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In quantum key distribution, measurement-device-independent and decoy-state techniques enable the two
cooperative agents to establish a shared secret key using imperfect measurement devices and weak Poissonian
sources, respectively. Investigations so far are not comprehensive as they restrict to less than or equal to four
decoy states. Moreover, many of them involve pure numerical studies. Here I report a general security proof
that works for any fixed number of decoy states and any fixed raw key length. There are two key ideas
involved here. The first one is the repeated application of the inversion formula for the Vandermonde matrix
to obtain various bounds on certain yields and error rates. The second one is the use of a recently proven
generalization of the McDiarmid inequality. These techniques raise the best provably secure key rate of the
measurement-device-independent version of the Bennett-Brassard 1984 scheme by at least 1.25 times and
increase the workable distance between the two cooperative agents from slightly less than 60 km to slightly
greater than 130 km in case where there are 1010 photon pulse pairs sent without a quantum repeater.
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I. INTRODUCTION

Quantum key distribution (QKD) is the art for two trusted
agents, commonly referred to as Alice and Bob, to share
a provably secure secret key by preparing and measuring
quantum states that are transmitted through a noisy channel
controlled by an eavesdropper Eve who has unlimited compu-
tational power. In a realistic QKD setup, a decoy-state tech-
nique allows Alice and Bob to obtain their secret key using
the much more practical weak phase-randomized Poissonian
sources [1,2]. In addition, a measurement-device-independent
(MDI) method enables them to use an imperfect apparatus
that may be controlled by Eve to perform measurement [3].
The decoy-state technique has been extensively studied. In
fact, this technique can be applied to many different QKD
schemes [1,2,4–6]. Research on the effective use of a general
number of decoys has been conducted [7–10]. The effect of
finite raw key length on the key rate has been investigated
[5,8–11]. Nonetheless, security and efficiency analyses on the
combined use of decoy-state and MDI techniques are less
comprehensive. So far, they are restricted to less than or equal
to four decoy states [12–21]. Furthermore, it is unclear how
to extend these methods analytically to an arbitrary but fixed
number of decoys. Along a slightly different line, the case
of finite raw key length for the combined use of decoy-state
and MDI techniques has been studied. So far, these studies
applied Azuma, Hoeffding, and Sefling inequalities as well as
the Chernoff bound in a straightforward manner [15,17–21].

Here I report the security analysis and a key rate formula
for the Bennett-Brassard 1984 (BB84)-based [22] MDI QKD
using passive partial Bell state detection for finite raw key
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length with the condition that Alice and Bob each use an
arbitrary but fixed number of decoys. One of the key ideas
in this work is the repeated use of the analytical formula for
the elements of the inverse of a Vandermonde matrix. A tight
bound on various yields and error rates for a general number
of decoys can then be obtained through this analytical for-
mula. (Actually, Yuan et al. also used repeated Vandermonde
matrix inversion to obtain upper and lower bounds of the
so-called two-single-photon yield in case one of the photon
intensities used is zero [23]. Nevertheless, the bounds reported
here are more general and powerful.) The other key idea
used here is the application of a powerful generalization of
the McDiarmid inequality in mathematical statistics recently
proven in Ref. [10]. This inequality is effective to tackle the
finite-size statistical fluctuation of certain error rates involved
in the key rate formula.

I compute the secure key rate for the MDI version of the
BB84 scheme using the setup and channel studied by Zhou
et al. in Ref. [18]. The best provably secure key rate for
this setup before this work was reported by Mao et al. [20].
Compared to their work, in the case where the total number of
photon pulse pairs sent by Alice and Bob is 1010, the provably
secure key rate using the present method is increased by at
least 125%. Besides, the maximum transmission distance is
increased from slightly less than 60 km to slightly greater than
130 km. This demonstrates the effectiveness of this approach
for MDI QKD.

II. THE MDI QKD PROTOCOL

In this paper, the polarization of all photon pulses is
prepared either in the X basis with photon intensity μX,i (for
i = 1, 2, · · · . . . kX) or in the Z basis with photon intensity
μZ,i (for i = 1, 2, . . . , kZ). For simplicity, I label these photon
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intensities in descending order by μX,1 > μX,2 > · · · >

μX,kX � 0 and similarly for μZ,i’s. I denote the probability of
choosing the preparation basis B ∈ {X, Z} by pB and the prob-
ability of choosing photon intensity μB,i given the preparation
basis B by pi|B.

Here I study the following MDI QKD protocol, which is a
BB84-based scheme originally studied in Refs. [3,15]:

(1) Alice and Bob each have a phase-randomized Pois-
sonian distributed source. Each of them randomly and in-
dependently prepares a photon pulse and sends it to the
untrusted third party Charlie. They jot down the intensity and
polarization used for each pulse.

(2) Charlie performs a partial Bell state measurement
like the ones in Refs. [3,15,24]. He publicly announces the
measurement result, including nondetection and inconclusive
events.

(3) Alice and Bob reveal the basis and intensity they used
for each of their prepared photon pulses. If the preparation
bases of a pair of photon pulses they have sent to Charlie for
Bell basis measurement disagree, they discard them. If both
pulses are prepared in the X basis, they reveal their prepara-
tion polarizations. They also randomly reveal the preparation
polarizations of a few pulses that they have both prepared in
the Z basis. In this way, they can estimate the various yields
and error rates to be defined in Sec. III.

(4) They use the preparation information of their remain-
ing photon pulses that have been conclusively measured by
Charlie to generate their raw secret keys and then perform
error correction and privacy amplification on these keys to
obtain their final secret keys according to the MDI QKD
procedure reported in Refs. [3,24]. (Here I assume that Alice
and Bob use forward reconciliation to establish the key. The
case of reverse reconciliation can be studied in a similar
manner.)

III. BOUNDS ON VARIOUS YIELDS AND ERROR RATES
IN THE MDI SETTING

I use the symbol QB,i, j to denote the yield given that
both Alice and Bob prepare their photons in the B basis and
that Alice (Bob) uses photon intensity μB,i (μB, j) for B =
X, Z and i, j = 1, 2, . . . , kB. More precisely, it is the portion
of photon pairs prepared using the above description that
Charlie declares conclusive detection. Furthermore, I define
the error rate of these photon pairs, EB,i, j , as the portion of
those conclusively detected photons above whose prepared
polarizations by Alice and Bob are the same. And I set ĒB,i, j =
1 − EB,i, j . Similar to the case of standard (that is, non-MDI)
implementation of QKD, for phase-randomized Poissonian
photon sources [24],

QB,i, j =
+∞∑

a,b=0

μa
B,iμ

b
B, jYB,a,b exp(−μB,i ) exp(−μB, j )

a! b!
(1)

and

QB,i, jEB,i, j =
+∞∑

a,b=0

μa
B,iμ

b
B, jYB,a,beB,a,b exp(−μB,i ) exp(−μB, j )

a! b!
.

