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Abstract

This paper addresses the synthesis of fixed-order output feedback controllers for stability and per-

formance of continuous-time switched linear systems with dwell time constraints or arbitrary switching.

Specifically, the paper starts by considering the stabilization problem, which is addressed by searching

for a family of homogeneous polynomial Lyapunov functions (HPLFs) parameterized polynomially by

the sought controller. In order to conduct this search, polynomials are introduced for approximating the

matrix exponential and for quantifying the feasibility of the Lyapunov inequalities. It is shown that a

stabilizing controller exists if and only if a condition built solving three convex optimization problems

with linear matrix inequalities (LMIs) holds for polynomials of degree sufficiently large. Analogous

conditions for the existence of a controller ensuring desired upper bounds on theH2 norm and on the

RMS gain of the closed-loop system are derived by searching for a family of homogeneous rational

Lyapunov functions (HRLFs) parameterized rationally by the sought controller.

Index Terms

Switched system, Stability,H2 norm, RMS gain, Feedback synthesis.

I. INTRODUCTION

Switched systems are dynamical systems allowed to change with the time in a finite family as

effect of a signal called switching rule. Switched systems play a fundamental role in automatic

control, and can be found in a number of fields, such as mechanics [36], power systems [41]

and systems biology [22], [28]. In this paper, the switchingrule is assumed to be an exogenous

deterministic signal.
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Switched systems are generally classified into two main classes, depending on the admissible

switching rules: switched systems with dwell time constraints and switched systems with arbitrary

switching. In the former class, the changes among the mathematical models can occur only after

a minimum time, called dwell time, which can be hard or average. In the latter class, the

changes among the mathematical models can occur arbitrarily fast. In this paper, (hard) dwell

time constraints and arbitrary switching are considered.

A fundamental problem in switched systems is stability analysis. This problem has been

investigated in numerous works for continuous-time switched linear systems. See for instance

the books [3], [8], [29], [44], the surveys [18], [31], [32],[42], and the papers [5], [24], [30],

[34], [37], [45]. Linear matrix inequality (LMI) conditions have been proposed in [16], [17],

[19], [27], [35] based on various types of Lyapunov functions, such as quadratic Lyapunov

functions, piecewise quadratic Lyapunov functions, and homogeneous polynomial Lyapunov

functions (HPLFs).

Another fundamental problem in switched systems is performance analysis, in particular,

concerning theH2 norm and the root mean square (RMS) gain. These indexes have been

studied for switched linear systems in [23], [25], [32], [33] through techniques such as variational

principles and worst-case control. In [13], [20], LMI conditions have been proposed in order to

determine upper bounds through convex optimization based on the use of quadratic Lyapunov

functions and homogeneous rational Lyapunov functions (HRLFs).

Control synthesis directly follows the problems mentionedabove. One way to deal with control

synthesis consists of designing a stabilizing switching rule, see for instance [2], [19], [21], [26],

[38], [46]. Another way consists of designing a stabilizingfeedback controller, see for instance

[1], [44]. Unfortunately, this problem is not easy to solve because, by letting the controller be

a decision variable in the existing conditions for establishing stability, one obtains nonconvex

optimization problems, in general due to the presence of products between the Lyapunov function

and the controller.

This paper addresses the synthesis of fixed-order output feedback controllers for stability and

performance of continuous-time switched linear systems with dwell time constraints or arbitrary

switching. Specifically, the paper starts by considering the determination of a mode-independent

static output feedback controller that ensures stability for a strictly proper switched system.

This problem is addressed by searching for a family of HPLFs parameterized polynomially by

the sought controller that prove stability for the considered set of switching rules. In order to
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conduct this search, polynomials are introduced for approximating the matrix exponential and for

quantifying the feasibility of the Lyapunov inequalities.It is shown that a stabilizing controller

exists if and only if a condition built solving three convex optimization problems with LMIs

holds for polynomials of degree sufficiently large. Hence, the paper continues by considering the

determination of a mode-independent static output feedback controller that ensures desired upper

bounds on theH2 norm and on the RMS gain of the closed-loop system, which is addressed by

searching for a family of HRLFs parameterized rationally bythe sought controller. Analogous

necessary and sufficient LMI conditions are derived for theH2 norm in both cases of dwell

time constraints or arbitrary switching, and for the RMS gain in the case of arbitrary switching.

Lastly, the paper describes several extensions of the proposed methodology, which consider the

cases of mode-dependent controller, dynamic controller, and non-strictly proper switched system.

Some numerical examples illustrate the proposed methodology.

The paper is organized as follows. Section II introduces thepreliminaries. Section III describes

the proposed methodology for the stabilization problem. Section IV addresses theH2 norm

control problem. Section V considers the RMS gain control problem. Section VI reports some

comments and extensions. Section VII presents the numerical examples. Lastly, Section VIII

concludes the paper with some final remarks. This paper extends the preliminary conference

versions [14], [15] which do not address theH2 norm control problem (i.e., Section IV) and do

not present the extensions (i.e., Section VI).

II. PRELIMINARIES

Let us start by introducing the notation adopted in the paper. 0, I: null matrix and identity

matrix of size specified by the context.N0, N: sets of non-negative and positive integers.R: set

of real numbers.Sn: set of symmetric matrices inRn×n. A′: transpose ofA. det(A): determinant

of A. exp(A): exponential ofA. he(A): A + A′. A ⊗ B: Kronecker’s product betweenA and

B. A⊗n: n-th Kronecker power, i.e.,A ⊗ · · · ⊗ A where the number of occurrences ofA is

n. ‖A‖2, ‖A‖∞ and ‖A‖Fro: 2-norm, ∞-norm and Frobenius’ norm ofA. ‖a(·)‖L2
: L2-norm

of a(t), i.e., ‖a(·)‖L2
=

√

∫

∞

0
‖a(t)‖22dt. A ≥ 0 (respectively,A > 0): symmetric positive

semidefinite (respectively, definite) matrixA. ⋆: corresponding block in a symmetric matrix or

generic subscript. s.t.: subject to. w.r.t.: with respect to.
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A. Basic Model

In this section we introduce the basic model that will be considered for describing the proposed

methodology. More general models will be discussed in Section VI. Let us start by considering

the switched system


























ẋ(t) = A1,σ(t)x(t) +B1,σ(t)u(t) +B2,σ(t)w(t),

y(t) = C1,σ(t)x(t) +D1,σ(t)u(t) +D2,σ(t)w(t),

z(t) = C2,σ(t)x(t) +D3,σ(t)u(t) +D4,σ(t)w(t),

σ(·) ∈ D,

(1)

wheret ∈ R is the time,x(t) ∈ Rn is the state,u(t) ∈ Rm1 is the control input,w(t) ∈ Rm2 is

the performance input,y(t) ∈ Rp1 is the control output,z(t) ∈ Rp2 is the performance output,

σ : R → {1, . . . , N} is the switching rule,N is the number of subsystems,D is the set of

admissible switching rules, and (by replacingσ(t) with i) A1,i, ...,D4,i, i = 1, . . . , N , are real

matrices of suitable sizes. The system obtained forσ(t) = i is called thei-th subsystem of the

switched system (1).

This paper considers two sets of admissible switching rules, namely, the set of switching rules

with dwell timeT > 0, i.e.,

DT = {σ : R → {1, . . . , N}, σ(t) = constant

∀t ∈ [ti, ti+1), i ∈ N0, ti+1 − ti ≥ T},
(2)

and the set of arbitrary switching rules, i.e.,

Darb = {σ : R → {1, . . . , N}} . (3)

The reader is referred to the well-known monographs [29], [44] for more information on switched

systems and switching rules.

Three main problems are addressed in this paper as it will be explained in the following

sections, namely, stabilization,H2 norm control, and RMS gain control. For clarity of description,

these problems will be firstly considered for a basic model, where it is assumed that:

1) the map betweenu(t) andy(t) in the switched system (1) is strictly proper, i.e.,

D1,i = 0; (4)

2) a mode-independent static output feedback controller isconnected between the control

output and the control input of the switched system (1), i.e.,

u(t) = Ky(t) (5)
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whereK ∈ R
m1×p1 has to be determined in the set

K =
{

K ∈ R
m1×p1 : ‖K‖∞ ≤ ρ

}

(6)

whereρ > 0 is a given quantity. Let us observe thatK is a compact set, in particular, a

hypercube.

Hence, the closed-loop switched system obtained for the basic model is


















ẋ(t) = Aσ(t)(K)x(t) +Bσ(t)(K)w(t),

z(t) = Cσ(t)(K)x(t) +Dσ(t)(K)w(t),

σ(·) ∈ D

(7)

where thei-th subsystem is described by the matrices


























Ai(K) = A1,i +B1,iKC1,i,

Bi(K) = B2,i +B1,iKD2,i,

Ci(K) = C2,i +D3,iKC1,i,

Di(K) = D4,i +D3,iKD2,i.

(8)

The formulation presented in this section includes the caseof state feedback control, which

occurs wheny(t) = x(t). If x(t) cannot be measured but it is estimated through an observer,

feedback controllers exploiting the estimate of the state can be designed by replacingy(t) in

(5) with the estimate of the state and by including the dynamics of the observer in the switched

system (1) through state augmentation.

The dependence ont of the various quantities will be omitted in the sequel of thepaper for

ease of notation unless specified otherwise.

B. Gram Matrix Method

Here we report some basic information about the Gram matrix method, see for instance [9]

and references therein for more details. Any homogeneous polynomial v : Rn → R of degree

2d, d ∈ N0, can be expressed through the Gram matrix method, also knownas square matrix

representation (SMR), as

v(x) = b(x, d)′V b(x, d) (9)
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wherex ∈ R
n, b(x, d) ∈ R

ςd is a base vector for the homogeneous polynomials inx of degree

d, andV ∈ Sςd . The matrixV , called Gram matrix ofv(x) w.r.t. b(x, d), depends linearly on

the coefficients ofv(x). The length ofb(x, d) is given by

ςd =
(n+ d− 1)!

(n− 1)!d!
. (10)

A typical way of choosingb(x, d) is through the recursive rule

b(x, d) =































1 if d = 0,










x1b(X1(x), d− 1)
...

xnb(Xn(x), d− 1)











if d > 0,
(11)

whereXi(x) = (xi, . . . , xn)
′. The following are examples of vectors built with this rule:

n = 2, d = 3 : b(x, d) = (x31, x
2
1x2, x1x

2
2, x

3
2)

′,

n = 3, d = 2 : b(x, d) = (x21, x1x2, x1x3, x
2
2, x2x3, x

2
3)

′.

