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Abstract

Methicillin-resistant Staphylococcus lugdunensis (MRSL) has been increasing recognized in
healthcare and community settings. This study characterized the structure of SCCmec
elements harboured by 36 MRSL isolates from diverse sources in Hong Kong during 2008 to
2017 by whole genome sequencing. The ST-SCCmec combinations in the 36 MRSL isolates
were as follows: ST3-SCCmec IV (n=2), ST3-SCCmec V (n=28), ST27-SCCmec V (n=5)
and ST42-SCCmec V (n=1). The two SCCmec IV elements were highly similar to the
SCCmec IV element harbored by the community-associated methicillin-resistant S. aureus
(CA-MRSA) JCSC6668. The J3-mec complex-J2 regions in the SCCmec V elements were
highly similar to the corresponding regions in CA-MRSA strain PM1 (n=13) or WIS (n=21).
Based on the J1 to J3 sequences, the SCCmec V elements can be categorized into nine
different subtypes. Our findings highlight the diversified structures of SCCmec elements
among MRSL strains and their close relationship with SCCmec elements harboured by CA-

MRSA.
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INTRODUCTION

Staphylococcus lugdunensis is unique among the coagulase-negative staphylococci in that
infections caused by this organism are similar in type and severity to those caused by S.
aureus [1]. This organism remains sensitive to most antibiotics, contrary to other
staphylococci [1,2]. However, multidrug resistant strains have been increasingly identified
and may be partly related to better recovery and identification methods [3-7]. Our previous
work showed that emerging resistance in the organism is associated with the expansion of the
sequence type (ST) 3 clone and mosaic multidrug-resistant plasmids [5,6]. ST3 is one of the
major lineages identified in S. lugdunensis populations [8]. In Hong Kong, ST3 isolates were
highly prevalent in healthcare settings and have also been detected in clinical specimens from
patients with community-associated infections [4,5]. In Taiwan and Europe, ST3 S.
lugdunensis has been found to cause skin and soft tissue, osteoarticular and bacteremic

infections of community- and healthcare-associated origins [8,9].

In S. lugdunensis, the emergence of methicillin resistance has found to be associated with
acquisition of SCCmec IV or V elements [3,10]. In Taiwan, ST6 carrying SCCmec V has
been reported to be endemic in some hospitals [3]. However, only limited information is
available on the sequences of the SCCmec elements carried by S. lugdunensis [11]. To obtain
a better understanding of the emergence of methicillin-resistant S. lugdunensis (MRSL) in
Hong Kong, this study was performed to investigate the structure and content of SCCmec
elements in a collection of MRSL isolates of diverse healthcare-associated and community-

associated origins by whole genome sequencing.

METHODS
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A total of 36 MRSL isolates from several published collections and blood culture archives of
three acute, regional hospitals in Hong Kong were included [4-6,10]. Twenty-one isolates
were obtained from patients hospitalized for clinical infections (12 skin and soft tissue
infections, 7 bacteremia, 1 continuous ambulatory peritoneal dialysis peritonitis and 1
pneumonia) during 2008-2014 [4]. Fifteen isolates were collected from patients on long-term
renal dialysis (n=13, 2013-2014) and medical students (n=2, one each from 2015 and 2017)
with asymptomatic carriage [5,6,10]. Medical students expose to the healthcare environment
and they represent a special category that might be at risk of carriage of both community-
associated and healthcare-associated MRSL. Thus, they were involved in the present study
and expected to extend the diversity of SCCmec elements in MRSL. Each isolate originated
from a different individual and all viable isolates were included. The number of isolates with
healthcare-associated (from an inpatient after >2 days of hospitalization, hospitalization in
past 6 month, old age home residents and/or on long-term renal dialysis) and community-
associated origin (from an outpatient or an inpatient within 2 days of hospitalization and in
which healthcare-associated risk factors were absent) was 22 and 14, respectively. The
isolates were identified by MALDI-TOF and antimicrobial susceptibility to methicillin,
chloramphenicol, erythromycin, fusidic acid, gentamicin and tetracycline and mupirocin

determined using the CLSI’s disc diffusion and/or Etest, as previously reported [4-6,10].

