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We study general 2D fermionic topological orders enriched by the mirror symmetry with M2 = 1. It is
known that certain mirror symmetry enriched fermionic topological orders (mirror SETs) are anomalous, in
the sense that they cannot be realized in strict two dimensions but have to live on the surface of 3D topological
crystalline superconductors. Mirror anomaly, or equivalently 3D topological crystalline superconductor, has a
Z16 classification. In this work, we derive an explicit expression, namely, an anomaly indicator, for the Z16

mirror anomaly for general fermionic mirror SETs. This derivation is based on the recently developed folding
approach, originally proposed for bosonic topological orders. We generalize it to fermion systems. Through this
approach, we establish a direct bulk-boundary correspondence between surface fermionic topological orders
and 3D bulk topological crystalline superconductors. In addition, during the derivation, we obtain some general
properties of fermionic topological orders as well as a few constraints on the properties of fermionic mirror
SETs.
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I. INTRODUCTION

The discovery of three-dimensional (3D) time-reversal
symmetric topological insulators and topological supercon-
ductors has attracted tremendous attention in recent years,
both experimentally and theoretically [1,2]. They are promi-
nent examples of the so-called symmetry-protected topolog-
ical (SPT) phases, which are gapped short-range entangled
states of matter that preserve certain global symmetries [3,4].
Different SPT phases can be obtained by varying symmetries
and dimensions.

In SPT phases, one of the key features is that the boundary
cannot be trivially gapped. In one and two dimensions, it
must be either gapless or breaking some symmetries [5–8].
In three and higher dimensions, an additional possibility
arises: the boundary can host a topological order that fully
respects the symmetries [9]. The relation between properties
of the bulk and boundary is famously known as bulk-boundary
correspondence [10,11]. This correspondence is many-to-one:
different boundary states may correspond to the same SPT
bulk. For example, the surface of a usual 3D topological
insulator can host a single Dirac cone, as well as certain time-
reversal symmetric non-Abelian topological orders [12–16].
Symmetric surface topological orders have been studied for
many other SPT phases recently [9,17–24].
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A closely related concept is the so-called quantum
anomaly, more precisely the ’t Hooft anomaly, in quantum
field theories [25,26]. It is well known that some quantum field
theory cannot be regularized (e.g., by a lattice realization) in
a way that respects its global symmetries. Such symmetries
are said to be anomalous. However, symmetric regularization
is possible if the field theory is put on the boundary of a one
dimension higher bulk, such that the bulk cancels the anomaly
in the field theory, which is called anomaly inflow [27,28]. To
have anomaly cancellation, it turns out that the bulk must be
in certain SPT phase associated with the same symmetries.
In fact, the ’t Hooft anomalies in d dimensional field theories
with a symmetry group G have a one-to-one correspondence
to the d + 1 dimensional SPT phases of the same group.
This implies that anomaly is a topological property of field
theories. If the field theory is anomaly-free, it means that
the corresponding bulk is a trivial SPT. That being said, we
see that establishing bulk-boundary correspondence for SPT
phases is equivalent to identifying the ’t Hooft anomaly in
the quantum field theory on the boundary. In particular, when
the boundary hosts a topological order, it is equivalent to
identifying anomaly in a topological quantum field theory.

In this work, we perform a systematic study on quantum
anomaly of the mirror symmetry M in 2D general fermionic
topological orders. That is, we study the bulk-boundary cor-
respondence for 3D fermionic SPT phases with mirror sym-
metry only, namely topological crystalline superconductors
(TCSCs), under the assumption that the surface is a mirror-
symmetric topological order. A few reasons that we focus
on this case are as follows. First, quantum anomalies in
bosonic topological orders in the presence of symmetries,
i.e., symmetry-enriched topological (SET) phases, have been
widely studied recently [19,29–35]. However, the fermionic
counterparts are much less studied. In fact, even in the absence
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of symmetries, fermionic topological orders are not com-
pletely understood. Several recent developments on fermionic
SETs can be found in Refs. [36,37]. Second, there is a
powerful method to study ’t Hooft anomalies associated with
internal unitary symmetries in SET phases: one couples the
system to a background or dynamical gauge field and study
topological properties of symmetry defects in the gauged
theory [8,19,34,35]. If an SET is anomalous, topological
properties of symmetry defects will display certain inconsis-
tency. The anomaly can be read out from the inconsistency.
However, for spatial symmetries (e.g., mirror symmetry) and
antiunitary symmetries (e.g., time-reversal symmetry), there
are no corresponding gauge fields. So, we need to look for
other methods to analyze anomalies. Some recent works on
anomalies of spatial and time-reversal symmetries can be
found in Refs. [38–46]. We will study mirror anomaly fol-
lowing the recently developed folding approach [45], which
will be discussed in detail in the main text. It was originally
introduced for bosonic topological orders. In this work, we
extend the folding approach to fermionic topological orders.

The mirror symmetry in those 3D TCSCs that we study
satisfies M2 = 1. In the noninteracting limit, they have a Z
classification, characterized by integer copies of Majorana
cones on the surface. Strong interaction reduces the classifica-
tion to Z16, which means that mirror anomaly in 2D fermionic
topological orders is classified by Z16 too [16,22,47,48]. We
note that there are also 3D fermion systems with M2 = Pf ,
where Pf is the fermion parity—a symmetry that must be pre-
served in all fermion systems. However, there are no nontrivial
3D TCSCs in this case, i.e., all 2D fermionic topological
orders with M2 = Pf are free from ’t Hooft anomaly of
the mirror symmetry. Therefore, we only study the case that
M2 = 1.

We show that mirror anomaly in any 2D fermionic topo-
logical orders can be computed through the following explicit
formula

ηM = 1√
2DC

∑
a∈C

daθaμa, (1)

where ηM = 1, eiπ/8, . . . , ei15π/8, with these sixteen values
indicating the Z16 classification of mirror anomaly. We call
the quantity ηM an anomaly indicator. A mirror symmetry
enriched fermionic topological order is anomaly-free if and
only if ηM = 1. The summation in Eq. (1) is over all anyons
a in a fermionic topological order denoted by C. The quantity
da is the quantum dimension of anyon a, DC = √∑

a d2
a is the

total quantum dimension, θa is the topological spin of a, and
μa = 0,±1 is a quantity that characterizes mirror symmetry
fractionalization (see definitions in Sec. III A).

The main results of this work are the explicit derivation
of the anomaly indicator ηM in Eq. (1) and generalization
of the folding approach [45] to fermionic topological orders.
During the derivation of ηM, we also obtain some general
properties of fermionic topological orders. We will see that
our derivation is a direct establishment of bulk-boundary
correspondence. In fact, ηM can be interpreted as a bulk
quantity describing the bulk of 3D TCSCs, while all quantities
on the right-hand side of (1) describe properties of the surface
topological order. Hence, Eq. (1) not only provides a simple

way to compute mirror anomaly, but also is a quantitative
bulk-boundary correspondence.

We point out that the expression (1) is totally expected.
Reference [41] conjectured an anomaly indicator ηT for time-
reversal symmetric fermionic topological orders, with T 2 =
Pf . Its explicit expression is given by

ηT = 1√
2DC

∑
a∈C

daθaT̃ 2
a , (2)

where T̃ 2
a = 0,±1 describes time-reversal properties of

anyon a (e.g., whether it carries a Kramers degeneracy, etc;
see Ref. [41] for details). This conjecture was proved in
Ref. [42] through an analysis based on continuum topolog-
ical quantum field theory. It is obvious that (1) and (2) are
very similar. This similarity is expected from the topologi-
cal crystalline equivalence principle [49], which states that
classifications of SPT/SET phases are equivalent for inter-
nal (such as time-reversal) and crystalline (such as mirror)
symmetries. It is also expected from the similarity between
time-reversal and mirror anomalies in the bosonic systems
[41,45]. We believe the proof of Ref. [42] can be easily
adjusted to mirror-symmetric topological orders, as in the
continuum time-reversal and mirror reflection are related by
Lorentz transformations. Compared to the proof of Ref. [42],
the novelty of our derivation of (1) includes two aspects:
(i) it establishes a direct bulk-boundary correspondence and
(ii) it uses algebraic properties of fermionic SETs, rather than
a field theoretical analysis.

The rest of the paper is organized as follows. In Sec. II A,
we review the dimensional reduction description of 3D TC-
SCs, introduce the folding approach, and set up the main
system in Fig. 1(c) for the derivation of Eq. (1). In Sec. II B,
we give a bulk interpretation of ηM. In Sec. III, we describe
properties of mirror symmetric fermionic SETs as well as sev-
eral topological orders that will occur in the folding approach.
Next, we analyze properties of the gapped domain wall in
Fig. 1(c) through anyon condensation theory in Sec. IV. In
Sec. V, we derive the expression (1) of the anomaly indicator.
We describe several explicit examples in Sec. VI. We conclude
in Sec. VII. In Appendix, we discuss some general properties
of fermionic topological orders after the fermion parity is
gauged.

II. GENERAL PICTURE

In this section, we discuss the general physical picture
behind the folding approach [45] in the context of 3D TCSCs.
In particular, we give a bulk interpretation of the anomaly
indicator ηM.

A. Dimensional reduction and folding

3D TCSCs are topologically nontrivial because they are
short-range entangled and the entanglement cannot be re-
moved by finite-depth local unitary transformations [50]
(LUTs) in a fully symmetric way without closing the energy
gap. Nevertheless, if we ignore the mirror symmetry, entan-
glement can be fully removed by finite-depth LUTs and the
ground state can be smoothly deformed into a trivial state.
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FIG. 1. Dimensional reduction and folding. (a) Short-range entanglement (light blue) in the disjoint union R
⋃

R̄ can be removed by
applying a mirror-symmetric local unitary transformation U · M−1UM. (b) By enlarging R and R̄, only entanglement on and near the mirror
plane (light red) and the surface (dark blue) remains, giving rise to an inverted-T-like junction decoupled from other degrees of freedom. The
two wings of the inverted-T-like junction are mirror images of each other, hosting topological orders with opposite chiralities. Arrows represent
chiralities. (c) We fold the two wings and obtain a double-layer system. The domain wall between the double-layer system and mirror plane is
gapped.

Below we review the physics of 3D TCSCs, following the
dimensional reduction approach of Ref. [51].

Imagine a 3D TCSC with the mirror plane in the middle
[Fig. 1(a)]. Let R be a region inside the bulk on the left-
hand side of the mirror plane, and R̄ be its mirror image.
The two regions do not overlap. Since the bulk is short-
range entangled, we can apply a LUT U on region R and
remove all the entanglement inside. To make it symmetric,
we also apply M−1UM on region R̄, where M denotes
the unitary operator of mirror symmetry. Indeed, the product
U · M−1UM respects the mirror symmetry and removes the
short-range entanglement in the regions R and R̄. One can
continue to remove entanglement by enlarging the regions
R and R̄. Finally, all entanglement in the bulk is removed,
only except near the mirror plane [Fig. 1(b)]. On and near
the mirror plane, R and R̄ overlap, so the above LUT does
not work. This leads to a dimensional reduction: the bulk
physics is captured by the effective 2D system on (and near)
the mirror plane. Moreover, the mirror symmetry is effectively
an internal Z2 symmetry on the mirror plane, making it
easier to be analyzed. Accordingly, the effective system is
a 2D invertible topological order (iTO) with an internal Z2

symmetry. We will discuss properties of the effective system
below in Sec. II B.

Next we consider a TCSC in the presence of a surface. We
assume that the surface is mirror-symmetric and topologically
ordered throughout the paper. In this case, the surface is long-
range entangled, i.e., entanglement cannot be removed even
in the absence of any symmetry. Nevertheless, we can still
apply mirror-symmetric LUTs as above, both in the bulk and
on the surface. While not being able to turn the surface into the
trivial state, we can deform distinct mirror SETs into almost
the same state, for a fixed surface topological order. The only
exception is near the intersection line of the mirror plane and
the surface, where distinct mirror SETs can not be deformed
into the same. Then, we obtain an inverted-T-like junction
[Fig. 1(b)], which contains all the entanglement and decouples
from other degrees of freedom. We see that all information of
mirror SETs is transformed onto the intersection line between
the surface and the mirror plane. Accordingly, the intersection
line is the key to mirror SETs. It is worth mentioning that
the left and right wings of the inverted-T-like junction have
opposite chiralities, as they are mirror partners of each other.

Therefore, it is enough to consider the inverted-T-like
junction only. Ref. [45] proposes to fold the two wings of
the junction and turn it into Fig. 1(c). Then, the left-hand
side is a double-layer topological order, and the right-hand
side is the original mirror plane hosting a Z2 symmetric
invertible topological order. The whole system in Fig. 1(c),
including the domain wall, is energetically gapped. Upon
folding, the mirror symmetry, which originally exchanges the
two surface wings, now becomes a layer-exchange symmetry
on the double-layer system. Accordingly, the whole system
in Fig. 1(c) also has an internal Z2 symmetry. From now
on, we will denote this internal symmetry as Zex

2 for clarity
(for the iTO, we still refer it as Z2 sometimes when it
does not cause any confusion). The advantage of turning the
mirror symmetry into an internal symmetry is that we can
now gauge it and study mirror-SETs as if they are internal
SETs.