The representation (9) is useful to establish ifv(x) is a sum of squares of polynomials (SOS),

i.e., v(x) =
∑k

i=1 vi(x)
2 for some polynomialsv1(x), . . . , vk(x) ∈ R. Indeed, let us define the

linear set

Ld =
{

L̃ ∈ S
ςd : b(x, d)′L̃b(x, d) = 0

}

(12)

whose dimension is

τd =
1

2
ςd (ςd + 1)− ς2d. (13)

Then,v(x) is SOS if and only if there exists̃L ∈ Ld satisfying the LMIV + L̃ ≥ 0.

The Gram matrix method can also be used in more general contexts, in particular, for matrix

polynomials (i.e., matrices whose entries are polynomialsin the entries of the variable). Specif-

ically, any matrix polynomialM : Rn → Sm of degree not greater than2d, d ∈ N0, can be

expressed as

M(x) =
(

b̄(x, d)⊗ I
)′
M̄

(

b̄(x, d)⊗ I
)

(14)

where b̄(x, d) ∈ R
ς̄d is base vector for the polynomials inx of degree not greater thand, with

ς̄d = (n+d)!/(n!d!), andM̄ ∈ Smς̄d is a matrix that depends linearly on the coefficients ofM(x).

This representation is useful to establish ifM(x) is SOS, i.e.,M(x) =
∑k

i=1Mi(x)
′Mi(x) for

some matrix polynomialsM1(x), . . . ,Mk(x) ∈ R
m×m. Indeed, let us define the linear set

L̄d,m =
{

L̄ ∈ S
mς̄d :

(

b̄(x, d)⊗ I
)′
L̄
(

b̄(x, d)⊗ I
)

= 0
}

. (15)

Then,M(x) is SOS if and only if there exists̄L ∈ L̄d,m satisfying the LMIM̄ + L̄ ≥ 0.
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III. STABILIZATION PROBLEM

Let us start by introducing the following definition of stability for the switched system (7).

Definition 1:The switched system (7), in particular its autonomous part,is said to beglobally

asymptotically stable (GAS)if






∀ε > 0 ∃δ > 0 : ‖x(0)‖2 ≤ δ ⇒ ‖x(t)‖2 ≤ ε ∀t ≥ 0,

limt→∞ x(t) = 0 ∀x(0)
(16)

for all σ(·) ∈ D and forw(t) = 0. �

The first problem considered in this paper is as follows.

Problem 1:Find K ∈ K such that the switched system (7) is GAS in the casesD = DT and

D = Darb. �

The approach proposed in this paper for solving Problem 1 is based on the use of Lyapunov

functions in the class of the homogeneous polynomials, i.e., HPLFs, which have been exploited

in the literature to derive stability conditions for switched systems. Let us start by recalling the

necessary and sufficient LMI condition proposed in [16] for establishing stability of the switched

system (7) in the case of dwell time constraints through HPLFs. To this end, letd ∈ N, and let

Λi(K) ∈ Rςd×ςd be the matrix function that satisfies

db(x, d)

dx
Ai(K)Tx = Λi(K)b(x, d). (17)

The matrix functionΛi(K) can be built as explained in [16]. Let us observe thatΛi(K) is linear

in Ai(K)T , and, from (8), affine linear inK.

Theorem 1 (see [16]):ConsiderK fixed andD = DT , T > 0. The switched system (7) is GAS

if and only if, for some finited ∈ N, there existVi ∈ Sςd andΘi,Ωi,j ∈ Rτd , i, j = 1, . . . , N ,

i 6= j, satisfying the LMIs


















0 < Vi,

0 > he(ViΛi(K)) + L(Θi),

0 < Vi −
(

eΛi(K)
)′
Vje

Λi(K) + L(Ωi,j)

(18)

whereL(·) is a linear parametrization ofLd in (12). �
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The specialization of Theorem 1 to the case of arbitrary switching was proposed in [17] in the

context of robust stability analysis of uncertain systems with polytopic time-varying uncertainty,

and can be recovered from Theorem 1 by imposingV1 = . . . = VN and eliminating the third

inequality in (18) (observe, in fact, thatT = 0 cannot be used in Theorem 1). It is worth

mentioning that there exist other conditions in the literature for establishing stability of switched

systems in the case of arbitrary switching, see for instance[3], [5], [19], [27], [29], [35]. Also, let

us observe that the value ofd required in Theorem 1 depends on the system under consideration.

Unfortunately, the condition provided by Theorem 1 cannot be used directly for solving

Problem 1 using the LMI machinery because, by lettingK be free, the second and third

inequalities of (18) would be nonlinear in the decision variables.

The first idea for coping with this problem is to adopt HPLFs depending polynomially on the

controller as proposed in [11]. Specifically, these HPLFs can be expressed as, fori = 1, . . . , N ,

vi(x,K) = b(x, d)′Vi(K)b(x, d) (19)

whered ∈ N defines the degree inx (equal to2d), andVi(K) ∈ Sςd are matrix polynomials of

degree not greater thanr to be determined. This implies thatVi is replaced byVi(K) in (18).

Similarly, let us replace in (18) matricesΘi,Ωi,j with matrix polynomialsΘi(K),Ωi,j(K) ∈ Rτd

to be determined (whose degree will be specified in the sequel).

SinceΛi(K) is affine linear inK, it follows that the first two inequalities obtained in the

new condition (18) are polynomial in the entries ofK. However, the third inequality obtained

in this new condition is non-polynomial inK due to the presence ofeΛi(K). In order to cope

with this problem, we replaceeA, A ∈ Rn×n, with a polynomial approximation of it, denoted

by Υ(A) ∈ Rn×n, of chosen degreeq ∈ N. Such an approximation has to verify the condition

lim
q→∞

Υ(A) = eA, ∀A ∈ A (20)

whereA ⊂ Rn×n is any bounded set. While several polynomial approximations can be chosen,

here we simply consider the Taylor expansion:

Υ(A) =

q
∑

i=0

Ai

i!
. (21)

Before proceeding, it is useful to observe that other strategies have been proposed in the literature

for dealing with the matrix exponential, see for instance [1], where a bound is exploited to
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remove the matrix exponential, [7], where auxiliary matrixfunctions and their time derivatives

are exploited, and [6] where the exponential matrix is avoided by proposing a solution based on

differential linear matrix inequalities along with boundary constraints.

Based on these comments, let us define, for alli, j = 1, . . . , N , i 6= j, the matrix polynomials


























Mi,1(K) = Vi(K)− I,

Mi,2(K) = −he(Vi(K)Λi(K))− L(Θi(K))− ξ(K)I,

Mi,j,3(K) = Vi(K)−Υ(Λi(K))′Vj(K)Υ(Λi(K))

+L(Ωi,j(K))− ξ(K)I

(22)

where L(·) is a linear parametrization ofLd in (12), and ξ(K) ∈ R is an auxiliary poly-

nomial to be determined. As it will become clear in the sequel, this auxiliary polynomial

is introduced in order to quantify the positive definitenessof the matrix polynomialsVi(K),

−he(Vi(K)Λi(K)) − L(Θi(K)) andVi(K) − Υ(Λi(K))′Vj(K)Υ(Λi(K)) + L(Ωi,j(K)), which

implies that the considered value ofK makes the switched system (7) GAS when the degree of

the Taylor expansion (21) is large enough. Let us observe that ξ(K) is not introduced inMi,1(K)

(in order to eliminate an unnecessary degree of freedom in the definition of the variables), and

that one could use differentξ(K) for different matrix polynomials (this choice is not adopted

for simplicity).

In order to determine matrix polynomialsVi(K), Θi(K) andΩi,j(K) that make the matrix

polynomialsVi(K), −he(Vi(K)Λi(K))−L(Θi(K)) andVi(K)−Υ(Λi(K))′Vj(K)Υ(Λi(K)) +

L(Ωi,j(K)) positive definite for some values ofK overK, we define the optimization problem

sup
ξ(K),Vi(K)

Θi(K),Ωi,j(K)

h s.t.







all M⋆(K) in (22) are SOS,

h ≤ 1
(23)

where

h =

∫

K

ξ(K)dK (24)

andK is given by (6). The optimization problem (23) is a semidefinite program (SDP) because

the cost function of (23) is linear in the decision variables(in particular, in the coefficients of

ξ(K)), and because the constraints of (23) can be expressed as LMIs in the decision variables (in

particular, in their coefficients) as explained in Section II-B1. SDPs belong to the class of convex

1The matrix polynomialsM⋆(K) in (22) are expressed in the variableK, which is a matrix. The case considered in Section

II-B, where the matrix polynomials are expressed in a vectorvariable, can be recovered by grouping all the entries ofK into

a vector.
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optimization problems since both cost function and feasible set are convex, see for instance [4].

Let us observe that only the matrix polynomialsM⋆(K) in (22) are required to be SOS in the

SDP (23). Other matrix polynomials such asξ(K) are not required to be SOS in this SDP.

The next step is to determine a candidate for the sought controller based on the solution of

the SDP (23). To this end, letξ∗(K) be ξ(K) evaluated for the optimal values of the decision

variables found in the SDP (23). Let us define the polynomial

p(K) = µ− ξ∗(K)−
∑

i=1,...,m1

j=1,...,p1

(ρ2 −K2
i,j)si,j(K) (25)

where the auxiliary scalarµ ∈ R and polynomialssi,j(K) ∈ R have to be determined,Ki,j is

the (i, j)-th entry ofK, andρ is used in the definition ofK in (6). The second optimization

problem that we define is the SDP

inf
µ,si,j(K)

µ s.t. p(K), si,j(K) are SOS. (26)

Let us observe that, in order to build the SDPs (23) and (26), one has to choose the degrees

of polynomials involved. A guideline for choosing these degrees is as follows. First, choosed

(which defines the degree of the HPLF candidates in (19) w.r.t. x), q (the degree of the Taylor

expansion (21)) andr (the upper bound on the degree ofVi(K)). Second, set the degrees of

Θi(K), Ωi,j(K) and ξ(K) not greater than the maximum degree of the matrix polynomials

defined in (22) (evaluated for nullΘi(K), Ωi,j(K) andξ(K)). Third, set the degrees ofsi,j(K)

not greater than the degree ofp(K) (evaluated for nullsi,j(K)). Summarizing, one chooses

d, q and r, and the other degrees are automatically selected. This guideline will be adopted

throughout the paper unless specified otherwise.

