Engineering Interface with One-Dimensional RuO₂/TiO₂ Hetero-Nanostructure in Electrocatalytic Membrane Electrode: Towards Highly Efficient Micropollutants Decomposition

Xianhui Li,^{†,#} Senlin Shao,^{†,‡, #} Yang Yang,[⊥] Ying Mei,[†] Weihua Qing, [†] Hao Guo,[†] Lu Elfa Peng,[†] Peng Wang,[§] Chuyang Y. Tang*,[†]

[†] Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China

[‡] School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China

¹ Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K.

§ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China

Corresponding Author

*Chuyang Y. Tang. E-mail: tangc@hku.hk

Authors contributed equally to this work.

ABSTRACT: Decomposing micropollutants with an electrocatalytic membrane reactor is a promising alternative to traditional advanced oxidation processes due to its high efficiency and environmental compatibility. Rational interface design of electrocatalysts in the membrane electrode is critical to the performance of the reactor. We herein developed a three-dimensional porous membrane electrode *via* in situ growing of one-dimensional RuO2/TiO2 heterojunction nanorods on a carbon nanofiber membrane by a facile hydrothermal and subsequent thermal-treatment approach. The membrane electrode was used as the anode in a gravity-driven electrocatalytic membrane reactor, exhibiting a high degradation efficiency of over 98% towards bisphenol-A and sulfadiazine. The superior electrocatalytic performance was attributed to the 1D RuO2/TiO2 hetero-interfacial structure, which provides the fast electron transfer, high generated rate of hydroxyl radical, and large effective surface area. Our work paves a novel way towards the fundamental understanding and designing of novel highly effective and low consumptive electrocatalytic membranes for wastewater treatment.

KEYWORDS: Electrocatalytic oxidation of micropollutants, TiO_2/RuO_2 heterojunction, nanorods, carbon nanofiber membrane electrode, interface engineering

■ INTRODUCTION

Human activities produce increasing amounts of synthetic organic chemicals, such as pharmaceuticals, agrochemicals, and personal care products, whose discharge into water supplies causes growing public and environmental concerns. 1,1,2 Many emerging micropollutants are biologically recalcitrant, and conventional wastewater treatment plants are often inadequate to deal with them. Alternatively, an electrocatalytic membrane reactor that combines electrochemical oxidation with membrane filtration is an effective hybrid technique to degrade highly recalcitrant pollutants while minimizing secondary pollution. 3,4 Compared with the traditional electrocatalytic oxidation process that utilizes parallel plate electrochemical cells, electrocatalytic membrane filtration can significantly enhance the mass transfer of pollutants from the bulk solution to the porous electrode surface due to a forced convection by the flow-through filtration. 5-7 To achieve a highly efficient micropollutant decomposition, the fast mass transport rate must be accompanied by a fast reaction rate, 8 and the key is to develop an eletrocatalytic membrane with high-electroactive surface area and high-active electrocatalysts.

Various catalysts including metals and alloys, ^{9,10} metal-organic frameworks, ^{11,12} and 2D metal dichalcogenides ^{13,14} have been explored, among which transition metal oxides such as titanium dioxide (TiO₂) are still the widely used commercial catalysts so far because of their nontoxicity, long-term stability, and low cost. ^{15,16} However, they are constrained by slow electron transfer kinetics. ¹⁷ An effective way to enhance the electron transport is to establish a hetero-interface and controllable morphology of the catalyst. The hetero-interface is generally built by anchoring or coupling highly conductive and electroactive precious metal (i.e.

platinum, palladium, and gold) and other metallic compounds to facilitate electron transfer. ^{18,19} In comparison with expensive precious metals, some transition metal oxides are economically feasible and can be used as a co-catalyst to enhance the activity of the supported electrocatalyst. For example, ruthenium dioxide (RuO₂) is a promising candidate for use in catalytic applications because of its high electrical conductivity and superior chemical stability. ²⁰ In addition, one-dimensional (1D) nanostructures, such as nanorods and nanowires, have a favorable geometric morphology in comparison with zero-dimensional (0D) nanoparticles, as the former have faster electron transport and more rapid interfacial charge transfer rate. ²¹ Hence, it is highly desirable to fabricate a high-activity electrocatalytic membrane by integrating 1D nanostructured RuO₂/TiO₂ heterojunction onto a conductive porous substrate for electrocatalytic oxidation of micropollutants, for which the key technical challenge is to control the interface during loading of the catalysts on the support.

Herein, we report a facile hydrothermal approach to build up a robust 3D carbon nanofiber (CNF) membrane electrode by immobilizing 1D RuO₂/TiO₂ heterojunction nanorods (NRs) via an in situ growing process. The CNF membrane provides abundant sites for growing RuO₂/TiO₂ NRs catalysts due to its high interfacial area and interconnected porous structure. 22,23 Specifically, the in situ growth approach enables the formation of well-defined interfaces between the catalytic sites and the CNF. The obtained membrane electrode TiO₂/RuO₂ NRs/CNF was employed as an anode and a titanium mesh as cathode to construct a gravity-driven electrocatalytic membrane reactor (GD-ECMR) that facilitates single pass degradation of micropollutants with low energy consumption. Optimization of the catalysis and efficiency accomplished current is through rational design of the

membrane/catalyst/electrolyte interfaces *via* establishing a heterointerface and controllable morphology of the TiO₂ catalyst.

■ MATERIALS AND METHODS

Chemicals. N,N-Dimethylformamide (DMF), Polyacrylonitrile (PAN, Mw=150,000), and sulfadiazine were obtained from Sigma-Aldrich Co., Ltd. Tetrabytyl titanate (Ti(n-OBu)₄, 98%), Ruthenium (III) chloride (RuCl₃.3H₂O, 99%) and bisphenol-A were obtained from Tokyo Chemical Industry Co., Ltd. Other chemicals, such as nitric acid (HNO₃, 65 wt%), hydrochloric acid (HCl, 37 wt%), absolute ethanol, acetic acid, sodium sulfate (Na₂SO₄, anhydrous) and methyl blue, were obtained by Dieckman company.

Preparation of the RuO₂/TiO₂ NRs/CNF Electrocatalytic Membrane Electrode. The carbon nanofibers were initially prepared via electrospinning followed by post-carbonization treatment. Typically, 8 wt% PAN solution in DMF was prepared with stirring for 4 h at 60 °C. The defoaming of PAN solution was conducted with ultra-sonication process for 5 min. The precursor solution of PAN-DMF was electrospun into fibers with velocity of 0.88 cm h⁻¹ at a working voltage of 12 kV. These PAN nanofibers were then stabilized in air for 2 h at 280 °C, followed by carbonization in N₂ at 900 °C for 2h. The obtained carbon nanofibers were denoted as CNFs.