(2)

Here, YB,a,b is the probability of conclusive detection by Char-
lie given that the photon pulses sent by Alice (Bob) contain a
(b) photons and eB,a,b is the corresponding bit error rate of the
raw key. Furthermore, I denote the yield conditioned on Alice
preparing a vacuum state and Bob preparing in the B basis by
the symbol YB,0,�. Clearly, YB,0,� obeys

YB,0,� =
kB∑

j=1

p j|BỸB,0, j, (3)

where ỸB,0, j is the yield conditioned on Alice sending the
vacuum state and Bob sending photon with intensity μB, j in
the B basis.

I need to deduce the possible values of YB,i, j’s and YB,i, jeB,i, j

from Eqs. (1) and (2). One way to do it is to compute various
lower and upper bounds of YB,i, j’s and YB,i, jeB,i, j by brute-force
optimization of truncated versions of Eqs. (1) and (2) like the
method reported in Refs. [12,15,16]. However, this approach
is rather inelegant and ineffective. Further note that Alice
and Bob have no control on the values of YB,a,b’s and eB,a,b’s
since Charlie and Eve are not trustworthy. All they know is
that these variables are between zero and one. Fortunately, in
the case of a phase-randomized Poissonian-distributed light
source, Corollaries 1 and 2 in the Appendix can be used
to bound YB,0,�,YB,1,1,YB,1,1eB,1,1, and YB,1,1ēB,1,1 analytically,
where ēB,1,1 ≡ 1 − eB,1,1. More importantly, these bounds are
effective to analyze the key rate formula to be reported in
Sec. IV. Following the trick used in Refs. [9,10], by using
the statistics of either all the kB different photon intensities or
all but the largest one used by Alice and Bob depending on
the parity of kB, Corollaries 1 and 2 imply the following tight
bounds:

YB,0,� �
kB∑

i, j=1

p j|BAe
B,0,iQB,i, j, (4a)

YB,1,1 � Y ↓
B,1,1 ≡

kB∑
i, j=1

Ao
B,1,iAo

B,1, jQB,i, j − C2
B,2, (4b)

YB,1,1eB,1,1 � (YB,1,1eB,1,1)↑ ≡
kB∑

i, j=1

Ae
B,1,iAe

B,1, jQB,i, jEB,i, j,

(4c)

YB,1,1eB,1,1 � (YB,1,1eB,1,1)↓

≡
kB∑

i, j=1

Ao
B,1,iAo

B,1, jQB,i, jEB,i, j − C2
B,2, (4d)

and

YB,1,1ēB,1,1 � (YB,1,1ēB,1,1)↓

≡
kB∑

i, j=1

Ao
B,1,iAo

B,1, jQB,i, j ĒB,i, j − C2
B,2 (4e)

for B = X, Z. (The reason for using e and o as superscripts is
that it will be self-evident from the discussion below that for
fixed B and j, there is an even number of nonzero terms in
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Ae
B, j,i and an odd number of nonzero terms in Ao

B, j,i.) For the
above inequalities, in case kB is even, then

Ae
B, j,i = Aj (μB,i, {μB,1, μB,2, . . . , μB,i−1, μB,i+1, . . . , μB,kB})

(5a)

for i = 1, 2, . . . , kB and j = 0, 1. Furthermore,

Ao
B,1,1 = 0 (5b)

and

Ao
B,1,i = A1(μB,i, {μB,2, μB,3, . . . , μB,i−1, μB,i+1, . . . , μB,kB})

(5c)
for i = 2, 3, . . . , kB. In addition,

CB,2 =
(

kB∑
�=2

μB,2μB,3 · · ·μB,�−1μB,�+1 · · · μB,kB

)

×
kB∑

i=2

⎧⎨
⎩ 1

μB,i
∏

t �=1,i(μB,i−μB,t )

⎡
⎣exp(μB,i )−

kB−2∑
j=0

μ
j
B,i

j!

⎤
⎦
⎫⎬
⎭.

(5d)

Here I use the convention that the term involving 1/μB,i in
the above summand with dummy index i is equal to zero if
μB,i = 0.

Whereas in the case kB is odd, then

Ao
B,1,i = A1(μB,i, {μB,1, μB,2, . . . , μB,i−1, μB,i+1, . . . , μB,kB})

(5e)
for i = 1, 2, . . . , kB. Furthermore,

Ae
B, j,1 = 0 (5f)

and

Ae
B, j,i = Aj (μB,i, {μB,2, μB,3, . . . , μB,i−1, μB,i+1, . . . , μB,kB})

(5g)
for j = 1, 2 and i = 2, 3, . . . , kB. In addition,

CB,2 =
(

kB∑
�=1

μB,1μB,2 · · · μB,�−1μB,�+1 · · · μB,kB

)

×
kB∑

i=1

⎧⎨
⎩ 1

μB,i
∏

t �=i(μB,i−μB,t )

⎡
⎣exp(μB,i ) −

kB−1∑
j=0

μ
j
B,i

j!

⎤
⎦
⎫⎬
⎭.

(5h)

Note that in Eqs. (5),

A0(μ, S) = − exp(μ)
∏

s∈S s∏
s∈S (μ − s)

(6a)

and

A1(μ, S) =
− exp(μ)

∑
s∈S

(∏
s′ ∈ S, s′ �= s s′

)
∏

s∈S (μ − s)
. (6b)

Note that different upper and lower bounds for YB,1,1 have
been obtained using a similar Vandermonde matrix inversion
technique in Ref. [23]. The differences between those bounds
and the actual value of YB,1,1 depend on the yields YB,i, j

with i, j � 1. In contrast, the difference between the bound
in inequality (4b) and the actual value of YB,1,1 depend on

YB,i, j with i, j � kB. Thus, inequality (4b) and similarly also
inequality (4c) give more accurate estimates of YB,1,1 and
YB,1,1eB,1,1, respectively. Furthermore, the bounds in Ref. [23]
also work for the case of μB,kB = 0. It is also not clear how
to extend their method to bound for yields other than the
two-single-photon events that are needed in computing the
key rate for twin-field [25] and phase-matching [26] MDI
QKDs.

IV. THE KEY RATE FORMULA

The secure key rate R is defined as the number of bits of
secret key shared by Alice and Bob at the end of the protocol
divided by the number of photon pulse pairs they have sent
to Charlie. In fact, the derivation of the key rate formula in
Refs. [9–11,27] for the case of standard QKD can be easily
modified to the case of MDI QKD by making the following
correspondences. (See also the key rate formula used in
Ref. [24] for MDI QKD.) The vacuum event in the standard
QKD is mapped to the event that both Alice and Bob send
a vacuum photon pulse to Charlie. The single-photon event
is mapped to the event that both Alice and Bob send a single
photon to Charlie. The multiple-photon event is mapped to the
event that Alice and Bob are both sending neither a vacuum
nor a single-photon pulse to Charlie. In the case of forward
reconciliation, the result is

R � p2
Z

{
〈exp(−μ)〉ZYZ,0,� + 〈μ exp(−μ)〉2

ZYZ,1,1[1 − H2(ep)]