It is interesting to observe that both SDPs do not containK as decision variable. Indeed, in

the SDP (23), the decision variables are the coefficients ofξ(K), Vi(K), Θi(K) andΩi,j(K),

and, in the SDP (26), the decision variables areµ and the coefficients ofsi,j(K). Candidates for

the sought controller will be determined based on the solutions of these SDPs. Specifically, let

p∗(K), µ∗ ands∗i,j(K) be p(K), µ andsi,j(K) evaluated for the optimal values of the decision

variables found in the SDP (26). Fromp∗(K), µ∗ and ξ∗(K), we define the set of controller

candidates2

Z(d, q, r) = {K ∈ K : p∗(K) = 0, ξ∗(K) = µ∗} . (27)

2We observe that the system of equationsp∗(K) = 0 and ξ∗(K) = µ∗ may admit also non-real solutions forK, however,

they are not relevant for this paper.
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The following result provides a necessary and sufficient condition for solving Problem 1 in the

case of dwell time constraints.

Theorem 2:ConsiderD = DT , T > 0. There existsK ∈ K such that the switched system

(7) is GAS if and only if, for some finited, q ∈ N andr ∈ N0, there existsK ∈ Z(d, q, r) such

that the switched system (7) is GAS.

Proof. “Sufficiency”. Suppose there existsK ∈ Z(d, q, r) such that the switched system (7) is

GAS. SinceZ(d, q, r) is a subset ofK, it follows that there existsK ∈ K such that the switched

system (7) is GAS.

“Necessity”. Suppose there existsK ∈ K such that the switched system (7) is GAS, and let

us indicate such a value asK#. Let us replaceK with K# in the LMIs in (18), and letd

be such that these LMIs are feasible (observe that such ad does exist finite from Theorem 1).

Also, let us replaceeΛi(K
#) with Υ(Λi(K

#)) in these LMIs, and letq be such that these LMIs

are feasible (observe that such aq does exist finite sinceK is bounded,Υ(A) approximates

arbitrarily well eA for sufficiently large values ofq, and the inequalities in (18) are strict). Let

V #
i , Θ#

i andΩ#
i,j be values ofVi, Θi andΩi,j for which the obtained LMIs hold. Since these

LMIs are homogeneous in the decision variables, one can assume without loss of generality that

V #
i > I

(indeed, ifV #
i 6> I, thenV #

i , Θ#
i andΩ#

i,j can be multiplied by a positive real number in order

to ensureV #
i > I and satisfaction of these LMIs). Moreover, there existsξ# > 0 such that, for

all i, j = 1, . . . , N , i 6= j,


















0 < V #
i − I,

0 < −he(V #
i Λi(K

#))− L(Θ#
i )− ξ#I,

0 < V #
i −Υ(Λi(K

#))′V #
j Υ(Λi(K

#)) + L(Ω#
i,j)− ξ#I.

Given the continuity of these inequalities inξ#, V #
i , Θ#

i andΩ#
i,j , it follows that there exist

matrix polynomialsξ̂(K), V̂i(K), Θ̂i(K) and Ω̂i,j(K) such that

ξ̂(K#) > 0

and, for alli, j = 1, . . . , N , i 6= j, for all l = 1, 2, and for allK ∈ Rm1×p1,






0 < M̂i,l(K),

0 < M̂i,j,3(K)
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where


























M̂i,1(K) = V̂i(K)− I,

M̂i,2(K) = −he(V̂i(K)Λi(K))− L(Θ̂i(K))− ξ̂(K)I,

M̂i,j,3(K) = V̂i(K)−Υ(Λi(K))′V̂j(K)Υ(Λi(K))

+L(Ω̂i,j(K))− ξ̂(K)I.

Let us observe that the degrees ofξ̂(K), V̂i(K), Θ̂i(K) andΩ̂i,j(K) can be always increased in

order to satisfy the constraints of the SDP (23). Indeed, forη ∈ N0, let us define the polynomial

f(K) =
(

1 + ‖K‖2Fro

)η
.

From [40] it follows that there existsη such that the polynomialsf(K)M̂i,l(K) andf(K)M̂i,j,3(K)

are SOS. Sincef(K) − 1 is SOS (being sum of powers of‖K‖2Fro multiplied by positive

coefficients), one has that the constraints of the SDP (23) can be satisfied by choosing


























ξ(K) = f(K)ξ̂(K),

Vi(K) = f(K)V̂i(K),

Θi(K) = f(K)Θ̂i(K),

Ωi,j(K) = f(K)Ω̂i,j(K)

which also satisfy

ξ(K#) > 0.

Let us observe that such matrix polynomials can be obtained by maximizingh in the SDP (23),

and that the constrainth ≤ 1 can be introduced without loss of generality. Indeed, ifh > 1 for

the ξ(K) obtained so far, thenξ(K) can be redefined as

ξ(K) → ξ(K)− δ

where

δ =

(
∫

K

dK

)−1(∫

K

ξ(K)dK − 1

)

,

and this ensures that the redefinedξ(K) is still positive for someK ∈ K (since the integral of

the redefinedξ(K) overK is 1) and that the constraints of the SDP (23) hold (sinceδ > 0).

Next, let us define

µ̄ = sup
K∈K

ξ∗(K)
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where ξ∗(K) is ξ(K) evaluated for the optimal values of the decision variables found in the

SDP (23). From the above discussion, it follows thatµ̄ > 0. Let us observe thatρ2 −K2
i,j ≥ 0

for all i = 1, . . . , m1 and j = 1, . . . , p1 if and only if K ∈ K. This implies that

µ∗ ≥ µ̄

for any chosen degrees of the polynomialssi,j(K), whereµ∗ is µ evaluated for the optimal

values of the decision variables found in the SDP (26). Moreover, the polynomialsρ2 − K2
i,j

have even degree and the highest degree forms are zero if and only if K = 0. Hence, from

Putinar’s Positivstellensatz [39], it follows that

µ∗ = µ̄

for polynomialssi,j(K) with sufficiently large degrees. LetK∗ ∈ K be such thatξ∗(K∗) = µ̄.

Sincep∗(K) is SOS, it follows that

0 ≤ p∗(K∗)

= µ∗ − ξ∗(K∗)−
∑

i=1,...,m1

j=1,...,p1

(ρ2 − (K∗
i,j)

2)s∗i,j(K
∗)

≤ 0.

Hence,p∗(K∗) = 0 and, therefore,K∗ ∈ Z(d, q, r) wherer is any integer greater than or equal

to the maximum among the degrees of theVi(K) for which the degrees ofΘi(K), Ωi,j(K)

and ξ(K) can be chosen with the guideline reported under (26). Moreover, ξ∗(K∗) > 0, which

ensures thatK∗ solves the problem for sufficiently large values ofq. �

Theorem 2 provides a strategy for solving Problem 1 in the case of dwell time constraints

based on the SDPs (23) and (26). This strategy consists of narrowing the search space for the

sought controller from the original set, i.e.,K, to a subset of it, i.e.,Z(d, q, r). OnceZ(d, q, r) is

found, one checks if any of the controllers included in such aset solves Problem 1, for instance

by using Theorem 1. Let us observe thatK affectsZ(d, q, r) (and, hence, Theorem 2) through

the cost function of the SDP (23) (which is the functionh in (24)) and the first constraint of

the SDP (26) (which is the condition that the polynomialp(K) has to be SOS).

In order to understand the advantage of Theorem 2, let us observe thatZ(d, q, r) typically

contains one element only. Indeed, as seen in the proof of Theorem 2,µ∗ is an upper bound of

the maximum ofξ∗(K) over K. This means thatZ(d, q, r) is either empty or its elements are
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global maximizers ofξ∗(K) overK (i.e., points inK whereξ∗(K) achieves its maximum over

K). Now, the set of polynomials of a specified degree that have more than one global maximizer

over a specified compact set has a smaller dimension than the set of polynomials of such a

degree (where the dimension is evaluated, for instance, in the space of the coefficients of the

polynomials w.r.t. a specified basis). This explains whyZ(d, q, r) typically contains one element

only, and why this is indeed the case for all numerical examples in Section VII.

The computation ofZ(d, q, r) can be addressed using the Gram matrix ofp∗(K) found in

the SDP (26), either in the typical case whereZ(d, q, r) contains one element only or in other

cases where this set may contain multiple elements. Indeed,sincep∗(K) is SOS, its zeros can

be determined from the null space of the found positive semidefinite Gram matrix ofp∗(K).

More specifically, this amounts to finding the values ofK for which the vector of monomials

in K used to define this Gram matrix belongs to the null space of this Gram matrix. This step

can be addressed in various ways. For instance, a procedure reported in [10] and references

therein involves pivoting operations and the computation of the roots of a polynomial in one

variable. Once the zeros ofp∗(K) are found, one singles out those that belong toK and satisfy

ξ∗(K) = µ∗. For all numerical examples in Section VII, the computationof Z(d, q, r) is trivial

because the null space of the found positive semidefinte Grammatrix of p∗(K) has dimension

one, and, hence, the zeros ofp∗(K) are determined by just scaling a vector.

The second constraint in the SDP (23) is introduced in order to ensure that the solution of

this SDP is bounded. The constant1 on the right hand side of this constraint can be replaced

with any other positive number.

It is useful to observe that Theorem 2 not only extends to switched systems the idea of

HPLFs depending polynomially on the controller introducedin [11] for uncertain systems, but

also improves it. Indeed, the determination of these functions in the SDP (23) is achieved without

introducing multipliers for imposing positive semidefiniteness of the matrix polynomials overK.

Theorem 2 can be modified in order to solve Problem 1 in the caseof arbitrary switching.

This is explained in the following result.

Corollary 1: ConsiderD = Darb. Modify the SDP (23) by imposingV1(K) = . . . = VN(K)

and removingMi,j,3(K) from the constraints. There existsK ∈ K such that the switched system

(7) is GAS if and only if, for some finited ∈ N and r ∈ N0, there existsK ∈ Z(d, 0, r) such

that the switched system (7) is GAS.
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Proof. Analogous to the proof of Theorem 2 by observing that, in thecaseD = Darb, all the

subsystems of the switched system (7) must share the same Lyapunov function. �

IV. H2 NORM CONTROL PROBLEM

Let us start by providing the definition ofH2 norm of the switched system (7).