At least 10 colonies for each isolate were inoculated into culture broth and genomic DNA
was extracted using EZ1 DNA Investigator kit (Qiagen, Hilden, Germany). The isolates were
sequenced using an [1lumina HiSeq 1500 Platform (Illumina, California, USA) at the Genome
Research Center of the University of Hong Kong at >50-fold coverage. A commercial
software package (CLC Genomics Workbench 9.01) was used for de novo assembly. A

methicillin-susceptible S. lugdunensis strain K93G (GenBank CP017069) was used as a
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reference [6]. Contigs that could not be mapped onto the reference were further analyzed
using BLAST search. Overlapping contigs were concatenated into supercontigs and the
SCCmec assembly was further improved using a Sanger pipeline [6,12]. Any remaining gaps
between SCCmec contigs were closed by PCR and Sanger sequencing (Table S1).

Genes were annotated by RAST [13]. SCCmec types and subtypes were assigned
according to published guidelines [14]. Subtypes were defined by the presence of specific
DNA sequences located in the J regions and designated using Arabic numbers in order of J1,
J2 and J3 with periods in between [14]. Where a J region was absent, 0 was assigned to
indicate the deletion. In S. aureus, three SCCmec V subtypes have been described including
subtype V.1.1.1 (strain WIS), subtype V.2.2.2 (strain PM1) and subtype V.3.1.2 (strain
JCSC6944) [14,15]. The ccr gene allotypes and alleles were assigned as previously described
[14,16]. Core genome alignment, variant calls and phylogenetic tree construction were
performed as previously described [17]. In brief, after mapping quality filtered and trimmed
reads to S. lugdunensis strain K93G using SMALT v0.7.6, SNPs were called and filtered with
QUAL>50, depth of coverage >50 and a minimum alternate allele frequency >0.9 using
SAMtools v1.3.1 [18] and VarScan [19]. A maximum likelihood (ML) phylogeny was
constructed with an General Time Reversal (GTR) nucleotide substitution model and 1000

times of bootstrap test using PhyML v3.0 [20].

RESULTS

The ST-SCCmec combinations in the 36 MRSL isolates were as follows: ST3-SCCmec IV
(n=2), ST3-SCCmec V (n=28), ST27-SCCmec V (n=5) and ST42-SCCmec V (single locus
variant of ST27, n=1). Resistance to non-beta-lactam drugs (11-39%) was common among
the isolates and correlated with the presence of plasmid contigs encoding cat (n=4), ermC

(n=6), aacA-aphD (n=14), ileS2 (n=5) and tetK (n=13) genes (Table S2).
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The full lengths of SCCmec elements in the 36 MRSL isolates were assembled. According to
their junctional sequences, the SCCmec elements were further categorized into 10 different
subtypes. The two ST3-SCCmec IV elements belonged to subtype IV.7.1.1 (size 23.6 kb).
The 28 ST3-SCCmecV elements belonged eight different subtypes including V.4.1.1
(size~70.5 kb, n=13), V.4.2.2 (size 80.4 kb, n=4), V.6.1.1 (size 53.3 kb, n=3), V.7.1.1 (size
23.6 kb, n=3), V.5.2.2 (size 63.3 kb, n=2) and one each of V.4.1.3 (size 70 kb), V5.1.1 (size
51.4 kb) and V.9.0.2 (size 14.1 kb). Subtype V10.0.2 (size 28.9 kb) was identified in the

ST27-SCCmec V (n=5) and ST42-SCCmec V (n=1) isolates.