The growth of RuO₂/TiO₂ nanorods on CNFs was realized by seeds fixation and subsequent nanorods growth with two-step hydrothermal methods. In the first step, to obtain RuO₂/TiO₂ seed layer, the CNFs were first functionalized by 65 wt% HNO₃ to introduce oxygen-containing functional group (-OH, C=O).²⁴ A RuO₂/TiO₂ sol-gel solution was then prepared

using the mixture of 0.01 wt/vol% RuCl₃.3H₂O and 1 wt/vol% Ti(n-OBu)₄ as precursor dissolved in the mixture of pure water, ethanol, and acetic acid (v/v/v, 1:150:50) with stirring for 1 h. The obtained RuO₂/TiO₂ sol-gel solution was aged for 24 h. A piece of functionalized CNFs was put into a Teflon-lined stainless-steel autoclave and kept for 4 h at 150 °C. The temperature was then naturally cooled to room temperature. In the second step, a certain amount RuCl₃.3H₂O (RuO₂: $TiO_2 = 1:100$ in weight, that is, the Ru/Ti atomic ratio is 0.006) added the mixed solution with constant volume Ti(nwas OBu)₄/H₂O/HCl=1/30/30 with magnetic stirring for 1 h. The CNFs coated with RuO₂/TiO₂ seed layer along with above solution were sealed in a Teflon-lined stainless-steel autoclave. The hydrothermal reaction was conducted for 2 h at 150 °C, and subsequently the system was cooled to room temperature. Finally, the prepared RuO₂/TiO₂ nanorods growing on CNFs (denoted as RuO₂/TiO₂ NRs/CNF) were annealed at 300 °C for 2 h.

Membrane Characterization. The surface morphology and nanostructure of the RuO₂/TiO₂ NRs/CNF electrocatalytic membrane electrode were observed by a Scanning Electron Microscope (LEO-1530, SEM) and High Resolution Transmission Electron Microscopy (FEI Tecnai G2 20 TWIN, HRTEM) furnished with an Energy-dispersive X-ray Spectroscopy (Oxford Instruments X-Max 80 T, EDS). The crystal structures and bonding of prepared catalyst were analyzed by X-ray diffraction (Rigaku D/MAX-2550 with Cu Kα radiation, XRD) and Raman spectroscopy (XploRA, HORIBA, excitation at 532 nm). The surface element was measured by X-ray Photoelectron Spectroscopy (Thermo Fisher, XPS). The pore size and BET surface area of the membrane was characterized using a porometer (POROLUXTM 1000) and a Micromeritics TriStar II 3020 instrument, respectively, Electron

spin resonance (ESR) spectroscopy (FA-200 spectrometer, JEOL Co.) was applied for in situ investigation of the hydroxyl radical (·OH) produced in the electrode system using dimethyl pyridine N-oxide (DMPO) as a trapping agent.

Electrochemical Measurement. An electrochemical station (Zahner Zennium) was used to characterize the cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry. The electrochemical measurements were conducted using a conventional three-electrode cell with a mixed neutral electrolyte solution of KCl (100 mmol L⁻¹) and [Fe(CN)₆]^{4-/3-} (1 mmol L⁻¹). This three-electrode cell is consisted of a work electrode (RuO₂/TiO₂ NRs/CNF, TiO₂ NRs/CNF and CNF electrodes), a compared electrode (Ag/AgCl), and a platinum auxiliary electrode. EIS measurement was conducted with a frequency range between 100 kHz to 100 MHz at an open circuit voltage of 5 mV. The Nyquist plots were fitted by using the ZView software. The effective electrochemical active surface area (A) could be calculated using the Randles-Sevcik Equation²⁵ as follows,

$$I_p = 2.69 \times 10^5 A n^{3/2} D^{1/2} v^{1/2} c \tag{1}$$

where D is the diffusion coefficient of $K_3[Fe(CN)_6]$ (7.6×10⁻⁶ cm² s⁻¹), n is the number of transfer electros (n=1), and c is the concentration of $[Fe(CN)_6]^{3-}$ (1 mmol L⁻¹).

Evaluation of Electrocatalytic Membrane Performance. The electrocatalytic membrane performance was investigated by a custom-built gravity-driven electrocatalytic membrane reactor (GD-ECMR). The polluted water flowed through a homemade cell of electrocatalytic membrane filtration (Figure S1), in which membrane electrodes and titanium mesh were served as anode and cathode, respectively, under a gravity driven force with head difference between feed inlet and permeate outlet of only

2 cm. 10 mM Na₂SO₄ was used as aqueous electrolyte. The current density of GD-ECMR was maintained at 1.0 mA cm⁻² supplied by a programmable DC power supply (Maynuo Electronics M8811). The organic pollutants used in this study include methyl blue, bisphenol-A and sulfadiazine. The concentrations of methyl blue were analyzed by using UV-vis spectrophotometer (Hach, DR5000). Chemical oxygen demand (COD) analysis for the feed and permeate was conducted by a COD analyzer (Hach, DR2800). The analysis of sulfadiazine and bisphenol-A was performed by using UPLC-MS/MS with a BEH C18 column (50 × 2.1 mm, 1.7 μ m). The permeance and removal rate of micropollutants could be calculated by following eqs. 2 and 3, respectively:

$$J = \frac{V}{A \times T \times P} \tag{2}$$

$$R = \left(1 - \frac{c_p}{c_f}\right) \times 100\% \tag{3}$$

where J is the permeance of the electrocatalytic membranes (L m^{-2} h^{-1} bar⁻¹), P, T, and A are the operating pressure (bar), the filtration time (h), and the effective area (m^2), respectively, V is the permeated volume (L), R is the removal rate of micropollutants, and C_p and C_f are the concentration of micropollutants in the feed and permeate solution, respectively.

The residence time (t_r) could be calculated using eq. 4,

$$t_r = \frac{\varepsilon V_c}{o} \tag{4}$$

where V_c is the volume of the CNF membrane electrode (cm³), Q is the flow rate through the CNF membrane electrode (mL min⁻¹), and ϵ is the membrane porosity (89%).

