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Abstract

This paper analyzes the effects of storm frequency and intensity on housing

values in Miami-Dade County over the last three decades. We found that

higher storm exposure accelerates the housing price discount caused by aug-

mented flood risk. The adverse effects of frequency and intensity have different

impacts on perception of flood probabilities. Storm frequency affects housing

prices in lower flood risk areas, whereas intensity influences the market in the

higher risk zone, due to the different risk perceptions between the two factors.

The results shed light on how increases in storm frequency and intensity

impact the dynamics of flood risk perception in different floodplains on the

coastal housing markets, suggesting future directions of flood prevention poli-

cies. Our findings highlight that one additional hurricane event is associated

with a housing price discount of 1.3%. This adverse impact of frequency

increases to 2.0% in the 500-year floodplain zones, while higher storm intensity

reduces housing values in the 100-year floodplain zones by 1.5%.
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1 | INTRODUCTION

According to the National Oceanic and Atmospheric
Administration (NOAA)'s National Center for Environ-
mental Information, tropical cyclones and severe storms
caused 1.09 trillion dollars in damages with over 5,000
fatalities across the United States since 1980 (NOAA,
2018). Storms have become more frequent and destructive
due to climate change (Murphy & Strobl, 2009). Rapid
population growth in coastal cities has made these prime
real estate markets more vulnerable to the increasing
number of extreme weather events caused by climate
change (Below, Beracha, & Skiba, 2017).

Meanwhile, coastal amenities such as view, proximity
to beach, and recreational values, have been attractive

assets to real estate investors and developers. However,
the geographical precondition of being in vicinity to
coastlines can pose substantial risks and financial bur-
dens to the oceanfront communities due to their high
susceptibility to storm damages.

Many studies have explored the relations between
coastal amenities and risks on housing values (Atreya &
Czajkowski, 2019; Bin, Kruse, & Landry, 2008; Kellenberg &
Mobarak, 2011). Moreover, several studies have attempted
to model the intensity and frequency pattern of future
extreme weather events associated with climate change
and sea level rise (Knutson et al., 2010; Knutson, Tuleya, &
Kurihara, 1998).

However, the direct impact of storm frequency and
intensity on market dynamics, using household-level
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data, has not been explored due to storm unpredictability
and limited availability of long-term historical sales data.
Although storm frequency and intensity can largely
impact housing market dynamics by the magnitude of
damage immediately after the climate disasters,
homeowners' perceived location-based risks can be
another factor that influences price dynamics. In order to
estimate the frequency and intensity impacts correctly,
homeowners' risk perception of the storm characteristics
and spatially different preexisting risk exposures such as
floodplains should also be taken into consideration.

In this era of climate change, current floodplain poli-
cies such as the Flood Insurance Rate Map (FIRM) and
local preparedness strategies need to be modified by con-
sidering this climatic transformation including these
storm-caused intensity and frequency impacts, since
many extreme cases have been realized. Evidently, Hous-
ton experienced three “500-year floods” in a 3 year period
(Ingraham, 2017). To address the urgent challenges, this
study analyzes big data to decipher the relationship
between intensified storm frequency and current flood-
plain policies in a spatiotemporal and market perspective.
Thereby, the study contributes to the existing housing lit-
erature by providing more accurate and objective mea-
sures of pricing effects on real estate and guides not only
coastal home-seekers, but also flood policy-makers for
future community resilience.

2 | LITERATURE REVIEW

There are a number of hedonic pricing studies showing
that natural amenities such as ocean view, beach quality,
and oceanfront proximity, among other coastal landscape
features, impact the real estate market against
adverse impacts of flood risks. Bin (2008) indicate that
one degree increase of ocean view increases the mean
willingness-to-pay by $995, while flood risk (being located
in a Special Flood Hazard Area) reduces housing prices by
approximately 11%. Gopalakrishnan, Smith, Slott, and
Murray (2011) suggest that wider beach and more frequent
nourishments1 against beach erosion positively influence
property values. Hamilton and Morgan (2010) indicate that
homeowners who live closer to water are willing to pay a
premium due to the proximity to beach and views. Simi-
larly, Bin, Poulter, Dumas, and Whitehead (2011) also
found ocean frontage and estuarine water frontage com-
mands a considerable price premium of 31–77%.

Several studies have examined the price discount
effects of natural hazards, particularly flooding and
storms in coastal properties. The majority of literature on
flood risk suggests that there is a significant housing price
discount in flood-prone areas compared with homes

located outside floodplains after a major flood event
(Atreya, Ferreira, & Kriesel, 2013; Bin & Landry, 2013;
Kousky, 2010). Bin, Kruse, and Landry (2008) found that
flooding-induced price discounting is more pronounced
in a 100-year floodplain than in a 500-year floodplain.
Daniel, Florax, and Rietveld (2009) observed that a 1%
increase in flood risk probability is associated with a 0.6%
decrease in sales price from the meta-analysis of 19 case
studies across the United States, and these discount
effects can remain for up to 9 years after the flood event
(Atreya et al., 2013).

