch as quadratic Lyapunov
functions, piecewise quadratic Lyapunov functions, anthbgeneous polynomial Lyapunov
functions (HPLFsS).

Another fundamental problem in switched systems is perdmce analysis, in particular,
concerning theH, norm and the root mean square (RMS) gain. These indexes hese b
studied for switched linear systems in [23], [25], [32], [88rough techniques such as variational
principles and worst-case control. In [13], [20], LMI cotidhs have been proposed in order to
determine upper bounds through convex optimization baseth® use of quadratic Lyapunov
functions and homogeneous rational Lyapunov functionsL{Fs3.

Control synthesis directly follows the problems mentioabdve. One way to deal with control
synthesis consists of designing a stabilizing switchirig,rsee for instance [2], [19], [21], [26],
[38], [46]. Another way consists of designing a stabiliziiegdback controller, see for instance
[1], [44]. Unfortunately, this problem is not easy to solvechuse, by letting the controller be
a decision variable in the existing conditions for estditig stability, one obtains nonconvex
optimization problems, in general due to the presence afymts between the Lyapunov function
and the controller.

This paper addresses the synthesis of fixed-order outpdb#ek controllers for stability and
performance of continuous-time switched linear systentk divell time constraints or arbitrary
switching. Specifically, the paper starts by considerirggdbtermination of a mode-independent
static output feedback controller that ensures stability & strictly proper switched system.
This problem is addressed by searching for a family of HPL&smeterized polynomially by

the sought controller that prove stability for the consadeset of switching rules. In order to

September 11, 2020 DRAFT



conduct this search, polynomials are introduced for agprating the matrix exponential and for
guantifying the feasibility of the Lyapunov inequalitigsis shown that a stabilizing controller
exists if and only if a condition built solving three conveptimization problems with LMIs
holds for polynomials of degree sufficiently large. Hen&e, paper continues by considering the
determination of a mode-independent static output feddbantroller that ensures desired upper
bounds on thé&{, norm and on the RMS gain of the closed-loop system, which dsested by
searching for a family of HRLFs parameterized rationallytbg sought controller. Analogous
necessary and sufficient LMI conditions are derived for #e norm in both cases of dwell
time constraints or arbitrary switching, and for the RMSngiai the case of arbitrary switching.
Lastly, the paper describes several extensions of the peabmethodology, which consider the
cases of mode-dependent controller, dynamic controlel,ren-strictly proper switched system.
Some numerical examples illustrate the proposed methgygolo

The paper is organized as follows. Section Il introducegtieéminaries. Section Il describes
the proposed methodology for the stabilization problenctiBe IV addresses th&{, norm
control problem. Section V considers the RMS gain controbpgm. Section VI reports some
comments and extensions. Section VII presents the nunhenxeanples. Lastly, Section VIII
concludes the paper with some final remarks. This paper @stdme preliminary conference
versions [14], [15] which do not address th& norm control problem (i.e., Section V) and do

not present the extensions (i.e., Section VI).

[I. PRELIMINARIES

Let us start by introducing the notation adopted in the papef: null matrix and identity
matrix of size specified by the contexiy, N: sets of non-negative and positive integéks.set
of real numbersS™: set of symmetric matrices iR"*". A’: transpose ofA. det(A): determinant
of A. exp(A): exponential ofA. he(A): A+ A’. A® B: Kronecker’s product betweeA and
B. A®". n-th Kronecker power, i.e.A ® --- ® A where the number of occurrences dfis
n. [|All2, [|Allec @and [|A||Fro: 2-norm, co-norm and Frobenius’ norm afl. ||a(-)||z,: L2-norm
of a(t), i.e., [[a(-)|lz, = v/ Jy lla(®)|3dt. A > 0 (respectively,A > 0): symmetric positive
semidefinite (respectively, definite) matrik x: corresponding block in a symmetric matrix or

generic subscript. s.t.: subject to. w.r.t.: with respect t
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A. Basic Model

In this section we introduce the basic model that will be abesred for describing the proposed
methodology. More general models will be discussed in 8actil. Let us start by considering

the switched system

) = Alﬂ(t)x(t) -+ Bl,g(t)u(t) + ng(t)w(t),
) = Cl,o(t)x(t) + Dl,o(t)u(t) + Dg,o(t)w(t), (1)
) = CQp-(t)x(t) + Dg,g(t)u(t) + D4,U(t)w(t),

)

e D,

wheret € R is the time,z(¢) € R" is the stateu(t) € R™ is the control inputw(t) € R is
the performance inputy(¢) € R?* is the control outputz(t) € RP2 is the performance output,
oc:R — {1,..., N} is the switching rule,N is the number of subsystem®, is the set of
admissible switching rules, and (by replacia¢f) with i) Ay, ..., Dy, i =1,..., N, are real
matrices of suitable sizes. The system obtained-{ey = 7 is called thei-th subsystem of the
switched system (1).

This paper considers two sets of admissible switching rulasely, the set of switching rules

with dwell timeT > 0, i.e.,

Dr = {o:R—={l,...,N}, o(t) = constant

. (2)
Vt € [t tiy1), i € No, tign —t; > T},
and the set of arbitrary switching rules, i.e.,
Dy ={0:R—{1,...,N}}. (3)

The reader is referred to the well-known monographs [29]] fdr more information on switched
systems and switching rules.

Three main problems are addressed in this paper as it willxpéieed in the following
sections, namely, stabilizatioK,; horm control, and RMS gain control. For clarity of descipii
these problems will be firstly considered for a basic modélene it is assumed that:

1) the map between(t) andy(t) in the switched system (1) is strictly proper, i.e.,
D1,z’ = 0; (4)

2) a mode-independent static output feedback controllarormnected between the control

output and the control input of the switched system (1), i.e.

u(t) = Ky(t) (5)
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where K € R™*P1 has to be determined in the set
K= {K e R™*PL: ||K||oo < p} (6)

wherep > 0 is a given quantity. Let us observe thétis a compact set, in particular, a

hypercube.

Hence, the closed-loop switched system obtained for thie Ipasdel is
i(t) = Ao (K)x(t) + Bog (K)w(t),
Z<t) = Ca(t)<K)x<t)+Da(t)<K>w<t>7 (7)
o(-) € D

where thei-th subsystem is described by the matrices

(

A(K) = A+ B ;KCy,,
Bi(K) = Ba;+ B1;KD,j, ®)
Ci(K) = Cyi+ D5, KCy,

(| Di(K) = Dy;+ Ds;KDs;.

The formulation presented in this section includes the cdsstate feedback control, which
occurs wheny(t) = x(t). If z(¢) cannot be measured but it is estimated through an observer,
feedback controllers exploiting the estimate of the state lse designed by replacingt) in
(5) with the estimate of the state and by including the dymanof the observer in the switched
system (1) through state augmentation.

The dependence ohof the various quantities will be omitted in the sequel of gawer for

ease of notation unless specified otherwise.

B. Gram Matrix Method

Here we report some basic information about the Gram matgihod, see for instance [9]
and references therein for more details. Any homogeneolym@mial v : R® — R of degree
2d, d € Ny, can be expressed through the Gram matrix method, also kiagwsguare matrix
representation (SMR), as

v(z) = b(x,d)'Vb(z,d) 9)
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wherex € R”, b(x,d) € R* is a base vector for the homogeneous polynomials of degree
d, andV € S*. The matrixV, called Gram matrix ofy(x) w.r.t. b(z, d), depends linearly on

the coefficients ofy(x). The length oft(z, d) is given by
(n+d—1)!