− �EC − 〈QZ,i, j〉i, j

�raw

[
6 log2

(
χ

εsec

)
+ log2

(
2

εcor

)]}
,

(7)

where 〈 f (μ)〉Z ≡ ∑kZ
i=1 pi|Z f (μZ,i ), 〈 f (Z, i, j)〉i, j ≡∑kZ

i, j=1 pi|Zp j|Z f (Z, i, j), H2(x) ≡ −x log2 x − (1 −
x) log2(1 − x) is the binary entropy function, ep is the
phase error rate of the single-photon events in the raw key,
and �EC is the actual number of bits of information that leak
to Eve as Alice and Bob perform error correction on their raw
bits. It is given by

�EC = fEC〈QZ,i, jH2(EZ,i, j )〉i, j, (8)

where fEC � 1 measures the inefficiency of the error-
correcting code used. In addition, �raw is the raw sifted key
length measured in bits, εcor is the upper bound of the prob-
ability that the final keys shared between Alice and Bob are
different, and εsec = (1 − pabort )‖ρAE − UA ⊗ ρE‖1/2. Here
pabort is the chance that the scheme aborts without generating
a key, ρAE is the classical-quantum state describing the joint
state of Alice and Eve, UA is the uniform mixture of all the
possible raw keys created by Alice, ρE is the reduced density
matrix of Eve, and ‖ · ‖1 is the trace norm [28–30]. In other
words, Eve has at most εsec bits of information on the final
secret key shared by Alice and Bob. (In the literature, this
is often referred to as a εcor-correct and εsec-secure QKD
scheme [27].) Last but not least, χ is a QKD -scheme-specific
factor which depends on the detailed security analysis used.
In general, χ may also depend on other factors used in the
QKD scheme such as the number of photon intensities kX and
kZ [9–11].
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In inequality (7), the phase error of the raw key ep obeys [9,31]

ep � eX,1,1 + γ̄

(
εsec

χ
, eX,1,1,

sXYX,1,1〈μ exp(−μ)〉2
X

〈QX,i, j〉i, j
,

sZYZ,1,1〈μ exp(−μ)〉2
Z

〈QZ,i, j〉i, j

)
(9)

with probability at least 1 − εsec/χ , where 〈 f (μ)〉X ≡∑kX
i=1 pi|X f (μX,i ),

γ̄ (a, b, c, d ) ≡
√

(c + d )(1 − b)b

cd
ln

[
c + d

2πcd (1 − b)ba2

]
,

(10)
and sB is the number of bits that are prepared and
measured in the B basis. Clearly, sZ = �raw and sX ≈
p2
XsZ〈QX,i, j〉i, j/(p2

Z〈QZ,i, j〉i, j ). I also remark that γ̄ becomes
complex if a, c, and d are too large. This is because in this
case no ep � eX,1,1 exists with failure probability a. In this
work, all parameters are carefully picked so that γ̄ is real.

There are two ways to proceed. The most general way
is to directly find a lower bound for YZ,1,1. Specifically, by
substituting inequalities (4a), (4b), and (9) into inequality (7),
I obtain the following lower bound of the key rate:

R �
kZ∑

i, j=1

BZ,i, jQZ,i, j − p2
Z

{
〈μ exp(−μ)〉2

ZC
2
Z,2[1 − H2(ep)]

+�EC + 〈QZ,i, j〉i, j

�raw

[
6 log2

(
χ

εsec

)
+ log2

(
2

εcor

)]}
,

(11)

where

BZ,i, j = p2
Z

{〈exp(−μ)〉ZAe
Z,0,i p j|Z

+ 〈μ exp(−μ)〉2
ZAo

Z,1,iAo
Z,1, j[1 − H2(ep)]

}
. (12)

Here I would like to point out that unlike the corresponding
key rate formulas for standard QKD in Refs. [7,9–11], a
distinctive feature of the key rate formula for MDI QKD in
Eq. (11) is the presence of the C2

Z,2 term. From Eqs. (5),
provided that μZ,i − μZ,i+1 are all greater than a fixed positive
number, the value of C2

Z,2 decreases with kZ. This is the reason
why the MDI version of a QKD scheme may require more
decoys to attain a key rate comparable to the corresponding
standard QKD scheme.

There is an alternative way to obtain the key rate formula
discovered by Zhou et al. [18] that works for BB84 [22] and
the six-state scheme [32]. Suppose the photon pulses prepared
by Alice and Bob in step 1 of the MDI QKD protocol in
Sec. II both contain a single photon. Suppose further that
they are prepared in the same basis. Then, from Charlie and
Eve’s points of view, these two-single-photon states are the
same irrespective of their preparation basis. Consequently,
YX,1,1 = YZ,1,1 (even though eX,1,1 need not equal eZ,1,1). That
is to say, the secure key rate in inequality (7) also holds if
YZ,1,1 there is replaced by YX,1,1. (Here I stress that the key
generation basis is still Z. But as YX,1,1 = YZ,1,1, I could use
the bound on YX,1,1 to obtain an alternative key rate formula for
the same MDI QKD scheme.) Following the same procedure

above, I get

R �
kZ∑

i, j=1

B′
Z,i, jQZ,i, j +

kX∑
i, j=1

BX,i, jQX,i, j

− p2
Z

{
〈μ exp(−μ)〉2

ZC
2
X,2[1 − H2(ep)] + �EC

+〈QZ,i, j〉i, j

�raw

[
6 log2

(
χ

εsec

)
+ log2

(
2

εcor

)]}
, (13)

where

B′
Z,i, j = p2

Z〈exp(−μ)〉ZAe
Z,0,i p j|Z (14a)

and

BX,i, j = p2
Z〈μ exp(−μ)〉2

ZAo
X,1,iAo

X,1, j[1 − H2(ep)]. (14b)

V. TREATMENTS OF PHASE ERROR AND STATISTICAL
FLUCTUATION DUE TO FINITE RAW KEY LENGTH ON

THE SECURE KEY RATE

In order to compute the lower bound on the key rate R in
inequalities (11) and (13), I need to know the value of eX,1,1

through inequality (9). More importantly, I need to take into
consideration the effects of finite raw key length on the key
rate R due to the statistical fluctuations in eX,1,1 and QZ,i, j’s.
Here I do so by means of a McDiarmid-type inequality in
statistics first proven in Refs. [33,34] and recently extended
in Ref. [10].

Fluctuation of the first term on the right-hand side (RHS)
of inequality (11) due to finite raw key length can be
handled by the Hoeffding inequality for hypergeometrically
distributed random variables [9–11,35], which is a special
case of the McDiarmid inequality. Using the technique re-
ported in Refs. [9,10], the first term on the RHS of in-
equality (11) can be regarded as a sum of sZ hypergeo-
metrically distributed random variables each taking on val-
ues from the set {〈QZ,i, j〉i, jBZ,i, j/(pi|Zp j|Z)}kZ

i, j=1. Using the
Hoeffding inequality for hypergeometrically distributed ran-
dom variables [35], I conclude that the measured value
of

∑
i, j Bi jQZ,i, j minus its actual value is greater than

〈QZ,i, j〉i, j[
ln(χ/εsec )

2sZ
]
1/2

Width ({ BZ,i, j

pi|Zp j|Z
}kZ

i, j=1
) with probability at

most εsec/χ , where Width of a finite set of real numbers S is
defined as max S − min S.