With respect to the market responses to storms and
hurricanes, Ewing, Kruse, and Wang (2007) suggest that
windstorms reduce housing value by 1.5–2% immediately
after hurricanes or tornados. Beracha and Prati's (2008)
short-term market impact study also suggests that home
prices and transaction volumes drop temporarily during
the first two quarters after major hurricanes, followed by
a positive correction in the second two quarters. Murphy
and Strobl (2009) argue that hurricane strikes increase
house prices for several years and reach a maximum of
3–4% after 3 years of occurrence. This reverse result is
caused by a temporary risk reduction resulting from
enhanced risk preparedness for future storms, shortage of
housing supply due to hurricane damages, or both
(Below et al., 2017; Murphy & Strobl, 2009).

Other studies have also explored indirect factors
related to housing price discounts experienced after a
major hurricane. Hallstrom and Smith (2005) argue that
risk information about new hurricanes decreases property
values in Lee County, Florida by at least 19%. Epley (2017)
suggests that higher insurance premiums, due to higher
risk exposure, yield a lower sales price on residential prop-
erties. McKenzie and Levendis (2010) found that elevation
has a positive relationship with selling prices, particularly
in low-lying areas, and this elevation premium is pro-
nounced after a high-powered storm. Fortifying building
structures by implementing stricter building codes and
reinforcing homes against major hurricanes yields a price
premium (Dumm, Sirmans, & Smersh, 2012).

Regarding the effects of storm frequency on housing
price, a similar logic was found in a study analysing four
hurricanes between 1996 and 1999 (Graham, Hall, &
Schuhmann, 2007). This study found an adverse pricing
effect only in the last two hurricanes, while the price dis-
count was tenuous in the earlier storms. The authors
speculate that they found different results because
homebuyers considered the first two storms to be random
events. However, the relatively small storm samples
within a short time period provide insufficient evidence
of risk capitalization in the housing market. Although
they suggest that increased susceptibility to hurricanes by
recurrent storm experiences contributes to a housing
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price discount, it is highly plausible that risk dynamics
cannot be sufficiently explained by a singular causation.
In this case, the four hurricanes do not generalize the
continuity of frequency that relies upon individual inten-
sity, occurrence interval, and other storm characteristics.

With respect to risk perception of hurricane, Zhang,
Hwang, and Lindell (2010) indicate that perceived threats
of floods and hurricanes affect property values. Otto,
Mehta, and Liu (2018) suggests that a recent past storm
experience influences the preparedness for future storms by
overestimating risk information that is more easily recalled,
called “availability heuristics.” Similarly, Meyer, Baker,
Broad, Czajkowski, and Orlove (2014) argue that changes
in risk perception between the before and after storm
occurrence perceptions are biased by “hindsight” resulting
in a failure to properly prepare for the actual threats
imposed by hurricanes. Rapley and De Meyer (2014) indi-
cate that risk perception can be also influenced by over-
estimating one's preexisting hypothesis, called myside bias
(or confirmation bias). However, risk perception caused by
climatic events can be different based on prefabricated risks
of risk probabilities and risk mitigation policies
(e.g., floodplains and flood insurance). Furthermore, the
weather-related individual risk perception tends to be
locally clustered (Lo & Jim, 2015), because these can conta-
giously influence each other as social network theory of
risk perception explains (Scherer & Cho, 2003). Similarly,
inhabitants in flood-prone areas have very different risk
perception from those who live in flood-risk free regions
(Ludy & Kondolf, 2012). Thus, we assume that the effect of
individual differences in risk perception on housing prices
will be very small compared to the risk perception from
extreme weather events. However, risk capitalization could
be influenced by storm frequency and intensity that indi-
vidual homeowners experienced because the market partic-
ipants are already anticipating the risk in the area where
consecutive hurricanes have recurred over a brief time-
period (Graham Jr & Hall Jr, 2001).

Taken together, the existing literature typically
focuses on a relatively small storm sample and covers a
limited area. Since hurricanes and their affected sites are
heterogeneous in nature, it is necessary to adopt a “big
data” approach, covering historical sales data over longer
time periods and including variables that can provide
clues for interpreting the inherent risk perception, in
order to better understand and more accurately general-
ize the impacts of storms on coastal housing prices.