N ST (10)
A typical way of choosing(z, d) is through the recursive rule
( 1 if d=0,
b(Xi(z),d—1
oy = { [ A (12)
: if d>0,
xpb( Xy (x),d — 1)

where X;(z) = (z;,...,x,)". The following are examples of vectors built with this rule:
n=2 d=3: blx,d) = (23 232, 123, 23),
n=3,d=2: blzx,d) = (23 2120, 1123, 73, T273, 3.

The representation (9) is useful to establish (i) is a sum of squares of polynomials (SOS),

i.e.,v(x) = Zle v;(x)? for some polynomials (z),...,vx(x) € R. Indeed, let us define the

linear set
Lo={Les: bz, d)Lb(x,d) =0} (12)
whose dimension is
1
Ta = 55 (Sa+1) — Soq. (13)

Then,v(x) is SOS if and only if there existé € £, satisfying the LMIV + L > 0.

The Gram matrix method can also be used in more general dsntexparticular, for matrix
polynomials (i.e., matrices whose entries are polynomrathe entries of the variable). Specif-
ically, any matrix polynomiald/ : R™ — S™ of degree not greater thali, d € Ny, can be
expressed as

M(z) = (b(z,d) @ I)' M (b(z,d) @ 1) (14)

whereb(z,d) € R is base vector for the polynomials inof degree not greater thah with
S = (n+d)!/(n\d!), andM € S™ is a matrix that depends linearly on the coefficientd.ffr).
This representation is useful to establishVif(z) is SOS, i.e.,M(x) = S2F | M;(x)' M;(x) for
some matrix polynomiald/;(z), ..., My(x) € R™*™. Indeed, let us define the linear set
Lam={Les™: (ba,d)21) L (bw,d) @ 1) =0}, (15)

Then, M (z) is SOS if and only if there existé € £, satisfying the LMIM + L > 0.
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IIl. STABILIZATION PROBLEM

Let us start by introducing the following definition of sthtyi for the switched system (7).

Definition 1: The switched system (7), in particular its autonomous p=gaid to beglobally
asymptotically stable (GAS)

Ve>030>0: [[z(0)|2<d = [z(t)]s <e Vt>0, (16)
limy 00 2(t) = 0 Vz(0)
for all o(-) € D and forw(t) = 0. O

The first problem considered in this paper is as follows.

Problem 1:Find K € K such that the switched system (7) is GAS in the cd3es D, and
D = Dgp. O

The approach proposed in this paper for solving Problem hsed on the use of Lyapunov
functions in the class of the homogeneous polynomials,HHBLFs, which have been exploited
in the literature to derive stability conditions for switzhsystems. Let us start by recalling the
necessary and sufficient LMI condition proposed in [16] fstablishing stability of the switched
system (7) in the case of dwell time constraints through HRP® this end, letl € N, and let

A;i(K) € R« be the matrix function that satisfies
db(x,d)

dx
The matrix functionA;(K’) can be built as explained in [16]. Let us observe thatk') is linear

in A;(K)T, and, from (8), affine linear irk.

Theorem 1 (see [16])ConsiderK fixed andD = Dy, T' > 0. The switched system (7) is GAS
if and only if, for some finited € N, there existl; € S« and©,,Q; ; € R™, 7,57 =1,..., N,
1 # 7, satisfying the LMIs

AJK) Tz = A(K)b(x, d). (17)

0 < V,
0 > he(ViAi(K)) + L(©;), (18)
0 < V;— (M) VjehilF) 4 [(Q ;)

where L(-) is a linear parametrization af, in (12). O
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The specialization of Theorem 1 to the case of arbitrarya@wilg was proposed in [17] in the
context of robust stability analysis of uncertain systenith wolytopic time-varying uncertainty,
and can be recovered from Theorem 1 by imposifig= ... = Vy and eliminating the third
inequality in (18) (observe, in fact, that = 0 cannot be used in Theorem 1). It is worth
mentioning that there exist other conditions in the literatfor establishing stability of switched
systems in the case of arbitrary switching, see for insté®ic¢5], [19], [27], [29], [35]. Also, let
us observe that the value @frequired in Theorem 1 depends on the system under consaerat

Unfortunately, the condition provided by Theorem 1 cannetused directly for solving
Problem 1 using the LMI machinery because, by lettiigbe free, the second and third

inequalities of (18) would be nonlinear in the decision &akes.

The first idea for coping with this problem is to adopt HPLFgeleding polynomially on the
controller as proposed in [11]. Specifically, these HPLFs loa expressed as, foe=1,..., N,

vi(z, K) = b(x,d)'V;(K)b(x,d) (19)

whered € N defines the degree in (equal to2d), andV;(K) € S« are matrix polynomials of
degree not greater thanto be determined. This implies th&t is replaced by (K) in (18).
Similarly, let us replace in (18) matricé€s;, (2, ; with matrix polynomialo;(K), 2, ;(K) € R™
to be determined (whose degree will be specified in the sgquel

Since A;(K) is affine linear ink, it follows that the first two inequalities obtained in the
new condition (18) are polynomial in the entries &t However, the third inequality obtained
in this new condition is non-polynomial ik due to the presence ef(X). In order to cope
with this problem, we replace®, A € R**", with a polynomial approximation of it, denoted

by T(A) € R™*", of chosen degree € N. Such an approximation has to verify the condition

lim Y(A) =e?, VAc A (20)

q—00
where A C R™" is any bounded set. While several polynomial approximaticen be chosen,
here we simply consider the Taylor expansion:
q AZ
T(A) = ZO T (21)
Before proceeding, it is useful to observe that other gjragchave been proposed in the literature

for dealing with the matrix exponential, see for instancg {&here a bound is exploited to
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remove the matrix exponential, [7], where auxiliary mafiixctions and their time derivatives
are exploited, and [6] where the exponential matrix is agditly proposing a solution based on
differential linear matrix inequalities along with boumgaconstraints.

Based on these comments, let us define, fof,al=1,..., NV, i # j, the matrix polynomials
[ Mia(K) = Vi(K) -1,

Mip(K) = —he(Vi(K)Ai(K)) — L(6:(K)) — §(K)I,

M;js(K) = Vi(K) = T(A(K))'V;(K)T(Ai(K))

+L(S;(K)) — §(K)I

where L(-) is a linear parametrization of,; in (12), and{(K) € R is an auxiliary poly-

(22)

nomial to be determined. As it will become clear in the seqtigls auxiliary polynomial
is introduced in order to quantify the positive definitene$sthe matrix polynomialsV;(K),
—he(V;(K)\;(K)) — L(©;(K)) and V;(K) — T (A (K))'V;(K)Y(A(K)) + L(€; ;(K)), which
implies that the considered value Af makes the switched system (7) GAS when the degree of
the Taylor expansion (21) is large enough. Let us observelid) is not introduced inZ; ; (K)
(in order to eliminate an unnecessary degree of freedomeard#iinition of the variables), and
that one could use differegt K') for different matrix polynomials (this choice is not adogpte
for simplicity).