To sum up, through dimensional reduction and folding, we
obtain the main setup, shown in Fig. 1(c). It contains three
parts: (i) the double-layer topological order on the left-hand
side, (ii) the invertible topological order on the right-hand
side, and (iii) a gapped domain between them. All parts are
symmetric under Zex

2 . The double-layer topological order is
universal, in the sense that it is the same for all mirror SETs,
given a fixed intrinsic topological order [45]. Properties of the
double-layer system will be discussed in detail in Sec. III.
As discussed above, all information about mirror SETs are
encoded at the domain wall. In Sec. IV, we will use anyon
condensation theory to study the domain wall. Properties of
the domain wall are the keys to understand mirror symmetry
fractionalization. Finally, the invertible topological order cor-
responds to the bulk TCSC and the anomaly of the surface
SETs. We discuss the invertible topological order(iTO) below
in Sec. II B.

Two comments are in order. First, for purely 2D mirror
SETs, we can think of them as living on the surface of a trivial
mirror-symmetric 3D system. Then, the above analysis still
holds. The effective 2D system on the mirror plane must be
in a trivial phase. Second, in this work, we have focused the
mirror symmetry with M2 = 1. When M2 = Pf , it is known
that there is no nontrivial 3D TCSCs. This can also be seen
from dimensional reduction. The bulk will be reduced to a 2D
system with Z f

4 internal symmetry, which does not support
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FIG. 2. Adjoining operation by placing px ± ipy superconduc-
tors on the two sides of the mirror plane to the inverted-T-like junc-
tion in Fig. 1(b). For simplicity, only front views of the 3D system are
shown. Arrows correspond to chirality. Two lines connected by a blue
stripe correspond to a pair of px + ipy and px − ipy superconductors
that can be removed by finite depth LUTs. Existence of the two
paths, (a)–(c) and (a), (d), (e), shows that the states in (c) and (e)
are topologically equivalent. We see that (e) has two extra px + ipy

superconductors on the two sides of the mirror plane, compared to
(c).

any nontrivial iTO after taking care of adjoining operations
[51,52].

B. Bulk interpretation of ηM

As discussed in the introduction, ηM in Eq. (1) is a
bulk quantity that characterizes 3D TCSCs. Ref. [42] gives
an interpretation of ηM through topological quantum field
theories that are defined on (3+1)D unoriented space-time
manifolds. Here, we give an alternative interpretation through
the invertible topological order in Fig. 1(c). More explicitly,
we give the quantitative definition in Eq. (10).

Before giving our interpretation, we discuss a subtlety on
the equivalence between Z2-symmetric iTOs and 3D TCSCs.
According to Ref. [53], 2D iTOs with an internal Z2 sym-
metry (an overall Z f

2 × Z2 symmetry group) are classified by
Z × Z8. On the other hand, 3D TCSCs have a Z16 classifi-
cation. To resolve the mismatch, one needs to consider the
so-called adjoining operation [51], shown in Fig. 2. It shows
that through proper LUTs, placing two px + ipy superconduc-
tors (or px − ipy superconductors) symmetrically on the two
sides of the mirror plane is topologically equivalent to doing
nothing. Accordingly, under the adjoining operation, certain
nontrivial phases when viewed as authentic 2D iTOs become
trivial when viewed as effective 2D phases that are dimen-
sionally reduced from 3D TCSCs. That is, the classification is
reduced.

To see why it is reduced to Z16, we take a close look at
the Z × Z8 classification of the Z2-symmetric iTOs. The root
state for the Z classification is the px + ipy superconductor,
on which the Z2 symmetry acts trivially. The root state for
the Z8 classification is a nonchiral SPT state, which can be
obtained by simply stacking a px + ipy superconductor with a
px − ipy superconductor. The edge of the second root state can
be described by a pair of counter-propagating chiral Majorana
fermions

H = iψL∂xψL − iψR∂xψR, (3)

where ψ†
σ = ψσ , with σ = L, R. Here, L and R stand for left-

and right-moving modes. The Z2 symmetry, which we denote
as x, acts on the fermions as follows:

x : ψL → ψL, ψR → −ψR. (4)

That is, ψL is neutral while ψR is charged. A general phase
in the Z × Z8 classification can then be labeled by an integer
pair (μ1, μ2), where μ2 is defined only modulo 8. The two
integers count the numbers of root states in a general phase.
Since px + ipy has a chiral central charge c = 1/2, a general
phase indexed by (μ1, μ2) shall have a central charge c =
μ1/2.

Now we analyze how precisely the adjoining operation
modifies the classification of 3D TCSCs. To do that, we
imagine the mirror plane has an edge. Under the adjoining op-
eration, the edge acquires two additional right-moving chiral
Majorana fermions, ψR1 and ψR2. Under the mirror symmetry
action, we have

M : ψR1 ↔ ψR2. (5)

Let us perform a unitary transformation by defining

ψ̃R1 = 1√
2

(ψR1 + ψR2),

ψ̃R2 = 1√
2

(ψR1 − ψR2). (6)

The two new fermions transform as ψ̃R1 → ψ̃R1, and ψ̃R1 →
−ψ̃R1. Then, it is not hard to see that this edge corresponds
to (μ1, μ2) = (2, 1). Accordingly, (μ1, μ2) = (2, 1) corre-
sponds to a trivial state in the classification of 3D TCSCs. Let
us define the index

ν = μ1 − 2μ2. (7)

It is invariant under adjoining operations. One can see that ν

is distinct up to modulo 16, giving rise to a Z16 classification
of 3D TCSCs.

With the above understanding, we now define ηM through
properties of 2D Z2-symmetric iTOs. According to Ref. [8],
SPTs and iTOs with internal symmetries can be studied by
gauging the symmetries and analyzing the braiding statistics
between the symmetry fluxes. In our case, the total symmetry
is Z f

2 × Z2. The states in the Z classification are character-
ized by the central charge c = μ1/2 of its edge theory. The
topological spin of any fermion parity flux w is

θw = ei2πμ1/16. (8)

Note that there may be many fermion parity fluxes, but
all have the same topological spin. The states in the Z8
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classification are characterized by

θ2
x = ei2πμ2/8, (9)

where x denotes a Z2 flux. The topological spin θx itself
is not a topological invariant because different Z2 fluxes
have different topological spins, but they only differ by a
minus sign [53,54]. Accordingly, the squared quantity (θx )2 is
insensitive to the choice of flux. It is an topological invariant.
More detailed discussion on gauged iTOs can be found in
Sec. IV C 1.

Finally we consider the index ν that labels the Z16 classi-
fication of 3D TCSCs. We define ηM = ei2πν/16. Then, with
Eqs. (7)–(9), we obtain the following relation:

ηM = θw(θ∗
x )2. (10)

That is, the quantity ηM can be interpreted as a special
combination of the topological spins of a fermion parity flux
and a Z2 flux. Equation (10) serves as the definition of ηM. It
is the starting point to derive the formula (1).

III. DOUBLE-LAYER TOPOLOGICAL ORDER

In this section, we study properties of the double-layer
topological order in Fig. 1(c). The main strategy is to gauge
the Z f

2 × Zex
2 symmetry and study properties of the symmetry

fluxes. Table I summarizes the notation and convention that
will be used in the following discussions.

A. Mirror SETs

To start, we describe several quantities that characterize the
mirror-SETs before folding. Quantities for both topological
and symmetry properties will be discussed.

1. Topological properties

General algebraic theory of anyons can be found in
Ref. [55]. Here, we mention a few basic properties. Let us
denote the surface topological order by C, and let |C| be
the number of anyons it contains. We will use 1, a, b, . . . to
denote the anyons, where 1 is the vacuum anyon representing
local bosonic excitations. Anyons satisfy the fusion rules a ×
b = ∑

c Nc
abc, where Nc

ab is called the fusion coefficient. In
particular, for each anyon a, there exists a unique antiparticle
ā, such that N1

aā = 1. From the fusion and braiding properties
of anyons, one can also define other topological quantities, in-
cluding quantum dimension da, topological spin θa, the matri-
ces T and S, etc. When da = 1, anyon a is said to be Abelian;
otherwise, a is non-Abelian. The quantum dimension satisfies
dadb = ∑

c Nc
abdc. The quantity DC = √∑

a d2
a is called the

total quantum dimension of C. In the case of Abelian anyons,
topological spin θa is equivalent to the phase obtained by
exchanging two identical a anyons; for non-Abelian anyons,
θa has only an algebraic definition (see Ref. [55]). We have
θā = θa. The matrices T and S are of size |C| × |C|. They are
defined by

Ta,b = θaδa,b,

Sa,b = 1

DC

∑
c

Nc
ab̄

θc

θaθb
dc. (11)

For topological orders whose constituent particles are bosons,
an important property is that S is a unitary matrix, i.e., S†S =
1. This property is called the modularity of bosonic topolog-
ical orders. Modularity guarantees that 1 is the only particle
that has trivial mutual braiding statistics, or is “transparent”,
with respect to all anyons in the system. Mathematically
speaking, a bosonic topological order is equivalent to a unitary
modular tensor category (UMTC).

In our case, the constituent particles are fermions. The
significant difference in fermion systems is that in addition
to 1, there always exists another local excitation, the fermion
f . Like 1, the fermion f is also transparent to all anyons.
That is,

M f ,a = 1, (12)

for all a ∈ C, where M f ,a denotes the mutual statistics between
f and a. In general, mutual statistics depends on the fusion
channel, but not if one of the two anyons is Abelian. The
existence of f makes the S matrix in fermionic topological or-
ders not unitary and thereby fermionic topological orders are
not modular. Mathematically speaking, fermionic topological
orders are described by unitary pre-modular tensor categories
[56–58]. Another feature of fermionic topological orders is
that all anyons come in pairs, a and a f , where a × f = a f .
That is,

C = {1, f︸︷︷︸
[1]

, a, a f︸ ︷︷ ︸
[a]

, b, b f︸︷︷︸
[b]

, . . . }, (13)

where we use [a] to denote the pair {a, a f } for later conve-
nience. Note that [a] = [a f ]. The topological spins satisfy
θa f = −θa. In some special cases, we can separate a fermionic
topological order C into a “direct product” of {1, f } and
bosonic topological order Cbto, in the sense that all fusion
and braiding properties can be separated. We will denote it
as C = {1, f } � Cbto. One may physically think of the symbol
“�” as stacking. Accordingly, C is a simple stack of the trivial
fermionic topological order and a bosonic topological order
Cbto. However, generally speaking, such separation may not
be possible. We will refer those topological orders that cannot
be separated as intrinsically fermionic topological orders.

2. Symmetry properties

The surface topological order of 3D TCSCs preserves the
mirror symmetry M, which satisfies M2 = 1. In general, the
interplay between symmetry and topological order in SETs
includes three layers of data [34]: (i) anyon permutation by
symmetries, (ii) symmetry fractionalization on anyons, and
(iii) stacking of 2D SPT phases. Below we describe them one
by one for mirror SETs.

First, anyon permutation by the mirror symmetry is
described by a group homomorphism ρ : ZM

2 → Aut∗(C),
where ZM

2 = {1,M} is the mirror symmetry group and
Aut∗(C) is the group of autoequivalences and antiautoequiv-
alences of the topological order C. An autoequivalence is a
one-to-one map from C to itself such that all the fusion and
braiding quantities are preserved. An antiautoequivalence is a
one-to-one map from C to itself such that all the fusion and
braiding quantities are preserved with complex conjugation.
The mirror symmetry M reserves the spatial orientation, so
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FIG. 3. Defining mirror symmetry fractionalization through the
mirror eigenvalue μa of a mirror-symmetric two-anyon state
|a, ρm(a)〉. Such two-anyon state is physically possible only if a and
ρm(a) fuse to local excitations, i.e., 1 and f .

ρ(M) must be an antiautoequivalence. At the same time,
ρ(1) must be the trivial autoequivalence, i.e., ρ(1) = 1. For
simplicity, we will use the short-hand notation ρ(M) = ρm.
Here, we list a few useful properties that ρm should satisfy.
To respect M2 = 1, we have ρ2

m = 1. That is, permuting
any anyon a twice is trivial, ρm(ρm(a)) = a. As an antiau-
toequivalence, we have Nρm (c)

ρm (a)ρm (b) = Nc
ab and θρm (a) = θ∗

a . In

addition, ρm(ā) = ρm(a). We will see later that it is convenient
to define an antiautoequivalence ρ̄m by ρ̄m(a) = ρm(a). In
fermionic topological orders, the two local excitations cannot
be permuted by mirror symmetry, so we must have ρm(1) = 1
and ρm( f ) = f .