The value of eX,1,1 in the finite-sampling-size situation is
more involved. Here I adapt the recent results in Ref. [10] to
give four upper bounds on eX,1,1. Surely, I pick the best upper
bound out of these four in the key rate analysis. The first step
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is to use the equality

eX,1,1 = YX,1,1eX,1,1

YX,1,1
(15a)

= YX,1,1eX,1,1

YX,1,1eX,1,1 + YX,1,1ēX,1,1
. (15b)

To get the first two upper bounds of eX,1,1, I fol-
low Ref. [10] by using inequalities (4b), (4c), and (4e)
together with applying the Hoeffding inequality for hy-
pergeometrically distributed random variables to study
the statistical fluctuations of

∑kX
i, j=1 Ae

X,1,iAe
X,1, jQX,i, jEX,i, j ,∑kX

i, j=1 Ao
X,1,iAo

X,1, jQX,i, j , and
∑kX

i, j=1 Ao
X,1,iAo

X,1, jQX,i, j ĒX,i, j .
The result is

eX,1,1 � (YX,1,1eX,1,1)↑ + 
YX,1,1eX,1,1

Y ↓
X,1,1 − 
YX,1,1

(16)

and

eX,1,1 � [(YX,1,1eX,1,1)↑ + 
YX,1,1eX,1,1][(YX,1,1eX,1,1)↑

+ (YX,1,1ēX,1,1)↓ + 
YX,1,1eX,1,1 − 
YX,1,1ēX,1,1]−1

(17)

each with probability at least 1 − 2εsec/χ , where


YX,1,1eX,1,1 =
[ 〈QX,i, j〉i, j〈QX,i, jEX,i, j〉i, j ln(χ/εsec)

2sX

]1/2

× Width

({Ae
X,1,iAe

X,1, j

pi|Xp j|X

}kX

i, j=1

)
, (18a)


YX,1,1 = 〈QX,i, j〉i, j

[
ln(χ/εsec)

2sX

]1/2

× Width

({Ao
X,1,iAo

X,1, j

pi|Xp j|X

}kX

i, j=1

)
(18b)

and


YX,1,1ēX,1,1 =
[ 〈QX,i, j〉i, j〈QX,i, j ĒX,i, j〉i, j ln(χ/εsec)

2sX

]1/2

× Width

({Ao
X,1,iAo

X,1, j

pi|Xp j|X

}kX

i, j=1

)
. (18c)

Note that in the above equations, 〈 f (X, i, j)〉i, j ≡∑kX
i, j=1 pi|Xp j|X f (X, i, j).
Both the third and the fourth bounds of eX,1,1 use Eq. (15b),

inequality (4e), and the modified McDiarmid inequality in
Ref. [10]. For the third one, the result is

eX,1,1 � (YX,1,1eX,1,1)↑

(YX,1,1eX,1,1)↑ + (YX,1,1ēX,1,1)↓ − 
YX,1,1ēX,1,1

+ 
eX,1,1 (19)

with probability at least 1 − 2εsec/χ , where


eX,1,1

=
[ 〈QX,i, j〉i, j〈QX,i, jEX,i, j〉i, j ln(χ/εsec)

2sX

]1/2

[(YX,1,1ēX,1,1)↓ − 
YX,1,1ēX,1,1] Width

({Ae
X,1,iAe

X,1, j

pi|Xp j|X

}kX

i, j=1

)

×
[

(YX,1,1ēX,1,1)↓ − 
YX,1,1ēX,1,1 + (YX,1,1eX,1,1)↓
(

1 − 〈QX,i, j〉i, j

sX〈QX,i, jEX,i, j〉i, j

)
+ 〈QX,i, j〉2

i, j

s2
X〈QX,i, jEX,i, j〉i, j

kX
max
i, j=1

{Ae
X,1,iAe

X,1, j

pi|Xp j|X

}]−1

×
[

(YX,1,1ēX,1,1)↓ − 
YX,1,1ēX,1,1 + (YX,1,1eX,1,1)↓
(

1 − 〈QX,i, j〉i, j

sX〈QX,i, jEX,i, j〉i, j

)
+ 〈QX,i, j〉2

i, j

s2
X〈QX,i, jEX,i, j〉i, j

kX
min
i, j=1

{Ae
X,1,iAe

X,1, j

pi|Xp j|X

}]−1

.

(20)

And the fourth bound is

eX,1,1 � (YX,1,1eX,1,1)↑

(YX,1,1eX,1,1)↑ + (YX,1,1ēX,1,1)↓ − 
YX,1,1ēX,1,1
+ r̂

[
ln(χ/εsec)

2

]1/2

(21)

with probability at least 1 − 3εsec/χ , where

r̂2 ≈ y2
k2
X∑

m=1

1

w(m) − x

(
− 1

y + (
t −∑

i<m n(i) + 1
)
x + minW +∑

i<m n(i)w(i) + μ[w(m) − x]

− 1

y + (
t −∑

i<m n(i) + 1
)
x + maxW +∑

i<m n(i)w(i) + μ[w(m) − x]

+ 2

Width(W )
ln

{
y + (

t −∑
i<m n(i) + 1

)
x + maxW +∑

i<m n(i)w(i) + μ[w(m) − x]

y + (
t −∑

i<m n(i) + 1
)
x + minW +∑

i<m n(i)w(i) + μ[w(m) − x]

})∣∣∣∣∣
n(m)

μ=0

. (22)
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In the above equation,

y = (YX,1,1ēX,1,1)↓ − 
YX,1,1ēX,1,1, (23a)

t ≈ sX〈QX,i, jEX,i, j〉i, j

〈QX,i, j〉i, j
, (23b)

x = (YX,1,1eX,1,1)↓ − 
YX,1,1eX,1,1

t
, (23c)

and

W =
{ 〈QX,i′, j′ 〉i′, j′Ae

X,1,iAe
X,1, j

sXpi|Xp j|X

}kX

i, j=1

. (23d)

Last but not least, I need to define w(m) and n(m). Recall
that, by following the analysis in Ref. [10], there is a one-to-
one correspondence between a random variable in W taking
the value of 〈QX,i′, j′ 〉i′, j′Ae

X,1,iAe
X,1, j/(sXpi|Xp j|X) and an event

that a photon pulse pair is prepared by Alice (Bob) using
intensity μX,i (μX, j) both in basis X and that the Bell basis
measurement result announced by Charlie is inconsistent with
the photon states prepared by Alice and Bob. Now let us
arrange the k2

X elements in the set W in descending order
as {w(1),w(2), . . . ,w(k2

X )}. Then, n(i) is the number of Bell
basis measurement events that corresponds to the value of
w(i) ∈ W .