Definition 2: TheH2 norm of the switched system (7) is

γH2
=

√

√

√

√ sup
σ(·)∈D

m2
∑

j=1

‖z(j)(·)‖
2
L2

(28)

wherez(j)(t) is the solutionz(t) for x(0−) = 0 due to an impulse applied to thej-th entry of

w(t) (each impulse is applied independently on the others). �

The second problem addressed in this paper is as follows.

Problem 2:Find K ∈ K such that theH2 norm of the switched system (7) is smaller than a

desired valueγ in the casesD = DT andD = Darb. �

Let us observe that, in order for theH2 norm of the switched system (7) to be bounded, the

map betweenw(t) andz(t) has to be strictly proper. Hence, in this section we assume, without

loss of generality,

Di(K) = 0, (29)

which holds, for instance, whenD4,i = 0, andD3,i = 0 or D2,i = 0.

The approach proposed in this paper for solving Problem 2 is based on the use of Lyapunov

functions in the class of the homogeneous rational functions, i.e., functions that can be expressed

as the ratio of homogeneous polynomials. Specifically, a function v : Rn → R is a homogeneous

rational function of total degreeδ1 ∈ N0 and relative degreeδ2 ∈ N0, with δ1 ≥ δ2, if

v(x) =
φ(x)

ψ(x)
(30)

where φ(x) and ψ(x) are homogeneous polynomials of degreeδ1 and δ1 − δ2, respectively.

Lyapunov functions in the class of the homogeneous rationalfunctions, i.e., HRLFs, have been
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introduced in [13] to derive upper bounds of theH2 norm of switched systems. In particular,

HRLF candidates of total degree2d and relative degree2d− 2, d ∈ N, are searched for. These

candidates can be expressed as, fori = 1, . . . , N ,






















vi(x) =
φi(x)

ψ(x)
,

φi(x) = b(x, d)′Φib(x, d),

ψ(x) = b(x, d− 1)′Ψb(x, d− 1)

(31)

whereΦi ∈ Sςd andΨ ∈ Sςd−1 . Throughout the paper it is assumed thatΨ satisfies






Ψ > 0,

ψ(x) = ‖x‖2d−2
2 .

(32)

The following theorem, proposed in [13], provides a necessary and sufficient LMI condition for

establishing upper bounds of theH2 norm of the switched system (7) in the case of dwell time

constraints.

Theorem 3 (see [13]):ConsiderK fixed andD = DT , T > 0. TheH2 norm of the switched

system (7) satisfies

γH2
< γ (33)

if and only if, for some finited ∈ N, there existΦi ∈ Sςd andΘi,Ωi,j ∈ Rτ2d−1 , i, j = 1, . . . , N ,

i 6= j, satisfying the LMIs


























0 < Φi,

0 > Ei(K,Φi) + L(Θi),

0 > Qi(K,Φi,Φj , exp(·)) + L(Ωi,j),

0 < γ2 − gi(K,Φi)

(34)

whereexp(·) is the exponential function,L(·) is a linear parametrization ofL2d−1 in (12), and

Ei(K,Φi), Qi(K,Φi,Φj , exp(·)) and gi(K,Φi) are the affine linear matrix functions inΦi and

Φj defined in Appendix A. �

The counterpart of Theorem 3 for the case of arbitrary switching can be recovered by elimi-

nating the third inequality in (34) and imposingΦ1 = . . . = ΦN . As explained in [13], the choice

for Ψ in (32) is introduced in order to guarantee that the LMI condition in Theorem 3 is not

only sufficient but also necessary (indeed, sufficiency is achieved for allΨ > 0). Let us observe

September 11, 2020 DRAFT



17

that the HRLF candidates in (31) could be defined with different denominators, however, in [13]

and in this paper these candidates share a common denominator for simplicity.

As in the case of Theorem 1, the condition provided by Theorem3 cannot be used directly

for solving Problem 2 because, by lettingK be free, the second, third and fourth inequalities of

(34) would be nonlinear in the decision variables.

The first idea for coping with this problem is to introduce HRLFs depending rationally on the

controller. These functions can be expressed as, fori = 1, . . . , N ,

vi(x,K) =
b(x, d)′Φ̄i(K)b(x, d)

b(x, d− 1)′Ψb(x, d− 1)
(35)

where

Φ̄i(K) =
Φi(K)

ζ(K)
(36)

and the auxiliary matrix polynomialsΦi(K) ∈ Sςd and ζ(K) ∈ R of degree not greater thanr

have to be determined. In order to use these functions, let usdefine the matrix polynomials










































Ēi(K,Φi(K), ζ(K))=Ei(K, Φ̄i(K))ζ(K),

Q̄i(K,Φi(K),Φj(K), ζ(K))=Qi(K, Φ̄i(K), Φ̄j(K),Υ(·))

·ζ(K),

ḡi(K,Φi(K), ζ(K))=
(

∏m2

j=1 ψ(B
(j)
i (K))

)

·
(

γ2 − gi(K, Φ̄i(K))
)

ζ(K)

(37)

whereB(j)
i (K) is the j-th column ofBi(K). Hence, for alli, j = 1, . . . , N , i 6= j, let us

introduce the matrix polynomials


















































Mi,1(K) =Φi(K)− ξ(K)I,

Mi,2(K) =−Ēi(K,Φi(K), ζ(K))− L(Θi(K))− ξ(K)I,

Mi,j,3(K) = Q̄i(K,Φi(K),Φj(K), ζ(K)) + L(Ωi,j(K))

−ξ(K)I,

Mi,4(K) = ḡi(K,Φi(K), ζ(K))− ξ(K),

M5(K) = ζ(K)− 1

(38)

where L(·) is a linear parametrization ofL2d−1 defined by (12), and the auxiliary matrix

polynomialsξ(K) ∈ R and Θi,Ωi,j(K) ∈ Rτ2d−1 have to be determined. Let us define the

SDP

sup
ξ(K),Φi(K)

Θi(K),Ωi,j(K),ζ(K)

h s.t.







all M⋆(K) in (38) are SOS,

h ≤ 1
(39)
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whereh is defined in (24). Let us select the degrees ofξ(K), Θi(K), Ωi,j(K) automatically from

d, q andr analogously to what done for the stabilization problem in Section III. The following

result provides a necessary and sufficient condition for solving Problem 2 in the case of dwell

time constraints.

Theorem 4:ConsiderD = DT , T > 0. Let ξ∗(K) in (25) beξ(K) evaluated for the optimal

values of the decision variables found in the SDP (39). ThereexistsK ∈ K such that theH2

norm of the switched system (7) is smaller thanγ if and only if, for some finited, q ∈ N and

r ∈ N0, there existsK ∈ Z(d, q, r) such that theH2 norm of the switched system (7) is smaller

thanγ.

Proof. See Appendix C. �

Theorem 4 provides a strategy for solving Problem 2 in the case of dwell time constraints

based on the SDPs (39) and (26). Analogously to the stabilization problem considered in the

previous section, this strategy consists of narrowing the search space for the sought controller

from the original setK to its subsetZ(d, q, r), which typically contains one element only. Once

Z(d, q, r) is found, one checks if any of the controllers included in such a set solves Problem

2, for instance by using Theorem 3.

Theorem 4 can be modified in order to solve Problem 2 in the caseof arbitrary switching.

This is explained in the following result.

Corollary 2: ConsiderD = Darb. Modify the SDP (39) by imposingΦ1(K) = . . . = ΦN (K)

and removingMi,j,3(K) from the constraints. Letξ∗(K) in (25) be ξ(K) evaluated for the

optimal values of the decision variables found in the SDP (39). There existsK ∈ K such that

theH2 norm of the switched system (7) is smaller thanγ if and only if, for some finited ∈ N

and r ∈ N0, there existsK ∈ Z(d, 0, r) such that theH2 norm of the switched system (7) is

smaller thanγ.

Proof. Analogous to the proof of Theorem 4 by observing that, in thecaseD = Darb, all the

subsystems of the switched system (7) must share the same Lyapunov function. �
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V. RMS GAIN CONTROL PROBLEM

Let us start by providing the definition of RMS gain of the switched system (7).

Definition 3: The RMS gain of the switched system (7) is

γRMS = lim sup
σ(·)∈D,w(·)

‖z(·)‖L2

‖w(·)‖L2

(40)

wherez(t) is the solution forx(0−) = 0. �

The third problem considered in this paper is as follows.

Problem 3:Find K ∈ K such that the RMS gain of the switched system (7) is smaller than

a desired valueγ in the casesD = DT andD = Darb. �

Let us start by recalling the necessary and sufficient LMI condition proposed in [13] for

establishing upper bounds of the RMS gain of the switched system (7) in the case of arbitrary

switching through HRLFs. To this end, ford ∈ N, let us define the vector

b̃(x, d, u) =





b(x, 2d− 1)

b(x, 2d− 2)⊗ u



 . (41)

Also, let us define the linear space

L̃d =
{

L̃ = L̃′ : b̃(x, d, u)′L̃b̃(x, d, u) = 0
}

(42)

whose dimension is denoted bỹτd.

