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Abstract—This work investigates the distributed constrained
optimization problem under inter-agent communication delays
from the perspective of passivity. First, we propose a continuous-
time algorithm for distributed constrained optimization with gen-
eral convex objective functions. The asymptotic stability under
general convexity is guaranteed by the phase lead compensation.
The inequality constraints are handled by adopting a projection-
free generalized Lagrangian, whose primal-dual gradient dynam-
ics preserves passivity and smoothness, enabling the application
of the LaSalle’s invariance principle in the presence of delays.
Then, we incorporate the scattering transformation into the
proposed algorithm to enhance the robustness against unknown
and heterogeneous communication delays. Finally, a numerical
example of a matching problem is provided to illustrate the
results.

Index Terms—Distributed optimization, Passivity, Delays.

I. INTRODUCTION

D ISTRIBUTED convex optimization over multi-agent sys-
tems aims to drive agents to cooperatively optimize the

sum of local objective functions that are only accessible to
their local agents. Ever since the pioneer work [1] that provides
a control-theoretic perspective for the proportional-integral
(PI) consensus-based distributed algorithms, many works have
been carried out in the continuous-time scheme [2]. Recently,
some problems in distributed optimization have been analyzed
via passivity-based techniques [3]–[7]. Passivity-based tech-
niques usually enjoy good scalability to large-scale networks
owing to the preservation of passivity in parallel or negative
feedback interconnection of passive components [8].

Distributed optimization under communication delays has
been an important subject in recent years since delays can
cause instability for algorithmic dynamics [3], [4], [9]. The
work [9] addresses time-varying delays, but it only considers
an identical delay known in advance for all communication
channels and does not treat inequality constraints. The problem
under unknown and heterogeneous communication delays is
addressed via passivity techniques in [3], [4]. However, to
ensure optimality in the presence of inequality constraints,
delays are assumed to be homogeneous and an additional
assumption on the graph is needed in [3], which is not always
easy to verify in large scale networks. Besides, the objective
function is assumed to be strictly convex in [3], [4], which does
not hold for a large class of convex optimization problems.
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The LaSalle’s invariance principle is widely used for conver-
gence analysis of distributed algorithms. Algorithms derived
from the classical Lagrange multiplier method usually adopt
projected operations to guarantee the non-negativeness of the
multipliers for inequality constraints. As a result, it leads to
non-smooth dynamics, which is analyzed by the invariance
principle for Carathéodory systems [10]. However, the dis-
continuous nature hinders the application of the invariance
principle when delays are introduced into the systems, which
results in the additional restrictive assumptions in [3], [4]. It
is worth noting that a projection-free Lagrangian is adopted
to solve local and couple inequalities in [11], which enables
a smooth dynamics and the application of the LaSalle’s
invariance principle under delays. Another important issue is
that the primal-dual gradient dynamics may cause oscillations
when the objective function lacks strict convexity [12]. To cope
with this problem, some modification methods are introduced
[12], [13]. However, these methods are either restricted to
affine constraints or not in a distributed structure. Recently, a
phase lead compensation technique is adopted as a generalized
method to ensure convergence [5].

In this work, we address unknown and heterogeneous inter-
agent communication delays in distributed constrained opti-
mization without the strictly convex assumption by combining
techniques used in [5], [11] from the perspective of passiv-
ity. First, we propose a smooth continuous-time algorithm
for distributed constrained optimization with general convex
objective functions without delays. Then, we incorporate
the scattering transformation into the proposed algorithm to
enhance the robustness against unknown and heterogeneous
communication delays.

II. PRELIMINARIES

Notations: Let R (R≥0) be the set of (non-negative) real
numbers. col(v1, . . . , vm) := (vT1 , . . . , v

T
m)T denotes the col-

umn vector stacked with vectors v1, . . . , vm. In denotes the
n×n identity matrix, 1n := col(1, . . . , 1) ∈ Rn, and 0 denotes
the zero matrix of proper dimension. The notation “◦” denotes
the Hadamard product and “⊗” denotes the Kronecker product.
∇kf denotes the gradient of f along the variable k, whose
subscript can be omitted if there is only one variable.