The current efficiency (CE) could be calculated by the following equation⁷,

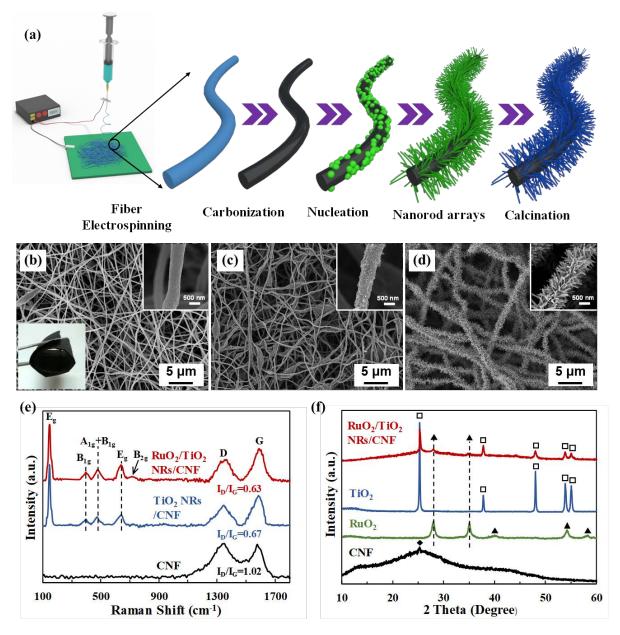
$$CE = \frac{FV(\Delta COD)}{8It} \times 100 \tag{5}$$

where F is the Faraday constant (96485 C mol⁻¹), Δ COD is the removed COD (g L⁻¹) at a given time, t (s), and I is the applied current (A).

■ RESULTS AND DISCUSSION

Fabrication and Characterization of the RuO₂/TiO₂ NRs/CNF Electrocatalytic Membrane Electrode. Our RuO₂/TiO₂ NRs/CNF membrane electrodes are obtained by following steps (Figure 1a): (i) Formation and growth of nucleus on the CNF surface in the nucleation process. (ii) Formation of a 1D NRs array on the CNFs resulted from the gradual growth of the nucleus along the specific orientation.8 (iii) Annealed treatment of the prepared RuO₂/TiO₂ NRs/CNF to enhance the nanorod crystallinity. The flexible CNF membrane with fiber diameter of around 300-500 nm was obtained by carbonization under a nitrogen environment. The carbonized membrane can be easily bent and twisted as shown in Figure 1b. Such excellent mechanical flexibility, foldability and twistability are critical for its applications in water filtration. Next, RuO₂/TiO₂ seed nanoparticles were coated evenly and anchored firmly onto the surface of carbon nanofibers using a sol-gel-hydrothermal method (Figure 1c), followed by a hydrothermal treatment at 150 °C to form an array of RuO2/TiO2 nanorods on the membrane surface. The nanorod crystallinity was enhanced by a further thermal annealing at 300 °C. As shown in Figure 1d, the entire surface of the carbon nanofibers was fully decorated with uniform RuO₂/TiO₂ nanorods with a length ranging from 500 nm to 700 nm. This branch-like structure provided an extremely high specific surface area of 168 m²/g, more than double amount of the pristine CNF (72 m²/g in Table 1 and Figure S7). Besides, the pore size distribution and obvious hysteresis loops demonstrated that pristine CNF membrane and

The large pore diameter (1.8 µm in Figure S8) of the RuO₂/TiO₂ NRs/CNF ensures a high permeance of 1.8×10⁵ L m⁻² h⁻¹ bar⁻¹, which is beneficial for further implementation of gravitydriven catalytic filtration process with low energy consumption and high efficiency in this study. The crystal structures of the RuO₂/TiO₂ NRs/CNF were investigated by Raman spectroscopy and X-ray diffraction (XRD). Compared to the pristine CNF, four new peaks at 143, 397, 515, and 637 cm⁻¹ were observed on the RuO₂/TiO₂ NRs/CNF in Raman spectra (Figure 1e), which could be attributed to the B_{1g} , $A_{1g} + B_{1g}$, E_{g} , and B_{2g} modes of anatase TiO₂, respectively. ^{26,27} Besides, the Raman feature of rutile RuO₂ (716 cm⁻¹)¹⁸ was observed in the RuO₂/TiO₂ NRs/CNF, confirming the presence of the heterostructure with both anatase TiO2 and rutile RuO₂. The intensities of the D-band (I_D, disordered carbon) versus G-band (I_G, graphite carbon)²⁸ was reduced from 1.02 of pristine CNF to 0.67 of TiO₂ NRs/CNF and 0.63 of RuO₂/TiO₂ NRs/CNF. This indicated that the graphitic degree was increased by the successful combination of carbon and RuO₂/TiO₂.²⁹ XRD analysis in Figure 1f shows that the pristine CNF substrate had a peak at 26.5° corresponding to the (002) plane of graphitic carbon, which confirms as the suitability of the CNF as a conductive membrane electrode substrate.³⁰ The conductivity of CNF fabricated in this study is 0.25 S cm⁻¹. For bare TiO₂ powders synthesized in the same procedure as RuO₂/TiO₂ NRs/CNF, series of well-defined (101), (004), (200), (105) and (211) diffraction peaks at 25.3°, 37.8°, 48.1°, 53.9° and 55.1° were observed, indicating the dominance of anatase phase (JCPDS 21-1272) in the TiO₂ tetragonal structure.³¹ Anatase TiO₂ is a well-known catalyst in electrochemical reactions.³¹ In the XRD pattern of synthesized bare RuO₂ powders, the peaks at 35.1°, 28.1°, 40.1°, 54.2° and 57.9° correspond to the (110), (101),


RuO₂/TiO₂ NRs/CNF membrane consisted of both mesopores and macropores (Figure S7).

(200), (211) and (200) planes of the RuO₂ tetragonal rutile phase (JCPDS 43-1027).³² For the RuO₂/TiO₂ NRs/CNF, apart from the intensive peaks from the synthesized anatase TiO₂ nanorods, the typical diffraction peak of rutile RuO₂ phase was observed (Figure 1f), indicating the successful formation of RuO₂/TiO₂ heterostructure. In addition, RuO₂/TiO₂ NRs/CNF, with a titanium loading of approximately 12.1 at. % (Figure S9), displayed high thermal stability (96.5% at 800 °C) since TiO₂ and RuO₂ did not decompose at the given temperature (Figure S2).

Table 1 Characteristics of the pristine CNF and RuO₂/TiO₂ NRs/CNF.

samples	mean pore diameter ^a	BET surface area	permeance
	(µm)	(m^2/g)	$(L m^{-2} h^{-1} bar^{-1})$
Pristine CNF	2.3 ± 0.4	75 ± 6.5	$(2.28 \pm 0.2) \times 10^5$
RuO ₂ /TiO ₂ NRs/CNF	1.8 ± 0.2	168 ± 10.4	$(1.8 \pm 0.1) \times 10^5$

^a Mean pore diameter was measured by the bubble point technique as shown in Figure S8.