Theorem 5 (see [13]):ConsiderK fixed andD = Darb. The RMS gain of the switched system

(7) satisfies

γRMS < γ (43)

if and only if, for some finited ∈ N, there existΦ ∈ Sςd andΘi ∈ Rτ̃d , i = 1, . . . , N , satisfying

the LMIs 





0 < Φ

0 > Fi(K,Φ) +Gi(K) + L(Θi)
(44)
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whereL(·) is a linear parametrization of̃Ld in (42), andFi(K,Φ) andGi(K) are linear matrix

functions inΦ whose definitions are reported in Appendix A. �

Theorem 5 can be exploited to solve Problem 3 by adopting the Lyapunov functions introduced

in the previous section. Specifically, let us denote an HRLF depending rationally on the controller

as

v(x,K) =
b(x, d)′Φ̄(K)b(x, d)

b(x, d)′Ψb(x, d)
(45)

where

Φ̄(K) =
Φ(K)

ζ(K)
(46)

and the auxiliary matrix polynomialsΦ(K) ∈ Sςd and ζ(K) ∈ R of degree not greater thanr

have to be determined. Following the strategy proposed in Section IV, for all i = 1, . . . , N , let

us define the matrix polynomials


























M1(K) = Φ(K)− ξ(K),

Mi,2(K) = −Fi(K,Φ(K))− ζ(K)Gi(K)− L(Θi(K))

−ξ(K)I,

M3(K) = ζ(K)− 1

(47)

where L(·) is a linear parametrization of̃Ld in (42), and the auxiliary matrix polynomials

ξ(K) ∈ R andΘi(K) ∈ Rτ̃d have to be determined. Let us define the SDP

sup
ξ(K),Φ(K)
Θi(K),ζ(K)

h s.t.







all M⋆(K) in (47) are SOS,

h ≤ 1
(48)

whereh is defined in (24). Let us select the degrees ofξ(K) andΘi(K) automatically from

d and r analogously to what done for the stabilization problem in Section III. The following

result provides a necessary and sufficient condition for solving Problem 3 in the case of arbitrary

switching.

Theorem 6:ConsiderD = Darb. Let ξ∗(K) in (25) beξ(K) evaluated for the optimal values

of the decision variables found in the SDP (48). There existsK ∈ K such that the RMS gain

of the switched system (7) is smaller thanγ if and only if, for some finited ∈ N and r ∈ N0,

there existsK ∈ Z(d, 0, r) such that the RMS gain of the switched system (7) is smaller than

γ.
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Proof. See Appendix C. �

Theorem 6 provides a strategy for solving Problem 3 in the case of arbitrary switching based

on the SDPs (48) and (26). Analogously to the problems considered in the previous sections, this

strategy consists of narrowing the search space for the sought controller from the original setK

to its subsetZ(d, 0, r), which typically contains one element only. OnceZ(d, 0, r) is found, one

checks if any of the controllers included in such a set solvesProblem 3, for instance by using

Theorem 5.

We conclude this section by mentioning that one can address Problem 3 in the case of dwell

time constraints analogously, in particular, by combiningthe methodology proposed in Theorems

4 and 6 with the results proposed in [13].

VI. COMMENTS AND EXTENSIONS

In this section we report some comments on the methodology described in Sections III–V and

some extensions of the basic model introduced in Section II.

A. Comments

Let us start by observing that Problems 1–3 do not always admit a solution. For instance, a

necessary condition for the solvability of Problem 1 is thatall the subsystems of the switched

system (1) admit a common stabilizing static output feedback controller, and this necessary

condition may not hold in some cases. Indeed, it is also possible that one or more subsystems

of the switched system (1) do not even admit a stabilizing static output feedback controller.

Another comment concerns the set where the sought controllers are searched for, i.e.,K

defined in (6). The quantityρ in (6), which defines the size ofK, is given. Using large values

of ρ has the benefit of extending the space where the controller issearched for, however, this

may increase the degreesd, q andr needed to determine a sought controller.

Let us also observe that, in general,K contains controllers that do not solve the problem under

consideration. Hence, in order to possibly speed up the determination of a sought controller (i.e.,

reduce the degreesd, q and r needed), one could shrinkK by removing some of such useless

controllers. For instance, for Problem 1, one may remove some (and, if possible, all)K for

whichAi(K) is not Hurwitz for somei = 1, . . . , N . These values ofK may be identified using
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standard methods such as the Routh-Hurwitz criterion. Hence, the model in Section II may be

reformulated with a smallerK. See Example 1 in Section VII for details.

The next comment concerns the degreeq of the Taylor expansion (21). Let us observe that

q is not used in Corollaries 1 and 2, and in Theorem 6, since the Taylor expansion (21) is not

exploited in the case of arbitrary switching. Also, in thesethree results, if the quantityµ∗ used

to defineZ(d, 0, r) in (27) satisfiesµ∗ > 0, then any controller inZ(d, 0, r) solves the problem

under consideration (i.e., one does not need to perform the final test on the controller candidates

in Z(d, 0, r)).

Lastly, let us observe that Theorem 4 and Corollary 2 can be used to determine controllers

that minimize theH2 norm of the switched system (7) through a bisection algorithm on γ. An

analogous strategy can be used with Theorem 6 to determine controllers that minimize the RMS

gain of the switched system (7).

B. Extension: Mode-Dependent Controller

The sought output feedback controller was assumed to be mode-independent in (5), being

common to all the subsystems of the switched system (1). Whenever the switching rule is

available in the controller,K can be replaced byKσ(t) in order to stabilize a larger class of

switched systems. That is, (5) can be replaced with

u(t) = Kσ(t)y(t) (49)

whereK1, . . . , KN ∈ Rm1×p1 are matrices to be determined inK. The design of these matrices

can be readily addressed as described in Sections III–V by groupingK1, . . . , KN in a single

matrix K.

C. Extension: Dynamic Controller

The sought output feedback controller was assumed to be static in (5). Here we suppose that

a fixed-order dynamic output feedback controller is searched for, in particular of the form






ẋcon(t) = Aconxcon(t) +Bcony(t),

u(t) = Cconxcon(t) +Dcony(t)
(50)

wherexcon ∈ Rncon is the state of chosen order, andAcon, Bcon, Ccon andDcon are matrices to

be determined in a set analogous toK. As it is well known, the design of a dynamic output
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controller can be reformulated as a static output feedback problem. As a matter of fact, the four

unknown matrices in (50) can be grouped in a single matrixK that represents the gain of a

static output feedback for an augmented system. Specifically, let us introduce an auxiliary input

ũ(t) ∈ R
n and an auxiliary output̃y(t) ∈ R

ncon. The static output feedback is




u(t)

ũ(t)



 = K





y(t)

ỹ(t)



 , K =





Dcon Ccon

Bcon Acon



 (51)

and the augmented system is














































































































































ẋ(t)

ẋcon(t)



 =





A1,σ(t) 0

0 0









x(t)

xcon(t)





+





B1,σ(t) 0

0 I









u(t)

ũ(t)



+





B2,σ(t)

0



w(t),





y(t)

ỹ(t)



 =





C1,σ(t) 0

0 I









x(t)

xcon(t)





+





D1,σ(t) 0

0 0









u(t)

ũ(t)



+





D2,σ(t)

0



w(t),

z(t) =
(

C2,σ(t) 0
)





x(t)

xcon(t)





+
(

D3,σ(t) 0
)





u(t)

ũ(t)



 +D4,σ(t)w(t),

σ(·) ∈ D.

(52)

D. Extension: Non-Strictly Proper Switched System

The map betweenu(t) and y(t) was assumed to be strictly proper in (4). Here we want to

allow one to consider the case where this map is proper only. Let us start by observing that,

either (4) holds or not, the matrix functionsAi(K), Bi(K), Ci(K) andDi(K) to be used in the

switched system (7) are given by


























Ai(K) = A1,i +B1,iKΓi(K)−1C1,i,

Bi(K) = B2,i +B1,iKΓi(K)−1D2,i,

Ci(K) = C2,i +D3,iKΓi(K)−1C1,i,

Di(K) = D4,i +D3,iKΓi(K)−1D2,i

(53)
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where

Γi(K) = I −D1,iK. (54)

In such a case, the switched system (7) may be not well-posed sinceΓi(K) may be singular. To

cope with this issue, let us define the polynomials

M0,i(K) = det(Γi(K))2 − ε (55)

whereε > 0 is a chosen threshold. The non-negativity of these polynomials, in fact, ensures that

all the subsystems of the switched system (7) are well-posed. Hence, these polynomials have to

be included in the constraints of the SDPs (23), (39) and (48).

Another point to observe is that, contrary to Section II where the matrix functionsAi(K),

Bi(K), Ci(K) and Di(K) were linear due to the assumption in (4), these matrix functions

are now rational. As a consequence, the set of matrix polynomials M⋆(K) considered in the

SDPs (23), (39) and (48) now do not contain only matrix polynomials but also matrix rational

functions. This issue can be dealt with by observing that these matrix rational functions can be

expressed as ratios between matrix polynomials and even powers of det(Γi(K)). Hence, one

just uses the numerators of these ratios for the matrix polynomialsM⋆(K) in the SDPs (23),

(39) and (48).

VII. EXAMPLES

In this section we present some illustrative examples of theproposed methodology. The SDPs

are solved by using the toolbox SeDuMi [43] for Matlab on a personal computer with Windows

10, Intel Core i7, 3.4 GHz, 8 GB RAM. The computational time for solving each SDP is less

than one second, and the number of LMI scalar variables in each SDP is reported (the reader is

referred to [12] for more details about the numerical complexity of the LMIs obtained using the

Gram matrix method described in Section II-B). The matrix polynomialsΘi(K), Ωi,j(K) and

ζ(K) are chosen of degree0. For brevity of description, it is assumed in the switched system

(1) thatB1,i = B2,i, C1,i = C2,i, andDj,i = 0.

September 11, 2020 DRAFT



25

A. Example 1

Let us consider the switched system (1) withN = 3 and














































































A1,1 =





0 1

−5 2



 , A1,2 =





−1 0

−5 −2



 ,

B1,1 =





0

1



 , B1,2 =





0

1



 ,

C1,1 =
(

1 −1
)

, C1,2 =
(

1 0
)

,

A1,3 =





0 −3

0 −5



 , B1,3 =





0

1



 ,

C1,3 =
(

1 1
)

.

We want to solve Problem 1 withD = DT , T = 0.2, andK given by (6) withρ = 10. Let

us observe that the switched system (7) is unstable forK = 0, for instance because the first

subsystem is unstable.

Let us use the methodology proposed in Section III. First, wesolve the SDP (23). We choose

to search for HPLFs of degree2d = 2 constant in the controller (i.e.,r = 0) using a first-order

approximation of the matrix exponential (i.e.,q = 1). We find

ξ∗(K) = −0.142K2 + 1.035K − 6.54.

Second, we solve the SDP (26), finding the set

Z(1, 1, 0) = {3.657} .

Third, we find that (18) is feasible forK = K∗ with K∗ = 3.657, hence implying thatK∗ solves

Problem 1. The number of LMI scalar variables in the three SDPs are21, 2 and10, respectively.

Figure 1 shows the stabilizing and non-stabilizing controllers for this example found by brute

force. Some numerical details about the construction of theSDPs (23) and (26) for this example

are reported in Appendix B.