Second, to characterize fractionalization of the mirror sym-
metry, one can consider a two-anyon state |a, ρm(a)〉. The two
anyons a and ρm(a) are symmetrically located on the two sides
of the mirror axis (Fig. 3). This state can be made mirror
symmetric by locally adjusting the wave function near a and
ρm(a). So, it has a well-defined mirror eigenvalue μa = ±1:

M|a, ρm(a)〉 = μa|a, ρm(a)〉. (14)

It was shown in Ref. [59] that μa cannot be changed in a
given SET and so it is topologically robust. Note that the
state |a, ρm(a)〉 is physically possible only if the two anyons
fuse to local excitations, i.e., 1 and f . That is, we have either
ρm(a) = ā or ρm(a) = ā f . For later convenience, we define

ξa =
⎧⎨
⎩

1, if ρm(a) = ā,

−1, if ρm(a) = ā f ,
0, otherwise,

(15)

and

μa = 0, if ξa = 0. (16)

Since θρm (a) = θ∗
a , we must have θa = ±1 if ρm(a) = ā, and

θa = ±i if ρm(a) = ā f . The quantity μa = ±1 for ρm(a) =
ā f is analogous to the “T 2

a = ±i” fermionic Kramers’ degen-
eracy, first discussed in Refs. [21,22] for time-reversal SETs.
Two special cases of μa are

μ1 = 1, μ f = −1, (17)

where the latter follows from the anticommutation relation of
fermion creation operators. One of the constraints on μa is
that if a, b, and c all have well-defined mirror eigenvalues
(μa �= 0) and Nc

ab �= 0, we must have

μc = μaμb. (18)

Then, μa f = −μa since μ f = −1. Another constraint is that
for Abelian anyons, if b × ρm(b) = a, we have ξa = 1 and

μa = θa. (19)

A proof of the latter constraint can be found in
Refs. [12,13,15,34,60] in the context of time-reversal SETs.
The complete set of constraints is not known yet. Never-
theless, {μa} together with ρm seems enough to characterize
mirror SETs, i.e., no other quantities are needed. At least, they
are enough to determine the anomaly indicator in Eq. (1).

Finally, we can also stack mirror-symmetric SPTs. It is
known that 2D fermionic SPT phases with M2 = 1 have a
Z2 classification. (Accordingly to the crystalline equivalence
principle [49], the nontrivial phase corresponds to 2D T 2 =
−1 topological superconductors.) However, stacking SPTs
will not affect our discussion of mirror anomalies, so we will
not look into it.

In this work, we always assume that a valid ρm is given.
Generally speaking, there are obstructions to certain seem-
ingly valid ρm. In bosonic systems, there is the so-called
H3 obstruction [34]. In fermionic cases, it may be more
complicated. We assume obstructions on ρm do not occur. We
focus on the constraints on the data {μ(a)}, and aim to derive
the anomaly indicator ηM with a valid ρm.

B. Gauging Z f
2 before folding

As discussed in Sec. II A, to study mirror SETs, our
strategy is to perform proper LUTs and then fold the surface
along the mirror axis as in Fig. 1. The folded double-layer
topological order has a Z f

2 × Zex
2 internal symmetry, so we

can further analyze it by gauging the symmetries. However,
we find it more convenient to gauge the fermion parity Z f

2
before folding. Therefore, here we discuss properties of the
mirror SETs after gauging Z f

2 . We will see later that gauging
Z f

2 before and after folding work equally well for our purpose.
To gauge Z f

2 , we couple the system to a dynamical gauge
field through the minimal coupling procedure (see Refs. [8,61]
for technical details). After gauging, new excitations, namely
fermion parity vortices, are introduced into the system. We
denote the enlarged topological order as B. We list a few prop-
erties of B below; more can be found, e.g., in Refs. [57,58]. It
contains the original anyons in C and the new fermion-parity
vortices,

B = {1, f , a, a f , . . .︸ ︷︷ ︸
C

, v1, v1 f , . . .︸ ︷︷ ︸
non-Majorana

, v j, v j+1, . . .︸ ︷︷ ︸
Majorana

}. (20)

We distinguish two types of vortices, “Majorana type” and
“non-Majorana type”. Non-Majorana-type vortices come in
pairs vi and vi f , while Majorana-type vortices come alone.
This distinction is characterized by the fusion rule between
vortex v and f :

v × f =
{
v, Majorana type,
v f , non-Majorana type. (21)

For non-Majorana vortices, we have θv = θv f . The topological
order B is modular, i.e., it should be viewed as a bosonic
topological order. The fermion f is not transparent any more
after gauging Z f

2 . In particular, its mutual statistics with
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respect to any vortex is given by

M f ,v = −1, (22)

which is essentially the Aharonov-Bohm phase in Z2 gauge
theories. Another property is that∑

a∈C
d2

a =
∑
v∈C̄

d2
v , (23)

where C̄ is the complement of C in B. Accordingly, the total
quantum dimension DB = √

2DC .
Like in C, we use the notation [v] to denote the pair

{v, v f } for non-Majorana-type vortices; for the Majorana
type, [v] contains only one vortex. Regardless of this, we
will simply say “[v] is a pair.” The total number of vortex
pairs is |C|/2, the same as pairs of the original anyons in C
[57]. Below, we will also use the notation v f for Majorana-
type vortices to simplify discussions. However, it should
be noted that v f and v are the same anyon for Majorana-
type vortices. We find it convenient to define the following
quantity:

σv =
{

1, if v is non-Majorana,√
2, if v is Majorana.

(24)

It is obvious that σv = σv f . With this, we define a matrix �,

�a,v = 2

σv

Sa,v, (25)

where a ∈ C, v ∈ C̄, and Sa,v is the S matrix of B. That is,
� is the off diagonal part of S between original anyons and
fermion-parity vortices, up to renormalization. An important
property of � is that∑

[a]

�a,v�
∗
a,v′ = δ[v],[v′],

∑
[v]

�a,v�
∗
a′,v = δa,a′ − δa f ,a′ , (26)

where the summation over [a] or [v] means that only one
anyon in each pair is summed over. We prove this property
in Appendix. The sum does not depend on which anyon in [a]
(and [v]) is summed over, due to the following properties:

�a,v = �a,v f = −�a f ,v. (27)

One may view � as a unitary matrix, if we only count [a] as its
index. We will assume that � is given in our later discussions.
In fact, one can show [62] that it is not hard to derive � by
analyzing the Verlinde algebra associated with C (see some
discussions in Appendix).

It is worth mentioning that B is not unique for a given
C (i.e., given all the fusion and braiding data). It is proven
that if there exists one,1 there always exists 16 distinct B’s
[57,58]. The sixteen possible B’s differ from each other in
their chiral central charge c by a multiple of 1/2, up to

1Whether there exists at least one modular extension B of a
fermionic topological order remains an open question. It is conjec-
tured to be true. In this work, we take the assumption that a valid B
always exists.

modulo 8 (as well as other properties such as topological
spin of vortices, etc). It is well known that c modulo 8 of a
UMTC can be computed from its fusion and braiding data as
follows

ei2πc/8 = 1

DB

∑
α∈B

d2
αθα. (28)

More explicitly, the sixteen possible B’s can be obtained by
gauging Z f

2 in C after it is stacked with multiple copies of
px + ipy superconductors. Stacking px + ipy superconductors
onto C does not change the fusion and braiding data, but
it does change the central charge c of its edge theory by
multiples of 1/2. (Note that c does not change after gauging
Z f

2 .) However, due to adjoining operations (Fig. 2), the central
charge c before gauging Z f

2 is fixed only up to modulo 1/2.
Accordingly, any of the sixteen B’s is a valid Z f

2 -gauged
theory of C. Nevertheless, we expect that the final result on
mirror anomaly does not depend on which B we take, since
the adjoining operation does not change the relevant physics
of mirror SETs.

Now we consider mirror symmetry properties of the Z f
2 -

gauged theory. From Fig. 1(b), we see that left and right
parts have opposite chiralities after proper LUTs. That is,
if only fusion and braiding statistics are considered, the left
and right parts both host a fermionic topological order C, but
they are associated with opposite chiral central charges, cr =
−cl . After gauging Z f

2 , cl and cr do not change. In general,
the left and right parts have different gauged topological
orders, which we denote by Bl and Br respectively. Both
Bl and Br are among the 16 possible Z f

2 -gauged theories
of C. Moreover, Br is determined once we fix Bl , since
cr = −cl and chiral central charge uniquely determines the
Z f

2 -gauged theory of C. In fact, due to the mirror symme-
try, Br must be the mirror image of Bl . Accordingly, we
can extend the domain of the map ρm from C to Bl . We
define

ρm : Bl → Br, (29)

such that if a ∈ C, we require ρm(a) ∈ C ⊂ Br to reduce to the
original map ρm.2 The property θρm (α) = θ∗

α still holds, and
it holds for every anyon α ∈ Bl including the fermion parity
vortices.

Note that ρm is a map between two topological or-
ders Bl and Br . In general, Br �= Bl , i.e., after gauging
Z f

2 the left and right part of the surface are not equiv-
alent. Therefore, after the extension of its domain, ρm is
not an antiautoequivalence any more. Nevertheless, both
Bl and Br are obtained from the same C, so their cen-
tral charges can only differ by multiples of 1/2. Since
cl + cr = 0, we must have cl , cr be multiples of 1/4. In
Appendix, we also prove some properties of the � matrix

2Generally speaking, for given Bl and Br , when we extend the
domain from C to Bl , the extended map ρm is not unique. However, it
is not hard to see distinct extensions differ by some autoequivalences
of Br , which is irrelevant for our later discussions.
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introduced in Eq. (25), resulting from the presence of mirror
symmetry in C.

C. Folding the Z f
2 -gauged theory

Next we fold the Z f
2 -gauged topological order. To be

precise, we turn Br round so that it is below Bl [Fig. 1(c)].
Since folding reverses the spatial orientation, the double-layer
topological order is actually Bl � Brev

r , which means a simple
stack of Bl and Brev

r . Topological spins of the anyons in
Brev

r should get complex conjugated due to the reverse of
orientation. More specifically, if α ∈ Br , we denote its reverse
by αrev ∈ Brev

r . Then, θαrev = θ∗
α .

We observe that Brev
r is equivalent to Bl . To see that, we

notice that reversing the orientation of Br is the same as taking
its mirror image. That is, Brev

r is actually the mirror image
of Br . At the same time, Br is in turn the mirror image of
Bl . Accordingly, Brev

r is equivalent to Bl . More specifically,
under the composite action of ρm and “rev,” α ∈ Bl is mapped
to [ρm(α)]rev. We know that [ρm(α)]rev is actually the double
mirror image of α. So, they are actually the same, except that
α lives in the top layer, while [ρm(α)]rev lives in the bottom
layer. It is convenient to make the relabeling for anyons
in Brev

r

[ρm(α)]rev ↔ α. (30)

Then, we will simply denote the double-layer topological
order by B � B, where we have suppressed the index l in
Bl . Anyons in the double-layer topological order then can be
denoted as (α, β ), where α, β ∈ B.

After folding, the mirror symmetry M becomes an layer-
exchange symmetry of the double-layer topological order. We
denote the symmetry group as Zex

2 . It is not hard to see that
the mirror symmetry permutes anyons as follows:

M : (α, β ) ↔ (β, α). (31)

Only the diagonal anyon (α, α) is invariant under layer ex-
change.

We see that ρm does not enter the above symmetry permu-
tation. It turns out that ρm enters the properties of the gapped
domain wall in Fig. 1(c), as expected from our conclusion in
Sec. II A that all SET information is encoded at the gapped
domain wall. One way to describe a gapped domain wall is
to use the theory of anyon condensation [63]. Qualitatively,
it means that a subset of anyons can be “condensed” when
they move to the domain wall, causing a “quantum phase
transition” to a new topological order living on the other side
of the domain wall (see a sketch in Fig. 4; certain anyons
in P are condensed, giving rise to U ). That is, we can use
local operators at the domain wall to destroy (and create)
the condensed anyons. They become local excitations, i.e.,
the new vacuum anyon. At the same time, other anyons may
be identified with and/or split into the anyons that live on the
other side. Anyon condensation theory is such a theory that
describes the relation between the topological orders on the
two sides of the domain all. In Sec. IV, we will study in detail
about anyon condensation. Below, we only give a qualitative
description and show how the SET quantities, ρm and {μa},
enter the properties of the gapped domain wall.

FIG. 4. Two topological orders P and U connected by a gapped
domain wall, on which lives a fusion category T .

Let us consider the double-layer topological order C � C
before gauging. We claim that the condensed anyons are of the
form (a, ρ̄m(a)), for every a ∈ C. This can be seen as follows:
Consider two anyons, a on the left side and b on the right side
of the mirror axis, before folding. When they move close and
meet at the mirror axis, they can annihilate together and fuse
into the vacuum channel if and only if b = ā. After folding and
the relabelling (30), this condition translates into that an anyon
(a, b) can be annihilated (condensed) at the domain wall if
and only if b = ρ̄m(a). We can write the condensate in a more
concise form through the so-called lifting map

l (1) =
∑
a∈C

(a, ρ̄m(a)), (32)

where “1” denotes the new vacuum after condensation. At the
same time, before folding, a and b can fuse together into the
f channel, if and only if b = ā f . So, in the folded picture, we
should have

l ( f ) =
∑
a∈C

(a f , ρ̄m(a)). (33)

That is, anyons in l ( f ) can be identified as f when they move
to domain wall, upon action of proper local operators. Since
C � C is a subset of anyons in B � B, which is closed under
fusion and braiding, the above description on the gapped
domain wall still holds even after we gauge Z f

2 in C. In
particular, other anyons in B � B, those involving fermion-
parity fluxes, will not enter l (1) and l ( f ). We leave detailed
discussions in Sec. IV.