We first introduce some knowledge of convex analysis. A
differentiable function f : Rm → R is convex over a convex
set X ⊂ Rm iff [∇f(x)−∇f(y)]

T
(x− y) ≥ 0, ∀x, y ∈ X ,

and is strictly convex iff the strict inequality holds for any
x 6= y. The function f is said to be concave if −f is convex.
For a function L : X ×Y → R with X ⊂ Rn, Y ⊂ Rm being
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closed and convex, (x∗, y∗) ∈ X ×Y is called a saddle point
of L if L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀(x, y) ∈ X × Y .

Next, let us present some basic concepts in graph theory.
An undirected communication graph is represented by G =
(N , E), where N = {1, . . . , N} is the node set of all agents,
E ⊂ N × N is the edge set. The edge (i, j) ∈ E means
that agent i and j can exchange information. The adjacency
matrix A := [aij ] satisfies aii = 0, and aij = aji > 0 if
(i, j) ∈ E and aij = 0, otherwise. The graph G is said to
be connected if there exists a sequence of successive edges
between any two agents. When G is connected and undirected,
its corresponding Laplacian matrix L := diag{A · 1N} − A
is positive semidefinite and has zero as its simple eigenvalue
associated with eigenvector v = α1N , ∀α ∈ R.

We conclude this section by giving the definition of pas-
sivity [5]. Consider a system Σ described by a state model
with state x ∈ Rm, input u ∈ Rn and output y ∈ Rn.
The system Σ is said to be passive if there exists a positive
semidefinite differentiable function S(x) : Rm → R≥0 called
storage function, such that Ṡ(x) ≤ yTu holds for all inputs
u(t), all initial states x(0), and all t ≥ 0.

III. PASSIVITY-BASED ALGORITHM ON CONSTRAINED
DISTRIBUTED OPTIMIZATION

Let us consider a constrained distributed optimization prob-
lem in a network of N agents in the node set N = {1, . . . , N}

min
z

∑
i∈N

fi(z), s.t. gi(z) ≤ 0, hi(z) = 0, i ∈ N (1)

where z ∈ Rn is a decision variable, fi : Rn → R,
gi : Rn → R, hi : Rn → R are local objective function,
inequality constraint and affine equality constraint for the ith
agent, respectively. Just for simplicity, we only consider one
local inequality and equality constraint for each agent, while it
is trivial to extend subsequent results to the case with multiple
local constraints. Next, we adopt the following assumptions.

Assumption 1. The functions fi and gi are convex and twice
differentiable. The Slater’s condition holds and there exists a
finite optimal solution to problem (1).

This assumption ensures that the problem is well-defined.
fi is only required to be convex, implying that there may exist
more than one optimal solution to problem (1).

Assumption 2. The communication graph G is undirected and
connected.

Denote x = col (x1, . . . , xN ), where xi ∈ Rn, then problem
(1) is equivalent to

min
x
f(x) :=

∑
i∈N

fi(xi) + xTLx

s.t. gi(xi) ≤ 0, hi(xi) = 0, i ∈ N , Lx = 0

(2)

where L = L⊗ In, and L is the Laplacian matrix.

A. Generalized Lagrange Multiplier Method

In this subsection, we briefly review the generalized La-
grange multiplier method (GLMM) in [11] for solving problem

(2). Define compact variables λ = col(λ1, . . . , λN ), µ =
col(µ1, . . . , µN ), ξ = col(ξ1, . . . , ξN ) with λi, µi ∈ R and
ξi ∈ Rn, i ∈ N . Adopt a Lagrangian for problem (2),

L(x, ξ, λ, µ) :=

f(x) +
∑
i∈N

λ2i gi(xi) +
∑
i∈N

µihi(xi)− ξTLx+
1

2
xTLx

(3)
where L(x, ξ, λ, µ) is a class of the generalized Lagrangian;
λ2i is the generalized multiplier for the inequality constraint
gi ≤ 0; µi is the multiplier for the equality constraint hi = 0;
ξ is the multiplier for the consensus constraint Lx = 0. Then,
by applying the primal-dual gradient flow to L(x, ξ, λ, µ), we
obtain the following projection-free distributed algorithm

ẋi =−∇xiL = −∇fi(xi)− λ2i∇gi(xi)− µi∇hi(xi)

+
∑
j∈Ni

aij(xj − xi)−
∑
j∈Ni

aij(ξj − ξi) (4a)

ξ̇i =∇ξiL, λ̇i = ∇λi
L, µ̇i = ∇µi

L (4b)

where aij is the (i, j)-th entry of the adjacency matrix. The
above algorithm is said to be projection-free since the non-
negativeness of multipliers λ2i is already guaranteed without
any projection operator.