Lastly, let us observe that one could shrinkK before applying the proposed methodology in

order to possibly speed up the convergence as discussed in Section VI-A. Indeed, a necessary

condition for the switched system (7) to be GAS is thatAi(K) is Hurwitz for all i = 1, 2, 3,
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which is satisfied if and only ifK ∈ (2, 5). Hence, one could reformulate Problem 1 with a

smallerρ in (6), in particularρ = 1.5 instead ofρ = 10, by introducing the changes






Ai(K) → Ai(K + 3.5) ∀i = 1, 2, 3,

K → {K ∈ R : |K| ≤ 1.5} .

With these changes, by using the samed, q and r, we similarly obtain a controller that solves

Problem 1, in particularK∗ = 3.724 (expressed in the coordinates of the original system). For

completeness, we report in Figure 2 the polynomialξ∗(K) found with these changes for some

values ofq andr. For all values considered, the obtained controller candidate is the maximizer

of ξ∗(K), and this candidate solves Problem 1.

-10 -8 -6 -4 -2 0 2 4 6 8 10

K

Fig. 1. Example 1. White area: controllers for which one or more subsystems are unstable; gray crosses: controllers for

which stability cannot be established with quadratic Lyapunov functions (possibly unstable); green circles: controllers for which

stability can be established with quadratic Lyapunov functions; red square: null controller (open loop system); blue circle: found

controller.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

K

ξ∗
(K

)

Fig. 2. Example 1. Polynomialξ∗(K) found for d = 1, r = 0 and q = 1 (black solid line),q = 2 (black dashed line),q = 3

(black circles). Also, polynomialξ∗(K) found for d = 1, r = 2 andq = 1 (blue dashdot line),q = 2 (blue dashed line),q = 3

(blue crosses).
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B. Example 2

Let us consider the switched system (1) withN = 2 and














































































A1,1 =











0 −4 −4

1 0 2

2 1 −2











, A1,2 =











−2 −5 −4

1 0 1

2 0 −2











,

B1,1 =











0.5

−1

1.5











, B1,2 =











1

−0.5

0.5











,

C1,1 =





1 0 1

0 0 1



 , C1,2 =





1 1 1

0.5 0 0.5



 .

We want to solve Problem 2 withD = DT , T = 0.5, γ = 3, andK given by (6) withρ = 10. Let

us observe that theH2 norm of the switched system (7) is unbounded forK = 0, for instance

because the first subsystem is unstable.

Let us use the methodology proposed in Section IV. First, we solve the SDP (39). We choose

to search for HRLFs of total degree2d = 2 constant in the controller (i.e.,r = 0) using a first-

order approximation of the matrix exponential (i.e.,q = 1). By using the notationK = (k1, k2)
′,

we find
ξ∗(K) = −0.015k21 − 0.001k1k2 − 0.179k1 − 0.004k22

−0.093k2 − 2.571.

Second, we solve the SDP (26), finding the set

Z(1, 1, 0) = {(−5.681,−10)′} .

Third, we find that (34) is infeasible forK = (−5.681,−10)′.

Hence, we repeat the above procedure using a second-order approximation of the matrix

exponential (i.e.,q = 2), finding the set

Z(1, 2, 0) = {(−5.037, 5.420)′}

and that (34) is feasible forK = K∗ with K∗ = (−5.037, 5.420)′. Hence, the found controller

K∗ solves the problem. In particular, this controller ensuresthat theH2 norm of the switched

system (7) is smaller than2.354 (upper bound found with2d = 2). The number of LMI scalar

variables in the three SDPs are364, 19 and13, respectively. Figure 3 shows the controllers that

solve the problem considered in this example found by brute force.
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k
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Fig. 3. Example 2. White area: controllers for which one or more subsystems are unstable; gray crosses: controllers for which

the upper bound on theH2 norm cannot be established with quadratic Lyapunov functions (possibly upper bound does not hold);

green circles: controllers for which the upper bound on theH2 norm can be established with quadratic Lyapunov functions;red

square: null controller (open loop system); blue circle: found controller.

C. Example 3

Let us consider the switched system (1) withN = 2 and


































































A1,1=











0 1 0

−3 0 −1

−0.5 0.5 −1











, A1,2=











0 1 0

−10 −0.5 −1.5

−1 0 −4.5











,

B1,1=











0

1

0.5











, B1,2=











0

1

1











,

C1,1=
(

−1 1 0
)

, C1,2=
(

−1 0.5 −0.5
)

.

We want to solve Problem 3 withD = Darb, γ = 5, andK given by (6) withρ = 10. It can

be verified that the RMS gain of the switched system (7) is unbounded forK = 0 (though

the subsystems are asymptotically stable). Indeed, the open loop switched system is unstable as

shown in Figure 4, where the trajectory of the system is reported for u(t) = 0, x(0) = (0, 1, 5)′

and

σ(t) =







1 if t ∈ [1.5i, 1.5i+ 1), i ∈ N0,

2 otherwise.
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Fig. 4. Example 3. A trajectory of the open loop switched system in the absence of input. The square is the initial condition,

and the circles are the points where the switches occur.

Let us use the methodology proposed in Section V. First, we solve the SDP (48). We choose

to search for HRLFs of total degree2d = 2 constant in the controller (i.e.,r = 0). We find

ξ∗(K) = −0.001K2 − 0.006K − 1.059.

Second, we solve the SDP (26), finding the set

Z(1, 0, 0) = {−5.404} .

Third, we find that (44) is infeasible forK = −5.404.

Hence, we repeat the above procedure by searching for HRLFs of total degree2d = 4, finding

the set

Z(2, 0, 0) = {−2.474} .

and (44) is feasible forK = K∗ with K∗ = −2.474. Hence, the found controllerK∗ solves the

problem. In particular, this controller ensures that the RMS gain of the switched system (7) is

smaller than3.884 (upper bound found with2d = 4). The number of LMI scalar variables in

the three SDPs are408, 2 and 166, respectively. Figure 5 shows the controllers that solve the

problem considered in this example found by brute force.

VIII. C ONCLUSIONS

This paper has addressed the synthesis of fixed-order outputfeedback controllers for stability

and performance of continuous-time switched linear systems with dwell time constraints or
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-10 -8 -6 -4 -2 0 2 4 6 8 10

replacements

K

Fig. 5. Example 3. White area: controllers for which one or more subsystems are unstable; gray crosses: controllers for which

the upper bound on the RMS gain cannot be established with HRLFs of total degree2d = 4 (possibly upper bound does not

hold); green circles: controllers for which the upper boundon the RMS gain can be established with HRLFs of total degree

2d = 4; red square: null controller (open loop system); blue circle: found controller.

arbitrary switching. Necessary and sufficient LMI conditions have been provided for determining

stabilizing controllers and controllers ensuring a desired upper bound on theH2 norm and RMS

gain. These conditions have been obtained through the use ofHPLFs and HRLFs parameterized

by the sought controller, and through the introduction of polynomials for approximating the

matrix exponential and for quantifying the feasibility of the Lyapunov inequalities.

Several directions can be considered in future work. For instance, one could investigate the

structural conditions under which the problems addressed in this paper admit solutions. Also,

one could explore the possibility of reducing the numericalcomplexity, as it quickly grows with

the size of the system and with the degree of the polynomials.Lastly, one could extend the

proposed methodology to other classes of switched systems and switching rules.
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APPENDIX A

In this section we provide the definition of the quantities used in Theorems 3 and 5. Let us

consider Theorem 3. The matrixEi(K,Φi) ∈ Sς2d−1 is defined as

Ei(K,Φi) = Ei,1(K,Φi)−Ei,2(K,Φi) + Ei,3(K)

where 

















Ei,1(K,Φi) = J ′
1 (he(ΦiΛi(K))⊗Ψ)J1,

Ei,2(K,Φi) = J ′
1

(

Φi ⊗ he(ΨΛ̃i(K))
)

J1,

Ei,3(K) = J ′
2 (Ψ

⊗2 ⊗ Ci(K)′Ci(K)) J2,

J1 ∈ Rςdςd−1×ς2d−1 andJ2 ∈ R
nς2

d−1
×ς2d−1 satisfy







b(x, d)⊗ b(x, d − 1) = J1b(x, 2d − 1),

b(x, d− 1)⊗2 ⊗ x = J2b(x, 2d − 1),
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and Λ̃i(K) ∈ R
ςd×ςd satisfies

db(x, d− 1)

dx
Ai(K)Tx = Λ̃i(K)b(x, d− 1).

Also, the matrixQi(K,Φi,Φj , U(·)) ∈ Sς2d−1 is defined as

Qi(K,Φi,Φj, U(·)) = Qi,1(K,Φj, U(Λi(K)))

−Qi,2(K,Φi, U(Λ̃i(K)))

+Qi,3(K,U(Λ̃i(K)), U(Ai(K)))

where 

















Qi,1(K,Φj, X) = J ′
1 ((X

′ΦjX)⊗Ψ)J1,

Qi,2(K,Φi, X) = J ′
1 (Φi ⊗ (X ′ΨX)) J1,

Qi,3(K,X, Y ) = J ′
2 (Ψ⊗ (X ′ΨX)⊗∆i(K, Y )) J2

and

∆i(K, Y ) =

∫ T

0

(

Ci(K)Y t
)′
Ci(K)Y tdt.

Lastly, the scalargi(K,Φi) ∈ R is defined as

gi(K,Φi) =

m2
∑

j=1

vi(B
(j)
i (K))

whereB(j)
i (K) is the j-th column ofBi(K).