The lifting maps (32) and (33) only encode the information
of ρm. How about the information of mirror eigenvalues
{μa}? Recall the definition of μa through the two-anyon state
|a, ρm(a)〉. Since ξa must be nonzero in order to have a well-
defined μa with value ±1, a and ρm(a) can only fuse into
either 1 or f when they meet at the mirror axis. The obtained
local excitation (1 or f ) carries a mirror eigenvalue μa. It
means that, in the folded system C � C after relabelling (30),
when the anyon (a, a) moves to the boundary, it “condenses”
into a local excitation (either 1 or f ) that carries a Zex

2 charge
μa. To have a symmetric gapped domain wall, only neutral
anyons can be condensed. So, (a, a) should be condensed
together with an extra Z2 charge μa. We see that the Zex

2
symmetry requirement of the gapped domain wall encodes
the information {μa}. Later we will use the notation (a, a)±,
where the sign “±” denotes if (a, a) carries a Zex

2 charge or
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not. Then, at the domain wall, the condensed anyons should
be (a, a)μa if ξa �= 0. To better deal with the symmetry issue,
we will further gauge Zex

2 in the next subsection.
Before proceeding, we find it a good place to spend some

words discussing why gauging Z f
2 before folding and after

folding work equally well. If the surface is folded before
gauging Z f

2 , we obtain a simple stack C � C after relabelling
(30). Each layer in the stack has a fermion-parity conservation
symmetry, which we denote as Ztop

2 and Zbot
2 , respectively.

More explicitly, the fermion parity operators are (−1)Ntop and
(−1)Nbot , where Ntop and Nbot are the fermion numbers in the
two layers. By isomorphism, we can equivalently write the
symmetry group as Z f

2 × Zextra
2 , where we take (−1)Ntop+Nbot

as the nontrivial element in Z f
2 , and (−1)Ntop as the nontriv-

ial element in Zextra
2 . That is, Zextra

2 = Ztop
2 . One can easily

observe that the double-layer topological order B � B is the
theory obtained from C � C by gauging Z f

2 × Zextra
2 . That

is, the extra Zextra
2 symmetry is also gauged. In B � B, the

Zextra
2 charge is the boson ( f , f ), while the Z f

2 charge is
(1, f ). To restore a theory with only Z f

2 gauged, one can
condense ( f , f ) in B � B. Nevertheless, we have already
included it in l (1) in Eq. (32). Therefore, condensing anyons
in l (1) will actually restore a Z f

2 -gauged theory, leading to
our conclusion that gauging Z f

2 before and after folding is
equivalent. In this argument, we have implicitly used the
fact that doing anyon condensation in a whole or in parts
with different orders, gauging symmetries in a whole or in
parts with different orders, and doing anyon condensation
and gauging interchangeably, all commute. In fact, below we
will further gauge Zex

2 , and consider anyon condensation after
gauging Zex

2 in Sec. IV C.

D. Further gauging Zex
2 symmetry

Above, we have obtained a double-layer topological order
B � B by folding. It has a Zex

2 layer-exchange symmetry
that permutes the anyons according to (31). The gapped
domain wall in Fig. 1(c) is also symmetric and encodes the
information of ρm and {μa}. To better analyze the symmetric
gapped domain wall, we follow Ref. [45] and gauge the Zex

2
symmetry. We are able to do so because folding has turned M
into an internal symmetry. We realize that gauging Zex

2 in B �
B is exactly the same as in the bosonic case. The Zex

2 -gauged
theory of B � B has been explicitly obtained in Ref. [45]. So,
we just need to borrow the result from there. This is also one
of the reasons that we gauge Z f

2 before folding, as it simplifies
our computation. Below we review a few properties of the
Zex

2 -gauged theory, which we denote as D.
The Zex

2 -gauged theory D consists of anyons that originate
from B � B, as well as new anyons which are vortices of
the Zex

2 symmetry. We list them below. First, for each pair
α, β ∈ B, with α �= β, we have an anyon [α, β] in D. This
anyon originates from the symmetrization of (α, β ) and (β, α)
from B � B. It has a quantum dimension d[α,β] = 2dαdβ and
a topological spin θ[α,β] = θαθβ . Second, each diagonal anyon
(α, α) ∈ B � B becomes (α, α)±, where ± represents the Zex

2
charge that it carries. The quantum dimension is d(α,α)± = d2

α

and topological spin is θ(α,α)± = θ2
α . Third, there are 2|B|

distinct Zex
2 vortices, which we denote as X ±

α , ∀α ∈ B. The
quantum dimension is dX ±

α
= dαDB, and the topological spin

is given by

θX ±
α

= ±ei2πc/16
√

θα, (34)

where c is the chiral central charge of B. In total, there are
|B|(|B| + 7)/2 anyons. One can check that the total quan-
tum dimension DD = 2D2

B. We comment that “±” on X ±
α

is conventional and has no absolute meaning. Relatively, X −
α

differs from X +
α by a Zex

2 charge, which is the Abelian anyon
(1,1)−. On the other hand, the “±” sign on (α, α)± does have
an absolute meaning of Zex

2 charge, at least for the anyons
satisfying ρ̄m(a) = a or a f , with a ∈ C. For these anyons,
the Zex

2 charge inherits from the mirror eigenvalue through
folding.

Several fusion and braiding properties are in order. A few
useful fusion rules are

(α, α)± × (1,1)− = (α, α)∓,

[α, β] × (1,1)− = [α, β],

X ±
α × (1,1)− = X ∓

α ,

(α, α)± × ( f , f )+ = (α f , α f )±,

[α, β] × ( f , f )+ = [α f , β f ],

X ±
a × ( f , f )+ = X ±

a ,

X ±
v × ( f , f )+ = X ∓

v ,

X ±
α × [1, f ] = X +

α f + X −
α f , (35)

where α, β are general anyons in B, a ∈ C and v ∈ C̄. In the
case that α is a Majorana-type fermion-parity vortex, α f ≡ α

is understood. The T matrix is determined by the topological
spins given above. The S matrix of D can be expressed in
terms of that of B. In particular, we have

SD(X ±
α , [β, γ ]) = 0,

SD(X ±
α , (β, β )μ) = μ

2
SB

α,β, (36)

where μ = ±, and we use SD(X,Y ) instead of SD
X,Y for

notational clarity. Readers can find more properties of D in
Ref. [45].

IV. ANYON CONDENSATION AT THE DOMAIN WALL

In this section, we study properties of the domain wall
in detail through the theory of anyon condensation. These
properties, briefly discussed in Sec. III C, serve as boundary
conditions of the double-layer topological order, and will be
used to determine the iTO on the right-hand side of Fig. 1(c).

A. Review on anyon condensation

We briefly review the theory of anyon condensation here.
For more details, one may consult Refs. [63–68].

Anyon condensation is a quantum phase transition be-
tween two topologically ordered phases. Similarly to the usual
Bose-Einstein condensation, it occurs when a set of bosons
condense, such that the system transits from one topological
order to another topological order. Anyon condensation is
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most commonly studied in the scenario in Fig. 4: condensation
has occurred in one part of the system (red region), but
not in the other (blue region), giving rise to a domain wall
between them. It considers the case that the domain wall is
energetically gapped. This system can be described by three
tensor categories [63]:

P → T → U , (37)

where P describes the “parent” topological order before
condensation, U describes the “child” topological order after
condensation, and T describes the domain wall. Both P and U
are UMTCs with well-defined fusion and braiding properties
of anyons [55]. On the other hand, T is a unitary fusion
category, and not all anyons in T are associated with braiding
properties.

Let us understand the relations between the three categories
in Eq. (37). When an anyon α in P moves to the domain wall,
it will be identified as and/or split to some anyons in T . This
identification/splitting is described by the restriction map r :
P → T , defined as

r(α) =
∑
t∈T

nα,t t, (38)

where nα,t is an integer coefficient. At the same time, there is
a reverse map called the lifting map, which reads

l (t ) =
∑
α∈P

nα,tα. (39)

We will use the notation that α ∈ l (t ) if nα,t �= 0. From the two
maps, we see that any anyon in P can be viewed as a linear
superposition of anyons in T , and vice versa. In particular,
every α with nα,1 �= 0 can become the vacuum anyon 1 in
T . That is, all anyons in l (1) are “condensed.” It is required
that 1 ∈ l (1), where 1 is the vacuum anyon of P . Next, we
ask whether anyons in T can exit the domain wall and move
freely into the region of U? If so, it is said that these anyons
are deconfined; if not, they are confined. Deconfined anyons
form the category U ⊂ T . The criterion to determine whether
an anyon in T is confined or not is as follows: t is deconfined
if and only if all α ∈ l (t ) have the same topological spin.
Then, θt = θα for any α ∈ l (t ) if t is deconfined. It is required
that the vacuum anyon 1 must be deconfined. Since 1 ∈ l (1),
we see that all anyons in l (1) must be bosons. If there is an
Abelian boson b ∈ l (1), one can show that α is confined if it
has nontrivial mutual statistics with respect to b.

We see that the key quantity to describe anyon condensa-
tion is nα,t , a |P| × |T | non-negative integer matrix.3 Here we
list two of its constraints. The first constraint is that fusion
commutes with the restriction map

r(α) × r(β ) = r(α × β ). (40)

The explicit expression is∑
r,s∈T

nα,rnβ,sN
t
rs =

∑
γ∈P

Nγ

αβnγ ,t , (41)

3It is known that nα,t does not provide a complete description of
anyon condensation. However, for our purpose, it is enough for the
derivation of mirror anomaly.

where Nt
rs and Nγ

αβ are the fusion coefficients in P and T ,
respectively. Since U is a subcategory of T , Eq. (41) still holds
if we restrict r, s, t to be inside U . Another constraint is that
when restricted to U , the matrix n commutes with the modular
S and T matrices, in the following sense

SPn = nSU , T Pn = nT U . (42)

The explicit expression for S is∑
β∈P

Sα,βnβ,t =
∑
s∈U

nα,sSs,t , (43)

where α ∈ P and t ∈ U . Since Tα,β = δα,βθα , the above equa-
tion for T P and T U means that θα = θt as long as nα,t �= 0,
for any α and t . In particular, all anyons in l (t ) have the same
topological spin, if t is deconfined.

B. Ignoring Zex
2

To begin, we apply the anyon condensation theory to a
simpler situation, where we ignore Zex

2 symmetry in the folded
system. That is, we consider the setup in Fig. 4 with P =
B � B and U being a Z f

2 -gauged iTO. While 2D fermionic
iTOs have a Z classification, gauging Z f

2 results in only 16
possible topological orders [55]. The topological order U
contains three anyons {1, f ,w} if it has a half-integer chiral
central charge, or four anyons {1, f ,w,w f } if it has an integer
chiral central charge. In the former case, w is a Majorana-type
vortex with quantum dimension dw = √

2. In the latter case,
w and w f are two non-Majorana-type vortices with quantum
dimension dw = dw f = 1. The sixteen gauged theories can be
distinguished by the topological spin of w:

θw = ei2πcU /8, (44)

where cU denotes the chiral central charge associated with U .
For non-Majorana-type vortices, one can check that θw f = θw.

Given P = B � B and certain properties of the gapped
domain wall, our goal is to determine U out of its sixteen
possibilities. In the current case that Zex

2 is ignored, there
exists an easy way to accomplish this. Since B � B and U are
connected by a gapped domain wall, the chiral central charges
must be equal, i.e., cU = 2c, where c is the central charge of
B. Accordingly, we must have

θw = ei2πc/4. (45)

We note that the left-hand side of Eq. (45) is a quantity of U ,
and the right-hand side is a quantity of B � B. Therefore, a
single quantity c of B � B uniquely determines U out of its
sixteen possibilities.

Below we would like to re-derive (45) using anyon con-
densation theory. Through this exercise, we get familiar with
some properties of the gapped domain wall, paving a way for
the main study in the next subsection where Zex

2 is included
(Sec. IV C). The fusion category T that lives on the domain
wall contains anyons from the original fermion topological
order C, fermion-parity vortices w1,w2, . . . , and other anyons
that carry Zextra

2 fluxes (see the discussion at the end of
Sec. III C). We formally write this as

T = C ⊕ {w1,w2, . . . , } ⊕ {others}.
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It follows from the understanding that before gauging symme-
tries, how anyons in C � C restrict themselves on the domain
wall is the same as how anyons in C fuse on the mirror axis.
That is, T = C with the braiding information in C omitted.
Accordingly, we expect T to be some extended category of
C after gauging symmetries. Since we gauge fermion parities
in both layers, T gains additional fermion-parity vortices, as
well as Zextra

2 vortices which we do not care and list them
above as “others.” Inside T , only 1, f and the fermion-parity
vortex w (and w f if non-Majorana) are deconfined. All others
are confined. We will use the convention that w1 is the
deconfined one, i.e., w1 ≡ w ∈ U .