In order to determine matrix polynomialg(k’), ©;(K) and(; ;(K) that make the matrix
polynomialsV;(K), —he(Vi(K)A,(K)) — L(O,(K)) and Vi(K) — T(A(K))'V;(K) T (A(K)) +

L(Q; ;(K)) positive definite for some values &€ over K, we define the optimization problem

all M,(K) in (22) are SOS
sup h s.t. (23)
§(K),Vi(K) h<1
0;(K),Qi,;(K)
where
h = / E(K)dK (24)
K

and C is given by (6). The optimization problem (23) is a semidééirprogram (SDP) because
the cost function of (23) is linear in the decision variab{gsparticular, in the coefficients of
¢(K)), and because the constraints of (23) can be expressed asitle decision variables (in

particular, in their coefficients) as explained in SectibB1. SDPs belong to the class of convex

The matrix polynomialsM, (K) in (22) are expressed in the variatig, which is a matrix. The case considered in Section
11-B, where the matrix polynomials are expressed in a veutiable, can be recovered by grouping all the entriegointo

a vector.
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optimization problems since both cost function and feassgt are convex, see for instance [4].
Let us observe that only the matrix polynomidl§ (K') in (22) are required to be SOS in the
SDP (23). Other matrix polynomials such &4<’) are not required to be SOS in this SDP.

The next step is to determine a candidate for the sought atertbased on the solution of
the SDP (23). To this end, l&t'(K) be {(K') evaluated for the optimal values of the decision
variables found in the SDP (23). Let us define the polynomial

pIK) ==& (K) = 3 (0" = KE)sig(K) (25)

where the auxiliary scalgt € R and polynomialss; ;(/) € R have to be determinedy; ; is
the (7, j)-th entry of K, andp is used in the definition ofC in (6). The second optimization

problem that we define is the SDP

inf pu s.t. p(K),s,;;(K) are SOS (26)

1,84,5 (K)
Let us observe that, in order to build the SDPs (23) and (2, ltas to choose the degrees

of polynomials involved. A guideline for choosing these s is as follows. First, chooske
(which defines the degree of the HPLF candidates in (19).w),ty (the degree of the Taylor
expansion (21)) and (the upper bound on the degree 3f K')). Second, set the degrees of
0,(K), Q,;;(K) and {(K) not greater than the maximum degree of the matrix polynamial
defined in (22) (evaluated for nub;(K), ©; ;(K) and&(K)). Third, set the degrees of ;(K)
not greater than the degree pfK) (evaluated for nulls; ;(£)). Summarizing, one chooses
d, ¢ and r, and the other degrees are automatically selected. Thaeljne will be adopted
throughout the paper unless specified otherwise.

It is interesting to observe that both SDPs do not confaias decision variable. Indeed, in
the SDP (23), the decision variables are the coefficient§(af), V;(K), ©,(K) and(; ;(K),
and, in the SDP (26), the decision variables ar@nd the coefficients of; ;(X’). Candidates for
the sought controller will be determined based on the smistiof these SDPs. Specifically, let
p*(K), p* ands;,;(K) bep(K), p ands; ;(K) evaluated for the optimal values of the decision
variables found in the SDP (26). Fropi(K), p* and £*(K'), we define the set of controller
candidate%

Z(d,qr) = {K € K: p'(K) =0, &(K) = p'}. (27)

2We observe that the system of equatigrig/X) = 0 and£*(K) = u* may admit also non-real solutions féf, however,
they are not relevant for this paper.
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11

The following result provides a necessary and sufficiendden for solving Problem 1 in the

case of dwell time constraints.

Theorem 2:ConsiderD = Dy, T' > 0. There existsk € K such that the switched system
(7) is GAS if and only if, for some finitel, ¢ € N andr € Ny, there exists’ € Z(d, ¢, r) such
that the switched system (7) is GAS.

Proof. “Sufficiency”. Suppose there exists € Z(d, ¢, r) such that the switched system (7) is
GAS. SinceZ(d, q,r) is a subset ofC, it follows that there existé( € K such that the switched
system (7) is GAS.

“Necessity”. Suppose there exisks € K such that the switched system (7) is GAS, and let
us indicate such a value a@s#. Let us replacek with K# in the LMIs in (18), and letd
be such that these LMIs are feasible (observe that suthi@es exist finite from Theorem 1).
Also, let us replace®(X™) with T(A;(K#)) in these LMIs, and le; be such that these LMIs
are feasible (observe that suchyaloes exist finite sincéC is bounded,Y(A) approximates
arbitrarily well e4 for sufficiently large values of, and the inequalities in (18) are strict). Let
V7, ©f and Q7 be values ofV;, ©; and;; for which the obtained LMIs hold. Since these

LMIs are homogeneous in the decision variables, one camesatthout loss of generality that
VFE ST

(indeed, ifV;* # I, thenV;", ©F andQ; can be multiplied by a positive real number in order
to ensurev;# > | and satisfaction of these LMIs). Moreover, there ex{sts> 0 such that, for
alli,j=1,....N, i+

0<V#—1,

0 < —he(V;#Ai(K#)) — L(OF) — £*#1,

- . i

0 < V77— T(A;(K#)) Vi T(A(K#)) + L) — 71,
Given the continuity of these inequalities &t, V;*, ©F and Q7 it follows that there exist
matrix polynomialsé(K), V;(K), ©;(K) and(; ;(K) such that

§(K7) >0
and, foralli,j =1,...,N,i+#j, forall [ = 1,2, and for all K € R™*P1,

0 < M;y(K),
0 < M;,s(K)
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where
.

Mi,l(K) = Vz(K) —1,

Mip(K) = —he(Vi(K)Ai(K)) = L(O:(K)) — £(K)1,
Mija(K) = Vi(K) = T(A:(K))'V;(K) T(Ai( K))

( +L(S(K) = E(F)L.

Let us observe that the degreeséof), V;(K), ©,(K) and(); ;(K) can be always increased in

order to satisfy the constraints of the SDP (23). IndeedyferNy, let us define the polynomial

FIE) = (1+ [ K5,,)"

From [40] it follows that there existgsuch that the polynomials(K)M; (K ) and f(K)M; ; 3(K)
are SOS. Sincef(K) — 1 is SOS (being sum of powers dfK||%,, multiplied by positive
coefficients), one has that the constraints of the SDP (23)beasatisfied by choosing

§K) = fIKEK),

Vi(K) = fK)Vi(K),
0:i(K) = [f(K)6i(K),
Qs (K) = fE)Q;(K)

which also satisfy
E(K#) > 0.

Let us observe that such matrix polynomials can be obtaiyemdximizing/ in the SDP (23),
and that the constrairit < 1 can be introduced without loss of generality. Indeed i# 1 for

the {(K') obtained so far, theg(K’) can be redefined as

§(K) = &(K) =0

(o) (fownn )

and this ensures that the redefingd<) is still positive for somek” € I (since the integral of
the redefined(K’) over K is 1) and that the constraints of the SDP (23) hold (sifice 0).

where

Next, let us define

fi = sup &"(K)
Kek
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13

where*(K) is {(K') evaluated for the optimal values of the decision variabtasé in the
SDP (23). From the above discussion, it follows that 0. Let us observe tha#* — KZ?J >0
foralli=1,...,myandj=1,...,p; if and only if K € K. This implies that

p=
for any chosen degrees of the polynomials(X’), where ;* is p evaluated for the optimal
values of the decision variables found in the SDP (26). Megeothe polynomials? — KEJ

have even degree and the highest degree forms are zero ifrapdf o’ = 0. Hence, from

Putinar's Positivstellensatz [39], it follows that
Wo=p

for polynomialss; ;(K') with sufficiently large degrees. Let™ € K be such that*(K*) = f.
Sincep*(K) is SOS, it follows that

0 < p"(K7)

< 0.