There is an important subtlety that requires attention. In
almost all cases of interest, each summand in Eq. (22) consists
of three terms. The first two are positive and the third one
is negative. The sum of the first two terms is almost exactly
equal to the magnitude of the third term. Hence, truncation
error is very serious if one directly use Eq. (22) to numerically

compute r̂. The solution is to expand each term in powers of
1/Dm and/or 1/Em defined below. This gives

r̂2 ≈ y2 Width(W )2

3

k2
X∑

m=1

n(m)

DmEm

(
1

D2
m

+ 1

DmEm
+ 1

E2
m

)
,

(24)

where

Dm = y +
(

t −
∑
i<m

n(i) + 1

)
x + minW +

∑
i<m

n(i)w(i)

(25a)

and

Em = y +
(

t −
∑
i<m

n(i) + 1

)
x + minW +

∑
i<m

n(i)w(i)

+ n(m)(w(m) − x)

= y +
(

t −
∑
i�m

n(i) + 1

)
x + minW +

∑
i�m

n(i)w(i).

(25b)

(Note that only the leading term is kept in Eq. (24). This
is acceptable because the next-order term is of order of about
1/100 that of the leading term in all cases of practical interest.)

With all the above discussions, to summarize, the secure
key rate R of this εcor-correct and εsec-secure QKD scheme in
the finite raw key length situation is lower bounded by

R �
kZ∑

i, j=1

BZ,i, jQZ,i, j − 〈QZ,i, j〉i, j

[
ln(χ/εsec)

2sZ

]1/2

Width

({ BZ,i, j

pi|Zp j|Z

}kZ

i, j=1

)
− p2

Z

{
〈μ exp(−μ)〉2

ZC
2
Z,2[1 − H2(ep)]

+ fEC〈QZ,i, jHs(EZ,i, j )〉i, j + 〈QZ,i, j〉i, j

�raw

[
6 log2

(
χ

εsec

)
+ log2

(
2

εcor

)]}
. (26a)

and

R �
kZ∑

i, j=1

B′
Z,i, jQZ,i, j +

kX∑
i, j=1

BX,i, jQX,i, j − 〈QZ,i, j〉i, j

[
ln(χ/εsec)

2sZ

]1/2

Width

({ B′
Z,i, j

pi|Zp j|Z

}kZ

i, j=1

)
− 〈QX,i, j〉i, j

×
[

ln(χ/εsec)

2sX

]1/2

Width

({ BX,i, j

pi|Xp j|X

}kX

i, j=1

)
− p2

Z

{
〈μ exp(−μ)〉2

ZC
2
X,2[1 − H2(ep)] + fEC〈QZ,i, jHs(EZ,i, j )〉i, j

+〈QZ,i, j〉i, j

�raw

[
6 log2

(
χ

εsec

)
+ log2

(
2

εcor

)]}
. (26b)

I remark that the RHS of the above inequalities implic-
itly depends on eX,1,1 whose upper bound obeys inequalities
(16), (17), (19), (21), and (24). Furthermore, when using the
key rate in inequality (26a), χ = 9 = 4 + 1 + 4 for the first
three inequalities concerning eX,1,1 and χ = 10 for the last
inequality concerning eX,1,1 [10]. While using the key rate in
inequality (26b) instead of inequality (26a), χ = 9, 10, 10, 11
for methods A, B, C, and D, respectively. (The reason for χ

to increase by 1 except for method A by switching the rate

formula from inequality (26a) to inequality (26b) is due to the
inclusion of the finite-size statistical fluctuations of the lower
bound on YX,1,1.)

Comparing with the corresponding key rate formula for the
standard QKD scheme, the most noticeable difference is the
presence of additional terms and factors involving C2

B,2 which
tend to lower the key rate. Fortunately, CB,2 roughly scale as
μ

kB
B,1 so that, in practice, these terms and factors are negligible

if kB � 2 to 3. Finally, I remark that in the limit of sZ → +∞,
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the key rate formulas in inequalities (26a) and (26b) are tight
in the sense that these lower bounds are reachable although
the condition for attaining them is highly unlikely to occur in
realistic channels.

VI. PERFORMANCE ANALYSIS

To study the key rate, I use the channel model reported by
Ma and Razavi [24], which I called the MR channel. For this
channel,

QX,i, j = 2β2
i j

[
1 + 2β2

i j − 4βi j I0(αXi j ) + I0(2αXi j )
]
, (27a)

QX,i, jEX,i, j = e0QX,i, j − 2(e0 − ed )β2
i j[I0(2αXi j ) − 1], (27b)

QZ,i, j = Q(E )
i j + Q(C)

i j , (27c)

and

QZ,i, jEZ,i, j = ed Q(C)
i j + (1 − ed )Q(E )

i j , (27d)

where I0(·) is the modified Bessel function of the first kind,

αBi j =
√

ηAμB,iηBμB,i

2
, (27e)

βi j = (1 − pd ) exp

(
−ηAμX,i + ηBμX, j

4

)
, (27f)

e0 = 1

2
, (27g)

Q(C)
i j =2(1 − pd )2 exp

(
−ηAμZ,i + ηBμZ, j

2

)

×
[
1 − (1 − pd ) exp

(
−ηAμZ,i

2

)]
×
[
1 − (1 − pd ) exp

(
−ηBμZ, j

2

)]
, (27h)

and

Q(E )
i j = 2pd (1 − pd )2 exp

(
−ηAμZ,i + ηBμZ, j

2

)

×
[

I0(2αZi j ) − (1 − pd ) exp

(
−ηAμZ,i + ηBμZ, j

2

)]
.

(27i)

Here ed is the misalignment probability, and pd is the dark
count rate per detector. Moreover, ηA (ηB) is the transmittance
of the channel between Alice (Bob) and Charlie. It is given by

ηA = ηd 10−ηattLA/10 (27j)

and similarly for ηB, where LA is the length of the fiber
connecting Alice to Charlie, ηd is the detection efficiency of a
detector, and ηatt is the transmission fiber loss constant.

I remark that the MR channel model assumes that the
partial Bell state measurement is performed using linear optics
with ideal beam and/or polarization beam splitters. It also
assumes that all photon detectors are identical and that the
dead time is ignored. Moreover, this channel does not consider
the use of quantum repeater.

The state-of-the-art key rate formula for decoy-state MDI
QKD with finite raw key length is the one by Mao et al. [20],
which extended an earlier result by Zhou et al. [18]. (Note that
even higher key rates have been reported by Xu et al. [16] and

FIG. 1. Provably secure optimized key rates R as a function of
distance L between Alice and Bob for Nt = 1010 and εsec/χ = εcor =
10−10. The red dotted curve is the state-of-the-art provably secure key
rate reported in Ref. [20]. The black solid curve is the rate computed
for (3, 2)G, and the blue dashed curve is the rate for (3, 3)R. The
rates for (kX � 3, kZ � 3)G and (kX � 4, kZ � 4)R are higher than
that of (3, 2)G by about 33%. But they are omitted here as those
curves would visually almost overlap with the black solid curve in
this semilogarithmic plot.

Zhou et al. [18]. Note, however, that the first work applied
brute-force optimization as well as the Chernoff bound on a
much longer raw key. Its effectiveness in handling the short
raw key length situation is not apparent, whereas the second
work assumed that the statistical fluctuation is Gaussian dis-
tributed, which is not justified in terms of unconditional secu-
rity.) To compare with the provably secure key rate reported
in Ref. [20], I use their settings by putting ed = 1.5%, pd =
6.02 × 10−6, ηatt = 0.2 db/km, ηd = 14.5%, fEC = 1.16, and
LA = LB = L/2, where L is the transmission distance between
Alice and Bob. For the security parameters, I follow Ref. [20]
by setting εsec/χ = 10−10, although a more meaningful way
is to set εsec divided by the length of the final key to a fixed
small number [11]. However, for εcor, its value has not been
specified in Ref. [20]. Fortunately, inequality (26a) implies
that the provably secure key rate does not sensitively depend
on εcor. Here I simply set it to 10−10.