Subtype 1V.7.1.1 element harbored by the two ST3/SCCmec 1V isolates was highly identical
to the SCCmec IV.7.1.1 element harbored by the community-associated methicillin-resistant
S. aureus (CA-MRSA) JCSC6668 (GenBank accession AB425823, 91.5% coverage and
99.4% identity; from Sweden in 1999) [21]. Sequence alignment and blast search showed that
four SCCmec V subtypes harbored by our isolates (including 7 ST3, 5 ST27 and 1 ST42)
shared high identity with the SCCmec V.2.2.2 harbored by the CA-MRSA strain PM1
(GenBank accession AB462393, from Taiwan in the 2000s) [22] over the J3-mec complex-J2
region (97.5%-99.8% identities, Figure 1). Subtype V10.0.2 harbored by our isolates (5 ST27
and 1 ST42) was highly similar to SCCmeccmun-22 (KP307925, 96.3% coverage and 99.9%
identity) harboured by a Taiwanese MRSL. Variations in the J1 regions of the subtypes seem
to have occurred from genetic events involving insertion and deletion and modules with high
sequence identities to the ACME element in S. epidermidis 1230R2 (GenBank MH188478)
[23] and SCCmec in S. aureus COL (GenBank CP000046) [24] were found (Figure 1). The
SCCmec elements were demarcated by two 18-bp direct repeats, DR1 on the right

chromosomal-SCCmec junction (DRscc-R) and DR3, DR4 or DRS5 at the left SCCmec-
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chromosomal junction (DRscc-L). Subtypes with the same pair of DRscc-R and DRscc-L
also shared an identical ccrCl1 allele (either ccrC1-3 or ccrC1-8) in the J3 region. In some of

the subtypes, additional 18-bp DRs (DR2, DR3, DR6) could be identified in the J1 region.

The remaining five SCCmec V subtypes were harboured by 21 ST3 isolates (Figure 2).
Sequence comparison revealed that they shared high identity with SCCmec V.1.1.1 harbored
by the CA-MRSA WIS (GenBank accession AB121219, from West Australia in the 1990s)
[25] over the J3-mec complex-J2 region (93.9%-100% identities). However, the ccrC1 allele
in our S. lugdunensis isolates (ccrC1-11, Figure S1) was different from that in strain WIS
(ccrC1-1). Despite the dissimilarities in the gene content of the subtypes with WIS-like and
PMI1-like J3-mec complex-J2 regions, they shared similar modules of genes in their J1
regions, including the direct repeats (DR2, DR3) within J1 region. In 20 isolates, the harbored
SCCmec elements have an identical pair of DRscc-R (DR7) and DRscc-L (DR4). The DRscc-
R and DRscc-L in the remaining isolate were DR6 and DR4, respectively. The direct repeats
at the two ends of SCCmecws were different (DR8 and DR9). Overall, 23 and 30 SCCmec V
elements had the restriction-modification hsd system and pls surface protein gene,
respectively within the J1 regions. However, the hsd genes in the S. lugdunensis SCCmec
elements were different from that those in SCCmecem: (42.3% identity) or SCCmecwis (41.3%
identity). According to the specific sequences in the J regions, eight SCCmec V subtypes
(including V.4.2.2, V.5.5.5, V.9.0.2, V.4.1.3, V.4.1.1, V.5.1.1, V.6.1.1 and V.7.1.1) in our

isolates were novel.

To investigate the phylogenetic relationship of the 36 isolates carrying different SCCmec
subtypes, we constructed a Maximum Likelihood tree based on 10,496 total SNPs in their

genomes (Figure S2). The tree topology and the pairs of DRscc-R/DRsce-L were compatible
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with five separate SCCmec insertional events in the isolates: group 1 (n=2, subtype IV.7.1.1
and DR2/DR4), group 2 (n=1, subtypes V.4.1.3 and DR6/DR4), group 3 (n=20, subtypes
V4.1.1, V5.1.1, Vé6.1.1, V7.1.1 and DR7/DR4), group 4 (n=7, subtypes V4.2.2, V5.2.2,

V.9.0.2 and DR1/DR4) and group 5 (n=6, subtype V.10.0.2 and DR1/DR3).