Hence,p*(K*) = 0 and, thereforeK* € Z(d, q,r) wherer is any integer greater than or equal
to the maximum among the degrees of ti¢K') for which the degrees o®;(K), Q; ;(K)
and¢{(K) can be chosen with the guideline reported under (26). M@eg¥(K*) > 0, which

ensures thalkl™* solves the problem for sufficiently large valuesqof O

Theorem 2 provides a strategy for solving Problem 1 in thes adsdwell time constraints
based on the SDPs (23) and (26). This strategy consists ofwiag the search space for the
sought controller from the original set, i.&C, to a subset of it, i.eZ(d, ¢,r). OnceZ(d, q,r) is
found, one checks if any of the controllers included in sudetsolves Problem 1, for instance
by using Theorem 1. Let us observe tlataffects Z(d, ¢, ) (and, hence, Theorem 2) through
the cost function of the SDP (23) (which is the functibrin (24)) and the first constraint of
the SDP (26) (which is the condition that the polynomiék’) has to be SOS).

In order to understand the advantage of Theorem 2, let usnabsleat Z(d, ¢, r) typically
contains one element only. Indeed, as seen in the proof abréhe2,..* is an upper bound of

the maximum of¢*(K) over K. This means thag(d, ¢, r) is either empty or its elements are
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global maximizers ot*(K) over K (i.e., points inkC where¢*(K') achieves its maximum over
KC). Now, the set of polynomials of a specified degree that haweerthan one global maximizer
over a specified compact set has a smaller dimension thanethef polynomials of such a

degree (where the dimension is evaluated, for instanceharspace of the coefficients of the
polynomials w.r.t. a specified basis). This explains wyl, ¢, r) typically contains one element
only, and why this is indeed the case for all numerical exasph Section VI,

The computation ofZ(d, ¢,r) can be addressed using the Gram matrixpgf’) found in
the SDP (26), either in the typical case wheféd, ¢, ) contains one element only or in other
cases where this set may contain multiple elements. Ind#edep*(K) is SOS, its zeros can
be determined from the null space of the found positive sefimide Gram matrix ofp*(K).
More specifically, this amounts to finding the valuesroffor which the vector of monomials
in K used to define this Gram matrix belongs to the null space sf@ram matrix. This step
can be addressed in various ways. For instance, a proceépogted in [10] and references
therein involves pivoting operations and the computatibrthe roots of a polynomial in one
variable. Once the zeros of (K') are found, one singles out those that belongCtand satisfy
¢*(K) = p*. For all numerical examples in Section VII, the computatidrz(d, ¢, r) is trivial
because the null space of the found positive semidefinte @Gnatrix of p*(K) has dimension
one, and, hence, the zeros8{ K') are determined by just scaling a vector.

The second constraint in the SDP (23) is introduced in ordegnisure that the solution of
this SDP is bounded. The constanbn the right hand side of this constraint can be replaced
with any other positive number.

It is useful to observe that Theorem 2 not only extends tochei systems the idea of
HPLFs depending polynomially on the controller introdudedl11] for uncertain systems, but
also improves it. Indeed, the determination of these fonstin the SDP (23) is achieved without
introducing multipliers for imposing positive semidefemiess of the matrix polynomials ovier

Theorem 2 can be modified in order to solve Problem 1 in the oasebitrary switching.

This is explained in the following result.

Corollary 1: ConsiderD = D,,,. Modify the SDP (23) by imposing’;(K) = ... = Vy(K)
and removingl/; ; 5(K) from the constraints. There exiskS € K such that the switched system
(7) is GAS if and only if, for some finitel € N andr € Ny, there existsk' € Z(d,0,r) such
that the switched system (7) is GAS.
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Proof. Analogous to the proof of Theorem 2 by observing that, in¢hseD = D, all the

subsystems of the switched system (7) must share the sanpeingwa function. O

IV. Hy NORM CONTROL PROBLEM

Let us start by providing the definition ¢{, norm of the switched system (7).

Definition 2: The H, norm of the switched system (7) is

Vi J sup > 2]z, (28)

o(-)eD =1

where zU) () is the solutionz(t) for 2(0~) = 0 due to an impulse applied to theth entry of

w(t) (each impulse is applied independently on the others). O

The second problem addressed in this paper is as follows.

Problem 2:Find K € K such that thei{, norm of the switched system (7) is smaller than a

desired valuey in the case® = Dy andD = D, O

Let us observe that, in order for tli¢, norm of the switched system (7) to be bounded, the
map betweenu(t) andz(¢) has to be strictly proper. Hence, in this section we assuriteput
loss of generality,

Di<K) =0, (29)

which holds, for instance, wheb,; =0, andD;; = 0 or Dy; = 0.

The approach proposed in this paper for solving Problem Zs&d on the use of Lyapunov
functions in the class of the homogeneous rational funstioa., functions that can be expressed
as the ratio of homogeneous polynomials. Specifically, atfanv : R" — R is a homogeneous

rational function of total degre& € N, and relative degreé, € Ny, with §; > d,, if

_ o)

where ¢(x) and ¢(z) are homogeneous polynomials of degikgeand ¢; — J,, respectively.

Lyapunov functions in the class of the homogeneous ratibmadtions, i.e., HRLFs, have been
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introduced in [13] to derive upper bounds of the norm of switched systems. In particular,
HRLF candidates of total degrée and relative degre2d — 2, d € N, are searched for. These

candidates can be expressed as,iferl,..., N,

¢i(7)

Y(@)”

oi(z) = bz, d)®b(z,d), (31)
(x) = blz,d—1)Ub(x,d—1)

v ()

where®; € S« and ¥ € S*%-1. Throughout the paper it is assumed thatatisfies

o> 0, @2)
Y(z) = a3

The following theorem, proposed in [13], provides a necgsaad sufficient LMI condition for
establishing upper bounds of thé, norm of the switched system (7) in the case of dwell time

constraints.

Theorem 3 (see [13])ConsiderK fixed andD = Dy, T' > 0. The H, norm of the switched
system (7) satisfies

Vs <Y (33)

if and only if, for some finited € N, there exist®;, € S** and©,,Q; ; € R™1, 4,5 =1,..., N,
1 # 7, satisfying the LMIs

(

b,

Ei(K,®;) + L(©;,),

Qi(K, ®;, ©;,exp(-)) + L( ),
< 7 = gi(K, @)

(34)

o o o o
Vo vV A

whereexp(-) is the exponential function,(-) is a linear parametrization af,,;_; in (12), and
Ei(K,®;), Qi(K,®;, ®;,exp(-)) and g;(K, ®;) are the affine linear matrix functions i, and
®; defined in Appendix A. O

The counterpart of Theorem 3 for the case of arbitrary switgltan be recovered by elimi-
nating the third inequality in (34) and imposidg = ... = ®,. As explained in [13], the choice
for W in (32) is introduced in order to guarantee that the LMI cdindiin Theorem 3 is not

only sufficient but also necessary (indeed, sufficiency iseaed for allW > 0). Let us observe
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that the HRLF candidates in (31) could be defined with difieieenominators, however, in [13]
and in this paper these candidates share a common denomimatmplicity.

As in the case of Theorem 1, the condition provided by TheoBecannot be used directly
for solving Problem 2 because, by lettiig be free, the second, third and fourth inequalities of
(34) would be nonlinear in the decision variables.