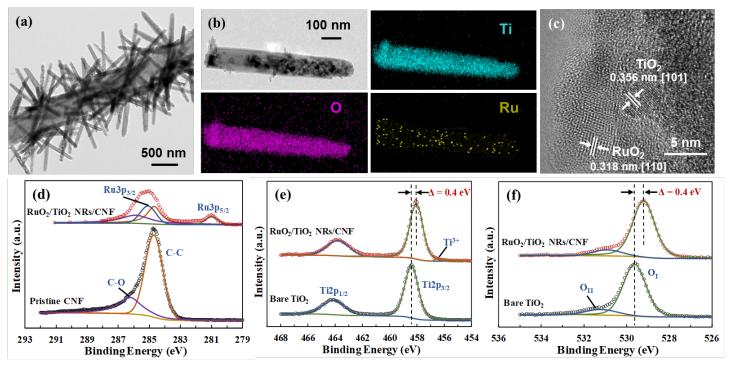


Figure 1. Fabrication and characterization of RuO₂/TiO₂ NRs/CNF membrane electrode. (a) Schematic description of the fabrication processes. (b-d) SEM images of (b) pristine CNF, (c) RuO₂/TiO₂ seeds fasten on the CNF, and (d) RuO₂/TiO₂ NRs/CNF. (e) Raman spectrum of pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF. (f) XRD patterns of pristine CNF, bare synthesized RuO₂ powders, bare synthesized TiO₂ powders, and RuO₂/TiO₂ NRs/CNF.

The nanostructures of RuO_2/TiO_2 nanorods were further characterized by transmission electron microscopy (TEM). The hierarchical RuO_2/TiO_2 nanorods with around 60 nm in diameter and 600 nm in length were grown on the entire surface of around 450 nm diameter

carbon nanofiber (Figure 2a), which agrees well with the scanning electron microscopic (SEM) characterization (Figure 1d). In addition, the high-resolution TEM (HRTEM) image (Figure 2c) shows the well-resolved fringe spacings that are indexed to (101) plane of TiO₂ and (110) plane of rutile RuO₂,³² in correspondence with the XRD measurement (Figure 1f). These results confirmed that the RuO₂/TiO₂ nanorods processed a well-crystallized nanostructure. Furthermore, element mapping analysis by energy dispersive spectroscopy (EDS) demonstrates a uniform distribution of elements of Ti, O and Ru (Figure 2b). The Ru/Ti atomic ratio in the obtained RuO₂/TiO₂ nanorods is about 0.0055 (Figure S10), which is consistent with the initial doped amount with a Ru/Ti atomic ratio of 0.006. The TEM results thus confirm the combination of the nano-crystalline RuO₂ with the TiO₂. The detailed surface composite and chemical state of the carbon nanofibers with RuO₂/TiO₂ nanorods were investigated by Xray photoelectron spectroscopy (XPS, Figure 2d-f). Compared to the pristine CNF membrane, an obvious emission peak for Ti2p could be observed in the survey scan of RuO₂/TiO₂ NRs/CNF (Figure S3). The C1s signal at 284.6 eV overlaps with the Ru3d_{3/2} signal at 285.0 eV, however, the Ru3d_{5/2} peak at 280.8 eV clearly demonstrated the presence of RuO₂ (Figure 2d). 33 The Ru3d_{5/2} peak was gradually intensified with the increase of RuO₂ content (Figure S11a). The doublet of Ti2p_{1/2} and Ti2p_{3/2} located at 464.1 eV and 458.4 eV is the feature of Ti⁴⁺ oxidation state in the bare TiO₂ NRs¹⁸ (Figure 2e). Notably, RuO₂ doping into TiO₂ induced a shift (0.4 eV) to low binding energy, which might be related to an intensive interaction between RuO2 and TiO2 via the substitution of Ru ions with the TiO2 lattices, and the formation of reduced state of Ti³⁺ (Figure 2e) owing to the electron transfer to adjacent Ti⁴⁺. ¹⁸ A shift of 0.4 eV toward low binding energy was also observed in the O1s spectra (Figure

2f). The components of O1s peak for bare TiO₂ NRs were attributed to the lattice oxygen (O₁ at 529.7 eV) and the hydroxylation oxygen species (O₁₁ at 531.2 eV) in TiO₂. ¹⁸ The spectra of Ti2p and O1s gradually shifted to lower binding energy with increasing content of RuO₂ (Figure S11b and c). Such a shift of both Ti2p and O1s is likely associated with the band bending at the interface of TiO₂-RuO₂, ¹⁸ thus confirming the formation of RuO₂/TiO₂ heterojunction. The dispersed RuO₂ as submetallic contact materials are able to improve conductivity and enhance electron-hole separation, further facilitating the charge transportation. ²⁶ From the above, we concluded that the RuO₂/TiO₂ heterojunction nanorods were successfully synthesized onto the carbon nanofibers.

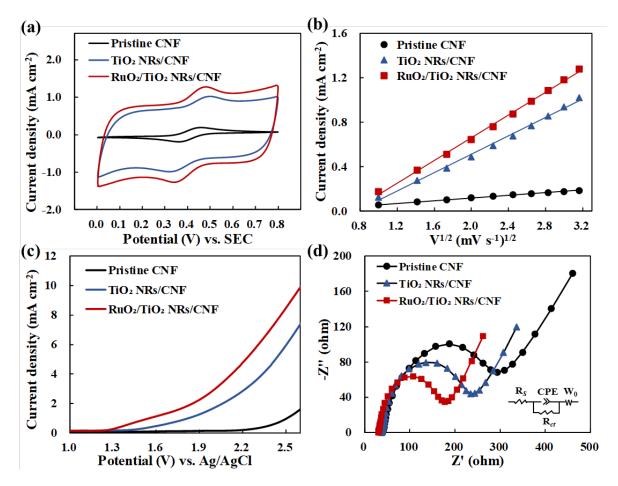


Figure 2. Characterization of RuO₂/TiO₂ NRs/CNF membrane electrode. (a) TEM images of RuO₂/TiO₂ NRs/CNF. (b) EDS mapping of Ti, O, and Ru, and (c) HRTEM images of RuO₂/TiO₂ NR. (d-f) XPS spectra showing (d) C1s + Ru3d of RuO₂/TiO₂ NRs/CNF and pristine CNF, and (e) Ti2p and (f) O1s of RuO₂/TiO₂ NRs/CNF and bare synthesized TiO₂ powders.