3 | DATA

Data from several sources are utilized for this analysis.
The principal data are historical sales transactions for

single family housing in Miami-Dade County from 1987
to 2017. The property data is obtained from the Miami-
Dade County's Open Data Hub and Florida Department
of Revenue. The housing data include the number of bed-
rooms and bathrooms, number of stories, building square
footage, lot area, built year, site coordinates, site and
mailing addresses, three recent historical transaction
dates and sales prices. A total of 322,385 single family
houses was selected for the hedonic pricing model. Out-
liers were excluded, such as homes with more than
10 bedrooms, lot sizes greater than 5 acres, no bedroom
unit, zero transaction price, and price less than $10,000
or more than $10 million. To avoid the omitted variable
bias, we also have included the spatial (census tract level)
and time (year) fixed effects in this model. A total of
409 census tracts and 31-year dummies are included in
this study. Due to the recreational nature of the coastal
communities, many vacation homes are assumed to be
included in the sample. It is highly possible that owner-
occupants may have different risk attitudes from vacation
homeowners. To investigate whether a difference exists,
we include the owner-occupancy dummy extracted from
the site and mailing addresses.

Historical hurricane tracks and detailed information
about each storm are collected from NOAA (Figure 1).
This study considered a total of 16 major storms having a
peak wind speed greater than 20 miles per hour
(Table 1). We use average maximum sustained wind
speed from the World Meteorological Organization for each
observation to identify the impacts of storm intensity,
rather than using the Saffir-Simson Hurricane Scale which
is essentially the reclassification of the wind speeds.

To increase the accuracy of identifying storm-impacted
areas, for instance, when the left side of a hurricane track
is smaller than its right side, we draw asymmetrical impact
buffers from each hurricane track using the average maxi-
mum wind speed of each storm and the structural charac-
teristics of the hurricane (Figure 2). Empirical results from
recent major hurricane data analyses suggest that wide-
spread damage is typically observed in areas within
approximately three-fourths of the distance between the
eye and outer edges of hurricane. In addition, the right
side of the storm covers about 20% more area than the
average impacted areas when adding the steering wind
(a synoptic scale flow that dictates the movement of hurri-
canes) power, since hurricanes move counterclockwise in
the northern hemisphere (Coch, 1995).

Other key environmental and site characteristics are
captured from various geospatial data provided by the
Florida Department of Environmental Protection and the
Florida Geographic Data Library. To identify floor eleva-
tion of each house, we extracted elevation values from a
5 ft grid Digital Elevation Model (DEM) and overlaid
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them onto each property. Using FIRM, we classified each
home by three different flood hazard zones (100-year,
500-year, and non-floodplains). To control amenity and
nuisance effects on housing value, we include nine types
of amenity and locational variables, including road prox-
imities, distances from green spaces, points of interests
(i.e., cultural and commercial facilities), emergency shel-
ters, beaches, and ocean, as well as homes located within
floodplains, oceanfront, and soundfront (inland-side
intra-coastal waterfront).

Since our model tracks property transactions over a
long period of time, several housing cycles have also

occurred. To capture the cycle impacts, we include a
house price index in the Miami region and a recession
dummy from multiple US Censuses. All these market
data are geocoded via site coordinates using ArcGIS. A
list of variables and summary statistics is shown in
Table 2.

4 | METHODOLOGY

This study uses a panel data hedonic pricing model and
geospatial analysis to assess the impact of hurricane

FIGURE 1 Site map. Illustration by author; mapping source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,

USDA, USGS, AeroGRID, IGN, and the GIS User Community; NOAA (2019)

TABLE 1 Major storms and hurricanes affecting Miami-Dade County (1987 Q1–2018 Q2)

Hurricane Date Wind (knots) Rainfall (inch) Category Landfall Declaration

Floyd October 12, 1987 65 2.76 Hurricane 1 Yes No

Ana June 30, 1991 20 7.86 Misc. disturbances No No

Fabian October 16, 1991 40 3.68 Tropical storm No No

Andrew August 24, 1992 145 7.41 Hurricane 5 Yes Disaster

Harvey September 21, 1999 45 1.52 Tropical storm No No

Irene October 15, 1999 70 10.99 Hurricane 1 Yes Disaster, emergency

Charley August 13, 2004 130 0.47 Hurricane 4 Yes Disaster

Frances September 4, 2004 95 3.49 Hurricane 2 Yes Disaster

Ivan September 21, 2004 25 1.11 Post-tropical No No

Jeanne September 26, 2004 105 0.74 Hurricane 3 Yes Disaster

Katrina August 25, 2005 70 3.48 Hurricane 1 Yes Disaster, emergency

Wilma October 24, 2005 105 1.23 Hurricane 3 Yes Disaster

Ernesto August 30, 2006 40 1.53 Tropical storm Yes No

Bonnie July 23, 2010 35 3.25 Tropical storm Yes No

Matthew October 6, 2016 120 1.19 Hurricane 4 Yes Emergency

Irma September 10, 2017 115 6.33 Hurricane 4 Yes Emergency
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frequency and intensity on single family housing transac-
tion prices. We explore the effect of hurricane risk and
dynamics of the risk perception caused by a total of
16 major storms over the three decades in Miami-Dade
County. To estimate the pricing effect of hurricane fre-
quency and intensity on different risk exposures, we per-
form three sets of panel data regressions.