Next, let us consider Theorem 5. The matricesFi(K,Φ), Gi(K) ∈ Sς2d−1+m1ς2d−2 are defined

as 





























Fi(K,Φ) =





Ei,1(K,Φ)− Ei,2(K,Φ) ⋆

Fi,1(K,Φ)
′ − Fi,2(K,Φ)

′ −γ2Fi,3



 ,

Gi(K) =





Gi,1(K) Gi,2(K)

⋆ Gi,3(K)





where 





















































Fi,1(K,Φ) = J ′
1

(

ΦB̃i,0(K)⊗Ψ
)

J3,

Fi,2(K,Φ) = J ′
1

(

Φ⊗ΨB̃i,1(K)
)

J4,

Fi,3 = J ′
5 (Ψ

⊗2 ⊗ I) J5,

Gi,1(K) = J ′
2 (Ψ

⊗2 ⊗ Ci(K)′Ci(K))J2,

Gi,2(K) = J ′
2 (Ψ

⊗2 ⊗ Ci(K)′Di(K))J5,

Gi,3(K) = J ′
5 (Ψ

⊗2 ⊗Di(K)′Di(K)) J5,
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J3 ∈ R
m1ς

2
d−1

×m1ς2d−2 , J4 ∈ R
m1ςdςd−2×m1ς2d−2 andJ5 ∈ R

m1ς
2
d−1

×m1ς2d−2 satisfy


















b(x, d− 1)⊗ u⊗ b(x, d− 1) = J3b̃(x, 2d− 2, u),

b(x, d)⊗ b(x, d − 2)⊗ u = J4b̃(x, 2d− 2, u),

b(x, d− 1)⊗2 ⊗ u = J5b̃(x, 2d− 2, u)

with

b̃(x, d, u) = b(x, d)⊗ u,

and B̃i,s(K) ∈ R
ςd−s×m1ςd−s−1 satisfies, fors = 0, 1,

db(x, d− s)

dx
Bi(K)u = B̃i,s(K)b̃(x, d− s− 1, u).

APPENDIX B

In this section we provide some details about the derivationof the solution found in Example

1. Let us start with the construction of the SDP (23). The matricesAi(K) of the switched system

(7) are

A1(K) =





0 1

−5 + k 2−K



 , A2(K) =





−1 0

−5 +K −2



 ,

A3(K) =





0 −3

k −5 +K



 .

Sinced = 1, q = 1 andT = 0.2, it follows that

b(x, d) = x, Λi(A) = 0.2Ai(K), L(·) = 0, Υ(A) = I + A.

Sincer = 0, Vi(K) has degree0. With the guideline reported after Theorem 2,ξ(K) has degree

2. Let us parameterizeVi(K) and ξ(K) as

V1(K) =





a1 a2

⋆ a3



 , V2(K) =





a4 a5

⋆ a6



 ,

V3(K) =





a7 a8

⋆ a9



 , ξ(K) = ξ1 +Kξ2 +K2ξ3
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wherea1, . . . , a9, ξ1, ξ2, ξ3 ∈ R are decision variables. It follows that there are12 matrix poly-

nomials in the constraints of the SDP (23), and2 of them are

M1,1(K) =





−1 + a1 a2

⋆ −1 + a3



 ,

M1,2(K) =





−K2ξ3 − 2Ka2 −Kξ2 + 10a2 − ξ1

⋆

Ka2 −Ka3 − a1 − 2a2 + 5a3

−K2ξ3 + 2Ka3 −Kξ2 − 2a2 − 4a3 − ξ1





(the other10 matrix polynomials are omitted for brevity). The cost function of the SDP (23) is

h = 20ξ1 + 666.667ξ3.

The constraints of the SDP (23) are converted into LMIs by exploiting the Gram matrix method

for matrix polynomials mentioned in Section II-B. For brevity, consider onlyM1,2(K). One has

M1,2(K) =
(

I KI
)

M̃
(

I KI
)′

where

M̃ =















10a2 − ξ1 −a1 − 2a2 + 5a3 −a2 − 0.5ξ2

⋆ −2a2 − 4a3 − ξ1 α+ 0.5a2 − 0.5a3

⋆ ⋆ −ξ3

⋆ ⋆ ⋆

−α+ 0.5a2 − 0.5a3

a3 − 0.5ξ2

0

−ξ3















andα ∈ R is a decision variable. The condition forM1,2(K) to be SOS is hence replaced by

the LMI M̃ ≥ 0.

Next, let us consider the construction of the SDP (26). With the guideline reported after

Theorem 2,s1,1(K) has degree0. We parameterizes1,1(K) as s1,1(K) = s wheres ∈ R is a

decision variable. By usingξ∗(K) found in the solution of the SDP (23) and reported in Example

1, it follows that

p(K) = µ+K2s+ 0.142K2 − 1.035K − 100s+ 6.54.

By converting the constraints of the SDP (26) into LMIs, we obtain


















0 ≤





µ− 100s+ 6.54 −0.517

⋆ s+ 0.142



 ,

0 ≤ s.
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Lastly, let us consider the determination ofZ(1, 1, 0). From the solution of the SDP (26) we

have 





p∗(K) = 0.142K2 − 1.035K + 1.892

µ∗ = −4.648.

Sincep∗(K) is quadratic, one finds trivially thatp∗(K) = 0 if and only if K = K∗ = 3.657.

Moreover,ξ∗(K∗) = µ∗, and, hence, we conclude thatZ(1, 1, 0) = {K∗}.

APPENDIX C

In this section we report the proofs of Theorems 4 and 6.

(Theorem 4)Proof. “Sufficiency”. Suppose there existsK ∈ Z(d, q, r) such that theH2 norm

of the switched system (7) is smaller thanγ. SinceZ(d, q, r) is a subset ofK, it follows that

there existsK ∈ K such that theH2 norm of the switched system (7) is smaller thanγ.

“Necessity”. Suppose there existsK ∈ K such that theH2 norm of the switched system (7)

is smaller thanγ, and let us indicate such a value asK#. For the chosenΨ > 0, let us replace

K with K# in the LMIs in (34), and letd be such that these LMIs are feasible (observe that

such ad does exist finite from Theorem 3). Also, let us replaceexp(·) with Υ(·) in these LMIs,

and letq be such that these LMIs are feasible (observe that such aq does exist finite sinceK#

is bounded,Υ(A) approximates arbitrarily welleA for sufficiently large values ofq, and the

inequalities in (34) are strict). LetΦ#
i , Θ#

i andΩ#
i,j be values ofΦi, Θi andΩi,j for which the

obtained LMIs hold. It follows that there existsξ# > 0 such that, for alli, j = 1, . . . , N , i 6= j,


























0 < Φ#
i − ξ#I,

0 < −Ēi(K
#,Φ#

i , 1)− L(Θ#
i )− ξ#I,

0 < Q̄i(K
#,Φ#

i ,Φ
#
j , 1) + L(Ω#

i,j)− ξ#I,

0 < ḡi(K
#,Φ#

i , 1)− ξ#.

Given the continuity of these inequalities onξ#, Φ#
i , Θ#

i andΩ#
i,j, it follows that there exist

matrix polynomialsξ̂(K), Φ̂i(K), Θ̂i(K) and Ω̂i,j(K) such thatξ̂(K#) > 0 and, for all i, j =

1, . . . , N , i 6= j, for all l = 1, 2, 4, and for allK ∈ Rm1×p1 ,






0 < M̂i,l(K),

0 < M̂i,j,3(K)
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where






































M̂i,1(K) = Φ̂i(K)− ξ̂(K)I,

M̂i,2(K) = −Ēi(K, Φ̂i(K), 1)− L(Θ̂i(K))− ξ̂(K)I,

M̂i,j,3(K) = Q̄i(K, Φ̂i(K), Φ̂j(K), 1) + L(Ω̂i,j(K))

−ξ̂(K)I,

M̂i,4(K) = ḡi(K, Φ̂i(K), 1)− ξ̂(K).

The degrees of̂ξ(K), Φ̂i(K), Θ̂i(K) andΩ̂i,j(K) can be always increased in order to satisfy the

constraints of the SDP (39). Indeed, from [40] one has that, by choosingf(K) = (1 + ‖K‖2Fro)
η

for someη ∈ N0, the polynomialsf(K)M̂i,l(K) andf(K)M̂i,j,3(K) are SOS. Sincef(K)− 1

is SOS as well, one has that the constraints of the SDP (39) canbe satisfied by choosing the

matrix polynomials






































ξ(K) = f(K)ξ̂(K),

Φi(K) = f(K)Φ̂i(K),

Θi(K) = f(K)Θ̂i(K),

Ωi,j(K) = f(K)Ω̂i,j(K),

ζ(K) = f(K)

which also satisfyξ(K#) > 0. The proof is completed by proceeding analogously to the last

part of the proof of Theorem 2. �

(Theorem 6)Proof. “Sufficiency”. Suppose there existsK ∈ Z(d, 0, r) such that the RMS

gain of the switched system (7) is smaller thanγ. SinceZ(d, 0, r) is a subset ofK, it follows

that there existsK ∈ K such that the RMS gain of the switched system (7) is smaller than γ.

“Necessity”. Suppose there existsK ∈ K such that the RMS gain of the switched system (7)

is smaller thanγ, and let us indicate such a value asK#. For the chosenΨ > 0, let us replace

K with K# in the LMIs (44), and letd be such that these LMIs are feasible (observe that such

a d does exist finite from Theorem 5). LetΦ# andΘ#
i be values ofΦ andΘi for which the

obtained LMIs hold. It follows that there existsξ# > 0 such that, for alli = 1, . . . , N ,






0 < Φ# − ξ#I,

0 < −Fi(K
#,Φ#)−Gi(K

#)− L(Θ#
i )− ξ#I.
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Given the continuity of these inequalities onξ#, Φ# andΘ#
i , it follows that there exist matrix

polynomialsξ̂(K), Φ̂(K) andΘ̂i(K) such thatξ̂(K#) > 0 and, for alli = 1, . . . , N and for all

K ∈ Rm1×p1,






0 < Φ̂(K)− ξ̂(K)I,

0 < −Fi(K, Φ̂(K))−Gi(K)− L(Θ̂i(K))− ξ̂(K)I.

The proof is completed by proceeding analogously to the lastpart of the proof of Theorem 4.

�

REFERENCES

[1] L. I. Allerhand and U. Shaked. Robust stability and stabilization of linear switched systems with dwell time.IEEE

Transactions on Automatic Control, 56(2):381–386, 2011.

[2] L. I. Allerhand and U. Shaked. Robust control of linear systems via switching.IEEE Transactions on Automatic Control,

58(2):506–512, 2013.

[3] F. Blanchini and S. Miani.Set-Theoretic Methods in Control. Birkhauser, 2008.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan.Linear Matrix Inequalities in System and Control Theory. SIAM,

1994.

[5] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.IEEE Transactions

on Automatic Control, 43:475–482, 1998.

[6] C. Briat. Stability analysis and stabilization of stochastic linear impulsive switched and sampled-data systems under dwell

time constraints.Automatica, 74:279–287, 2016.