Electrochemical Characterization of the RuO₂/TiO₂ NRs/CNF Electrocatalytic Membrane Electrode. To demonstrate the effect of RuO₂/TiO₂ heterojunction nanorods on the electrocatalytic activity, the electrochemical properties of pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF were investigated by conducting CV (cyclic voltammetry) measurements in a [Fe(CN)₆]^{3-/4-} solution. At a scan rate of 10 mV s⁻¹, the RuO₂/TiO₂ NRs/CNF displayed a higher peak current density (I_p, 1.3 mA cm⁻²) than the TiO₂ NRs/CNF (1.0 mA cm⁻²) and the pristine CNF (0.19 mA cm⁻²) (Figure 3a). The anodic and cathodic peak potentials of RuO₂/TiO₂ NRs/CNF were 0.472 V and 0.362 V, respectively. The difference between the redox peak potentials of RuO₂/TiO₂ NRs/CNF (110 mV) is smaller than that of the TiO₂ NRs/CNF (126 mV) and the pristine CNF (142 mV) (Figure 3a), indicating higher electron transfer rate from the membrane electrode to the electrolyte. 8 The poor voltammetric behavior of the pristine CNF for the $[Fe(CN)_6]^{3-/4}$ couple indicates poor electric conductivity.³² In contrast, RuO₂/TiO₂ NRs/CNF and TiO₂ NRs/CNF efficiently enhanced the electrontransfer rate from the electrode surface to the [Fe(CN)₆]^{3-/4-} solution. Especially, the RuO₂/TiO₂ NRs/CNF allowed faster electron transfer in comparison with the TiO₂ NRs/CNF, due to the RuO₂/TiO₂ heterojunction.³⁴ Meanwhile, the effective electrochemical active surface area (A) of the pristine CNF, TiO2 NRs/CNF, and RuO2/TiO2 NRs/CNF could be calculated using the Randles-Sevcik equation²⁵ by plotting the I_p with the square root of scan rate (v) based on the CV curves at varied scan rates from 1 mV s⁻¹ to 10 mV s⁻¹ (Figure S4). As shown in Figure 3b, I_p was linearly proportional to $v^{1/2}$ for pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF. The RuO₂/TiO₂ NRs/CNF provides an effective electrochemical active

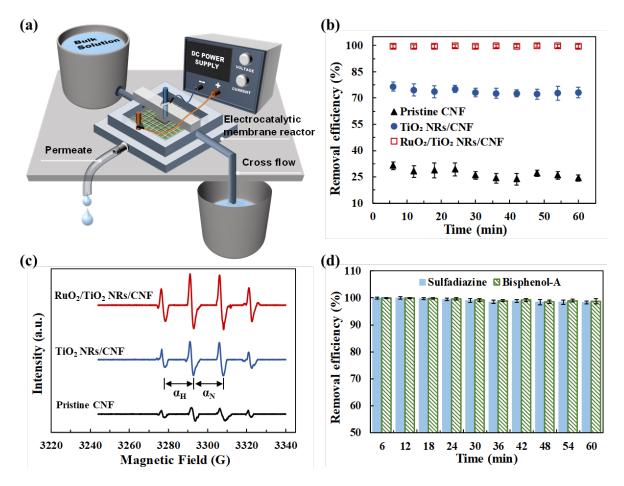
surface area of 0.7 cm⁻², which is 1.4-fold and 8.7-fold of the TiO₂ NRs/CNF (0.5 cm⁻²) and pristine CNF (0.08 cm⁻²), respectively.

The electrochemical oxidation activity was further investigated in Figure 3c by the linear sweep voltammetry (LSV) curves. The RuO₂/TiO₂ NRs/CNF has a higher current density of 4.8 mA cm⁻² at a potential of 2.2 V vs Ag/AgCl, about 1.7-fold and 26-fold of the respective values of TiO₂ NRs/CNF and pristine CNF, demonstrating a super-high electro-oxidation activity. Furthermore, EIS measurements were conducted to characterize the interface impedances in order to gain a deep understanding of the electrochemical kinetics. The Nyquist plot in Figure 3d shows a semicircle related to the interfacial charge-transfer resistance (Rct). The smallest Rct of 160 Ω was achieved by the RuO₂/TiO₂ NRs/CNF electrode, compared to 265 Ω of the TiO₂ NRs/CNF and 410 Ω of the pristine CNF electrodes, indicating superior electrochemical kinetics and fast charge transfer rate. These electrochemical data definitely verified a significant enhancement in the electrochemical performance of the resulting membrane electrode via in situ immobilizing of RuO₂/TiO₂ heterojunction nanorods, attributed to lowing the interfacial resistance by the 1D nanorods, and a facilitation of the charge transfer and separation by the RuO₂/TiO₂ heterostructure. He

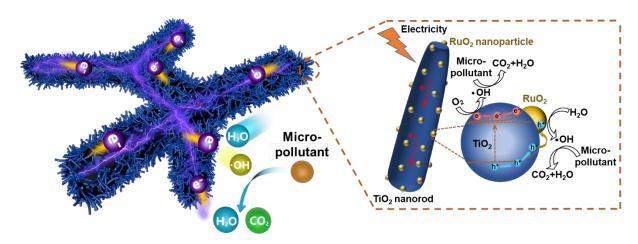
Figure 3. Electrochemical characterization measured in 1mM K₃[Fe(CN)₆]+100 mM KCl. (a) CV curves of the pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF at a scan rate of 10 mV s⁻¹; (b) the relationship between the square root of the scan rate and the peak current density; (c) LSV curves of the pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF at a scan rate of 10 mV s⁻¹; (d) Nyquist plots of the pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF.

Electrocatalytic performance. The electrocatalytic filtration performance was investigated by a custom-built gravity-driven electrocatalytic membrane reactor (GD-ECMR), as depicted in Figure 4a. An extremely high permeate flux of 360 L m⁻² h⁻¹ was generated for the RuO₂/TiO₂ NRs/CNF membrane, ascribed to the large pore diameter and high porosity of the CNF substrate. The corresponding flow rate and residence time were 5.4 mL min⁻¹ and 0.15 min, respectively. Notably, the membrane displayed a constant ultrahigh removal efficiency of