The first model, as a benchmark, examines the overall
storm effects, including frequency and intensity, on hous-
ing prices. Below et al. (2017) used specific sales windows
(e.g., within 60 days and 61–90 days after hurricane
strikes) to estimate market dynamics. However, there
were multiple housing cycles during the 30 years, and
each storm has different impacts on prices depending on
when the storm occurs relative to the market cycle.2 In
fact, storm impacts on housing values can be prolonged
for several years (Murphy & Strobl, 2009). Thus, rather
than constructing similar sales periods following the
events, we calculated elapsed time of sales from each
storm strike. Since the average interval of storm occur-
rences in Miami-Dade County over the last three decades
is about 2 years, measuring elapsed time between storm
strikes and home sales dates can capture market effects
over time without causing selection bias.

In order to investigate whether major storms influ-
ence housing sales prices, we employ a multi-way fixed
effect hedonic pricing model using the cluster-robust stan-
dard error. The model includes the structural variables
and amenity characteristics, market factors, as well as
major storm characteristics of each event (Table 2). Since
subjective values, such as the value associated with the
number of casualties, cannot be measured (e.g., human
life value cannot be compared), the variables consist only

of objective factors which can be measured economically
from the National Hurricane Center's tropical cyclone
reports.

Furthermore, because of the large number of home
sales, some homeowners might have fewer storm experi-
ences. To address this, we added a repeated sales variable
to distinguish the factor from storm frequency effects.
Additionally, non-linear effects are anticipated with
respect to elevation, proximity variables, and wind speed.
Log or squared terms are applied to these variables. The
first-set of regression equations is as follows:

ln Pict = αct + β0Hi + γ0Ni + η0Mict + λ0Stormict + εict ð1Þ

where lnPict is the natural logarithm of the sales price
(both inflation based on the Consumer Price Index and
seasonally adjusted index) of single family property i in
census tract c in year t; αct are census tract−year effects,
which allow for housing price variation over time at the
census tract level; and, Hi and Ni are vectors of housing
structure and amenity characteristics with coefficient β
and γ, respectively. Our set of controls Hi consists of
number of bedrooms, bathrooms, and stories, building
square footage, lot size, housing age, presence of a
swimming pool, owner occupancy status, and building
floor elevation. Other popular variables in the previous
research (e.g., centralized air condition, fireplace,
garage, etc.) are not available. However, these
unobserved variables are either influencing only small
samples (e.g., only 1.3% of homes do not have an air-
conditioning equipment in the Miami region) or are
controlled by the two-way fixed effects. Ni, the amenity
variables include five proximity (green spaces, points of

FIGURE 2 Hurricane influence (left) and frequency impact (right) areas illustrative map. Illustration by authors, source from

NOAA (2018). Illustration by author; mapping source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,

AeroGRID, IGN, and the GIS User Community; NOAA (2019)
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interests, evacuation shelters, beaches, and ocean) and
four dummy (road proximities, floodplains, oceanfront,
and soundfront properties) variables. Mict is a vector of
market factors with coefficient η. The market factor var-
iables include a house price index in the Miami region,
recession dummy, number of repeated sales, and

elapsed period of time between storm strikes and home
sales.

Stormict represents measures of the storm characteris-
tics with coefficient λ. This attribute group includes rain-
fall amount, wind speed, and storm frequency of property
i in census tract c in year t. εict is the error terms of each

TABLE 2 Variables and summary statistics (single-family housing 1987 Q1–2018 Q2)

Variable Description Mean SD

PRICE The actual single-family property sale price (thousand dollars) 308.257 523.808

Structural variables

BEDROOM Number of bedrooms 3.263 0.851

BATHROOM Number of bathrooms 2.123 0.946

STORY Number of stories 1.111 0.320

BLDGSF Square footage of house (thousands) 2.278 1.171

LOTSIZE Square footage of property (thousands) 10.541 12.531

AGE Age of housing structure 47.342 20.777

POOL Dummy variable, 1 if a property has a swimming pool; 0 otherwise 0.299 0.458

OWNEROCCUPY Dummy variable, 1 if a property is owner-occupied; 0 otherwise 0.858 0.349

ELEVATION Ground elevation above sea level (feet) 8.220 2.299

Amenity variables

ROAD Dummy variable, 1 if a home is located within 300 ft of highways, 150 ft of major
roads, and 100 ft of minor roads; 0 otherwise

0.096 0.295

GREENPROX Distance to green space (thousand feet) 1.654 1.188

POIPROX Distance to points of interests (thousand feet) 8.805 5.673

SHELTERPROX Distance to evacuation shelters (thousand feet) 20.111 13.683

BEACHPROX Distance to beach (thousand feet) 28.795 15.017

OCEANPROX Distance to ocean (thousand feet) 27.143 17.822

OCEANFRONT Dummy variable, 1 if a property is an oceanfront home; 0 otherwise 0.006 0.077