Figure 1 compares the key rates when the total number
of photon pulse pairs prepared by Alice and Bob, Nt ≈
�raw/(p2

Z〈QZ,i, j〉i, j ), is set to 1010. For each of the curves, the
number of photon intensities kX (kZ) used for X (Z) is fixed.
The smallest photon intensities μX,kX and μZ,kZ are both set
to be 10−6. The optimized key rate is then calculated by
varying the other μX,i’s and μZ,i’s as well as pi|X, pi|Z and
pZ by a combination of random sampling (with a minimum
of 107 samples to a maximum of about 109 samples per data
point on each curve) and adaptive gradient descend methods
(that is, the step size is adjusted dynamically to speed up
the descent). For some of the curves, I introduce additional
constraints that μX,i = μZ,i so as to reduce the number of
different photon intensities used. To aid discussion, I refer to
the unconstrained and constrained situations by (kX, kZ)G and
(kX, kZ)R, respectively.

The R-L graphs in Fig. 1 clearly show the advantage of
using the method in this text in computing the provably secure
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FIG. 2. Provably secure optimized key rates R as a function of
distance L between Alice and Bob for Nt = 109, εsec/χ = εcor =
10−7. The red dotted curve is the provably secure key rate reported in
Ref. [18]. The black solid curve is the rate computed for (3, 2)G,
and the blue dashed curve is the rate for (3, 3)R. The rates for
(kX � 3, kZ � 3)G are about the same as that of (3, 2)G while those of
(kX � 4, kZ � 4)R are a little bit lower (higher) than that of (3, 2)G for
short (long) transmission distances. They are omitted here to avoid
curve jamming.

(optimized) key rate. The black curve, which is the distance-
rate graph of (3, 2)G that uses four different photon intensities,
is much better than the red one (which also uses four different
photon intensities) originally reported in Ref. [20]. In fact, for
any distance L between Alice and Bob, the key rate of the
(3, 2)G method is at least 2.25 times that of the state-of-the-
art key rate reported in Ref. [20]. (I also mention in passing
that the rate of the black curve is even higher than that of the
two-decoy key rate reported in Ref. [16] using a much longer
raw key length of �raw = 1012.) Besides, the (3, 2)G method
extends the working distance between Alice and Bob from
slightly less than 60 km to slightly over 130 km. The blue
dashed curve is the key rate of (3, 3)R, which uses the same set
of three different photon intensities for both preparation bases.
Although it uses one less photon intensity, it still outperforms
the key rate of the red curve when L � 45 km.

To further illustrate the power of this method, I compare
the key rates here with the ones obtained in Ref. [18] in
which they used four photon states and the following param-
eters: ed = 1.5%, pd = 10−7, ηatt = 0.2 db/km, ηd = 40%,
fEC = 1.16, LA = LB = L/2, and εsec/χ = εcor = 10−7. The
optimized key rates are then found using the same method
that produces Fig. 1. As shown in Fig. 2, the optimized
key rate of (3, 2)G (the black curve that uses four different
photon intensities) is at least 90% higher than those reported
in Ref. [18]. Just like the previous comparison, the key rate
of (3, 3)R which uses only three different photon intensities is
better than the one reported in Ref. [18] when L � 60 km. Last
but not least, the maximum transmission distance increases
from about 87 km to about 156 km for (3, 2)G and 162 km
for (4, 3)G (the latter is not shown in the figure to avoid curve
crowding).

In a sense, instead of εsec/χ , a fairer security parameter
to use is κ , namely, εsec per number of bits of the final key
[11]. Figure 3 depicts the R-L curves of various methods when

FIG. 3. Provably secure optimized key rates R as a function of
distance L between Alice and Bob for �raw = 1010 and κ = 10−15

and εcor = 10−10. The black solid curve is for (3, 2)G and the blue
dashed curve is for (3, 3)R. The rates for (kX � 3, kZ � 3)G and
(kX � 4, kZ � 4)R are higher than that of (3, 2)G by about 18%. These
additional curves are omitted here as visually they almost overlap
with the black solid curve in this semilogarithmic plot.

κ = 10−15 and εcor = 10−10. Here instead of fixing Nt , I keep
�raw = 1010 which corresponds to a much greater value of Nt

in general. The blue dashed curve is the rate for (3, 3)R which
uses three photon intensities. It already achieves a nonzero key
rate at a distance of slightly greater than 160 km. The black
curve is the rate for (3, 2)G which uses four photon intensities.
It allows Alice and Bob to share a secret key over a distance
close to 200 km. This finding makes sense because a larger
raw key length �raw implies smaller statistical fluctuations
in our estimates of various yields and error rate, which in
turn increases the provably secure key rate and the maximum
transmission distance.

Tables I and II show the provably secure optimized key
rates using various values of kX and kZ for the case of fixing
εsec/χ and κ , respectively. The following points can be drawn
from these figures and tables. First, for the unconstrained
photon intensity situation, the optimized key rate increases
as kX increases. For instance, as shown in Table I, the key
rate of (4, 2)G is at least 39% higher than that of (3, 2)G by
fixing εsec/χ . And from Table II, the corresponding increase
in key rate by fixing κ is about 18% in the distance range
from 0 to 150 km. (I do not draw these curves in Figs. 1 and
3 because they almost overlap with the (3, 2)G curve using

TABLE I. Optimized secure key rates for Nt = 1010 and εsec/χ =
εcor = 10−10.

L/km 0 50

(3, 2)G 7.49 × 10−5 1.50 × 10−6

(3, 3)R 9.65 × 10−6 1.25 × 10−7

(3, 3)G 8.51 × 10−5 1.82 × 10−6

(4, 2)G 1.04 × 10−4 2.22 × 10−6

(4, 3)G 1.04 × 10−4 2.24 × 10−6

(4, 4)R 3.10 × 10−5 3.75 × 10−7

(4, 4)G 1.04 × 10−4 2.23 × 10−6
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TABLE II. Optimized secure key rates for �raw = 1010, κ =
10−15, and εcor = 10−10.