Let (x∗, ξ∗, λ∗, µ∗) ∈ H∗ denotes an optimal solution of the
problem, where H∗ is the set satisfying the generalized KKT
condition for problem (2) corresponding to L(x, ξ, λ, µ), i.e.,

Lx∗ = 0, (5a)

hi(x
∗
i ) = 0, gi(x

∗
i ) ≤ 0, λ∗i

2gi(x
∗
i ) = 0, (5b)

∇fi(x∗i ) + λ∗i
2∇gi(x∗i ) + µ∗i∇hi(x∗i ) +

N∑
j=1

aij(ξ
∗
j − ξ∗i ) = 0

(5c)

where the term
∑
j∈Ni

aij(x
∗
j − x∗i ) in (5c) is omitted since

(5a) implies x∗i = x∗j , ∀i, j. Next, let us give the following
lemma derived from [11].

Lemma 1. Under Assumption 1, a fixed point (x∗, ξ∗, λ∗, µ∗)
solves problem (2) if and only if it satisfies condition (5).

Then, denote z∗ = x∗i , ∀i. Obviously, z∗ is the optimal
solution to problem (1).

B. GLMM With Phase Lead Compensation
Originally, fi needs to be strictly convex to ensure the

convergence of algorithm (4) [11]. When this restriction does
not hold, i.e., when fi lacks strict convexity, an extra modi-
fication is needed. In this subsection, we add the phase lead
compensator into the dynamics (4), which serves to provide
stable zeros and avoid possible oscillations for the algorithm
under general convexity [5].

Define ν = col(ν1, . . . , νN ) with νi ∈ Rn and

νi = −∇fi(xi)− λ2i∇gi(xi)− µi∇hi(xi)
+
∑
j∈Ni

aij(xj − xi)−
∑
j∈Ni

aij(ξj − ξi).
(6)

We add the phase lead compensator to the integrator in the
primal gradient dynamics (4a), then the dynamics for the ith
agent is reformulated in the frequency domain as

xi(s) = (Mi(s) · In) νi(s) (7)
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Fig. 1. Block diagram of the ith agent’s dynamics for xi, λi, νi. The
generalized transfer function Mi(s) represents the cascade connection of
phase lead compensator with the integrator for gradient dynamics of xi to
ensure convergence under general convexity.

where the generalized transfer function Mi(s) is defined by

Mi(s) =
m∑
k=1

cik
s+ bik

,

bim > . . . > bi2 > bi1 = 0, cik > 0, k = 1, . . . ,m ≥ 2.

(8)

Note that we only apply the phase lead compensator to (4a),
and (8) is a simplified version of the algorithm in [5].

Then, the overall distributed algorithm becomes

ρ̇ik =− bikρik + cikνi, k = 1, . . . ,m (9a)

xi =
m∑
k=1

ρik (9b)

νi =−∇fi(xi)− λ2i∇gi(xi)− µi∇hi(xi)

+
∑
j∈Ni

aij(xj − xi)−
∑
j∈Ni

aij(ξj − ξi) (9c)

ξ̇i =
∑
j∈Ni

aij(xj − xi) (9d)

λ̇i =2λigi(xi), µ̇i = hi(xi) (9e)

where (9a), (9b) is the state-space representation of (7) and
ρik ∈ Rn (k = 1, . . . ,m) is an auxiliary state variable. Under
the phase lead compensation, the block diagram of the ith
agent’s dynamics for xi, λi, νi can be described by Figure 1.
We can observe that, algorithm (9) is reduced to algorithm (4)
if Mi(s) is replaced by an integrator.

C. Convergence Analysis

We aim to address convergence of system (9) via passivity
analysis in this subsection. To this end, let us first analyze
the passivity of the subsystems included in it. Denote a
fixed point (x∗, ξ∗, λ∗, µ∗) ∈ H∗ as the reference point,
ν = col (ν1, . . . , νN ) and ν∗ = ν(x∗, ξ∗, λ∗, µ∗) = 0. First,
we focus on subsystem (9a)-(9c) and obtain the following
lemma whose proof can be found in [5, Lemma 7].