SOUNDFRONT Dummy variable, 1 if a property is a soundfront home; 0 otherwise 0.008 0.091

FLOODPL Dummy variable, 1 if a home is within a 100-year or 500-year floodplains; 0
otherwise

0.424 0.494

FLP100 Dummy variable, 1 if a home is within a 100-year floodplains; 0 otherwise 0.359 0.480

FLP500 Dummy variable, 1 if a home is within a 500-year floodplains; 0 otherwise 0.064 0.244

Market variables

RECESSION Dummy variable, 1 if a home sold during the recessions; 0 otherwise 0.079 0.269

HP_INDEX House price index for Miami-Miami Beach-Kendall, Florida, quarterly 74.420 343.0

REPEAT Number of home sales 2.196 0.727

SALEOVER2YR Dummy variable, 1 if a home sold after 2 years (average storm recurrence interval
in the region) post-hurricanes; 0 otherwise

0.451 0.498

Storm variables

ELAPSE Elapsed period of time from storm to housing transactions 0.926 0.689

LOCALBUYER Dummy variable, 1 if a home is purchased by a local buyer; 0 otherwise 0.840 0.367

RAINFALL Total amount of rainfall (inch) 5.340 3.522

WIND Maximum sustained wind speed (knots) 79.898 43.081

FREQ Number of hurricanes between buying and selling home 2.553 1.767
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observation in a respective time and zone. The storm fre-
quency is calculated by counting only the number of
storms that occurred within the period between buying
and selling. We focus on this number because the previ-
ous owner's storm experience or future storms that occur
after the date of sale do not affect the seller's perceptions
of risk. Arguably, buyer's previous storm experiences may
also affect housing prices, if a buyer is from the local
area. Thus, a local buyer dummy variable is added in this
model to capture a buyer's perception.

The second regression model is an extension of the
first model to explore pricing effects on different flood-
plains, risk perceptions, and interaction between storm
frequency and flood exposures. The third regression
model is to identify the storm intensity (wind speed)
effects on housing prices within the 100-year floodplain
and 500-year floodplain zones. Since a nonlinearity effect
in the storm intensity is expected, a squared term for
intensity is used to estimate the interaction effects. All
model specifications include year and census tract
dummies to control for spatial- and time-specific fixed
effects on the housing prices. The standard errors are
clustered at the census tract level. To test the potential
spatial dependence bias in the hedonic models, we con-
duct robustness checks with spatial lag (Models 4 and

5, Table 3) and spatial error models (Models 6 and 7,
Table 3) using spatial weights matrix.

5 | RESULTS AND DISCUSSION

The semi-log model is specified in the hedonic regression
using Stata. The regression results indicate that the relation-
ship between the dependent variable (the natural log of
inflation adjusted home sales prices) and independent vari-
ables are robust (R2 = 0.626). The vast majority of the
p values are also less than 5%, and the joint hypothesis F-
statistics on each attribute group reject the null hypothesis at
the 1% level. Thus, the hedonic regressions are statistically
significant. The variance inflation factors (VIFs) for all esti-
mated variables were tested. The mean VIF of 1.57 (ranged
from 1.01 to 3.98), indicates that there was no multi-collin-
earity. From the spatial lag and spatial error models, all vari-
ables of interest have the same trends. The coefficients
across the spatial regression models are broadly the same
even though FLP500 and SALEOVER2YR exhibit a slight
difference between the hedonic and spatial regressions.
Thus, our results from the two-way fixed-effect hedonic
models do not suffer from spatial interdependence errors
(Table 3). The regression results are presented in Table 4.

TABLE 3 Robustness check result summary: spatial lag and spatial error models

Spatial lag models Spatial error models

Model 4 Model 5 Model 6 Model 7

FREQ −0.004** (0.003) −0.005** (0.002) −0.003** (0.003) −0.001* (0.002)

FLP100 0.014 (0.013) 0.152*** (0.025) 0.051 (0.016) 0.172*** (0.026)

FLP500 −0.132*** (0.022) 0.073 (0.047) −0.102*** (0.027) 0.059 (0.048)

SALEOVER2YR −0.073* (0.006) −0.073* (0.006) −0.077* (0.006) −0.077* (0.006)

FREQ × FLP100 −0.007 (0.004) −0.004 (0.004)

FREQ × FLP500 0.036*** (0.007) 0.032*** (0.008)

sqrtWIND × FLP100 −0.018*** (0.003) −0.015*** (0.003)

sqrtWIND × FLP500 −0.014 (0.005) −0.010 (0.005)

Other variables YES YES YES YES

Constant 5.319*** (0.006) 5.267*** (0.006) 12.472*** (0.193) 12.425*** (0.193)

Lambda 0.591*** (0.006) 0.590*** (0.006)