We now consider the restriction maps. We claim that

r{(a, b)} =
∑
c∈C

Nc
aρm (b)c, (46a)

r{(a, v)} = confined anyons only, (46b)

r{(v, a)} = confined anyons only, (46c)

r{(v1, v2)} =
∑
wi

n(v1,v2 ),wiwi, (46d)

where we have used r{·} to denote restriction maps for no-
tational clarity, Nc

aρm (b) is the fusion multiplicity in C and
n(v1,v2 ),wi is some unknown integer. The restriction map (46a)
can be obtained by comparing with the fusion rules in C before
folding and applying the relabelling (30). Special cases are

r{( f , f )} = r{(1,1)} = 1,

r{(1, f )} = r{( f ,1)} = f . (47)

To see (46b) and (46c), we consider the mutual statistics

M( f , f ),(a,v) = M f ,aM f ,v = −1, (48)

which holds for arbitrary a and v. Since ( f , f ) is restricted
to the vacuum, the nontrivial mutual statistics (48) implies
that all anyons in r{(a, v)} and r{(v, a)} are confined. The
restriction (46d) is not known generally. In Eq. (46d), we
have implicitly taken only wi in r{(v1, v2)}. It is because that
(v1, v2) is a fermion-parity vortex before condensation. It can
be seen from the mutual statistics

M(1, f ),(v1,v2 ) = −1, M( f , f ),(v1,v2 ) = 1. (49)

Recall that ( f , f ) is the Zextra
2 charge and (1, f ) is the Z f

2
charge. From the commutativity Eq. (40) between restriction
and fusion, we obtain some constraints

r{(v1, v2)} = r{(v1, v2)} × r{( f , f )}
= r{(v1 f , v2 f )}

and

r{(v1, v2)} × f = r{(v1, v2)} × r{(1, f )}
= r{(v1, v2 f )},

where vi f = vi if vi is a Majorana-type vortex. From these
two constraints, we immediately have

n(v1,v2 ),w =n(v1 f ,v2 f ),w =n(v1,v2 f ),w f =n(v1 f ,v2 ),w f ,

n(v1,v2 ),w f =n(v1 f ,v2 f ),w f =n(v1,v2 f ),w =n(v1 f ,v2 ),w. (50)

Depending on whether v1, v2,w are Majorana-type or non-
Majorana-type, these equations may be further reduced and
related.

From the restriction maps, we can read out the lifting maps
of the deconfined anyons in U as follows:

l (1) =
∑
a∈C

(a, ρ̄m(a)), (51a)

l ( f ) =
∑
a∈C

(a f , ρ̄m(a)), (51b)

l (w) =
∑
v1,v2

n(v1,v2 ),w(v1, v2). (51c)

This agrees with the expectation in Sec. III C. When w is of
non-Majorana type, we also need to consider the lifting map
l (w f )

l (w f ) =
∑
v1,v2

n(v1,v2 ),w f (v1, v2). (52)

Soon we will see that the lifting coefficients {n(v1,v2 ),w} and
{n(v1,v2 ),w f } are closely related.

Next, we make use of Eq. (43) to further constrain the
lifting coefficients in l (w) and l (w f ). Let α = (v1, v2) and
t = 1 in Eq. (43). We immediately obtain∑

a∈C
S[(v1, v2), (a, ρ̄m(a))] = n̂(v1,v2 )

dw

2
, (53)

where we have used Ss,1 = ds/2 and defined

n̂(v1,v2 ) =
{

n(v1,v2 ),w, if dw = √
2

n(v1,v2 ),w + n(v1,v2 ),w f , if dw = 1
.

Using the relation S[(v1, v2), (a, ρ̄m(a))] = Sv1,aSv2,ρ̄m (a),
Eq. (25), and Eq. (A9) from Appendix, we obtain the follow-
ing key equation:

σv1σv2δ[v1],ρm ([v̄2]) = n̂(v1,v2 )dw, (54)

where the permutation ρm([v̄2]) is defined in Appendix. We
see that n̂(v1,v2 ) is nonvanishing if and only if [v1] = ρm([v̄2]).
Since n̂(v1,v2 ) must be an integer, we must have

σv1σv2

dw

= integer, (55)

if n̂(v1,v2 ) �= 0. That means, among v1, v2 and w, either none
or two are of Majorana type. Accordingly, for (v1, v2) with
n̂(v1,v2 ) �= 0, we have the following.

(1) When σv1 = 1, σv2 = √
2, we must have dw = √

2 and
n̂(v1,v2 ) = 1. With the constraint (50), we have n(v1,v2 ),w =
n(v1 f ,v2 ),w = 1. It is similar for the case that σv1 = √

2 and
σv2 = 1.

(2) When σv1 = σv2 = √
2, we must have dw = 1 and

n̂(v1,v2 ) = 2. With the constraint (50), we have n(v1,v2 ),w =
n(v1,v2 ),w f = 1.

(3) When σv1 = σv2 = 1, we must have dw = 1 and
n̂(v1,v2 ) = 1. Without lose of generality, we can set n(v1,v2 ),w =
1, n(v1,v2 ),w f = 0. Other lifting coefficients can be obtained
from the constraint (50).

For other vortices (v1, v2) with [v1] �= ρm([v̄2]), the lifting
coefficients are zero. Hence, all the lifting coefficients in
Eqs. (51c) and (52) are obtained.
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TABLE I. List of some notation and convention used in this work, for readers’ quick reference.

C original fermionic topological order
C̄ the complement of C in B as a set
B Z f

2 -gauged theory of C; as sets, we have B = C ⊕ C̄
Bl ,Br Z f

2 -gauged theories of C on the two sides of the mirror plane, respectively; B ≡ Bl in most discussions
B � B double-layer topological order obtained by folding along the mirror axis, after proper relabeling
D topological order obtained by gauging Zex

2 layer-exchange symmetry in B � B
a, b, . . . anyons in C
v1, v2, . . . fermion parity vortices in B; vi ∈ C̄
α, β, . . . general anyons in B, or anyons in general topological orders
[a] the pair {a, a f } for a ∈ C
[v] the pair {v, v f } for non-Majorana-type vortices; or simply v itself for Majorana-type vortices
c when referred as chiral central charge, it is the chiral central charge of B
μa mirror eigenvalue of certain two-anyon state, defined in Eqs. (14) and (16)
ξa defined in Eq. (15)
σv a quantity that denotes whether v is of Majorana or non-Majorana type, defined in Eq. (24)
�a,v a block of the S matrix of B after renormalization, defined in Eq. (25)
nv, pv, n′

v, p′
v restriction/lifting coefficients defined in Eq. (69)

n̂v, p̂v integers defined in Eqs. (74) and (75)

Finally we prove Eq. (45) based on the above understand-
ing of the gapped domain wall. The topological spin of the
deconfined anyon w is given by

θw = θ(v1,v2 ) = θv1θv2 , (56)

where (v1, v2) ∈ l (w), i.e., n(v1,v2 ),w �= 0. That is, we must
have [v1] = ρm([v̄2]). To relate θw to the central charge c, we
make use a general property of UMTC [55]:

ei2πc/8dβθ∗
β =

∑
α∈B

dαθαSα,β . (57)

Taking β to be a vortex, we have

ei2πc/8dvθ
∗
v =

∑
a∈C

daθaSa,v +
∑
v′∈C̄

dv′θv′Sv′,v,

ei2πc/8dv f θ
∗
v f =

∑
a∈C

daθaSa,v −
∑
v′∈C̄

dv′θv′Sv′,v,

where have applied Eqs. (A3) from Appendix. Adding up the
two equations and using dv f = dv and θv = θv f , we have

ei2πc/8dvθ
∗
v =

∑
a∈C

daθaSa,v. (58)

Now we set v = v2. Then,

ei2πc/8dv2θ
∗
v2

=
∑
a∈C

daθaSa,v2

=
∑
a∈C

dρ̄m (a)θρ̄m (a)Sρ̄m (a),v2

=
∑
a∈C

daθ
∗
a S∗

a,v1

σv2

σv1

= e−i2πc/8dv1θv1

σv2

σv1

. (59)

From the second to third line, we have used the definition
of ρm([v̄2]) and the requirement [v1] = ρm([v̄2]). To obtain
the last line, we have used (58) again. Combining this with

Eq. (A18) from Appendix, we derive

θv1 = θ∗
v2

ei2πc/4.

Further combining this equation with (56), we immediately
obtain (45).

C. With Zex
2

Now we apply the anyon condensation theory to the folded
system with the Zex

2 symmetry included. That is, we set P =
D (see Sec. III D), and U is a topological order obtained by
gauging the full Z f

2 × Zex
2 symmetry in the iTO. We aim to

determine ηM from the data of D through anyon condensation
theory. To find ηM through Eq.(10), we need to determine θw

and θx. As Eq. (45) already gives θw, in this subsection we
focus on how to determine θx, the topological spin of a Zex

2
vortex.

1. Z f
2 × Zex

2 -gauged iTO

Let us first discuss properties of U , which we obtain
by gauging Z f

2 × Zex
2 symmetric iTOs. As discussed in the

introduction, 2D Z f
2 × Zex

2 symmetric iTOs are classified by
Z × Z8. According to Refs. [53–55], gauging Z f

2 × Zex
2 will

give rise to 128 gauged theories.4 They are distinguished by
the two quantities:

θw = eiπμ1/8,

(θx )2 = eiπμ2/4, (60)

where w denotes a fermion parity vortex, x denotes a
Zex

2 vortex, and μ1, μ2 are integers discussed in Sec. II B.

4The counting of distinct gauge theories depends on the criterion.
We treat two gauge theories as topologically distinct, if there is no
mapping between them such that properties of fusion and braiding
and properties of gauge charge and flux are preserved. If only fusion
and braiding properties are preserved, the counting of distinct GiTOs
will be reduced.
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TABLE II. Quantum dimensions of vortices in Z f
2 × Z2-gauged

iTOs.

dx dy dw

GiTO9

√
2

√
2 2

GiTO12

√
2 1

√
2

GiTO′
12 1

√
2

√
2

GiTO16 1 1 1

Note that there may exist many fermion-parity vortices and
Zex

2 vortices, but all of them give the same values of θw

and (θx )2.
Depending on the number of anyons, we divide the 128

gauged theories into four categories

GiTO9 : 1±, f ±, x±, y±,w;

GiTO12 : 1±, f ±, x±, y±, y±
f ,w±;

GiTO′
12 : 1±, f ±, x±, x±

f , y±,w±;

GiTO16 : 1±, f ±, x±, x±
f , y±, y±

f ,w±,w±
f ;

where GiTO stands for “gauged invertible topological order”
and the subscript is the number of anyons in the theory. Our
notation is explained as follows. The four charge excitations
are the vacuum 1+, the Zex

2 charge 1−, the pure fermion f +,
and the Zex

2 -charged fermion f −. We use “x” to denote a
vortex carrying Zex

2 flux, use “w” to denote a fermion-parity
vortex, and use “y” to denote a vortex carrying both Zex

2 and
fermion-parity flux. There exist several x, y, and w vortices,
differing by attaching charge excitations. Note that the sign
“±” in our notation only has a relative meaning that vortices
differ by a Zex

2 charge. All charges are Abelian anyons, while
vortices may be non-Abelian. In a fixed GiTO, all x vortices
have the same quantum dimension, which we denote as dx.
Similarly, all y or w vortices have the same quantum dimen-
sion, which we denote as dy and dw, respectively. Quantum
dimensions for different GiTOs are listed in Table II. By
matching chiral central charge, one can show that GiTO9 and
GiTO16 occur only for c being even multiples of 1/4, while
GiTO12 and GiTO′

12 occur for c being odd multiples of 1/4,
where c is the central charge of B.

We list a few fusion rules. Since fermion-parity vortices
have been studied in the above section (Sec. IV B), here we
focus on the x and y vortices. First, we have

x+ × 1− = x−, y+ × 1− = y−. (61)

TABLE III. Some entries of the matrix nα,t for α ∈ D and t ∈ U .