Lemma 2 ([5]). Under Assumption 1, the system defined by
(9a)-(9c) is passive from φi − φ∗i to xi − z∗ with respect to
the storage function Sci = 1

2ci1
‖ρi1 − z∗‖2 +

∑m
k=2

1
2cik
‖ρik‖2,

i.e., Ṡci ≤ (xi− z∗)T (φi−φ∗i ), where φi := νi+∇fi(xi) and
φ∗i := ν∗i +∇fi(x∗i ).

Briefly note that it satisfies that

Ṡci = (xi − z∗)T νi −
m∑
k=2

bik
cik
ρik
T
ρik ≤ (xi − z∗)T (φi − φ∗i ).

(10)
Next, we show that the dual gradient of Lagrangian (3) with

respect to λ, µ preserves passivity.

Lemma 3. Under Assumption 1, the system given by (9e)
is passive from xi − z∗ to ζi − ζ∗i with respect to Sgi =
1
4

(
λ2i − λ∗i

2
)
− 1

2λ
∗
i
2 (lnλi − lnλ∗i )+ 1

2 (µi − µ∗i )
2, i.e., Ṡgi ≤

(ζi−ζ∗i )T (xi−z∗), where λi lnλi is defined as 0 when λi = 0,
ζi := λ2i∇gi(xi) + µi∇hi(xi), and ζ∗i := ζi(z

∗, λ∗i , µ
∗
i ).

Proof. The storage function Sgi is smooth and differentiable
for λi on [0,+∞]. By direct calculation, Sgi ≥ 0 and Sgi = 0
if and only if (λi, µi) = (λ∗i , µ

∗
i ). The time derivative of Sgi

gives

Ṡgi =
(
λ2i − λ∗i

2
)
gi(xi) + (µi − µ∗i )hi(xi)

≤ λ2i
[
gi(z

∗) +∇gi(xi)T (xi − z∗)
]

−λ∗i
2
[
gi(z

∗) +∇gi(z∗)T (xi − z∗)
]

+ (µi − µ∗i )
[
∇hi(xi)T (xi − z∗)

]
= [λ2i∇gi(xi)− λ∗i

2∇gi(z∗)]T (xi − z∗) + λ2i gi(z
∗)

−λ∗i
2gi(z

∗) + (µi − µ∗i )
[
∇hi(xi)T (xi − z∗)

]
≤ (ζi − ζ∗i )T (xi − z∗),

where the first inequality follows from the convexity of gi
and affine properties of hi, the second inequality follows from
∇hi(xi) = ∇hi(z∗) and the KKT condition (5b).

We can also observe from Figure 1 that, the system enclosed
by the solid line is passive from φi−φ∗i to xi−z∗ by Lemma 2.
The system within the dashed line is passive from xi − z∗ to
ζi− ζ∗i by Lemma 3. Moreover, since the communication part
in (9c), (9d) inherits passivity [3], the overall system (9) can be
seen as a feedback interconnection of passive systems. Then,
we can obtain the following result on convergence.

Theorem 1. Under Assumptions 1 and 2, the trajectories of
system (9) with initial condition λi(0) > 0, ∀i ∈ N will
converge to a fixed equilibrium point that solves problem (2).

Proof. Adopt the Lyapunov function candidate V =∑
i∈N S

g
i +

∑
i∈N S

c
i + 1

2 ‖ξ − ξ
∗‖2 ≥ 0. Apparently, V

is radially unbounded. Denote ζ = col(ζ1, . . . , ζN ), ζ∗ =
col(ζ∗1 , . . . , ζ

∗
N ), by Lemmas 2 and 3, the time derivative of

V satisfies

V̇ ≤(x− x∗)T (φ− φ∗) + (ζ − ζ∗)T (x− x∗)
− (ξ − ξ∗)T L (x− x∗) ≤ − (x− x∗)T L(x− x∗) ≤ 0,

where the last inequality follows from the positive semidef-
initeness of L. Then the states are bounded. The set Ω0 :=
{(x, ξ, λ, µ, ρ)|V ≤ V (0)} is a positively invariant set. Invok-
ing the LaSalle’s invariance principle, the states will converge
to the largest invariant set in {(x, ξ, λ, µ, ρ)|V̇ = 0} which we
denote as Ωc in the subsequent, and V̇ = 0 only if all the non-
negative terms are zero. Notice that −

∑m
k=2

bik
cik
ρik
T
ρik = 0
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holds only if ρik ≡ 0, ∀k = 2, . . . ,m, which implies that
νi = 0 and thus xi is unchanged. − (x− x∗)T L(x−x∗) = 0
implies that Lx = 0 and ξ̇ = 0. Then x satisfies (5c).