Lag coeff. (rho) 0.509 0.580 0.591 0.590

Sigma-square 0.306 0.305 0.307 0.307

R2 0.580 0.580 0.578 0.578

Note: Dependent variable: logPRICE (Inflation-adjusted price in 2018 dollars with seasonal index adjusted). N = 32,241 (the samples are ran-
domly selected from the entire observations used in Models 1–4). The main entries in Models 4–7 report the coeffiencents estimated from the
spatial lag and spatial error models by Spatial Weights Matrix using GeoDA with SE reported in brackets. Each model reports the result from
one regression with controls for structural, amenity, market, and storm variables.
*p < .10.
**p < .05.
***p < .01.
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TABLE 4 Regression result summary: hedonic model

Model 1 Model 2 Model 3

Coefficient SE Coefficient SE Coefficient SE

CONSTANT 13.076*** (0.441) 13.074*** (0.441) 13.004*** (0.440)

BEDROOM 0.045*** (0.004) 0.045*** (0.004) 0.045*** (0.004)

BATHROOM 0.041*** (0.005) 0.041*** (0.005) 0.041*** (0.005)

STORY 0.059*** (0.013) 0.059*** (0.013) 0.059*** (0.013)

BLDGSF 0.001*** (0.000) 0.001*** (0.000) 0.001*** (0.000)

LOTSIZE 0.004*** (0.001) 0.004*** (0.001) 0.004*** (0.001)

AGE −0.003*** (0.000) −0.003*** (0.000) −0.003*** (0.000)

POOL 0.041*** (0.005) 0.040*** (0.005) 0.041*** (0.005)

OWNEROCCUPY 0.086*** (0.005) 0.085*** (0.005) 0.085*** (0.005)

logELEVATION 0.038** (0.019) 0.043** (0.019) 0.043** (0.019)

ROAD −0.032*** (0.006) −0.032*** (0.006) −0.032*** (0.006)

logGREENPROX 0.003 (0.555) 0.003 (0.554) 0.020 (0.552)

logPOIPROX −0.009 (0.017) −0.009 (0.017) −0.010 (0.017)

logSHELTERPROX 0.015 (0.014) 0.014 (0.014) 0.015 (0.014)

logBEACHPROX −0.091*** (0.035) −0.093*** (0.035) −0.092*** (0.035)

logOCEANPROX −0.119*** (0.017) −0.119*** (0.017) −0.119*** (0.017)

OCEANFRONT 0.123** (0.056) 0.122** (0.055) 0.123** (0.055)

SOUNDFRONT 0.316*** (0.039) 0.314*** (0.039) 0.316*** (0.039)

FLOODPL 0.017 (0.011) – –

RECESSION −0.075** (0.038) −0.078** (0.038) −0.078** (0.038)

HP_INDEX 0.005*** (0.000) 0.005*** (0.000) 0.005*** (0.000)

REPEAT 0.045*** (0.004) 0.045*** (0.004) 0.045*** (0.004)

ELAPSE −0.027*** (0.009) – –

LOCALBUYER −0.015 (0.022) – –

RAINFALL −0.002 (0.003) −0.002 (0.003) −0.003 (0.003)

sqrtWIND −0.014*** (0.005) −0.014*** (0.005) −0.008 (0.006)

FREQ −0.013** (0.006) −0.013* (0.007) −0.011** (0.005)

FLP100 0.028 (0.028) 0.159*** (0.048)

FLP500 −0.064*** (0.023) 0.025 (0.044)

SALEOVER2YR −0.032* (0.017) −0.031* (0.016)

FREQ × FLP100 −0.001 (0.009)

FREQ × FLP500 0.020*** (0.008)

sqrtWIND × FLP100 −0.015*** (0.005)

sqrtWIND × FLP500 −0.005 (0.005)