DISCUSSION

This study showed that emerging SCCmec IV and V elements in S. lugdunensis were related
to those harbored by CA-MRSA. Based on the sequence over the J3-mec complex-J2 region,
the SCCmec V subtypes may be considered to be variants of two prototype elements,
SCCmecpm; and SCCmecwss in S. aureus. The analysis further suggests that similar SCCmec
elements have inserted multiple times into the ST3 background. The most common SCCmec
subtype was V.4.1.1. Correlation of the phylogenetic tree with the SCCmec subtypes
suggested that SCCmec sequence variations have occurred after the chromosomal insertion of
SCCmecpm and SCCmecws -like elements (Figure S2) and multiple subtypes were identified
in isolates of both healthcare-associated and community-associated origins. Interestingly,
isolates carrying the same subtypes were detected in both healthcare-associated and
community-associated infections, raising the possibility that MRSL is emerging in multiple
settings.

The hsd system and pls gene [16,25], which may contribute to SCCmec stability and host
colonization, respectively, were detected within the J1 region in 64% (23/36) and 83%
(30/36), respectively of the isolates in the collection (Figure 1 and 2). In the SCCmec
harboured by the two CA-MRSA strains PM1 and WIS, the hsd system but not the pls gene

was found in the J1 region.
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In both SCCmecpm: -like and SCCmecws -like groups of subtypes, the variable J1 region is
mosaic and common DRs (DR2, DR3, DR6) were observed. Since integration site sequence
for the ccr gene complex were found within these DRs, it is likely that the J1 sequence
diversity is partly a result of ccr-mediated recombination. Previous studies have described
multiple DRs and mosaic modular structures within diversified ACME elements in S.
epidermidis [23]. In some of the isolates, ACME elements were found with adjoining
SCCmec or other operons as composite islands [23]. Based on the DRscc-R/DRscc-L analysis,
we assigned the mosaic sequences to the J1 region and not as modules outside the SCCmec
element. As in the prototype SCCmec V elements harboured by S. aureus, the variant
subtypes harbored by S. lugdunensis do not carry any antibiotic resistance genes besides
mecA. The multidrug-resistance phenotype in the isolates was caused by additional resistance

genes harboured on plasmids.

In conclusion, our findings highlight the diversified structures of SCCmec elements among

MRSL strains of the emerging ST3 lineage.
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Figure 1. Linear maps of 4 SCCmec V subtypes harbored by 13 S. lugdunensis isolates in
this study. Previously described SCCmec elements in CA-MRSA PM1 (AB462393, from
Taiwan in the early 2000s), S. lugdunensis CMUH-22 (KP307925, from Taiwan in 2010) and
S. lugdunensis CHUH-25 (KP307924, from Taiwan in 2010) were included for comparison.
The mec class and the ccr gene complex were indicated by red and blue shading, respectively.
The joining J1, J2 and J3 regions, and regions with identities to partial sequence of ACME
element in S. epidermidis 1230R2 (MH188478) and SCCmec element in S. aureus COL
(CP000046) were indicated on top. The host bacterial species, representative SCCmec
element with the strain name in subscript, SCCmec V subtype and number of isolates with the
subtypes are labeled for each. The DRs are indicated by thin arrows and correspond to DR
sequences in Table S3 in the supplementary file.
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Figure 2. Schematic representation of five SCCmec V subtypes harbored by 21 S.
lugdunensis isolates in this study. Previously described SCCmec element in CA-MRSA WIS
(AB121219, from West Australia in 1990s) was included for comparison. The mec class and
the ccr gene complex were indicated by red and blue shading, respectively. The joining J1, J2
and J3 regions, and regions with identities to partial sequence of ACME element in S.
epidermidis 1230R2 (MH188478) and SCCmec element in S. aureus COL (CP000046) were
indicated on top. The host bacterial species, representative SCCmec element with the strain
name in subscript, SCCmec V subtype and number of isolates with the subtypes are labeled

for each. The DRs are indicated by thin arrows and correspond to DR sequences in Table S3
in the supplementary file.
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