Next, let us look at the dynamics (9e) when the states
converges to Ωc. If λ∗i = 0, then the constraint gi(xi) is
inactive, meaning that gi(xi) ≤ 0 when the primal gradient
of L with respect to xi vanishes, i.e., when (5c) holds. If
λ∗i > 0, recalling the definition of Sgi , we obtain that λi > 0,
for all t > 0, because if λi → 0, then Sgi → +∞ due
to the term − 1

2λ
∗
i
2 lnλi, which contradicts the fact that V

is decreasing. Since λi is nonzero, gi(xi) should be zero to
ensure stability and boundedness of the dynamics λ̇i = 2λigi.
Similarly, it can be observed that hi(xi) should be zero to
ensure boundedness. Therefore, the KKT condition (5) is
satisfied, i.e., (x, ξ, λ, µ) ∈ H∗ and is unchanged whenever
(x, ξ, λ, µ, ρ) converges to Ωc. In conclusion, the trajectories
generated by the algorithm will asymptotically converge to a
constant equilibrium point that solves problem (2).

IV. CONSTRAINED DISTRIBUTED OPTIMIZATION WITH
HETEROGENEOUS COMMUNICATION DELAYS

Let us consider the presence of unknown and heterogeneous
inter-agent communication delays in this section. For (i, j) ∈
E , let the communication delay from agent i to j be denoted
by a constant Tij . In this case, each agent cannot catch the
current variable of its neighboring agents. Then the algorithm
under delays becomes

νi =−∇fi(xi)− λ2i∇gi(xi)− µi∇hi(xi)

+
∑
j∈Ni

aij(r
x
ij − xi)−

∑
j∈Ni

aij(r
ξ
ij − ξi) (11a)

ξ̇i =
∑
j∈Ni

aij(r
x
ij − xi) (11b)

(9a), (9b), (9e)

where (11a) and (11b) are the modified update expression
against (9c) and (9d) by replacing the neighbor’s information
with rxij , r

ξ
ij , which denote the information agent i receives

from agent j. The dynamics (11a), (11b) can be rewritten as[
νi
ξ̇i

]
=

[
−∇fi(xi)− ζi

0

]
+ pi (12)

where ζi is defined in Lemma 3, pi :=
∑
j∈Ni

pij , pij :=[
pxij
pξij

]
= Eij

[
rxij − xi
rξij − ξi

]
and Eij :=

[
aij −aij
aij 0

]
⊗ In, j ∈

Ni.
Define x̄i := xi−z∗, ξ̄i := ξi−2ξ∗i , p̄i := pi−

∑
j∈Ni

p∗ij =∑
j∈Ni

p̄ij , p∗ij := aij

[
ξ∗i − ξ∗j

0

]
, rij :=

[
rxij
rξij

]
, r̄ij :=[

r̄xij
r̄ξij

]
= rij − r∗ij , r

∗
ij :=

[
z∗

ξ∗i − ξ∗j

]
. We show that the

dynamics under communication delays preserves passivity-like
properties.

Lemma 4. Under Assumption 1, the system given by (11) has
the passivity-like property Ṡi ≤

∑
j∈Ni

r̄Tij p̄ij , where Si =

Sci +Sgi + 1
2

∥∥ξ̄i∥∥2, Sci and Sgi are defined in Lemmas 2 and 3.

Proof. From the former lemmas, Si ≥ 0. The time derivative
of Si satisfies

Ṡi ≤ −
∑m
k=2

bik
cik
ρik
T
ρik + x̄Ti [−∇fi(xi)− ζi]

+x̄Ti (ζi − ζ∗i ) +
[
x̄i ξ̄i

]
pi

≤ −x̄Ti (ζi − ζ∗i ) + x̄Ti (ζi − ζ∗i )−
∑m
k=2

bik
cik
ρik
T
ρik

+x̄Ti
∑
j∈Ni

aij
(
ξ∗j − ξ∗i

)
+
∑
j∈Ni

[
x̄i ξ̄i

]
pij

= −
∑m
k=2

bik
cik
ρik
T
ρik +

∑
j∈Ni

[
x̄i + r̄xij − r̄xij
ξ̄i + r̄ξij − r̄

ξ
ij

]T
p̄ij

≤
∑
j∈Ni

r̄Tij p̄ij −
∑
j∈Ni

aij
∥∥x̄− r̄xij∥∥2

≤
∑
j∈Ni

r̄Tij p̄ij
(13)

where the first inequality follows from (10), (12) and
Lemma 3.