L/km 0 50 100 150

(3, 2)G 3.23 × 10−4 2.85 × 10−5 2.44 × 10−6 1.51 × 10−7

(3, 3)R 8.37 × 10−5 6.67 × 10−6 4.33 × 10−7 1.27 × 10−8

(3, 3)G 3.23 × 10−4 2.85 × 10−5 2.44 × 10−6 1.51 × 10−7

(4, 2)G 3.82 × 10−4 3.39 × 10−5 2.89 × 10−6 1.78 × 10−7

(4, 3)G 3.82 × 10−4 3.39 × 10−5 2.89 × 10−6 1.78 × 10−7

(4, 4)R 1.70 × 10−4 1.32 × 10−5 8.27 × 10−7 2.64 × 10−8

(4, 4)G 3.82 × 10−4 3.39 × 10−5 2.89 × 10−6 1.78 × 10−7

the same plotting scales.) Second, for the constrained photon
intensity situation, the optimized key rate increases as kX = kZ
increases. These findings can be understood by the fact that
the more decoy intensity is used, the closer the various bounds
of yields and error rates are to their actual values. Third, the
constrained key rate is in general several times lower than the
corresponding unconstrained one. So, using the same set of
photon intensities for the two bases is not a good idea, at least
for the MR channel.

There is an interesting observation that requires in-depth
explanation. From Table II, for the case of fixing kX and
κ , the increase in R due to increase in kZ is insignificant.
Moreover, Table I shows that for the case fixing εsec/χ and
kX, a significant increase in key rate occurs only when kX = 3.
The reason is that for the MR channel [24], it turns out that
the key rate computed by inequality (26b) is greater than that
computed by inequality (26a). That is to say, the lower bound
of YX,1,1 is a better estimate of the single photon pair yield
than the lower bound of YZ,1,1. Thus, increasing kZ only gives a
better estimate of YZ,0,�. Since I fix the lowest photon intensity
to 10−6, which is very close to the vacuum state, the major
error in estimating YZ,0,� comes from finite-size statistical
fluctuation. Consequently, by fixing a large enough raw key
length �raw, the use of more than two photon intensities for the
Z does not improve the provably secure key rate in practice. In
other words, the improvement on the provably secure key rate
by increasing kZ alone for the MR channel occurs only when
kZ is small, say, about 2 to 3, and when �raw is small.

There is a systematic trend that is worth reporting. For the
case of using unconstrained photon intensities, method D plus
the use of YX,1,1 to bound the single photon-pair yield gives the
highest key rate over almost the whole range of distance L.
It is only when close to the maximum transmission distance
that the best rate is computed using method C and YX,1,1,
whereas for the case of constrained photon intensities, for
short transmission distance, the best rate is computed using
method D plus YZ,1,1. For longer transmission distance, the
best rate is due to method B and YX,1,1.

VII. SUMMARY

In summary, using the BB84 scheme in the MR channel
as an example, I have reported a key rate formula for MDI
QKD using Possionian photon sources through repeated use
of the inversion of the Vandermonde matrix and a McDiarmid-
type inequality. This method gives a provably secure key rate
that is at least 2.25 times that of the current state-of-the-art

result. It also shows that using five photon intensities, more
precisely the (4,2) method, gives an additional 18% increase
in the key rate for the MR channel. This demonstrates once
again the effectiveness of using a McDiarmid-type inequality
in statistical data analysis in physical problems, provided that
the photon source is sufficiently close to Possionian.

Note that the Vandermonde matrix inversion technique is
rather general. As pointed out in Remark 1 in the Appendix,
by modifying the proof of Lemma 2, one can show that C3i �
0 if k is even and C3i < 0 if k is odd for all i � k. Thus, I can
find the lower bound of YB,0,2 and YB,2,0. In other words, I can
extend the key rate calculation to the case of twin-field [25] or
phase-matching MDI QKD [26]. Note further that inequalities
(4) are still valid by replacing the Ae

B, j,i’s and Ao
B, j,i’s by

their perturbed expressions through standard matrix inversion
perturbation as long as the photon sources are sufficiently
close to Possionian. In this regard, the theory developed here
also applies to these sources. Interested readers are invited to
fill in the details. Last but not least, it is instructive to extend
this work to cover other MDI QKD protocols as well as more
realistic quantum channels that take dead time and imperfect
beam splitters into account.
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APPENDIX: AUXILIARY RESULTS ON BOUNDS OF
YIELDS AND ERROR RATES

I begin with the following lemma.
Lemma 1. Let μ1, μ2, . . . , μk be k � 2 distinct real num-

bers. Then
k∑

i=1

μ�
i∏

t �=i(μi − μt )
= 0 (A1)

for � = 0, 1, . . . , k − 2.
Proof. Note that the left-hand side (LHS) of Eq. (A1) is a

symmetric function of μi’s. Moreover, only its first two terms
involve the factor μ1 − μ2 in the denominator. In fact, the sum
of the these two terms equals

μ�
1

∏
t>2(μ2 − μt ) − μ�

2

∏
t>2(μ1 − μt )

(μ1 − μ2)
∏

t>2[(μ1 − μt )(μ2 − μt )]
.

By applying the reminder theorem, I know that the numerator
of the above expression is divisible by μ1 − μ2. Conse-
quently, the LHS of Eq. (A1) is a homogeneous polynomial
of degree � � − k + 1. But as � � k − 2, this means the LHS
of Eq. (A1) must be a constant. By putting μi = t i for all i and
by taking the limit t → +∞, I conclude that this constant is
0. This completes the proof. �

Following the notation in Ref. [9], I define

Ca+1,i = (−1)k−aa!

i!

k∑
t=1

μi
t Sta∏

� �=t (μt − μ�)
, (A2)

where

Sta =
∑′

μt1μt2 · · · μtk−a−1 (A3)
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with the primed sum being over all t j’s �= i obeying 1 � t1 <

t2 < · · · < tk−a−1 � k. The following lemma is an extension
of a result in Ref. [9].

Lemma 2. Let μ1 > μ2 > · · · > μk � 0. Suppose 0 � i <

k. Then

Ca+1,i =
{−1 if a = i,

0 otherwise, (A4)

whereas if i � k, then{
C1i � 0 and C2i < 0 if k is even,
C1i � 0 and C2i > 0 if k is odd. (A5)

Proof. Using the same argument as in the proof of Lemma
1, I conclude that Ca+1,i is a homogeneous polynomial of
degree � i − a.

Consider the case of i � a so that Ca+1,i is a constant. By
putting μt = δt for all t and then taking the limit δ → 0+, it is
straightforward to check that Ca+1,i = 0 if i < a and Ca+1,i =
−1 if i = a.

It remains to consider the case of a < i < k. I first consider
the subcase of a = 0. Here C1i contains a common factor of∏k

t=1 μt , which is of degree k > i. Therefore, I could write∏k
t=1 μt = C1iF where F is a homogeneous polynomial of

degree � i. As a consequence, either C1i or F contains μ1

and hence all μt ’s. Thus, C1i must be a constant for i < k. By
setting μk = 0, I know that C1i = 0.