The first idea for coping with this problem is to introduce HRLdepending rationally on the
controller. These functions can be expressed as; fon, ..., N,
b(z,d)®;(K)b(z,d)

ule K) = e a1y, d— 1) (39)
where
B:(K) = q;((;) (36)

and the auxiliary matrix polynomialé;(K) € S and((K) € R of degree not greater than
have to be determined. In order to use these functions, leefise the matrix polynomials

;

Ei(Kv (I)i(K)vC(K)):Ei(K
Qi(K, ®i(K), ®;(K), ((K)) = Qi(K
((K), (37)

il K, @:(K), C(K) = (T2 (B () )

\

where BZ.(”(K) is the j-th column of B;(K). Hence, for alli,; = 1,...,N, ¢« # j, let us

introduce the matrix polynomials

;

M; (K)=®;(K) — §(K)I,
M;o(K) = —E;(K, ®(K),((K)) — L(6:(K)) — £(K)I,
Mij3(K) = Qi( K, ©i(K), @;(K), ((K)) + L(S;(K))
—&(K)I,
M;4(K) = g:(K, ®:(K),((K)) — §(K),
M5(K)=((K) -1

(38)

where L(-) is a linear parametrization of,, ; defined by (12), and the auxiliary matrix
polynomials{(K) € R and ©;,Q; ;(K) € R™-1 have to be determined. Let us define the
SDP

sup
E(K),®i(K)
0; (K),Qi,;(K),((K)

L st { all M,(K) in (38) are SOS (39)

h<1
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whereh is defined in (24). Let us select the degrees(df), ©,(K), Q, ;(K) automatically from
d, ¢ andr analogously to what done for the stabilization problem ictf®a 1ll. The following
result provides a necessary and sufficient condition fovisglProblem 2 in the case of dwell

time constraints.

Theorem 4:ConsiderD = Dy, T > 0. Let £*(K) in (25) be{(K) evaluated for the optimal
values of the decision variables found in the SDP (39). Theusts K € K such that theH,
norm of the switched system (7) is smaller tharf and only if, for some finited, ¢ € N and
r € Ny, there existsX’ € Z(d, ¢, ) such that the®{, norm of the switched system (7) is smaller
than~.

Proof. See Appendix C. O

Theorem 4 provides a strategy for solving Problem 2 in thes edsdwell time constraints
based on the SDPs (39) and (26). Analogously to the statdizgoroblem considered in the
previous section, this strategy consists of narrowing #gerch space for the sought controller
from the original sefC to its subsetZ(d, ¢, r), which typically contains one element only. Once
Z(d, q,r) is found, one checks if any of the controllers included infsacset solves Problem
2, for instance by using Theorem 3.

Theorem 4 can be modified in order to solve Problem 2 in the o&sebitrary switching.

This is explained in the following result.

Corollary 2: ConsiderD = D,,,,. Modify the SDP (39) by imposin@,(K) = ... = &y (K)
and removing); ; s(K) from the constraints. Let*(K) in (25) be {(K) evaluated for the
optimal values of the decision variables found in the SDP.(38ere existsk’ € K such that
the H, norm of the switched system (7) is smaller thaif and only if, for some finited € N
andr € Ny, there existsK € Z(d,0,r) such that thel{, norm of the switched system (7) is
smaller thary.

Proof. Analogous to the proof of Theorem 4 by observing that, in¢hseD = D,,,, all the

subsystems of the switched system (7) must share the sanpeingwa function. O
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V. RMS GaAIN CONTROL PROBLEM

Let us start by providing the definition of RMS gain of the sshigd system (7).

Definition 3: The RMS gain of the switched system (7) is
120l 2

Yrms = limsup —5F— (40)
o(yeDw() W)z,

wherez(t) is the solution forz(0~) = 0. O
The third problem considered in this paper is as follows.

Problem 3:Find K € K such that the RMS gain of the switched system (7) is smalken th
a desired values in the caseD = Dy andD = D, O

Let us start by recalling the necessary and sufficient LMIditoon proposed in [13] for
establishing upper bounds of the RMS gain of the switchetkryg7) in the case of arbitrary
switching through HRLFs. To this end, fdre N, let us define the vector

bz, d,u) = ( bla,2d =1) ) . (41)
b(z,2d —2) @u

Also, let us define the linear space
Lg= {I) =1 B(x, d, u)/ﬂg(x, d,u) = O} (42)

whose dimension is denoted by.

Theorem 5 (see [13])ConsiderK fixed andD = D,,,. The RMS gain of the switched system
(7) satisfies

YrMS < 7Y (43)

if and only if, for some finited € N, there existb € S« and©; € R™, i = 1,..., N, satisfying

the LMIs
0 < @
{ (44)

0 > F(K,®)+Gi(K)+ L(6;)
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whereL(-) is a linear parametrization of, in (42), andF;(K, ®) and G,(K) are linear matrix

functions in® whose definitions are reported in Appendix A. O

Theorem 5 can be exploited to solve Problem 3 by adopting yapunov functions introduced

in the previous section. Specifically, let us denote an HRe&pethding rationally on the controller

as
b, d)YB(K)b(x, d)
vl K) = = e, 4) (43)
where
B(K) = % (46)

and the auxiliary matrix polynomialé(K) € S and((K) € R of degree not greater than
have to be determined. Following the strategy proposed ati®elV, for alli =1,... N, let

us define the matrix polynomials

;

M(K) = ®(K) —&(K),

Mis(K) = —F(K, ®(K)) - ((K)Gi(K) - L(8;(K))
=S,

M3(K) = ((K)—1

(47)

where L() is a linear parametrization of, in (42), and the auxiliary matrix polynomials
¢(K) € R and©,(K) € R™ have to be determined. Let us define the SDP

all M,(K) in (47) are SOS
sup h S.t. (48)
£(K),®(K) h<1
0:(K),((K)

whereh is defined in (24). Let us select the degreest0k) and ©;(K) automatically from
d andr analogously to what done for the stabilization problem iwct®a Ill. The following
result provides a necessary and sufficient condition forisglProblem 3 in the case of arbitrary

switching.

Theorem 6:ConsiderD = D,,,,. Let £*(K) in (25) be¢(K) evaluated for the optimal values
of the decision variables found in the SDP (48). There exiSts K such that the RMS gain
of the switched system (7) is smaller tharif and only if, for some finited € N andr € Ny,
there existsk' € Z(d,0,r) such that the RMS gain of the switched system (7) is smalken th

v.
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Proof. See Appendix C. O

Theorem 6 provides a strategy for solving Problem 3 in the cdsarbitrary switching based
on the SDPs (48) and (26). Analogously to the problems censitlin the previous sections, this
strategy consists of narrowing the search space for thens@ogtroller from the original set
to its subsetZ(d, 0, ), which typically contains one element only. Ong€éd, 0, r) is found, one
checks if any of the controllers included in such a set soRexblem 3, for instance by using
Theorem 5.

We conclude this section by mentioning that one can addresdddn 3 in the case of dwell
time constraints analogously, in particular, by combinimg methodology proposed in Theorems

4 and 6 with the results proposed in [13].

VI. COMMENTS AND EXTENSIONS

In this section we report some comments on the methodologgritbed in Sections IlI-V and

some extensions of the basic model introduced in Section II.

A. Comments

Let us start by observing that Problems 1-3 do not always tadraolution. For instance, a
necessary condition for the solvability of Problem 1 is thktthe subsystems of the switched
system (1) admit a common stabilizing static output feekbeantroller, and this necessary
condition may not hold in some cases. Indeed, it is also plessinat one or more subsystems
of the switched system (1) do not even admit a stabilizingcstautput feedback controller.

Another comment concerns the set where the sought comgadiee searched for, i.eiC
defined in (6). The quantity in (6), which defines the size df, is given. Using large values
of p has the benefit of extending the space where the controlleeasched for, however, this
may increase the degredsq andr needed to determine a sought controller.