If state variables are exchanged, then agent i at time t
receives rxij = xj(t − Tji) and rξij = ξj(t − Tji) from agent
j due to the existence of delays. However, this may cause
instability and divergence to the dynamics [3]. Thus, we do
not directly exchange original state variables here. To ensure
stability under delays, a scattering transformation method is
introduced [8], [14]. The scattering transformation in this work
is defined as

s−→
ij

=
1√
2η

(−pij + ηrij), s←−
ij

=
1√
2η

(pij + ηrij) (14a)

s←−
ji

=
1√
2η

(pji + ηrji), s−→
ji

=
1√
2η

(−pji + ηrji) (14b)

for (i, j) ∈ E , where η > 0. Specifically, s−→
ij

denotes the signal
that agent i sends to agent j while s←−

ji
represents the signal

j receives from i. The other notations are defined similarly.
Due to the delays, these signals should satisfy

s←−
ji

(t) = s−→
ij

(t− Tij), s←−
ij

(t) = s−→
ji

(t− Tji). (15)

Instead of directly exchanging x and ξ, scattering variables
(14) are exchanged between agent i and j for (i, j) ∈ E .
Then the input variables rxij , r

ξ
ij for each agent are computed

from these scattering variables. For simplicity, we suppose that
s←−
ij

(t) = s−→
ij

(t) = 0, ∀t < 0.
It has been proved that the system of the scattering trans-

formation inherits passivity properties.

Lemma 5 ([3]). The system consisting of (14) and (15) is
passive from −[p̄Tij , p̄

T
ji]
T to [r̄Tij , r̄

T
ji]
T with respect to

Vij(t) = 1
2

∫ t

0

(∥∥∥s−→ij (τ) + γ∗ij

∥∥∥2 − ∥∥∥s←−ji(τ) + γ∗ij

∥∥∥2
+
∥∥∥s−→ji(τ)− δ∗ij

∥∥∥2 − ∥∥∥s←−ij (τ)− δ∗ij
∥∥∥2) dτ

+
Tij

2 (γ∗ij)
2 +

Tji

2 (δ∗ij)
2

i.e., V̇ij(t) ≤ −r̄Tij p̄ij− r̄Tjip̄ji, where γ∗ij := 1√
2η

(
p∗ij − ηr∗ij

)
,

δ∗ij := 1√
2η

(
p∗ij + ηr∗ij

)
.

Since p̄ij = pij − p∗ij , we can easily obtain the following
lemma with p∗ij , p

∗
ji replaced by 0 in the proof of Lemma 5.

Lemma 6. The system consisting of (14) and (15) is passive
from −[pTij , p

T
ji]
T to [r̄Tij , r̄

T
ji]
T with respect to Vij(t), i.e.,

V̇ij(t) ≤ −r̄Tijpij − r̄Tjipji.
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Following the above lemmas, the algorithm with scattering
transformation controllers can be viewed as a feedback inter-
connection of passive systems and hence preserves passivity.
Then, we can obtain the convergence result.

Theorem 2. Under Assumptions 1 and 2, the trajectories of
system (11) with controller (14), (15) and initial condition
λi(0) > 0, ∀i ∈ N will asymptotically converge to a fixed
equilibrium that solves problem (2).

Proof. Step 1: We adopt the Lyapunov function candidate
V̄ =

∑
i∈N Si+

∑
(i,j)∈E Vij , where Si and Vij are defined in

Lemma 4 and Lemma 5, respectively. Obviously, V̄ ≥ 0 and
is radially unbounded. By following Lemma 4 and Lemma 5,
the time derivative of V̄ satisfies

˙̄V ≤
∑
i∈N

−
m∑
k=2

bik
cik
ρik
T
ρik −

∑
j∈Ni

aij
∥∥x̄− r̄xij∥∥2

 ≤ 0.