nearly 99.9% for methyl blue within 60 min (Figure 4b and Figure S5) at the optimal conditions of RuO₂/TiO₂ mass ratio of 1:100 and current density of 1.0 mA cm⁻² (Figure S12). The characteristic peak of methyl blue disappeared completely in the UV spectra (Figure S6). In contrast, the pristine CNF and TiO₂ NRs/CNF were not able to completely degrade the methyl blue. Especially in the case of pristine CNF, only 28% methyl blue could be removed. In addition, two representative micropollutants, bisphenol-A and sulfadiazine, were used to further demonstrate the removal efficiency of recalcitrant micropollutants by the RuO₂/TiO₂ NRs/CNF membrane (Figure 4d). The membrane exhibited a removal efficiency of above 98% (Figure 4d). The COD removal rate reached above 30% (Figure S13) with the current efficiency of 85%. After an operation duration of 72 h, the removal efficiency of micropollutants maintained above 95% (Figure S14). In addition, Ti and Ru concentrations in the permeate solution obtained from a 72-h test were below detection (Table S1). No noticeable change in morphology was observed for the used RuO₂/TiO₂ NRs/CNF electrode after the 72-h test (Figure S15). These results demonstrated that the RuO_2/TiO_2 NRs/CNF membrane can efficiently degrade the micropollutants and exhibited superior stability. The current efficiency of RuO₂/TiO₂ NRs/CNF membrane was 85%, which is better than the other electrocatalytic membranes reported in the literature, as shown in Table S2. To understand the electrochemical oxidation process, the yield of ·OH species in the system was measured using dimethyl pyridine N-oxide (DMPO) electron spin resonance (ESR). A hyperfine coupling constant ($\alpha_H = \alpha_N$ =14.9 G) and a peak height ratio of 1:2:2:1 were observed in the spectra (Figure 4c), which are typical characteristics for a DMPO-OH product and indicate the generation of ·OH in the system.³⁷ The RuO₂/TiO₂ NRs/CNF displayed a ·OH signal with a higher peak intensity than the pristine CNF and TiO₂ NRs/CNF, underpinning a more efficient electrocatalytic process.


The enhanced micropollutants removal efficiency by the RuO₂/TiO₂ NRs/CNF eletrocatalytic membrane is attributed to the promoted transport, transfer and separation of charges caused by the formation of 1D RuO₂/TiO₂ heterojunction nanorods. ^{18,36-38} Figure 5 proposes an illustration of charge-transfer pathway of 1D RuO₂/TiO₂ heterostructure to degrade micropollutants. Once the RuO₂/TiO₂ NRs/CNF membrane as an anode is electrified, the excited electrons moved from the valence band to the conduction band, resulting in the generation of holes and electrons. RuO₂ could generate the heterojunction at the heterointerface between TiO₂ and RuO₂.³⁸ In addition, the unique nanoparticle-nanorod geometry also accelerates electron transport within the 1D vertical RuO_2/TiO_2 structure. ¹⁸ Therefore, RuO_2 captures the holes (h⁺) to generate h⁺ (RuO₂) intermediates (eq. 6).³⁷ Subsequently, these intermediates react with H₂O to produce hydroxyl radical ·OH, as described by eq. 7.³⁷ The synergistic effect of eqs. 6 and 7 is the consumption of induced holes and the generation of free electrons e⁻ (TiO₂) and ·OH. The e⁻ (TiO₂) would react with O₂ absorbed on the TiO₂ surface to generate free radicals ·O₂- (eq. 8), which could produce ·OH after reaction as demonstrated by eq. 9.³⁷ The ·OH then reacts with pollutants to produce small molecules, such as H₂O, CO₂, and organic residues (eq. 10). Consequently, the electrocatalytic performance was significantly improved by properly manipulating geometry and interfacial electronic alignment.

$$TiO_2/RuO_2 \to h^+(RuO_2) + e^-(TiO_2)$$
 (6)


$$H_2O + h^+(RuO_2) \to H^+ + OH$$
 (7)

$$O_2 + e^-(TiO_2) \to O_2^-$$
 (8)

$$H_2O_2 + O_2^- \rightarrow OH + OH^- + O_2$$
 (9)

Figure 4. Electrocatalytic filtration performance of the GD-ECMR using different membrane electrodes. (a) Schematic illustration of custom-built GD-ECMR. (b) The methyl blue removal performance and (c) the DMPO spin-trapping ESR spectra for hydroxyl radical (·OH) of pristine CNF, TiO₂ NRs/CNF, and RuO₂/TiO₂ NRs/CNF. Reaction conditions: the feed of 200 mg L⁻¹ methyl blue solution, 10 mM Na₂SO₄ as aqueous electrolyte, and a constant current density of 1.0 mA cm⁻². (d) The removal efficiency of sulfadiazine and bisphenol-A with increasing operation time using RuO₂/TiO₂ NRs/CNF at the reaction conditions of the feed of 500 μg L⁻¹, 10 mM Na₂SO₄ as aqueous electrolyte, and a constant current density of 1.0 mA cm⁻².

Figure 5. Schematic illustration of the RuO₂/TiO₂ NRs/CNF membrane electrode for highly efficient micropollutant decomposition.

■ CONCLUSION

In this study, we fabricated a 3D membrane electrode with uniform 1D RuO₂/TiO₂ heterojunction NRs on CNF support via an in situ growing process. The resulting RuO₂/TiO₂ NRs/CNF electrode displayed an outstanding electrocatalytic performance towards micropollutant decomposition, attributed to the well-defined interfaces between the catalytic sites and the CNF. The established 1D RuO₂/TiO₂ hetero-interfacial structure brings a synergistic effect to the structural stability and the electrochemical properties of electrodes, which allows a fast electron transfer, increased catalytically active sites, and high yield of ·OH generation in the process. Additionally, a gravity-driven electrocatalytic filtration process was realized due to the high-flux and excellent electrocatalytic activity of the resulting membrane electrode, which further reduces the investment and operating costs in the application process. To achieve zero discharge of pollutant, the continuous-running GD-ECMR system can be integrated into biological treatment processes to be functioned as a pre- or post-treatment unit. Overall, the engineering of the constructed interfaces offers a promising direction for developing low-cost and high-activity 3D membrane electrode and thereby provides a promising strategy for efficient wastewater treatment.

ASSOCIATED CONTENT

Supporting Information

Additional information includes: Details of electrocatalytic membrane filtration cell,

thermogravimetric analysis, XPS spectra and evolution of pristine CNF and RuO₂/TiO₂

NRs/CNF, CV curves of pristine CNF, TiO2 NRs/CNF and RuO2/TiO2 NRs/CNF membrane

electrodes at different scan rates, photograph and UV spectra of the methyl blue solution before

and after degradation, pore size distribution and N2 sorption isotherms of the pristine CNF

membrane and the RuO₂/TiO₂ NRs/CNF membrane, EDX spectra of RuO₂/TiO₂ nanorod and

RuO₂/TiO₂ NRs/CNF, effects of the RuO₂/TiO₂ mass ratio and current density on the

electrocatalytic performance, COD removal rate, long-term performance and stability of the

RuO₂/TiO₂ NRs/CNF, and performance comparison of the RuO₂/TiO₂ NRs/CNF membrane

with those reported in the literature.