�
��α

t
1+ 1− f + f − x+ y+ x+

f y+
f

(a, a)μa δa,ρ̄m (a) 0 δa f ,ρ̄m (a) 0 0 0 0 0
(a, a)−μa 0 δa,ρ̄m (a) 0 δa f ,ρ̄m (a) 0 0 0 0
[a, b] δb,ρ̄m (a) δb,ρ̄m (a) δb f ,ρ̄m (a) δb f ,ρ̄m (a) 0 0 0 0
X +

v 0 0 0 0 nv pv n′
v p′

v

Second, when dx = √
2, the two x vortices x± satisfy

x+ × f + = x−, x+ × f − = x+. (62)

It is similar for y vortices when dy = √
2. Third, when dx = 1,

there are four x vortices x± and x±
f , and they satisfy

x+ × f + = x−
f , x+ × f − = x+

f . (63)

It is similar for Abelian y vortices.
The topological spins satisfy

θx− = −θx+ , θy− = −θy+ . (64)

In the presence of x±
f and/or y±

f , the topological spins satisfy

θx+
f

= θx+ = −θx−
f
,

θy+
f

= θy+ = −θy−
f
. (65)

The first equality in each line is conventional: one can show
that θx+ must be equal to either θx+

f
or θx−

f
, and we use the

convention that x+
f is the one that has the same topological

spin as x+. We also list some elements of the S matrix
of U :

Sx+,1+ = Sx+, f + = −Sx+,1− = −Sx+, f − = dx
DU

,
(66)

Sy+,1+ = −Sy+, f + = −Sy+,1− = Sy+, f − = dy

DU
,

where DU = 4 is the total quantum dimension (the same for
all GiTOs).

2. Anyon condensation

Like in Sec. IV B, our goal is to determine U out of the 128
possible GiTOs, provided that P = D and certain properties
of the gapped domain are given. Properties of anyons in D are
given in Sec. III D. The fusion category T that lives on the
domain wall contains the following anyons

T = {1±, f ±, a±, . . .︸ ︷︷ ︸
anyons from C

, x±
1 , x±

2 , . . .︸ ︷︷ ︸
x-vortices

, y±
1 , y±

2 , . . .︸ ︷︷ ︸
y-vortices

,w1, . . .︸ ︷︷ ︸
others

}.

It is an extension of the fusion category T in Sec. IV B
by gauging Zex

2 symmetry. We do not aim to understand
T completely. A partial understanding is enough for us to
achieve our goal.

Several properties of T are as follows. First, objects in
T can be divided into those from C (with additional Zex

2
charge attached), x vortices, y vortices, and others (including
w vortices and Zextra

2 vortices), similarly to those in U . Second,
every anyon a ∈ C is further decorated by a Zex

2 charge,
denoted by “‘a±”. It is similar for the x- and y vortices.
However, w vortices may not display this decoration as it
may absorb the Zex

2 charge 1−. Third, the deconfined anyons
form the category U , discussed in Sec. IV C 1. We use the
convention that x±

1 ≡ x± and y±
1 ≡ y± are always deconfined

x and y vortices. There may exist additional deconfined x-
and y vortices. Fourth, the topological spin of deconfined w

vortices is determined by (45) before gauging Zex
2 , so we

will not discuss it below. Its value does not change after we
gauge Zex

2 .
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We first discuss the restriction maps. We claim that the
restriction maps are given as follows:

r{[a, b]} =
∑

c

Nc
aρm (b)(c

+ + c−), (67a)

r{(a, a)+} =
∑

c

Nc
aρm (a)c

μ[a,ρm (a);c], (67b)

r{(a, a)−} =
∑

c

Nc
aρm (a)c

−μ[a,ρm (a);c], (67c)

r{[v1, v2]} = w-vortices only, (67d)

r{(v, v)±} = w-vortices only, (67e)

r{[a, v]} = confined anyons only, (67f)

r{X ±
a } = confined anyons only, (67g)

r{X ±
v } = x- and y vortices only, (67h)

where we use r{·} to denote restriction maps for notational
clarity. They are some kind of extensions of the restriction
maps in Eq. (46). The restriction maps (67a)–(67c) can be
inferred from (46a) and the mirror symmetry properties of
the anyons, as discussed in Sec. III C. The sign μ[a, ρm(a); c]
is not known generally. However, if c = 1 or f , we must
have μ[a, ρm(a); c] = μa, the mirror eigenvalue defined in
Eq. (14). Special cases of Eqs. (67a)–(67c) are

r{(1, 1)±} = 1±,

r{( f , f )±} = 1∓, (68)

r{[1, f ]} = f + + f −.

The correlation of “±” signs between (67b) and (67c) follows
from the relation that r{(a, a)+} × r{(1, 1)−} = r{(a, a)−}.
The restriction maps (67d)–(67f) follow from (46b)–(46d).
Since we are only interested in the deconfined x- and y
vortices in this subsection, these restriction maps are unim-
portant. To understand the map (67g), we consider the mutual
statistics between ( f , f )− and X ±

α , which is

M( f , f )−,X ±
α

= −M f ,α =
{−1, if α ∈ C

1, if α ∈ C̄ ,

which follows from the S matrix (36) and the fact that ( f , f )−
is Abelian. Since ( f , f )− becomes the vacuum 1+ in U ,
X ±

a restricts to confined anyons only. In fact, ( f , f )− is the
condensed charge of the Zextra

2 symmetry. Then, X ±
v restricts

to x and y vortices only, giving rise to (67h).
The restriction map (67h) is an important one. We expand

it in more detail:

r{X +
v } = nvx+ + pvy+ + (n′

vx+
f + p′

vy+
f ) + · · · , (69)

where nv, pv, n′
v, p′

v are integers (to be determined), and “. . . ”
are confined anyons. Only vortices with “+” sign appear on
the right-hand side, because all deconfined anyons must have
the same topological spins and vortices with different signs
cannot have equal topological spin due to our convention. The
vortices x+

f and/or y+
f may or may not appear in Eq. (69),

depending on the details of the condensation, and thereby we
put a parenthesis around them. The restriction map r{X −

v } can
be induced from r{X +

v }, using the fact r{X +
v } × r{(1, 1)−} =

r{X −
v }. Therefore we have

r{X −
v } = nvx− + pvy− + (n′

vx−
f + p′

vy−
f ) + · · · (70)

In addition, from the commutativity (40) with α = X +
v and

β = [1, f ], we obtain

r{X +
v f } + r{X −

v f } = r{X +
v } × f + + r{X +

v } × f −, (71)

where the subscript v f should be identified to v if it is of
Majorana type. Expanding the restriction maps in Eq. (71) for
various GiTOs, we obtain the following relations:

GiTO9 : nv f = nv, pv f = pv;

GiTO12 : nv f = nv, p′
v = pv f , p′

v f = pv;

GiTO′
12 : n′

v = nv f , n′
v f = nv, pv = pv f ;

GiTO16 : n′
v = nv f , n′

v f = nv, p′
v = pv f , p′

v f = pv.

(72)

Accordingly, {n′
v} and {p′

v}, if needed, are completely deter-
mined by {nv} and {pv}. Hence, only {nv, pv} are independent
in the restriction maps. In addition, we may have the constraint
nv = nv f and/or pv = pv f , depending on the scenario.

From the restriction maps, it is straightforward to read out
the lifting maps for the deconfined anyons in U . We have

l (1±) =
∑

a=ρ̄m (a)

(a, a)±μa +
∑

a �=ρ̄m (a)

′
[a, ρ̄m(a)], (73a)

l ( f ±) =
∑

a f =ρ̄m (a)

(a, a)±μa +
∑

a f �=ρ̄m (a)

′
[a f , ρ̄m(a)], (73b)

l (x±) =
∑
v∈C̄

nvX ±
v , (73c)

l (y±) =
∑
v∈C̄

pvX ±
v , (73d)

l (x±
f ) =

∑
v∈C̄

n′
vX ±

v , (73e)

l (y±
f ) =

∑
v∈C̄

p′
vX ±

v , (73f)

where “
∑′” means that it sums only one anyon in {a, ρ̄m(a)}

or “{a f , ρ̄m(a)}”, when the two are not the same. The “±”
signs in all the lifting maps are correlated on two sides of the
equations. The lifting maps (73e) and (73f) may or may not
be needed, depending on details of the condensation. We will
say X +

v ∈ l (x+) if nv �= 0, and similarly for other lifting maps.
The key entries of the matrix nα,t for α ∈ D and t ∈ U are
listed in Table III.

3. Relation between {μa} and {nv, pv}
The original mirror SETs are characterized by ρm and

{μa}. Above, we have defined the lifting/restriction maps, and
introduced the integers {nv, pv}, as well as {n′

v, p′
v}. The latter

integers {n′
v, p′

v} are determined by {nv, pv} through (72).
These integers are so far unknown. Below we show that the
two sets of data, {μa} and {nv, pv}, are closely related.

We describe the relation by answering the following two
questions. (1) How do we determine if we need {n′

v} and/or
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{p′
v}? (2) How do we determine the values of {nv, pv}, pro-

vided that {μa} are given? To answer the first question, it is
enough to compute dx and dy, as the two quantum dimensions
determine the GiTO type of U as shown in Table II. The
type of U determines if we need {n′

v} and/or {p′
v}. To the

second question, we find that, instead of {nv, pv}, it is easier
to determine {n̂v, p̂v}, which are defined as

n̂v =
{

nv, if dx = √
2

nv + nv f , if dx = 1
(74)

and

p̂v =
{

pv, if dy = √
2

pv + pv f , if dy = 1
. (75)

Note that the two definitions are meaningful only after we
have obtained dx and dy. Again, it is understood that v f ≡ v

if v is a Majorana-type vortex. Unfortunately, we do not
know how to determine {nv, pv} from {n̂v, p̂v} in general;
we will comment on this in Sec. IV C 4 through an example.
Nevertheless, the knowledge of {n̂v, p̂v} will be enough for us
to derive the anomaly indicator, as we will show in Sec. V.

Now we claim that (partial) answers to the above two
questions are implied by the following relations:∑

[a]

�a,vμa = dxn̂v

σv

,

∑
[a]

�a,vμaξa = dy p̂v

σv

, (76)

and its inverse ∑
[v]

�a,v

(
dxn̂v

σv

)
= μa,

∑
[v]

�a,v

(
dy p̂v

σv

)
= μaξa, (77)

where summations are over all pairs [α] = {α, α f } (with α =
a or v), or equivalently, only one anyon in each pair is summed
over. One can check such summations are well-defined (i.e.,
independent of which anyon to use in each pair). The left-
and right-hand sides are inverse transformations of each other,
since � can be viewed as a unitary matrix when its indices
only go through the pairs {[α]} (see Appendix for properties
of the � matrix).

Before deriving (76) and (77), let us see why they imply
answers to the above two questions. First, they determine dx

and dy. We assume that ρm and {ξa, μa} of mirror SETs, and �

and {σv} of B are given. Plugging into (76), we claim that the
left-hand side must be integer or multiples of

√
2, in order to

be equal to the right-hand side; if not, the original SET data ρm

and {μa} are problematic. Since {n̂v, p̂v} are integers, whether
dx and dy are 1 or

√
2 can be immediately computed. Once dx

and dy are known, the quantities {n̂v} and { p̂v} are well-defined
through (74) and (75). Then, we can compute {n̂, p̂} from {μa}
by (76).

The derivation of (76) and (77) can be done in a case-by-
case way for GiTO9, GiTO12, GiTO′

12, or GiTO16 separately.
The procedure is very similar in each case. Here we show the
derivation in the case that U is GiTO9, i.e., dx = dy = √

2.

Taking α = X +
v ∈ l (x+) and t = 1+ in Eq. (43), inserting the

restriction and lifting coefficients in Eqs. (68) and (73), and
using the S matrix elements in Eqs. (36) and (66), we obtain∑

a=ρ̄m (a)

Sa,vμa = dx

2
nv + dy

2
pv. (78)

Similarly, if we take α = X +
v ∈ l (x+) and t = f + in Eq. (43),

we obtain ∑
a f =ρ̄m (a)

Sa,vμa = dx

2
nv − dy

2
pv. (79)

Then, combining (78) and (79) and using the definitions (16)
and (15), we immediately obtain (76). The same results can
be obtained if we take α = X −

v and t = 1−, f − in Eq. (43).
Instead, if α = (a, a)+ and t = x+, y+, with some straightfor-
ward computations, we immediately obtain (77).

4. Additional properties

The relations (76) and (77) are very useful. They are con-
sequences of the constraint (43), and can be used to determine
{n̂v, p̂v} from {ξa, μa}, and vice versa. However, they are not
all the constraints. Equation (40) is very restrictive and we
have not used its full power. For example, by considering α =
X ±

v and β = X ±
v′ or [a, b] in Eq. (40), one can further constrain

{nv, pv} beyond the simple relations (72). Combining with
(76), one may be able to determine {nv, pv}, instead of just
{n̂v, p̂v}, from {ξa, μa}. In other cases, we may not know what
are the valid choices of {μa}, given a permutation ρm. Then,
if we are able to find constraints on {nv, pv}, then they can be
used to constrain {μa} through (77).

However, we will not explore the full power of (40)
generally. On the one hand, it requires more knowledge of
the Z f

2 -gauged theory B, e.g., fusion rules of fermion-parity
vortices, which are not generally known. On the other hand,
(76) and (77) are enough for us to derive the expression (1) for
the anomaly indicator ηM. In Sec. VI B, we will discuss one
example to showcase that additional constraints on {nv, pv}
can be obtained from (40).