(16)
Then the system states are bounded. The set Ω̄0 :=
{(x, ξ, λ, µ, ρ)|V̄ ≤ V̄ (0)} is a positively invariant set. By the
LaSalle’s invariance principle for delay systems [15, Theorem
5.17], the states will converge to the largest invariant set Ω̄c in
{(x, ξ, λ, µ, ρ)| ˙̄V = 0}, which implies that ξ̇i = 0, xi = rxij .
Moreover, νi = 0 implies that xi remains unchanged.

However, these results derived from (16) are insufficient to
conclude the optimality yet. To this end, let us go back and
rearrange the time derivative of ˙̄V .

Step 2: Reformulating the term
∑
j∈Ni

[
x̄i ξ̄i

]
pij from

(13), we have∑
j∈Ni

[
x̄i ξ̄i

]
pij

=
∑
j∈Ni

([
r̄xij r̄ξij

]
−
[
r̄xij − x̄i r̄ξij − ξ̄i

])
pij

=
∑
j∈Ni

r̄Tijpij −
∑
j∈Ni

[
rxij − xi
rξij − ξi

]T
Eij

[
rxij − xi
rξij − ξi

]
−
∑
j∈Ni

[
0

ξ∗i − ξ∗j

]T
Eij

[
rxij − xi
rξij − ξi

]
=

∑
j∈Ni

r̄Tijpij −
∑
j∈Ni

aij
(
ξ∗i − ξ∗j

)T (
rxij − xi

)
−
∑
j∈Ni

aij
∥∥xi − rxij∥∥2 .

When the states are in Ω̄c, it is already shown that xi = rxij =
constant. Thus, following the time derivative of V̄ along with
Lemma 6, we have

˙̄V =
∑
i∈N

{
−
∑
k=2

mρik
T
ρik + (µi − µ∗i )hi(xi)

+ (λ2i − λ∗i
2)gi(xi)− x̄Ti

[
∇fi(xi) + λ2i∇gi(xi)

]
−
∑
j∈Ni

aij
∥∥xi − rxij∥∥2


=
∑
i∈N

{
−x̄Ti

[
∇fi(xi) + λ2i∇gi(xi)

]
+ (λ2i − λ∗i

2)gi(xi)

+(µi − µ∗i )hi(xi)
}

=− x̄T∇xLg +
(
λ2 − λ∗2

)T
∇λ2Lg + µ̄T∇µLg

≤Lg(x∗, λ, µ)− Lg(x, λ, µ) + Lg(x, λ, µ)− Lg(x, λ∗, µ∗)

=Lg(x∗, λ, µ)− Lg(x∗, λ∗, µ∗)
+ Lg(x∗, λ∗, µ∗)− Lg(x, λ∗, µ∗)

where λ2 := λ◦λ and λ∗2 is defined similarly, Lg(x, λ, µ) :=
f(x)+

∑
i∈N

[
λ2i gi(xi) + µihi(xi)

]
is a Lagrangian, the third

equality follows from the fact that Lg is convex with respect to
x and concave with respect to

(
λ2, µ

)
. Then

(
x∗, λ∗2, µ∗

)
can

be seen as a saddle point to Lg . It satisfies that Lg(x∗, λ, µ) ≤
Lg(x∗, λ∗, µ∗) ≤ Lg(x, λ∗, µ∗). These equalities hold when
˙̄V = 0, i.e.,∑
i∈N

(
λ2i − λ∗i

2
)
gi(z

∗) + (µi − µ∗i )hi(z∗) = 0 (17a)∑
i∈N

fi(z
∗) =

∑
i∈N

{
fi(xi) + λ∗i

2gi(xi) + µ∗i hi(xi)
}
. (17b)

Here, since xi is unchanged, it is clear from (9e) that hi(xi) =
0 otherwise µi is unbounded, ∀i ∈ N , then

∑
i∈N µ

∗
i hi(xi) =

0. Therefore, if λ∗i
2gi(xi) = 0, ∀i ∈ N , then we can conclude

from (17b) that xi is the optimal solution. If λ∗ 6= 0, then λi >
0, ∀t > 0. This is because if λi goes to zero, then V̄ → +∞
due to the term − 1

2λ
∗
i
2 lnλi in Sgi , which contradicts the fact

that V̄ is decreasing. We will reason by cases in the following.
1) If gi(z∗) < 0, then λ∗i = 0, λ∗i

2gi(xi) = 0 holds.
2) If gi(z∗) = 0, then λ∗i can be nonzero. Note that xi is a

constant. Then gi(xi) ≤ 0 or else λi will be unbounded
according to the dynamics λ̇i = 2λgi(xi).

a) If gi(xi) = 0, λ∗i
2gi(xi) = 0 holds.

b) If gi(xi) < 0, then λi should be zero to render a
stable equilibrium point, which contradicts the fact
that λi will not approach 0, ∀t > 0.