[7] C. Briat and A. Seuret. Affine characterizations of minimal and mode-dependent dwell-times for uncertain linear switched

systems.IEEE Transactions on Automatic Control, 58(5):1304–1310, 2013.

[8] R. W. Brockett. Finite dimensional linear systems. John Wiley& Sons, New York, 1970.

[9] G. Chesi. LMI techniques for optimization over polynomials in control: a survey.IEEE Transactions on Automatic Control,

55(11):2500–2510, 2010.

[10] G. Chesi.Domain of Attraction: Analysis and Control via SOS Programming. Springer, 2011.

[11] G. Chesi. Convex synthesis of robust controllers for linear systems with polytopic time-varying uncertainty.IEEE

Transactions on Automatic Control, 62(1):337–349, 2017.

[12] G. Chesi. On the complexity of SOS programming and applications in control systems.Asian Journal of Control,

20(5):2005–2013, 2018.

[13] G. Chesi and P. Colaneri. Homogeneous rational Lyapunov functions for performance analysis of switched systems with

arbitrary switching and dwell-time constraints.IEEE Transactions on Automatic Control, 62(10):5124–5137, 2017.

[14] G. Chesi and P. Colaneri. Static output feedback control of switched systems with dwell time constraints or arbitrary

switching. In IEEE Conference on Decision and Control, pages 3787–3792, Melbourne, Australia, 2017.

[15] G. Chesi and P. Colaneri. On the synthesis of static output feedback controllers for guaranteed RMS gain of switched

systems with arbitrary switching. InSICE Annual Conference, pages 1307–1312, Nara, Japan, 2018.

[16] G. Chesi, P. Colaneri, J. C. Geromel, R. H. Middleton, and R. Shorten. A nonconservative LMI condition for stabilityof

switched systems with guaranteed dwell time.IEEE Transactions on Automatic Control, 57(5):1297–1302, 2012.

September 11, 2020 DRAFT



37

[17] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Homogeneous Lyapunov functions for systems with structured uncertainties.

Automatica, 39(6):1027–1035, 2003.

[18] P. Colaneri. Dwell time analysis of deterministic and stochastic switched systems.European Journal of Control, 15:228–

248, 2009.

[19] J. C. Geromel and P. Colaneri. Stability and stabilization of continuous-time switched systems.SIAM Journal of Control

and Optimization, 45(5):1915–1930, 2006.

[20] J. C. Geromel and P. Colaneri.H∞ and dwell time specifications of continuous-time switched linear systems.IEEE

Transactions on Automatic Control, 55(1):207–212, 2010.

[21] J. C. Geromel, P. Colaneri, and P. Bolzern. Dynamic output feedback control of switched linear systems.IEEE Transactions

on Automatic Control, 53(3):720–733, 2008.

[22] E. Hernandez-Vargas, P. Colaneri, R. H. Middleton, andF. Blanchini. Discrete-time control for switched positivesystems

with application to mitigating viral escape.International Journal of Robust and Nonlinear Control, 21(10):1093–1111,

2011.

[23] J. P. Hespanha.L2-induced gains of switched linear systems. In V. D. Blondel and A. Megretski, editors,Unsolved

Problems in Mathematical Systems and Control Theory, pages 131–133. Princeton University Press, 2003.

[24] J. P. Hespanha and A. S. Morse. Stability of switched systems with average dwell-time. InIEEE Conference on Decision

and Control, pages 2655–2660, Phoenix, Arizona, 1999.

[25] K. Hirata and J. P. Hespanha.L2-induced gains of switched systems and classes of switchingsignals. InIEEE Conference

on Decision and Control, pages 438–442, Atlanta, USA, 2010.

[26] H. Ishii, T. Basar, and R. Tempo. Randomized algorithmsfor synthesis of switching rules of multimodal systems.IEEE

Transactions on Automatic Control, 50(6):754–767, 2005.

[27] M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems.IEEE

Transactions on Automatic Control, 43:555–559, 1998.

[28] T. Kobayashi, L. Chen, and K. Aihara. Modeling genetic switches with positive feedback loops.Journal of Theoretical

Biology, 221:379–399, 2002.

[29] D. Liberzon. Switching in Systems and Control. Birkhauser, Boston, 2003.

[30] D. Liberzon, J. P. Hespanha, and A. S. Morse. Stability of switched systems: a Lie-algebraic condition.Systems and

Control Letters, 37(3):117–122, 1999.

[31] H. Lin and P. J. Antsaklis. Stability and stabilizability of switched linear systems: a survey of recent results.IEEE

Transactions on Automatic Control, 54(2):308–322, 2009.

[32] M. Margaliot. Stability analysis of switched systems using variational principles: an introduction.Automatica, 42(12):2059–

2077, 2006.

[33] M. Margaliot and J. P. Hespanha. Root-mean-square gains of switched linear systems: a variational approach.Automatica,

44(9):2398–2402, 2008.

[34] M. Margaliot and G. Langholz. Necessary and sufficient conditions for absolute stability: the case of second-ordersystems.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(2):227–234, 2003.

[35] P. Mason, U. Boscain, and Y. Chitour. Common polynomialLyapunov functions for linear switched systems.SIAM Journal

on Control and Optimization, 45(1):226–245, 2006.

[36] S. Miani, M. Zilletti, P. Gardonio, F. Blanchini, and P.Colaneri. Switching and sweeping vibration absorbers: theory and

experimental validation.Automatica, 93:290–301, 2018.

[37] A. P. Molchanov and E. S. Piatnitskiy. Lyapunov functions specifying necessary and sufficient conditions of absolute

September 11, 2020 DRAFT



38

stability of nonlinear nonstationary control system.Automation and remote control, 47(3):344–354 (part I), 443–451 (II),

620–630 (III), 1986.

[38] A. S. Morse. Supervisory control of families of linear set-point controllers - part 1: Exact matching.IEEE Transactions

on Automatic Control, 41(10):1413–1431, 1996.

[39] M. Putinar. Positive polynomials on compact semi-algebraic sets.Indian Univeristy Mathematics Journal, 42(3):969–984,

1993.

[40] C. Scheiderer. Positivity and sums of squares: A guide to some recent results. In M. Putinar and S. Sullivant, editors,

Emerging Applications of Algebraic Geometry, Vol. 149 of IMA Volumes in Mathematics and its Applications, pages

271–324. Springer, 2009.

[41] S. N. Shah, G. P. Incremona, P. Bolzern, and P. Colaneri.Optimization based AIMD saturated algorithms for public

charging of electric vehicles.European Journal of Control, 47:74–83, 2019.

[42] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King. Stability criteria for switched and hybrid systems.SIAM Reviews,

49(4):545–592, 2007.

[43] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.Optimization Methods and

Software, 11-12:625–653, 1999.

[44] Z. Sun and S. S. Ge.Stability Theory of Switched Dynamical Systems. Springer, 2011.

[45] F. Wirth. A converse Lyapunov theorem for linear parameter varying and linear switching systems.SIAM Journal on

Control and Optimization, 44:210–239, 2005.

[46] X. Xu and P. J. Antsaklis. Optimal control of switched systems based on parameterization of the switching instants.IEEE

Transactions on Automatic Control, 49(1):2–16, 2004.

Graziano Chesi is a Professor at the Department of Electrical and Electronic Engineering of the University

of Hong Kong. He received the Laurea in Information Engineering from the University of Florence in

1997, and the PhD in Systems Engineering from the Universityof Bologna in 2001. He joined the

University of Siena in 2000 and the University of Hong Kong in2006. He served as Associate Editor

for various journals, including Automatica, the European Journal of Control, the IEEE Control Systems

Letters, the IEEE Transactions on Automatic Control, the IEEE Transactions on Computational Biology

and Bioinformatics, and Systems and Control Letters. He also served as Guest Editor for the IEEE Transactions on Automatic

Control, the International Journal of Robust and NonlinearControl, and Mechatronics. He founded and served as chair of

the Technical Committee on Systems with Uncertainty of the IEEE Control Systems Society. He also served as chair of the

Best Student Paper Award Committees for the IEEE Conferenceon Decision and Control and the IEEE Multi-Conference

on Systems and Control. He is author of the books ”Homogeneous Polynomial Forms for Robustness Analysis of Uncertain

Systems” (Springer 2009) and ”Domain of Attraction: Analysis and Control via SOS Programming” (Springer 2011). He is a

IEEE Fellow of the IEEE.

September 11, 2020 DRAFT



39

Patrizio Colaneri was born in Palmoli, Italy, in 1956. He received the Laurea degree in Electrical

Engineering in 1981 and the Ph.D. degree (Dottorato di Ricerca) in Automatic Control in 1987. After a

few years in industry and at the National Research Council ofItaly, he joined the Politecnico di Milano

where he is full professor of Automatica and served as head ofthe Ph.D. school on ICT (2007-2009). He

spent a semester at the Systems Research Center of the University of Maryland (1989) and at the Hamilton

Institute of the National University of Ireland (2009). He also collaborates with the Institute for Design

and Control of Mechatronical Systems of Johannes Kepler University in Linz (Austria) since 2000. Dr. Colaneri was the chair

of the IFAC Coordinating Committee on Design Methods for sixyears, the chair of the Technical Committee on Control Design

for six years, a member of the Council of EUCA (European UnionControl Association) for three years, an Associate Editor of

Automatica for six years (certificate of outstanding service). He is at present a member of the Technical Board of IFAC, a Subject

Editor of the International Journal of Robust and NonlinearControl, a senior Editor of the IFAC journal Nonlinear Analysis

Hybrid Systems and a Senior Editor of the IEEE Transactions on Automatic Control. He was elevated to the degree of IEEE

Fellow for contributions on periodic and switching control. He is also a Fellow of IFAC (International Federation of Automatic

Control). His main interests are in the area of periodic systems and control, robust filtering and control, and switchingcontrol.

He has authored/co-authored more than 220 papers and seven books, including the following four international monographies:

“Control Theory and Design: an RH2 and RH∞ viewpoint”, Academic Press 1997, “Periodic Systems: Filtering and Control”,

Springer Verlag, 2009, “Positive Markov Jump Linear Systems”, Now Publishing 2015, “Switched Positive Linear Systems”,

Now Publishing 2015.

September 11, 2020 DRAFT