AUTHOR INFORMATION

Corresponding Author

*E-mail: tangc@hku.hk (C.Y.T)

ORCID

Xianhui Li: 0000-0001-6500-908X

Yang Yang: 0000-0003-4518-6411

Hao Guo: 0000-0002-0688-5431

Peng Wang: 0000-0003-0856-0865

22

Chuyang Y. Tang: 0000-0002-7932-6462

Author Contributions

*X.L. and S.S. contributed equally to this work and considered to be first co-authors.

Notes

The authors declare no competing financial interest.

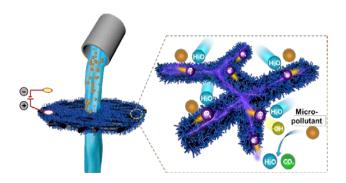
■ ACKNOWLEDGMENTS

The study is supported by the Research Grants Council of the Hong Kong Special Administration Region (C7051-17G). We also appreciate the partial support received from the State Key Laboratory of Separation Membranes and Membrane Processes (Tianjin Polytechnic University) (No. M3-201701).

■ REFERENCES

- (1) Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. *Science* **2006**, *313*, 1072-1077.
- (2) Luo, Y. L.; Guo, W. S.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. *Sci. Total Environ.* **2014**, *473-474*, 619-641.
- (3) Gao, G.; Vecitis, C. D. Doped Carbon Nanotube Networks for Electrochemical Filtration of Aqueous Phenol: Electrolyte Precipitation and Phenol Polymerization. *ACS Appl. Mater. Interfaces* **2012**, *4* (3), 1478-1489.
- (4) Hui, H.; Wang, H.; Mo, Y.; Li, Le.; Yin, Z.; He, B.; Li, J.; Wang, T. A Three-Stage Fixed-

- Bed Electrochemical Reactor for Biologically Treated Landfill Leachate Treatment. *Chem. Eng. J.* **2019**, *376*, 121026.
- (5) Wang, H.; Wei, X.; Zhang, Y.; Ma, R.; Yin, Z.; Li, J. Electrochemical Analysis and Convection-Enhanced Mass Transfer Synergistic Effect of MnOx/Ti Membrane Electrode for Alcohol Oxidation. *Chin. J. Chem. Eng.* **2019**, *27*, 150-156.
- (6) Le, T. X. H.; Haflich, H.; Shah, A. D.; Chaplin, B. P. Energy-Efficient Electrochemical Oxidation of Perfluoroalkyl Substances Using a Ti₄O₇ Reactive Electrochemical Membrane Anode. *Environ. Sci. Technol. Lett.* **2019**, *6* (8), 504-510.
- (7) Radjenovic, J.; Sedlak, D. L. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. *Environ. Sci. Technol.* **2015**, *49* (19), 11292-11302.
- (8) Yin, Z.; Zheng, Y. M.; Wang, H.; Li, J. X.; Zhu, Q. J.; Wang, Y.; Ma, N.; Hu, G.; He, B. Q.; Knop-Gericke, A.; Schlogl, R.; Ma, D. Engineering Interface with One-Dimensional Co₃O₄ Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. *ACS Nano* **2017**, *11* (12), 12365-12377.
- (9) Zhang, B.; Lui, Y. H.; Gaur, A. P. S.; Chen, B.; Tang, X.; Qi, Z.; Hu, S. Hierarchical FeNiP@Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition. *ACS Appl. Mater. Interfaces* **2018**, *10* (10), 8739-8748.
- (10)Zhang, Y. J.; Qi, Y. B.; Yin, Z.; Wang, H.; He, B. Q.; Liang, X. P.; Li, J. X.; Li, Z. H. Nano-V₂O₅/Ti Porous Membrane Electrode with Enhanced Electrochemical Activity for the High Efficiency Oxidation of Cyclohexane. *Green Chem.* **2018**, *20*, 3944-3953.


- (11) Hu, A.; Pang, Q.; Tang, C.; Bao, J.; Liu, H.; Ba, K.; Xie, S.; Chen, J.; Chen, J.; Yue, Y.; Tang, Y.; Li, Q.; Sun, Z. Epitaxial Growth and Integration of Insulating Metal-Organic Frameworks in Electrochemistry. *J. Am. Chem. Soc.* **2019**, *141* (28), 11322-11327.
- (12) Wang, T.; Gao, L.; Hou, J.; Herou, S. J. A.; Griffiths, J. T.; Li, W.; Dong, J.; Gao, S.; Titirici, M. M.; Kumar, R. V.; Cheetham, A. K.; Bao, X.; Fu, Q.; Smoukov, S. K. Rational Approach to Guest Confinement inside MOF Cavities for Low-Temperature Catalysis. *Nat. Commun.* **2019**, *10*, 1340.
- (13) Wang, W. Y.; Xie, C. C.; Zhu, L. Y.; Shan, B. J.; Liu, C. N.; Cui, F. Y. A Novel 3-Dimensional Graphene-Based Membrane with Superior Water Flux and Electrocatalytic Properties for Organic Pollutant Degradation. *J. Mater. Chem. A* **2019**, *7*, 172-187.
- (14) Duan, X.; Ao, Z.; Sun, H.; Indrawirawan, S.; Wang, Y.; Kang, J.; Liang, F.; Zhu, Z. H.; Wang, S. Nitrogen-Doped Graphene for Generation and Evolution of Reactive Radicals by Metal-Free Catalysis. *ACS Appl. Mater. Interfaces* **2015**, *7* (7), 4169-4178.
- (15) You, S.; Liu, B.; Gao, Y.; Wang, Y.; Tang, C. Y.; Huang, Y.; Ren, N. Monolithic Porous Magnéli-Phase Ti₄O₇ for Electro-Oxidation Treatment of Industrial Wastewater. *Electrochim. Acta* **2016**, *214*, 326-335.
- (16) Yang, Y.; Li, J. X.; Wang, H.; Song, X. K.; Wang, T. H.; He, B. Q.; Liang, X. P.; Ngo, H.
 H. An Electrocatalytic Membrane Reactor with Self-Cleaning Function for Industrial Wastewater Treatment. *Angew. Chem. Int. Ed.* 2011, 50, 2148-2150.
- (17) Martínez-Huitle, C. A.; Rodrigo, M. A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. *Chem. Rev.* **2015**, *115* (24), 13362-13407.