Let us also observe that, in gener@lcontains controllers that do not solve the problem under
consideration. Hence, in order to possibly speed up therdatation of a sought controller (i.e.,
reduce the degrees ¢ andr needed), one could shrink by removing some of such useless
controllers. For instance, for Problem 1, one may removees@and, if possible, all)y< for

which A;(K) is not Hurwitz for some = 1,..., N. These values o’ may be identified using
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standard methods such as the Routh-Hurwitz criterion. Bletiee model in Section Il may be
reformulated with a smallelC. See Example 1 in Section VIl for details.

The next comment concerns the degueef the Taylor expansion (21). Let us observe that
g is not used in Corollaries 1 and 2, and in Theorem 6, since #yoll expansion (21) is not
exploited in the case of arbitrary switching. Also, in théisese results, if the quantity* used
to defineZ(d, 0, r) in (27) satisfieg.* > 0, then any controller inZ(d, 0, r) solves the problem
under consideration (i.e., one does not need to performlaktist on the controller candidates
in Z(d,0,r)).

Lastly, let us observe that Theorem 4 and Corollary 2 can leel tis determine controllers
that minimize theH, norm of the switched system (7) through a bisection algoritin 4. An
analogous strategy can be used with Theorem 6 to determimteotiers that minimize the RMS

gain of the switched system (7).

B. Extension: Mode-Dependent Controller

The sought output feedback controller was assumed to be -inddpendent in (5), being
common to all the subsystems of the switched system (1). &ieenthe switching rule is
available in the controller/< can be replaced by, in order to stabilize a larger class of

switched systems. That is, (5) can be replaced with

u(t) = Kyuy(t) (49)
where K, ..., Ky € R™*Pt gre matrices to be determined A The design of these matrices
can be readily addressed as described in Sections IlI-V bypyng K1,..., Ky in a single

matrix K.

C. Extension: Dynamic Controller
The sought output feedback controller was assumed to he sta6). Here we suppose that
a fixed-order dynamic output feedback controller is seatdbe in particular of the form
jjcon@) - Aconxcon<t) + Bcony(t)7
U(t) - Cconxcon(t) + Dcony(t)

wherez,,, € R is the state of chosen order, ard,,,, B...., C.., and D,,,, are matrices to

(50)

be determined in a set analogousito As it is well known, the design of a dynamic output
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controller can be reformulated as a static output feedbacklem. As a matter of fact, the four
unknown matrices in (50) can be grouped in a single makfithat represents the gain of a
static output feedback for an augmented system. Spedgffitallus introduce an auxiliary input
u(t) € R™ and an auxiliary outpug(t) € R™». The static output feedback is

w0\ _ (w0 Do Con o1
i) 70 B Acon

) ) (DW> » &)
0

xcon(t
u(t)
+ D3crt 0 +D4Utw(t)7
() (2] + 1
o(-) €D

D. Extension: Non-Strictly Proper Switched System

The map between(t) andy(t) was assumed to be strictly proper in (4). Here we want to
allow one to consider the case where this map is proper omdi.uks start by observing that,
either (4) holds or not, the matrix function§(K), B;(K), C;(K) and D;(K) to be used in the

switched system (7) are given by

A(K) = Ay; + B KT, (K)™'Cy,
Bi(K) = By; + By ;KT;(K) ' Dy, (53)
Ci(K) = Cy; + D3, KT;(K)™'Cy,
| Di(K) = Dy; + D3 ;KI';(K) ™' Dy
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where

In such a case, the switched system (7) may be not well-pased$;( K') may be singular. To

cope with this issue, let us define the polynomials

wheree > 0 is a chosen threshold. The non-negativity of these polyatsnin fact, ensures that
all the subsystems of the switched system (7) are well-pdsedce, these polynomials have to
be included in the constraints of the SDPs (23), (39) and. (48)

Another point to observe is that, contrary to Section Il vehéte matrix functionsd;(K),
B;(K), C;(K) and D;(K) were linear due to the assumption in (4), these matrix fonsti
are now rational. As a consequence, the set of matrix polyedem/, (K) considered in the
SDPs (23), (39) and (48) now do not contain only matrix poiprads but also matrix rational
functions. This issue can be dealt with by observing thasehmatrix rational functions can be
expressed as ratios between matrix polynomials and everrgosf det(I';(/K)). Hence, one
just uses the numerators of these ratios for the matrix pohyals M/, (K) in the SDPs (23),
(39) and (48).

VIlI. EXAMPLES

In this section we present some illustrative examples optioposed methodology. The SDPs
are solved by using the toolbox SeDuMi [43] for Matlab on asperl computer with Windows
10, Intel Core i7, 3.4 GHz, 8 GB RAM. The computational time $mlving each SDP is less
than one second, and the number of LMI scalar variables ih 88 is reported (the reader is
referred to [12] for more details about the numerical comipyeof the LMIs obtained using the
Gram matrix method described in Section [I-B). The matrixypomials ©;(X), €, ;(K) and
((K) are chosen of degre® For brevity of description, it is assumed in the switchedtem
(1) that B, ; = By, C,; = Cy;, and D;; = 0.
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A. Example 1

Let us consider the switched system (1) with= 3 and

(

0 1 -1 0

Ay = ;o A = )
-5 2 -5 -2
0 0

By, = ) By = )
1 1

Cip = (1—1>, Cip = (1 0>7
0 -3 0

Az = , Bz = )
0 —5 1

Ciz = < 11 ) .

\

We want to solve Problem 1 wit® = Dy, T' = 0.2, and K given by (6) withp = 10. Let
us observe that the switched system (7) is unstableifoe 0, for instance because the first
subsystem is unstable.

Let us use the methodology proposed in Section lll. Firstsalge the SDP (23). We choose
to search for HPLFs of degrerl = 2 constant in the controller (i.er,= 0) using a first-order

approximation of the matrix exponential (i.e.= 1). We find
& (K) = —0.142K? + 1.035K — 6.54.
Second, we solve the SDP (26), finding the set
Z(1,1,0) = {3.657} .

Third, we find that (18) is feasible fdk = K* with K* = 3.657, hence implying thaf{* solves
Problem 1. The number of LMI scalar variables in the three SBi@21, 2 and 10, respectively.
Figure 1 shows the stabilizing and non-stabilizing comérsl for this example found by brute
force. Some numerical details about the construction ofSihes (23) and (26) for this example
are reported in Appendix B.

Lastly, let us observe that one could shrikkbefore applying the proposed methodology in
order to possibly speed up the convergence as discussecttiorS¥I-A. Indeed, a necessary
condition for the switched system (7) to be GAS is tha{K) is Hurwitz for all i = 1,2, 3,

September 11, 2020 DRAFT



26

which is satisfied if and only ik € (2,5). Hence, one could reformulate Problem 1 with a

smallerp in (6), in particularp = 1.5 instead ofp = 10, by introducing the changes

Ai(K) — A(K+35) Vi=1,2,3,
K — {KeR: |[K|<1.5}.
With these changes, by using the saihe; andr, we similarly obtain a controller that solves
Problem 1, in particularx* = 3.724 (expressed in the coordinates of the original system). For
completeness, we report in Figure 2 the polynongidl<’) found with these changes for some
values ofg andr. For all values considered, the obtained controller caatdids the maximizer

of £*(K), and this candidate solves Problem 1.