Here, we show one general property obtained from (40).
We claim that ∑

v∈C̄
n̂vdv = DB/dx,

∑
v∈C̄

p̂vdv = DB/dy. (80)

To derive this result, we make use of a corollary of (40)

qdt =
∑
α∈P

nα,t dα, (81)

where t ∈ U and q = ∑
α∈P nα,1dα (e.g., see Ref. [68] for a

derivation). Taking P = D and using the lifting map (73a),
we find

q = D2
C = D2

B/2. (82)

Applying (81) with the lifting maps (73c) and (73d), we obtain

qdx = DB
∑

v

nvdv, qdy = DB
∑

v

pvdv (83)
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where we used dX ±
v

= dvDB. Combining (82) and (83) with
the definitions (74) and (75), we immediately obtain (80).

V. ANOMALY INDICATOR

In this section, we derive the formula (1) for the anomaly
indicator ηM, i.e., express ηM in terms of topological and
symmetry properties of C. According to the definition (10),
ηM is determined by two topological spins, θw and (θx+ )2.
The spin θw is expressed in terms of the chiral central charge
c of C in Eq. (45). The spin θx+ is equal to θX +

v
for any X +

v ∈
l (x+), i.e., for any v with nv �= 0. With the expression (34),
we immediately have

ηM = θw

(
θ∗

X +
v

)2 = ei2πc/8θ∗
v . (84)

We emphasize that for all v’s with nv �= 0, X +
v must have

the same topological spin. We note that (84) expresses ηM
in terms of quantities in B.

Now we claim that the formulas (1) and (84) are equivalent.
To prove the claim, we multiply Eq. (1) on both sides by
e−i2πc/8 and do the following steps:

ηMe−i2πc/8 = 1

D2
B

∑
a∈C

daθaμa

∑
α∈B

d2
αθ∗

α

= 1

D2
B

∑
a,α

θaμaθ
∗
αdα

∑
β∈B

Nβ
aαdβ

= 1

DB

∑
a,β

μadβθ∗
β

(
1

DB

∑
α

θaθβ

θα

N ᾱ
aβ̄

dα

)

= 1

DB

∑
a,β

μadβθ∗
βS∗

a,β

= 1

DB

∑
v∈C̄

dvθ
∗
v

σv

2

∑
a

μa�
∗
a,v

= 1

DB

∑
v

dvθ
∗
v n̂vdx

= 1

DB
θ∗
v dx

∑
v

dv n̂v

= θ∗
v , (85)

where v in the last equation can be any fermion parity vortex
with nv �= 0. In the first line, we have inserted the formula
(28) and used the relation DB = √

2DC . In the second line,
the relation dadα = ∑

β Nβ
aαdβ is inserted. In the third line, we

have used Nβ
aα = N ᾱ

aβ̄
. The term inside the parenthesis is the

definition of Sa,β , which leads to the forth line. In the fifth
line, we have reduced the summation over β to summation
over vortices v only, as summing over a ∈ C is 0. We have
also inserted the definition of � matrix. In the sixth line, we
have used Eq. (76). In the seventh line, we have used the fact
that θv are all equal as long as nv �= 0. Finally, we use the
relation (80). Equation (85) is equivalent to Eq. (84). Hence,
we prove our claim.

This equivalence shows that (1) is indeed a formula for
the anomaly indicator. The above derivation is adapted from

a very similar derivation of anomaly indicator in the bosonic
case [45].

One may observe that the x and y vortices, as well as
{nv} and {pv}, appear in parallel in the anyon condensation
formulation. Indeed, we may define an alternative mirror
symmetry, M′ = MPf , which corresponds to the y vortices
after folding and gauging. The anomaly indicator (1) should
work equally well for M′. It is not hard to see that the new
mirror eigenvalue μ′

a = μaξa. Then, we have

ηM′ = 1√
2DC

∑
a∈C

daθaμaξa. (86)

This expression can also be derived by replacing x vortices
with y vortices in Eq. (84) and following similar steps as in
Eq. (85). The two indicators are not independent. One can
show that ηM′ = η∗

M. This relation can be proven either by
directly comparing the expressions (1) and (86), or by using
the definition (10) and checking the topological spins of the
x-, y-, w vortices in the GiTOs.

VI. EXAMPLES

In this section, we give a few explicit examples, with
an emphasis on the application of the general procedure
discussed in Sec. IV. Most examples that we discuss are origi-
nally proposed in time-reversal symmetric systems. However,
they can be easily adapted into mirror-symmetric topological
orders.

A. Semion-fermion topological order

The semion-fermion (SF) topological order is the simplest
nontrivial fermionic topological order. It contains four anyons,

CSF = {1, f , s, s f },
where f is the transparent fermion, and s is a semion with
θs = i. It is an Abelian topological order. One of the fusion
rules is s × s = 1 and others can be easily deduced. The only
possible permutation by the mirror symmetry is as follows:

ρm(1) = 1, ρm( f ) = f , ρm(s) = s f , ρm(s f ) = s.
(87)

Under this permutation, there are two possible mirror sym-
metry fractionalizations, characterized by μs = κ , with κ =
±1. Data for the values of {μa} and {ξa} are summarized in
Table IV. These two mirror-enriched SF topological orders
are referred to as “SF+” and “SF−,” respectively.

There are sixteen possible Z f
2 -gauged theories. Among

them, let us first consider the Abelian ones; the non-Abelian
ones will be discussed at the end. The Abelian Z f

2 -gauged
theories all contain eight anyons:

B = {1, f , s, s f , τ, τ f , τ s, τ s f }
= {1, f , τ, τ f } � {1, s},

where τ denotes a fermion-parity vortex. All anyons are
Abelian. The labeling scheme follows their fusion rules. The
total quantum dimension DB = 2

√
2. The eight possibili-

ties are distinguished by the topological spin θτ = ei2πz/8,
with z = 0, 1, . . . , 7. There are four fermion-parity vortices
τ, τ f , τ s and τ s f , all of which are of non-Majorana type.
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TABLE IV. Data for SFκ with κ = ±1. Lifting coefficients for
both Abelian and non-Abelian B are listed.

SET data non-Abelian B; dx = dy = 1

1 f s s f τ τ s

μa 1 −1 κ −κ σv

√
2

√
2

ξa 1 1 −1 −1 nv (1 + κ )/2 (1 − κ )/2
pv (1 − κ )/2 (1 + κ )/2

Abelian B; dx = dy = √
2

τ τ f τ s τ s f

σv 1 1 1 1
nv (1 + κ )/2 (1 + κ )/2 (1 − κ )/2 (1 − κ )/2
pv (1 − κ )/2 (1 − κ )/2 (1 + κ )/2 (1 + κ )/2

From Eq. (28), we can compute the chiral central charge of
B, which is given by

c = z + 1 (mod 8). (88)

Since we only care about c modulo 8, this equation is enough.
Mutual statistics can be determined by the formula Mα,β =
θαθβθα×β , where the fusion product α × β contains a unique
anyon since all anyons are Abelian. With B, we can obtain
the double-layer topological order B � B, and the topological
order D after further gauging Zex

2 , for which we refer the
readers to the general discussions in Sec. III.

Now we make use of the relations in Eqs. (76) and (77)
to determine the topological order U . The matrix �a,v can be
read out from the mutual statistics between anyons. Taking
a = {1, s} and v = {τ, τ s}, we write �a,v in a matrix form

� = 1√
2

(
1 1
1 −1

)
. (89)

Applying (76) with μa, ξa, and σv in Table IV, we obtain

(1 + κ, 1 − κ )/
√

2 = (n̂τ , n̂τ s)dx,

(1 − κ, 1 + κ )/
√

2 = ( p̂τ , p̂τ s)dy. (90)

We must have dx = dy = √
2 to have integer solutions for n̂

and p̂. Hence, U must be a GiTO9 topological order.
Specializing to SF+ with κ = +1, we have n̂τ = p̂τ s = 1

and n̂τ s = p̂τ = 0. With the definitions (74) and (75) of {n̂v}
and { p̂v}, and properties in Eq. (72), we have nτ = nτ f =
pτ s = pτ s f = 1 and nτ s = nτ s f = pτ = pτ f = 0. Then, the
lifting maps are given by

l (1+) = (1, 1)+ + ( f , f )+ + [s, s f ],

l ( f +) = [1, f ] + (s, s)+ + (s f , s f )−,

l (x+) = X +
τ + X +

τ f ,

l (y+) = X +
τ s + X +

τ s f . (91)

The lifting maps for 1−, f −, x− and y− are similar. We have
the topological spin

θx+ = θX +
τ

= ei2πc/16
√

θτ = ei2π (2z+1)/16. (92)

The anomaly indicator is given by ηM = ei2πc/4(θ∗
x+ )2 =

eiπ/4, independent of z. This shows that SF+ has an index
ν = 2, i.e., it lives on the surface of a 3D TCSC with index

ν = 2. Of course, one may directly apply the formula (1) to
obtain the same result. Similar calculations can be done for
SF−, which is also anomalous and corresponds to an index
ν = 14.

Above, we have considered only the cases that the Z f
2 -

gauged theory B is Abelian. One may also consider the
remaining 8 possible non-Abelian B’s. They are given by

B = {1, f , s, s f , τ, τ s}
= {1, f , τ } � {1, s},

where τ is non-Abelian with dτ = √
2. The vortex τ is

Majorana-type. The topological spin θτ = ei2πz/8, with z =
1/2, 3/2, . . . , 15/2. The matrix � is again given by (89).
Similar calculations can be done as above. One finds that
dx = dy = 1, i.e., U is a GiTO16. Other quantities can be
straightforwardly obtained, which are listed in Table IV. As
expected, we again find that ηM = 2 and 14 for SF+ and SF−
respectively.

B. SF � SF

As mentioned in Sec. IV C 4, Eqs. (76) and (77) are only
enough to determine n̂v and p̂v . However, to determine nv and
pv , one usually needs additional constraints. In this section,
we discuss an example that additional constraints are needed.

This example is a double semion-fermion topological order
SF � SF. It contains eight anyons,

CSF�SF = {1, f } � {1, s1} � {1, s2}, (93)

where s1 and s2 are two semions. Note that when stacking two
SF’s into SF � SF, the transparent fermions from each layer
should be identified. Fusion rules and topological spins can
be easily deduced from those of a single SF topological order.
The permutation ρm is given by

1 ↔ 1, f ↔ f , s1 ↔ s1 f , s2 ↔ s2 f ,

s1s2 ↔ s1s2, s1s2 f ↔ s1s2 f ,

The mirror eigenvalues are μs1 = κ1, μs2 = κ2, μs1s2 = κ1κ2,
and others can be obtained by composition.

It is insufficient to determine {nv, pv} by Eqs. (76) and
(77) only when there are non-Majorana vortices in B. So, we
consider the Abelian Z f

2 -gauged theories of CSF�SF:

B = {1, f , τ, τ f } � {1, s1} � {1, s2},
where θτ = ei2πz/8. The chiral central charge c = z +
2 (mod 8) and total quantum dimension DB = 4. Taking
a = {1, s1, s2, s1s2} and v = {τ, τ s1, τ s2, τ s1s2}, we have the
matrix �a,v:

� = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠. (94)

Substituting it into (76) together with {μa} and {ξa}, we obtain

1

2

⎛
⎜⎝

(1 + κ1)(1 + κ2)
(1 − κ1)(1 + κ2)
(1 + κ1)(1 − κ2)
(1 − κ1)(1 − κ2)

⎞
⎟⎠ = dx

⎛
⎜⎝

n̂τ

n̂τ s1

n̂τ s2

n̂τ s1s2

⎞
⎟⎠,

023339-17



BIN-BIN MAO AND CHENJIE WANG PHYSICAL REVIEW RESEARCH 2, 023339 (2020)

1

2

⎛
⎜⎝

(1 − κ1)(1 − κ2)
(1 + κ1)(1 − κ2)
(1 − κ1)(1 + κ2)
(1 + κ1)(1 + κ2)

⎞
⎟⎠ = dy

⎛
⎜⎝

p̂τ

p̂τ s1

p̂τ s2

p̂τ s1s2

⎞
⎟⎠. (95)

Accordingly, dx = dy = 1 in order to have integer solutions
for n̂v and p̂v .

Let us consider the case that κ1 = κ2 = +1. Substituting
this into (95), we have n̂τ = p̂τ s1s2 = 2, and others are zero.
That is,

nτ + nτ f = 2,

pτ s1s2 + pτ s1s2 f = 2. (96)

Then, l (x+) contains either X +
τ , or X +

τ f , or both. At this stage,
it is already enough to determine the topological spin of x+,
which is given by

θx+ = ei2πc/16
√

θτ = ei2π (2c−2)/16. (97)

Then, the anomaly indicator is given by ηM = i, i.e., it lives
on the surface of a ν = 4 bulk TCSC. The analysis is similar
for other values of κ1 and κ2.