- (18) Nguyen-Phan, T. D.; Luo, S.; Vovchok, D.; Llorca, J.; Graciani, J.; Sanz, J. F.; Sallis, S.; Xu, W. Q.; Bai, J. M.; Piper, L. F. J.; Polyansky, D. E.; Fujita, E.; Senanayake, S. D.; Stacchiola, D. J.; Rodriguez, J. A. Visible Light-Driven H₂ Production over Highly Dispersed Ruthenia on Rutile TiO₂ Nanorods. *ACS Catal.* **2016**, *6* (1), 407-417.
- (19) Lo, C. P.; Wang, G. X.; Kumar, A.; Ramani, V. TiO₂-RuO₂ Electrocatalyst Supports Exhibit Exceptional Electrochemical Stability. *Appl. Catal. B: Environ.* **2013**, *140-141*, 133-140.
- (20) Zheng, J. J.; Yan, K. L.; Wu, Z. C.; Liu, M. X.; Wang, Z. W. Effective Removal of Sulfanilic Acid from Water using a Low-Pressure Electrochemical RuO₂-TiO₂@Ti/PVDF Composite Membrane. *Front Chem.* **2018**, *16*, 395.
- (21) Zhuo, S.; Shi, Y.; Liu, L.; Li, R.; Shi, L.; Anjum, D. H.; Han, Y.; Wang, P. Dual-Template Engineering of Triple-Layered Nanoarray Electrode of Metal Chalcogenides Sandwiched with Hydrogen-Substituted Graphdiyne. *Nat. Commun.* **2018**, *9*, 3132.
- (22) Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. *Chem. Rev.* **2019**, *119* (8), 5298-5415.
- (23) Miao, Y. E.; Huang, Y.; Zhang, L.; Fan, W.; Lai, F.; Liu, T. Electrospun Porous Carbon Nanofiber@MoS₂ Core/Sheath Fiber Membranes as Highly Flexible and Binder-Free Anodes for Lithium-Ion Batteries. *Nanoscale* **2015**, *7* (25), 11093.
- (24) Zhang, D.; Wang, J.; He, C.; Wang, Y.; Guan, T.; Zhao, J.; Qiao, J.; Li, K. Rational Surface Tailoring Oxygen Functional Groups on Carbon Spheres for Capacitive Mechanistic Study. *ACS Appl. Mater. Interfaces* **2019**, *11* (14), 13214-13224.
- (25) Aikens, D. A. Electrochemical Methods, Fundamentals and Applications. J. Chem. Educ.

- 1983, 60, A25.
- (26) Nguyen-Phan, T. D.; Luo, S.; Vovchok, D.; Llorca, J.; Sallis, S.; Kattel, S.; Xu, W. Q.; Piper, L. F. J.; Polyansky, D. E.; Senanayake, S. D.; Stacchiola, D. J.; Rodriguez, J. A. Three-Dimensional Ruthenium-Doped TiO₂ Sea Urchins for Enhanced Visible-Light-Responsive H₂ Production. *Phys. Chem. Chem. Phys.* **2016**, *18* (23), 15972-15979.
- (27) Xue, X.; Ji, W.; Mao, Z.; Mao, H.; Wang, Y.; Wang, X.; Ruan, W.; Zhao, B.; Lombardi, J. R. Raman Investigation of Nanosized TiO₂: Effect of Crystallite Size and Quantum Confinement. *J. Phys. Chem. C* **2012**, *116* (15), 8792-8797.
- (28) Yen, S. C.; Liu, Z. W.; Juang, R. S.; Sahoo, S.; Huang, C. H.; Chen, P.; Hsiao, Y. S.; Fang, J. T. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Rremoval of Protein Bound Uremic Toxins. *ACS Appl. Mater. Interfaces* **2019**, *11* (47), 43843-43856.
- (29) Jia, C.; Ma, W.; Gu, C.; Chen, H.; Yu, H.; Li, X.; Zhang, F.; Gu, L.; Xia, A.; Hou, X.; Meng, S.; Guo, X. High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode. *Nano Lett.* **2016**, *16* (6), 3600-3606.
- (30) Yang, Y.; Wang, H.; Li, J. X.; He, B. Q.; Wang, T. H.; Liao, S. J. Novel Functionalized Nano-TiO₂ Loading Electrocatalytic Membrane for Oily Wastewater Treatment. *Environ. Sci. Technol.* **2012**, *46* (12), 6815-6821.
- (31) Tian, J.; Zhao, Z. H.; Kumar, A.; Boughton, R. I.; Liu, H. Recent Progress in Design, Synthesis, and Applications of One-Dimensional TiO₂ Nanostructured Surface Heterostructures: A Review. *Chem. Soc. Rev.* **2014**, *43* (20), 6920-6937.
- (32) Yue, H.; Xue, L.; Chen, F. Efficiently Electrochemical Removal of Nitrite Contamination

- with Stable RuO₂-TiO₂/Ti Electrodes. Appl. Catal. B: Environ. 2017, 206, 683-691.
- (33) Carenco, S.; Sassoye, C.; Faustini, M.; Eloy, P.; Debecker, D. P.; Bluhm, H.; Salmeron, M. The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation. *J. Phys. Chem. C* **2016**, *120* (28), 15354-15361.
- (34) Kim, S. J.; Cho, Y. K.; Seok, J.; Lee, N. S.; Son, B.; Lee, J. W.; Baik, J. M.; Lee, C.; Lee, Y.; Kim, M. H. Highly Branched RuO₂ Nanoneedles on Electrospun TiO₂ Nanofibers as an Efficient Electrocatalytic Platform. *ACS Appl. Mater. Interfaces* **2015**, *7* (28), 15321-15330.
- (35) Yoon, K. R.; Lee, G. Y.; Jung, J. W.; Kim, N. H.; Kim, S. O.; Kim, I. D. One-Dimensional RuO₂/Mn₂O₃ Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries. *Nano Lett.* **2016**, *16* (3), 2076-2083.
- (36) Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Müller, M. M.; Kleebe, H. J.; Rachut, K.; Ziegler, J.; Klein, A.; Jaegermann, W. Preparation of RuO₂/TiO₂ Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. *J. Phys. Chem. C* **2013**, *117* (42), 22098-22110.
- (37) Uddin, M. T.; Babot, O.; Thomas, L.; Olivier, C.; Redaelli, M.; D'Arienzo, M.; Morazzoni, F.; Jaegermann, W.; Rockstroh, N.; Junge, H.; Toupance, T. New Insights into the Photocatalytic Properties of RuO₂/TiO₂ Mesoporous Heterostructures for Hydrogen Production and Organic Pollutant Photo Decomposition. *J. Phys. Chem. C* **2015**, *119* (13), 7006-7015.
- (38) Dahl, M.; Liu, Y.; Yin, Y. Composite Titanium Dioxide Nanomaterials. *Chem. Rev.* **2014**, *114* (19), 9853-9889.

TOC Art