Therefore, λ∗i
2gi(xi) = 0 holds, and

∑
i∈N fi(xi) is the

optimal value, which means that xi = xj , ∀i, j is an optimal
solution.

Remark 1. The LaSalle’s invariance principle plays a crucial
role, which allows the analysis in step 2 of the proof. Such
an application of the LaSalle’s invariance principle under
delays is made valid thanks to the algorithmic dynamics (4)
for the generalized Lagrangian that preserves smoothness
and passivity. It should also be noted that the passivity-
based phase lead compensation technique eliminates possible
oscillations and ensures the convergence with cost functions
not necessarily strictly convex.

V. APPLICATION TO TARGET MATCHING PROBLEM

Let us consider an environmental-monitoring problem that
is formulated as a target matching problem [16].

min
zlk≥0

N∑
l=1

M∑
k=1

zlk ‖wl − qk‖

s.t.
N∑
l=1

zlk = 1, k = 1, . . . ,M,
M∑
k=1

zlk = 1, l = 1, . . . , N

(18)
where z = col(z1, . . . , zN ) ∈ RNM is the decision variable
with zl = col(zl1, . . . , zlM ) ∈ RM , and N, M are the number
of Robots and Targets, respectively. The variable zlk ∈ R

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LCSYS.2020.2989372

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



denotes the matching label for Robot l and Target k. The
term ‖wl − qk‖ denotes the distance from Robot l to Target
k, which is regarded as a constant (given by sensing). Note
that the linear programming problem (18) with continuous
variables is a strictly relaxation from integer programming.
The optimal solution for zlk is either 1 or 0, which implies
the matching status between Robot l and Target k [16]. We
reformulate (18) as a consensus-based distributed optimization
problem and use notation xi(lk) to denote the estimation of zlk
from agent i.

Consider an area of 100 × 100[m2] with N = 5 Robots
and M = 5 Targets. The positions of Robots and Targets are
shown in Figure 2(a). The communication graph is set to be a
ring graph with aij = 4, ∀(i, j) ∈ E , the other parameters are
defined as m = 2, bi2 = 5, ci1 = 1, ci2 = 10, η = 1, the initial
condition is (xi, ξi, λi, µi, ρ

i)|t=0 = (0,0, 0.01, 0,0) and the
stepsize is set to 0.001 in Simulink. The trajectories of of xi,
i = 1, . . . , 5 in algorithm (9) without communication delay
converge to the optimal solution, as shown in Figure 3(a),
which validates Theorem 1.

Next, we assume that there exist unknown and heteroge-
neous constant delays between any two neighboring agents.
The communication delays can bring in instability for al-
gorithm (9) (see, e.g., [3]). Thus, let us adopt algorithm
(11) with scattering transformation (14) to enhance robustness
against delays, and consider heterogeneous communication
delays Tij ∈ [0.2, 0.3] [s], ∀(i, j) ∈ E . The trajectories of xi,
i = 1, . . . , 5 converge to the optimal solution as shown in
Figure 3(b), validating Theorem 2. Note that the agents’ states
diverge for the present delays in the absence of the scattering
transformation. Therefore, the scattering transformation serves
as a key technique for delay robustification. The corresponding
results are shown in Figure 2(b), illustrating the matching
between Robots and Targets.

VI. CONCLUSION

We have addressed the distributed constrained optimization
problem under inter-agent communication delays from the per-
spective of passivity. We have proposed smooth optimization
dynamics incorporating scattering transformation and proved
the robustness against unknown and heterogeneous delays.
Future work will include the extension to coupled constraints,
geometric constraints, and directed communication graphs.
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(b) Matching results.

Fig. 2. Robots and Targets in the 100× 100[m2] area.

(a) The algorithm (9) without com-
munication delay.

(b) The algorithm (11) with scatter-
ing transformation under heteroge-
neous communication delays.

Fig. 3. The trajectories of xi, i = 1, . . . , 5.
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