However, from Eq. (96), we do not know the precise values
of nτ , nτ f and pτ s1s2 , pτ s1s2 f . The properties in Eq. (72) do not
help either. We need to look for other constraints. Here we
consider a constraint from (40), by taking α = X +

τ and β =
(s1, s1)+. They follow the fusion rule

X +
τ × (s1, s1)+ = X q

τ , (98)

where q = ± and the precise value is not important (though it
can be determined if one follows Ref. [45]). Their restriction
maps are

r{X +
τ } = nτ x+ + nτ f x+

f + · · · ,
(99)

r{(s1, s1)+} = f +,

where we have used properties in Eq. (72). In order to satisfy
(40), we find that nτ and nτ f must be equal. Accordingly,

nτ = nτ f = 1. (100)

Similarly, one can show that pτ s1s2 = pτ s1s2 f = 1 by consider-
ing α = Xτ s1s2 and β = (s1, s1)+ in Eq. (40).

C. SO(3)3 topological order

Next, we consider the simplest non-Abelian fermionic
topological order, the SO(3)3 topological order [21]. Similarly
to the SF topological order, it also contains four anyons

CSO(3)3 = {1, f , s, s f }, (101)

where s is again a semion with θs = i. However, now s is non-
Abelian and obeys the fusion rule s × s = 1 + s + s f . Other
fusion rules and topological data can be found in Ref. [21].
Mirror permutation on the anyons is the same as in SF, given
by Eq. (87). There are two possible mirror fractionalizations,
with μs = κ = ±1. The two mirror-enriched topological or-
ders are referred as SO(3)+3 and SO(3)−3 , respectively. The
values of {μa} and {ξa} in SO(3)±3 are summarized in Table V.

Again, there are 16 possible Z f
2 -gauged theories. They all

lead to similar results. Let us focus on one of the possibilities,

TABLE V. SET data, lifting coefficients as well as some other
data for SO(3)κ3 with κ = ±1.

SET data

1 f s s f

μa 1 −1 κ −κ

ξa 1 1 −1 −1

κ = +1; dx = √
2, dy = 1 κ = −1; dx = 1, dy = √

2

v1 v1 f v2 v1 v1 f v2

σv 1 1
√

2 σv 1 1
√

2
nv 1 1 0 nv 0 0 1
pv 0 0 1 pv 1 1 0

the SU(2)6 topological order. It contains seven anyons

B = {1, f , s, s f , v1, v1 f , v2}, (102)

where v1 and v1 f are non-Majorana vortices and v2 is a Ma-
jorana vortex. The topological spins are θv1 = θv1 f = ei3π/16

and θv2 = ei15π/16, and the central charge is c = 9/4. We
refer the readers to Ref. [21] and references therein for other
topological data, such as fusion rules and S matrix.

Now, we determine the topological order U . The matrix
�a,v is defined through Eq. (25) using the S matrix of B.
Taking a = {1, s} and v = {v1, v2}, we obtain the same unitary
� matrix as the one in Eq. (89). Applying (76) with μa, ξa, and
σv in Table V, we obtain(

1 + κ√
2

, 1 − κ

)
= (

n̂v1 , n̂v2

)
dx,(

1 − κ√
2

, 1 + κ

)
= (

p̂v1 , p̂v2

)
dy. (103)

To solve the equations with integer n̂ and p̂, we consider κ =
+1 and κ = −1 separately:

(1) if κ = +1, then dx = √
2, dy = 1, n̂v1 = 1, n̂v2 = 0,

p̂v1 = 0, p̂v2 = 2.
(2) if κ = −1, then dx = 1, dy = √

2, n̂v1 = 0, n̂v2 = 2,
p̂v1 = 1, p̂v2 = 0.

Compared with the quantum dimensions in Table II, we
find that U is GiTO12 if κ = +1, and GiTO′

12 if κ = −1.
For κ = +1, we have nv1 = nv1 f = pv2 = 1 using

Eqs. (72), (74), and (75). Then, from Eq. (73), we obtain
the following lifting maps:

l (1+) = (1, 1)+ + ( f , f )− + [s, s f ], ]

l ( f +) = (s, s)κ + (s f , s f )−κ + [1, f ],

l (x+) = X +
v1

+ X +
v1 f ,

l (y+) = X +
v2

. (104)

For κ = −1, the last two lifting maps are different. Again
using Eqs. (72), (74), and (75), we have nv2 = pv1 = pv1 f = 1
and the following lifting maps:

l (x+) = X +
v2

,

l (y+) = X +
v1

+ X +
v1 f . (105)
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The lifting coefficients are summarized in Table V. The
anomaly indicator ηM can be obtained by Eq. (84). We obtain

ηM = eiκ3π/8. (106)

It shows that SO(3)+3 lives on the surface of 3D TCSCs with
an index ν = 3, and SO(3)−3 lives on the surface of 3D TCSCs
with an index ν = 13. This agrees, and should agree, with
Eq. (1).

There are many other mirror SETs that our method can
be applied for. For example, the time-reversal symmetric (T-
Pfaffian)± theories discussed in Refs. [13,15,22] can be easily
adapted into mirror SETs. We have checked with our method
that the mirror version of (T-Pfaffian)+ is anomaly-free, while
(T-Pfaffian)− is anomalous with ηM = −1, agreeing with the
result of Ref. [69]. The calculation is straightforward and
similar to the above, so we do not show it here.

VII. CONCLUSIONS

In summary, we have explored general fermionic topologi-
cal orders enriched by the mirror symmetry. We have followed
and extended the folding approach, proposed in Ref. [45], to
fermion systems. In particular, we have derived the expression
(1) for the mirror anomaly indicator ηM. The derivation
makes use of dimensional reduction and anyon condensation
theory.

Similarly to Ref. [45], we have defined an alternative set of
data {nv, pv} through anyon condensation, in addition to the
original ones {μa}, to describe mirror symmetry fractionaliza-
tion. The two sets of data are “dual” to each other, as shown
in relations (76) and (77). However, compared to the results
in the bosonic case [45], our results are not as complete. We
have not derived a (relatively) complete set of constraints on
{nv, pv}. If we are able to do so, the constraints on {nv, pv} can
help to constrain possible values of {μa} and thereby provide a
better understanding of mirror SETs beyond mirror anomaly.
One of the obstacles to derive these constraints is that we do
not know the complete Z f

2 -gauged theory B in general, but
only know part of its properties such as the � matrix. To study
general properties of B is an interesting problem by itself.

It is interesting to extend this approach to other anomaly
indicators. For example, Ref. [70] obtained several anomaly
indicators for the surface topological orders that live on the
boundary of 3D bosonic and fermionic topological insulators,
i.e., systems with T and a U(1) symmetry group. Similar in-
dicators should exist for 3D topological crystalline insulators,
i.e., systems with M and U(1). Also, one may study anoma-
lies for systems with M and an internal symmetry group
G = Z2, SU(2), etc. We expect that our approach applies, after
proper extensions, for deriving the mixed anomaly between
M and G (the anomaly solely due to G cannot be obtained
in this way). In principle, one can first gauge G or a proper
subgroup of G, then perform the folding trick and study the
gapped domain by anyon condensation theory. However, one
may encounter difficulties in practice, e.g., the gauged SET
is not known in general for an arbitrary G. We leave these
generalizations to future studies.
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APPENDIX: SOME PROPERTIES OF �

In this Appendix, we prove two properties of the � matrix,
defined in Eq. (25). This matrix is a block of the S matrix of
B, up to some normalization.

First, we would like to prove (26), which we repeat here
for convenience: ∑

[a]

�a,v�
∗
a,v′ = δ[v],[v′], (A1)

∑
[v]

�a,v�
∗
a′,v = δa,a′ − δa f ,a′ , (A2)

where a, a′ ∈ C, and v, v′ ∈ C̄, and the summation over [a]
([v]) means that only one anyon in the pair [a] ([v]) is summed
over. To show the two relations, we notice that the S matrix of
B satisfies

Sa f ,b = Sa,b, Sa f ,v = −Sa,v,

Sa,v f = Sa,v, Sv′,v f = −Sv′,v, (A3)

which can be easily obtained from (12), (22) and the fact
that f is Abelian. (If one of the two vortices v and v′ is
Majorana-type, the last equality shows that Sv,v′ = 0.) Since
S is a unitary and symmetric matrix, we have

δv,v′ =
∑
α∈B

Sα,vS∗
α,v′

= 2
∑
[a]

Sa,vS∗
a,v′ +

∑
[w]

2

σ 2
w

Sw,vS∗
w,v′ , (A4)

δv f ,v′ =
∑
α∈B

Sα,v f S∗
α,v′

= 2
∑
[a]

Sa,vS∗
a,v′ −

∑
[w]

2

σ 2
w

Sw,vS∗
w,v′ . (A5)

Adding up (A4) and (A5), and making use of the definition
(25) of �, we have∑

[a]

�a,v�
∗
a,v′ = 1

σvσv′
(δv,v′ + δv f ,v′ ) = δ[v],[v′], (A6)

which is exactly (A1). Similarly, we have

δa,a′ =
∑
β∈B

Sa,βS∗
a′,β

= 2
∑
[b]

Sa,bS∗
a′,b +

∑
[v]

2

σ 2
v

Sa,vS∗
a′,v, (A7)

δa f ,a′ =
∑
β∈B

Sa f ,βS∗
a′,β

= 2
∑
[b]

Sa,bS∗
a′,b −

∑
[v]

2

σ 2
v

Sa,vS∗
a′,v. (A8)
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Subtracting (A7) with (A8) and making use of the definition
of �, we immediately obtain (A2).

Next, we show the following relation:∑
[a]

�a,v�ρm (a),v′ = δ[v],ρm ([v′]), (A9)

where a ∈ C and v, v′ ∈ C̄. This relation holds only if C is
mirror symmetric. To make sense of (A9), we need to define
ρm([v′]), i.e., the action of mirror permutation on the pairs
{[v]}. Once it is defined, we will see that

�ρm (a),v′ = �∗
a,w, with [w] = ρm([v′]). (A10)

Then, (A9) follows immediately by combining (A1) and
(A10).

To define the action of ρm on the vortex pairs, we first
consider the so-called Verlinde algebra Ver(C) associated
with the fusion rules in C. It is an algebra spanned by the
elements ea with a ∈ C, which satisfy

eaeb =
∑

c

Nc
abec, e†

a = eā. (A11)

This is a commutative algebra since Nc
ab = Nc

ba. Therefore, all
its irreducible representations are one dimensional, which are
called fusion characters and denoted by λ j (a). They satisfy

λ j (a)λ j (b) =
∑

c

Nc
abλ j (c), λ j (ā) = λ∗

j (a). (A12)

There are in total |C| fusion characters, labeled by j =
1, . . . , |C|, since the dimension of the algebra is |C|. One can
show that all fusion characters can be constructed from the S
matrix of B as follows:

λ j (a) = Sa,β

S1,β

, (A13)

where j = j(β ), i.e., each β ∈ B can be mapped to a fusion
character j(β ). The fact that (A13) is a fusion character fol-
lows from the Verlinde formula [55] and the fact that Verlinde
algebra Ver(C) is a subalgebra of the Verlinde algebra Ver(B).
It is not hard to see that β and β f are mapped to the same
fusion character, due to properties in Eq. (A3). One can show
that there exists a one-to-one mapping between the pair [β]
and fusion character index j [62].

In the presence of mirror symmetry, the fusion multiplicity
satisfies Nc

ab = Nρm (c)
ρm (a)ρm (b). Then, we have

λ j (ρm(a))λ j (ρm(b)) =
∑

c

Nρm (c)
ρm (a)ρm (b)λ j (ρm(c))

=
∑

c

Nc
abλ j (ρm(c)). (A14)

Accordingly, λ j (ρm(a)) is also a fusion character of the Ver-
linde algebra Ver(C). Then, there must be an index j̃, such that
λ j̃ (a) = λ∗

j (ρm(a)). In the case that j = j(b), one can show
that j̃ = j(ρm(b)), consistent with the original action of ρm

on C. In the case that j = j(v), the action of ρm on v is not
defined yet. We make use of the one-to-one mapping between
j and [β] to define such an action: given v, there must exist ṽ

such that

Sa,ṽ

S1,ṽ

= S∗
ρm (a),v

S1,v

, (A15)

where we explicitly used (A13). As discussed above, ṽ is not
unique, but [ṽ] is. So, we define

ρm([v]) ≡ [ṽ]. (A16)

Inserting the definition (25) of � into (A15) and using the
relation S1,β = dβ/DB, we obtain

σṽ

dṽ

dv

σv

�a,ṽ = �∗
ρm (a),v. (A17)

Note that while we can only determine [ṽ] through (A15),
σṽ and dṽ are the same for either anyon in [ṽ]. Given v and
ṽ, both {�a,ṽ}a∈C and {�ρm (a),v}a∈C are vectors of length 2.
Accordingly, we must have

dv

σv

= dṽ

σṽ

. (A18)

Then, Eq. (A10) results, which further gives rise to (A9).
We comment that defining ρm([v]) extends the domain of

ρm from C to B. However, this extension is different from the
one discussed in Sec. III B. There, we define ρm : Bl → Br ,
which is an antiequivalence between two topological orders.
In this Appendix, ρm is extended to be a map between vortex
pairs of a single topological order B. In general, ρm can not be
further extended such that it becomes an antiautoequivalence
of B.
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