Fig. 1. Example 1. White area: controllers for which one orrensubsystems are unstable; gray crosses: controllers for
which stability cannot be established with quadratic Lyapufunctions (possibly unstable); green circles: cotgrslfor which
stability can be established with quadratic Lyapunov fiomst; red square: null controller (open loop system); bluelez found

controller.

02

0.1

Fig. 2. Example 1. Polynomig*(K) found ford = 1, r = 0 and¢ = 1 (black solid line),q = 2 (black dashed line)y = 3
(black circles). Also, polynomia* (k) found ford = 1, » = 2 andg = 1 (blue dashdot line)y = 2 (blue dashed line); = 3

(blue crosses).
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B. Example 2

Let us consider the switched system (1) with= 2 and
(

0 —4 —4 -2 -5 —4
A= 1 0 2 |, A= 1 0 1 [,
2 1 -2 2 0 =2
0.5 1
Bii=1 -11, Bio=1 —-05 |,
1.5 0.5
01 = 101 | Crom 11 1
\ 001 0.5 0 0.5

We want to solve Problem 2 witk = Dy, T' = 0.5, v = 3, andC given by (6) withp = 10. Let
us observe that thg{, norm of the switched system (7) is unbounded for= 0, for instance
because the first subsystem is unstable.

Let us use the methodology proposed in Section IV. First, ekeesthe SDP (39). We choose
to search for HRLFs of total degrée = 2 constant in the controller (i.er,= 0) using a first-
order approximation of the matrix exponential (i~ 1). By using the notationk’ = (ky, k»)’,

we find
5*([() = —0.01516% — 0.001k1ky — 0.179k — 0.0041@%

—0.093ky — 2.571.
Second, we solve the SDP (26), finding the set

Z(1,1,0) = {(—5.681, —10)'} .

Third, we find that (34) is infeasible fak’ = (—5.681, —10)".
Hence, we repeat the above procedure using a second-orgdesxapation of the matrix
exponential (i.e.q = 2), finding the set
Z(1,2,0) = {(—5.037,5.420)'}
and that (34) is feasible fok = K* with K* = (—5.037,5.420)". Hence, the found controller
K* solves the problem. In particular, this controller ensutet the?, norm of the switched
system (7) is smaller than 354 (upper bound found witl2d = 2). The number of LMI scalar

variables in the three SDPs a364, 19 and 13, respectively. Figure 3 shows the controllers that

solve the problem considered in this example found by brorteet
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ks

Fig. 3. Example 2. White area: controllers for which one orensubsystems are unstable; gray crosses: controllershichw
the upper bound on thH> norm cannot be established with quadratic Lyapunov funstipossibly upper bound does not hold);
green circles: controllers for which the upper bound on#henorm can be established with quadratic Lyapunov functioed;

square: null controller (open loop system); blue circlairfd controller.

C. Example 3

Let us consider the switched system (1) with= 2 and

;

0 1 0 0 1 0
A= -3 0 -1 |,Ai2=| =10 -05 —-15 |,
—0.5 0.5 —1 -1 0 —45
0 0
Bi1= 1 ) Bio=11 [,
0.5 1
\01,1:(—1 1 o), 01,2:(—1 0.5 —0.5).

We want to solve Problem 3 wit®® = D,,,,, v = 5, and K given by (6) withp = 10. It can
be verified that the RMS gain of the switched system (7) is unbed for K = 0 (though
the subsystems are asymptotically stable). Indeed, the lopg@ switched system is unstable as
shown in Figure 4, where the trajectory of the system is teylofor «(¢) = 0, z(0) = (0,1, 5)’

and
1 if t € [1.5i, 1.5 + 1), i € Ny,

o(t) =
2 otherwise
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€3

-10
-50

T 50  -150

Fig. 4. Example 3. A trajectory of the open loop switched eysin the absence of input. The square is the initial conditio

and the circles are the points where the switches occur.

Let us use the methodology proposed in Section V. First, viieesbe SDP (48). We choose

to search for HRLFs of total degré@e = 2 constant in the controller (i.er,= 0). We find
¢*(K) = —0.001K? — 0.006 K — 1.059.
Second, we solve the SDP (26), finding the set
Z(1,0,0) = {—5.404} .

Third, we find that (44) is infeasible fak' = —5.404.
Hence, we repeat the above procedure by searching for HRiLiesab degree2d = 4, finding
the set
Z(2,0,0) = {—2.474} .

and (44) is feasible folk = K* with K* = —2.474. Hence, the found controlle™ solves the
problem. In particular, this controller ensures that the Riykin of the switched system (7) is
smaller than3.884 (upper bound found witl2d = 4). The number of LMI scalar variables in
the three SDPs ar¢08, 2 and 166, respectively. Figure 5 shows the controllers that sohee th

problem considered in this example found by brute force.

VIIl. CONCLUSIONS

This paper has addressed the synthesis of fixed-order dietpdiback controllers for stability

and performance of continuous-time switched linear systanith dwell time constraints or
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Fig. 5. Example 3. White area: controllers for which one orensubsystems are unstable; gray crosses: controllershichw
the upper bound on the RMS gain cannot be established withR4RIf total degre@d = 4 (possibly upper bound does not
hold); green circles: controllers for which the upper bowrdthe RMS gain can be established with HRLFs of total degree

2d = 4; red square: null controller (open loop system); blue eirébund controller.

arbitrary switching. Necessary and sufficient LMI condisdhave been provided for determining
stabilizing controllers and controllers ensuring a desupper bound on thg&/, norm and RMS
gain. These conditions have been obtained through the ud@lofFs and HRLFs parameterized
by the sought controller, and through the introduction ofypomials for approximating the
matrix exponential and for quantifying the feasibility dfet Lyapunov inequalities.

Several directions can be considered in future work. Falamse, one could investigate the
structural conditions under which the problems addressetthis paper admit solutions. Also,
one could explore the possibility of reducing the numeramhplexity, as it quickly grows with
the size of the system and with the degree of the polynomialstly, one could extend the

proposed methodology to other classes of switched systathswitching rules.
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APPENDIX A
In this section we provide the definition of the quantitieedisn Theorems 3 and 5. Let us
consider Theorem 3. The matri&; (K, ®;) € S2¢-1 is defined as
Ei(K, ®;) = E; (K, @) — Eio(K, ®;) + E; 3(K)

where

Eis(K, @) = Ji <<1> ® he(WA,(K) )) .
Ei3(K) = Jy (P92 @ Ci(K)'Ci(K)) Ja,
J; € Reasa-1xs2a-1 gnd J, € R™d-1%24-1 satisfy
b(x,d) @b(x,d—1) = Jib(x,2d — 1),
b(z,d—1)*?*@x = Job(x,2d —1),
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and A;(K) e Rs*s satisfies
@@%EZQ&QQTx:&uQMLd—n.
X
Also, the matrixQ;(K, ®;, ®;,U(-)) € S®2¢-1 is defined as

Qi(qu)ivq)ij(')) = Qi,l(qu)ij(Ai(K))
~Qia(K, @, U(A(K)))

+Qis(K,U(Ai(K)), U(Ai(K)))

where
Qin(K,2;, X) = Ji(X'0;X)® V) Ji,
Qip(K, 0, X) = Ji (9 @ (X'UX)) Jy,
Qis(K,X)Y) = J(UVe (X'VX)®A(K,Y)) )
and

T
zMKW:/(QMWW@MW%.
0
Lastly, the scalag; (K, ®;) € R is defined as
(K, ®;) = > (B (K))
j=1

where BY) (K) is the j-th column of B;(K).