R2 0.626 0.626 0.626

Adjusted R2 0.625 0.625 0.626

Note: Dependent variable: logPRICE (inflation-adjusted price in 2018 dollars with seasonal index adjusted); N = 322,385. All models con-
trolled for year and census tract fixed effects. SE in parentheses.
*p < .10.
**p < .05.
***p < .01.
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As expected, the majority of structural and amenity
variables have a strong relation to home sales price. More
bedrooms and bathrooms, higher number of stories,
larger building square footage, newer homes, swimming
pools, owner-occupied homes, and having a higher floor
elevation are positively associated with the price increase.
Although lower elevation of property can provide easy
access to coastal amenities, the positive pricing effect in
higher elevations also can be explained by the fact that
risks to storm surge and flooding are higher at lower ele-
vations. Adjacency to principal roads has a negative influ-
ence on housing values, because of disamenity factors
such as noise, dust, and light exposure at night. By con-
trast, the amenity factors such as closer distance to
beaches and ocean are strongly associated with home
value increases. Both variables of logBEACHPROX
(β = −0.091; p < .01) and logOCEANPROX (β = −0.119;
p < .01) indicate that increasing distance from the shore-
line has a strong adverse pricing effect. Similarly, both
oceanfront and soundfront homes are positively related
to price appreciation. The positive coastal amenity
impacts were consistent with previous empirical findings
(Bin, Crawford, et al., 2008; Hamilton & Morgan, 2010).
While distances to major cultural and commercial facili-
ties (logPOIPROX) as well as emergency shelters could
have either negative or positive signs due to a “net nui-
sance” effect (Sah, Conroy, & Narwold, 2016), it was
interesting to note that distance to green spaces
(logGREENPROX) was statistically insignificant in all
models. The insignificance of logGREENPROX was likely
associated with a high outside temperature and location
of green spaces. In fact, approximately 50% of Miami-
Dade's parks are located within a 5-min walking distance
of coastlines. The value of ocean proximity would coun-
teract the positive green space effects, resulting in this
factor being statistically insignificant. It was surprising to
note that being located in a floodplain (FLOODPL) was
statistically insignificant with a positive sign (Model 1,
Table 4). The insignificance of FLOODPL was likely asso-
ciated with the non-linear gradient of flood risk probabil-
ity. Thus, new dummy variables, FLP100 (homes located
in the 100-year floodplain) and FLP500 (home located in
the 500-year floodplain), were specified and adopted in
Models 2 and 3.

Among the market variables, the negative effects of
recession (RECESSION, Table 4) explicitly implied that a
market crash could cause adverse pricing effects. Positive
pricing effects were observed in house price index and
repeatedly sold homes. One additional repeat sale
increases housing prices by 4.5%, holding all other vari-
ables constant (Models 1–3, Table 4). This result signifies
that fewer storm experiences by homeowners are associ-
ated with housing price increases likely due to perception

of lower risk. Although LOCALBUYER (Model 1, Table 4)
is not statistically significant, its negative sign supports
the interpretation that local buyers’ greater hurricane
experience makes them less likely to pay a higher price
for their homes.

With respect to storm characteristics, it was clear that
rainfall and wind intensities have an adverse impact on
housing prices, due to more property damage potential
and subsequent risk increase. In contrast to empirical
findings that storms adversely impact the housing market
in the short term (Beracha & Prati, 2008; Ewing
et al., 2007), the coefficient of ELAPSE was negative and
statistically significant (β = −0.027; p < .01). One reason
for this contrasting result could be an inward shift in the
supply for housing from storm damage. Although storms
can affect the demand for housing, housing demand
could be relatively inelastic since temporal displacement
would occur within the region. Another reason may be
that chronic storm risks are already capitalized into hous-
ing prices, especially in areas where consecutive hurri-
canes occurred over a short period (Graham Jr & Hall
Jr, 2001). The contrasting result also can be supported by
confirmation bias (overestimating one's preexisting
hypothesis). Although climatic events are unpredictable,
residents have a general sense about storm frequency and
intensity in the area, amplifying anxiety about the future
storm when the “peace time” is longer (Lazrus, Morrow,
Morss, & Lazo, 2012). To check the assumption of this
cognitive effect, ELAPSE was replaced by a dummy vari-
able (SALEOVER2YR) in Models 2 and 3. Since the aver-
age storm occurrence interval in the study area is
approximately 2 years, it is reasonable to assume that per-
ception can be altered by the preexisting hypothesis that
storms occur every 2 years. The significance of SAL-
EOVER2YR (β = −0.032, p < .1) suggests that risk percep-
tion with respect to storm frequency could affect prices.

The maximum number of storms a new homeowner
experiences before sale is 5, while the average is 2.6. The
coefficient of FREQ reveals that a higher frequency of
hurricanes has a negative effect on housing price at the
5% significance level (Model 1, Table 4). The result indi-
cates that the number of storm events during the time
period when households possessed their homes is associ-
ated with a housing price decrease of 1.3%. In Model
2, homes located in the 500-year floodplain zones are
associated with a price decrease of 6.4%, and the signifi-
cance of FREQ × FLP500 (β = 0.020, p < .01) indicated
that the frequency would accelerate the discount in the
500-year floodplains. Although the interaction between
storm frequency and the 100-year floodplain is marginal
and statistically insignificant, the negative sign of
FREQ × FLP100 (β = −0.001, p > .10) also supports the
adverse impacts of the storm frequency.
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In Model 3, the interaction between storm intensity
and floodplains was defined. The negative impacts of
storm intensity have been clearly revealed by reference to
the significance of the interaction between sqrtWIND
and FLP100 (β = −0.015, p < .01) and the negative sign
of sqrtWIND × FLP500 (β = −0.005, p > .10). However,
it was interesting to find that homes located in the
100-year floodplains have a premium rather than a dis-
count. One possible explanation is that other positive
amenity externalities of being located in closer proximity
to the ocean would counter-balance the effects of flood
risk capitalization. Another postulation is that the pricing
effect of flood risks in the 100-year floodplain might have
been altered by public flood adaptation measures
(e.g., seawalls, levees, and storm barriers) or flood insur-
ances. Due to the higher flood probability caused by the
low Base Flood Elevations (BFEs) in the 100-year flood-
plain, it is highly possible that the local government has
implemented stronger flood adaptation measures in those
areas. Consequently, the real flood risks, inherently asso-
ciated with the spatial characteristics, might have been
altered by the flood adaptation measures which influence
homeowner's risk perception (Kim, 2020). Furthermore,
property owners in the 100-year floodplain of the study
area are required to purchase flood insurance, and this
mandatory insurance policy can also affect homeowners'
risk perception.