Next, I consider the subcase of a = 1. Since i > 1, from
the findings of the first subcase, I arrive at

C2i = (−1)k−1

i!

k∑
t=1

T1μ
i−1
t − (∏k

�=1 μ�

)
μi−2

t∏
� �=t (μt − μ�)

= (−1)k−1T1

i!

k∑
t=1

μi−1
t∏

� �=t (μt − μ�)
− C1,i−1

= (−1)k−1T1

i!

k∑
t=1

μi−1
t∏

� �=t (μt − μ�)
, (A6)

where T1 is the symmetric polynomial

T1 =
k∑

t=1

μ1μ2 · · ·μt−1μt+1 · · ·μk . (A7)

By Lemma 1, I find that C2i = 0 as i < k.
The third subcase I consider is a = 2. As i > 2,

C3i = 2(−1)k

i!

k∑
t=1

T2μ
i−1
t − T1μ

i−2
t + (∏k

�=1 μ�

)
μi−3

t∏
� �=t (μt − μ�)

,

(A8)
where

T2 =
∑′

μt1μt2 · · · μtk−2 (A9)

with the primed sum over all t j’s with 1 � t1 < t2 < · · · <

tk−2 � k. By Lemma 1, I get C3i = 0 as i < k.
By induction, the proof of the subcase a = 2 can be ex-

tended to show the validity for all a � k and a < i < k. This
shows the validity of Eq. (A4).

The proof of Eq. (A5) can be found in Ref. [9]. I reproduce
it here for easy reference. By expanding the 1/(μ1 − μt )’s in
Cai as a power series of μ1 with all the other μt ’s fixed, I obtain

C1i = (−1)k

i!

(
k∏

t=1

μt

)[
μi−k

1

k∏
r=2

(
1 + μr

μ1
+ μ2

r

μ2
1

+ · · ·
)

+ f (μ2, μ3, · · · , μk )

]
+ O

(
1

μ1

)
(A10)

for some function f independent of μ1. As C1i is a homoge-
neous polynomial of degree � i, by equating terms in powers
of μ1, I get

C1i = (−1)k

i!

(
k∏

t=1

μt

) ∑
t1+t2+ . . . +tk=i − k,

t1, t2, . . . , tk � 0

μ
t1
1 μ

t2
2 · · ·μtk

k (A11)

for all i � k. As all μt ’s are non-negative, C1i � 0 if k is even
and C1i � 0 if k is odd.

By the same argument, I expand all the 1/(μ1 − μt ) terms
in C2i in powers of μ1 to get

C2i = (−1)k−1T1

i!

∑
t1 + t2 + · · · + tk = i − k

t1 > 0, t2, . . . , tk � 0

μ
t1
1 μ

t2
2 · · · μtk

k

+ f ′(μ2, . . . , μk ) (A12)

for some function f ′ independent of μ1. By recursively ex-
panding Eq. (A2) in powers of μ2 but with μ1 set to zero,
and then in powers of μ3 with μ1, μ2 set to zero and so on,
I conclude that whenever i � k, then C2i < 0 if k is even and
C2i > 0 if k is odd. This completes the proof. �

Remark 1. By the same technique of expanding each factor
of 1/(μ1 − μt ) in Ca+1,i in powers of μ1, it is straightforward
to show that if i � k and j � 1, then C2 j+1,i � 0 and C2 j,i �
0 provided that k is even. And C2 j+1,i � 0 and C2 j,i � 0
provided that k is odd.

The following theorem is an extension of a similar result
reported in Ref. [9] by means of an explicit expression of the
inverse of a Vandermonde matrix.

Theorem 1. Let μ1 > μ2 > · · · > μk � 0 and μ̃1 > μ̃2 >

· · · > μ̃k̃ � 0. Suppose

+∞∑
a,b=0

μa
i

a!

μ̃b
j

b!
Aab ≡

+∞∑
a,b=0

Ma+1,iM̃b+1, jAab = Bi j (A13)

for all i = 1, 2, . . . , k and j = 1, 2, . . . , k̃. Then,

Aab =
k∑

i=1

k̃∑
j=1

(M−1)a+1,i(M̃
−1)b+1, jBi j

+
+∞∑
I=k

Ca+1,I AIb +
+∞∑
J=k̃

C̃b+1,JAaJ

−
+∞∑
I=k

+∞∑
J=k̃

Ca+1,IC̃b+1,JAIJ (A14)
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for all a = 0, 1, . . . , k − 1 and b = 0, 1, . . . , k̃ − 1. Here

(M−1)a+1,i = (−1)k−a−1a!Sia∏
t �=i(μi − μt )

(A15)

and similarly for (M̃−1)b+1, j .
Proof. Note that for any fixed a = 0, 1, . . . , k − 1 and b =

0, 1, . . . , k̃ − 1,

+∞∑
b=0

μ̃b
j

b!
Aab =

k∑
i=1

(M−1)a+1,i

(
Bi j −

+∞∑
b=0

+∞∑
I=k

μI
i

I!

μ̃b
j

b!
AIb

)
.

(A16)
Here M−1 is the inverse of the k × k matrix (Ma+1,i )k

a+1,i=1.
From Ref. [9], the matrix elements of M−1 are related to the
inverse of a certain Vandermonde matrix and are given by
the expression immediately after Eq. (A14). From Lemma 2,
Eq. (A16) can be rewritten as

+∞∑
b=0

μ̃b
j

b!
Aab =

k∑
a=1

(M−1)a+1,iBi j +
+∞∑
b=0

+∞∑
I=k

μ̃b
j

b!
Ca+1,I AIb.

(A17)
By repeating the above procedure again, I find that for any
fixed a = 0, 1, . . . , k − 1 and b = 0, 1, . . . , k̃ − 1,

Aab =
k∑

i=1

k̃∑
j=1

(M−1)a+1,i(M̃
−1)b+1, jBi j

−
+∞∑
I=k

+∞∑
t̃=0

Ca+1,IC̃b+1,t̃ AIt̃ +
+∞∑
J=k̃

C̃b+1,JAaJ . (A18)

Here the k̃ × k̃ matrix C̃ is defined in exactly the same way
as the k × k matrix C except that the variables k and μt are

replaced by k̃ and the corresponding μ̃t . Substituting Eq. (A4)
into the above equation gives Eq. (A14). �

Applying Lemma 2 and Theorem 1, in particular inequality
(A5), I arrive at the following two corollaries.

Corollary 1. Suppose the conditions stated in Theorem 1
are satisfied. Suppose further that Aab = 0 for all b > 0 and
a � 0, and Aa0 ∈ [0, 1] for all a. Then

A00 �
k∑

i=1

(M−1)1iBi0. (A19)

Corollary 2. Suppose the conditions stated in Theorem 1
are satisfied. Suppose further that Aab ∈ [0, 1] for all a, b.
Then

A00 �
k∑

i=1

k̃∑
j=1

(M−1)1i(M̃
−1)1 jBi j −

+∞∑
I=k

+∞∑
J=k̃

C1IC̃1J (A20a)

and

A11 �
k∑

i=1

k̃∑
j=1

(M−1)2i(M̃
−1)2 jBi j (A20b)

provided both k and k̃ are even. Furthermore,

A11 �
k∑

i=1

k̃∑
j=1

(M−1)2i(M̃
−1)2 jBi j −

+∞∑
I=k

+∞∑
J=k̃

C2IC̃2J (A20c)

if both k and k̃ are odd.
Remark 2. Clearly, each of the bounds in the above

corollary are tight. Although the conditions for attaining the
bound in inequality (A20b) are not compatible with those for
attaining the bounds in inequalities (A20a) and (A20c), the
way I use these inequalities in Secs. IV and V ensures that it
is possible to attain all these bounds in the key rate formula.
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