Next, let us consider Theorem 5. The matridesK, @), G;(K) € S2a-1tm2i-2 gre defined

as

B (K, ®) — Ejo(K,®)  *
Fi(K,®) = ’ ’ :
Fii(K,®) — Fis(K,®) —~*F;3
Gii(K) Gya(K
Gy = [ CatE) Gt
* leg(K)
where ) )
I%M@):tﬁ@&MM®@%h
Fa(K.®) = Ji (2@ 9B, (K)) J,
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J3 c Rmmg,lxmmzdfz’ J4 c [R™M1SdSd—2XM152d—2 and J5 c leggﬂ XMm1S2d—2 Satisfy

b(z,d—1)@u®b(z,d—1) = Jsb(x,2d — 2,u),
b(z,d) @ b(z,d—2) @u = Jyb(x,2d — 2,u),
b(z,d — 12 @ u = Jsb(z,2d — 2,u)
with

b(x,d,u) =b(z,d) ® u,
and B, ,(K) € Re—s*misi—s—1 gatisfies, fors = 0, 1,

W&(K)u = B, (K)b(z,d — s — 1,u).

APPENDIX B

In this section we provide some details about the derivatiotie solution found in Example
1. Let us start with the construction of the SDP (23). The oatr4;(K) of the switched system

(7) are
A1<K>( v >,A2<K>( - 0),
—5+k 2—K -5+ K -2

Ag(K)(O - )
k =5+ K

Sinced =1, g =1 and7T = 0.2, it follows that
b(x,d) =z, N(A) =024;,(K), L(-)=0, T(A) =1+ A.

Sincer = 0, V;(K) has degre®. With the guideline reported after Theoremé2/') has degree
2. Let us parameteriz&;(K) and¢(K) as

Vl(K)(al a2>,V2(K)(a4 as)’

V3(K) = ( o ) ,E(K) =&+ K&+ K26

* Qg

September 11, 2020 DRAFT



33

whereay, ..., a9,&1, &2, &3 € R are decision variables. It follows that there dzmatrix poly-

nomials in the constraints of the SDP (23), ahdf them are

—14+a as
My (K) ' - ) ;
* — as

—K?¢3 — 2Kas — K& + 10a2 — &
*
Kas — Kas — a1 — 2a2 + bas
—K?¢ + 2Kas — K& — 2az — 4asz — & )

Mi2(K) =

(the other10 matrix polynomials are omitted for brevity). The cost fupnatof the SDP (23) is
h = 20&; + 666.667¢;.

The constraints of the SDP (23) are converted into LMIs bylatpg the Gram matrix method

for matrix polynomials mentioned in Section II-B. For brigyiconsider onlyM, »(K). One has

Mip(K) = (1 KT )8 (1 KI),

where
10a2 — &1 —a1 — 2a2 + bas —az — 0.5&
M _ * —2as — 4az — 61 o+ 0.5a2 — 0.5a3
* * —&3
* * *

—a+0.5a2 — 0.5a3
az — 0.5
0
&
and o € R is a decision variable. The condition fadd; ,(K) to be SOS is hence replaced by
the LMI M > 0.

Next, let us consider the construction of the SDP (26). With guideline reported after
Theorem 2,s,,(K) has degred. We parameterize, ;(K) ass;1(K) = s wheres € R is a
decision variable. By using"(K') found in the solution of the SDP (23) and reported in Example
1, it follows that

p(K) = p+ K?s+0.142K? — 1.035K — 100s + 6.54.

By converting the constraints of the SDP (26) into LMIs, weait

pw—100s +6.54  —0.517
* s+ 0.142
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Lastly, let us consider the determination &f1, 1,0). From the solution of the SDP (26) we

have
pr(K) = 0.142K? — 1.035K + 1.892

pw o= —4.648.
Sincep*(K) is quadratic, one finds trivially thai*(K) = 0 if and only if K = K* = 3.657.
Moreover,{*(K*) = u*, and, hence, we conclude tha(1,1,0) = { K*}.

APPENDIX C

In this section we report the proofs of Theorems 4 and 6.

(Theorem 4)Proof. “Sufficiency”. Suppose there exist§ € Z(d, ¢, ) such that thé{, norm
of the switched system (7) is smaller thanSince Z(d, ¢, r) is a subset ofC, it follows that
there existsk’ € K such that theH, norm of the switched system (7) is smaller than

“Necessity”. Suppose there exisks € K such that theH, norm of the switched system (7)
is smaller thany, and let us indicate such a value A¥. For the chosew > 0, let us replace
K with K# in the LMIs in (34), and letd be such that these LMIs are feasible (observe that
such ad does exist finite from Theorem 3). Also, let us replage(-) with Y () in these LMls,
and letq be such that these LMIs are feasible (observe that suckh@es exist finite sincé(*
is bounded,Y(A) approximates arbitrarily welt4 for sufficiently large values of, and the
inequalities in (34) are strict). Lk, ©f and Q7. be values ofd;, ©, and;; for which the
obtained LMIs hold. It follows that there exis¢s’ > 0 such that, for alk,j =1,..., N, i # j,

(

oF — ¢t

A # HH #
Qi(K#,CI)i ,<I>j 1)+ L(Qm-) — &7,
gi(K#7(I)?é>1) _5#-

o o o o
NN N A

\
Given the continuity of these inequalities @ff, ®}, ©F and 7, it follows that there exist

matrix polynomials (K), ®;(K), ©,(K) andQ; ;(K) such thaté(K#) > 0 and, for alli,j =
1,...,N,i#j, foralll=1,24, and for all K € R"™*?1,

0 < M;y(K),
0 < M,;;s(K)
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where

The degrees of(K), ®;(K), ©,(K) andQ; ;(K) can be always increased in order to satisfy the
constraints of the SDP (39). Indeed, from [40] one has thathwosingf(K) = (1 + || K||%,,)"

for somen € Ny, the polynomialsf (K)M;,(K) and f(K)M; ;5(K) are SOS. Sincg(K) — 1

is SOS as well, one has that the constraints of the SDP (39peasatisfied by choosing the

matrix polynomials

| C(K) = f(K)
which also satisfy¢(K#) > 0. The proof is completed by proceeding analogously to the las

part of the proof of Theorem 2. O

(Theorem 6)Proof. “Sufficiency”. Suppose there exists € Z(d,0,r) such that the RMS
gain of the switched system (7) is smaller thanSince Z(d, 0, r) is a subset ofC, it follows
that there existd{ € K such that the RMS gain of the switched system (7) is smalken th
“Necessity”. Suppose there exishs € K such that the RMS gain of the switched system (7)
is smaller thany, and let us indicate such a value A%". For the chosew > 0, let us replace
K with K7 in the LMIs (44), and letl be such that these LMIs are feasible (observe that such
a d does exist finite from Theorem 5). Lét* and ©F be values of and ©, for which the
obtained LMIs hold. It follows that there exis¢s > 0 such that, forali = 1,..., N,

0 < #F —¢#],
0 < —F(K# &%) —G(K#)— L(OF) - #1.
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Given the continuity of these inequalities ¢fi, ®* and @Z#, it follows that there exist matrix
polynomialsé (K), ®(K) and®,(K) such that (K#) > 0 and, for alli = 1,..., N and for all
K e Rm>pr,

0 < O(K)—E(K)I,
0 < —F(K, (K))—Gi(K)— L(O;K)) — £(K)I.

The proof is completed by proceeding analogously to thepast of the proof of Theorem 4.
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