The results suggest that the storm risk can be per-
ceived differently with respect to storm frequency and
intensity in zones having 100 year versus 500 year flood
risk exposure, since actual risks can be offset by public
and private flood reduction measures, as well as other
externalities. These policies and investments, which most
likely were designed to protect against the 100-year flood
probability, may effectively reduce risks from storm
recurrence. However, when the flood risks are larger
than the 100-year flood, such as when a 500-year flood
occurs in the 100-year floodplains, a residual flood risk
still exists (Carter, 2005), and thus the adverse impacts
from higher storm intensity could be increased in higher
flood risk areas. Conversely, levees and storm barriers in
the 500-year floodplains are designed to endure the
500-year flood, and thus the vulnerability to intense
storms up to the same level of intensity can be decreased.
However, it is not surprising that homeowners underesti-
mate flood risk in a lower flood risk area where flood
insurance is not mandatory (Ludy & Kondolf, 2012).
More flood experiences by higher storm frequency,
regardless of storm intensity, could negatively influence
their subjective risk perception, resulting in price depreci-
ation in the 500-year floodplains. Together, the results
suggest that storm intensity is an important factor to be
taken into account for improving flood prevention

policies in the 100-year floodplain zones
(sqrtWIND × FLP100, Model 3, Table 1), while storm fre-
quency is more relevant for improving housing market
resilience in the 500-year floodplains (FREQ × FLP500,
Model 2, Table 1). With respect to risk perception, the
confirmation bias may cause greater price depreciation in
both floodplains by amplifying anxiety about future
storms and flood risks where recent storm experiences
exceed residents' preexisting perceptions about storm fre-
quency and intensity.

6 | CONCLUSION

This paper contributes to the literature about the effects
of climate change on the coastal housing market and
flood policy. Using a big dataset of housing transactions
and major storms over three decades, we examine how
hurricanes, particularly the storm frequency and inten-
sity, influence housing prices in zones having different
flood risks.

Our results shed light on how storm frequency and
intensity effects can vary according to the degree of risk
exposure. From the analytical models, we confirm that
the effect of stronger hurricane frequency and intensity is
negatively capitalized into home sales price. Different
effects were observed when the storm characteristics
interact with the different floodplain zones in those hous-
ing transactions where homeowners lived in a home lon-
ger than the average storm recurrence. The research
highlights that one additional hurricane event is associ-
ated with housing price depreciation of 1.3% (equivalent
to US$4,006, holding all other factors constant) in Miami-
Dade County, and the adverse impact can be amplified in
the 500-year floodplain. However, the adverse storm
intensity effect is only significant in the higher flood risk
zone. These results suggest that lower flood risk does not
necessarily mean that housing prices are insulated from
storm exposure in this era of more rapid climate change.

Our findings also support recent evidence that raises
questions about the validity of existing flood policy. Some
locations experienced 500-year floods almost annually over
the last decade, leading to active discussion about modify-
ing flood insurance maps based on climate change and sea
level rise. Although it is of great interest to further develop
policy suggestions, the findings suggest that the flood map
modification should be weighted based upon, not just base
floor elevation, but also consideration of key environmental
externalities such as hurricane intensity and frequency fac-
tors. Our results also indicate that certain areas which cur-
rently are defined as having lower flood risk are no longer
safe, suggesting that these areas should be prioritized for
future flood mitigation and climate resiliency.
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Since climate risk cannot be eliminated in coastal
areas, where much development has already occurred, an
accurate understanding of the impact of storm character-
istics and interactive effects with risk exposures on hous-
ing markets and relevant mitigation policies will greatly
help to improve coastal market resiliency. Further studies
on the effect of climate adaptation measures and develop-
ing more comprehensive flood policy recommendations
to keep abreast with current and future climate change
may reinforce our study results.
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ENDNOTES
1 Beach nourishment is a policy to patch eroding beaches with
dredged sand from other locations (Gopalakrishnan et al., 2011).

2 For example, storms occurring during the housing down-cycle
would be expected to show greater price depreciation because of
the soft housing market.
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